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Abstract: Vision-Language-Action (VLA) models offer a compelling framework1

for tackling complex robotic manipulation tasks, but they are often expensive to2

train. In this paper, we propose a novel VLA approach that leverages the competi-3

tive performance of Vision Language Models (VLMs) on 2D images to directly4

infer robot end-effector poses in image frame coordinates. Unlike prior VLA5

models that output low-level controls, our model predicts trajectory waypoints,6

making it both more efficient to train and robot embodiment agnostic. Despite7

its lightweight design, our next-token prediction architecture effectively learns8

meaningful and executable robot trajectories. We further explore the underuti-9

lized potential of incorporating depth images, inference-time techniques such as10

decoding strategies, and demonstration-conditioned action generation. Our model11

is trained on a simulated dataset and exhibits strong sim-to-real transfer capabil-12

ities. We evaluate our approach using a combination of simulated and real data,13

demonstrating its effectiveness on a real robotic system.14

Keywords: VLAs, Manipulation, Imitation Learning15

1 Introduction16

Vision-language-action (VLA) models integrate visual understanding with actionable decision-making17

by jointly learning from visual, linguistic, and interaction data. These methods enable fine-grained18

perception and action generation, allowing them to solve a diverse range of tasks [1, 2, 3]. When19

trained on large-scale datasets of robot demonstrations, VLAs can generalize across a variety of20

robots and environments [4]. However, for further advancement of VLAs, we identified several key21

constraints: a) Computational costs: Training VLAs demands significant computational resources,22

making experimentation challenging. b) Data limitations: Collecting high-quality, multimodal real-23

world datasets that pair all three modalities —vision, language, and interaction data —is expensive24

and time-consuming. c) Evaluation and benchmarking: Standardized benchmarks for assessing25

VLAs performance often rely on real-world rollouts, making consistent comparisons difficult. This26

work addresses these constraints by proposing a lightweight VLA system trained on a controllable27

synthetic dataset and designed for broad applicability across different domains.28

Evaluating and potentially training in simulation may be a key method to address these problems. Its29

use is already widespread in other robotic areas, such as learning navigation and locomotion [5, 6, 7],30

but this is not yet the case for VLAs. This may be due to the high precision required for control, the31

large number of degrees of freedom, and complex contact interactions [8, 9] and scene complexity.32

Bridging this gap remains a key research area in robotic manipulation. To this end, we utilize33

training from simulations by constructing a curated dataset with a strong camera viewpoint and object34

variation. The simulations and augmentations are carefully constructed to enable sim-to-real transfer.35

Based on this data, we train a VLA based on the PaliGemma architecture [10]. We formulate our36

learning tasks as a one-step1 prediction of end-effector keyposes, which allows efficient training on37

1Note that the description as 1-step models is sometimes also used to refer to models having only a single
observation time-step as input, instead of the history [11].

Submitted to the 9th Conference on Robot Learning (CoRL 2025). Do not distribute.



numerous scenes. We evaluate our VLA systems on the DROID dataset [12], simulations through38

ManiSkill [13], and a real robot set-up. Additionally, we explore the effect of defining keyposes in39

image frame coordinates instead of 6D end-effector poses. Given our architecture’s similarity to40

standard VLMs, we investigate several inference-time strategies, such as input image cropping and41

multiple prediction generation, and evaluate their impact on the final model performance.42

In this paper, rather than training a general-purpose foundation model, we focus on a narrow data43

distribution with a limited set of tabletop tasks, restricting ourselves to quasi-static manipulation44

and generating actions with low temporal resolution. We hope that our small-scale experiments can45

provide helpful insights into the factors affecting VLA performance and contribute to eventually46

scaling VLA systems. Our contributions can be summarized as:47

• An efficient setup for training and evaluating VLA models, with a diverse curated collection of48

shapes and texts, including a lightweight 1-shot imitation system.49

• An investigation into inference time prediction strategies for VLAs and their evaluation, including50

a new decoding algorithm called beam-search-NMS.51

• Public release of code, datasets, and models at available upon acceptance.52

2 Related work53

Vision-Language-Action Systems Recent VLA models integrate visual perception, language un-54

derstanding, and action generation to achieve generalist robotic skills [1, 2, 3]. A0 [14] introduces55

affordance-aware representations for cross-platform manipulation. TraceVLA [15] enhances spatial-56

temporal reasoning through visual trace prompts. GR00T N1 [16] scales VLA systems to humanoid57

robots by employing a dual deliberative and reactive system design, achieving strong generalization58

across different embodiments. Together, these works highlight progress toward unified high-level59

understanding and low-level control. Molmo [17] and RoboPoint [18] take an intuitive but different60

view on the problem by introducing the concept of pointing directly in image space.61

Trajectory Prediction and Waypoint Representations are critical for robust robot control. Inferred62

keyposes have been successfully applied to solve complex robotic manipulation tasks [19]. Extending63

the concept, HDP [20] suggested connecting keyposes through diffusing low-level control actions.64

Most recently, PPI [21] introduces hybrid 6-DoF keyposes and pointflows to maintain spatial precision65

while supporting flexible closed-loop control, enabling superior two-arm manipulation. Such mid-66

level waypoint structures blend discrete and continuous cues, improving planning and execution67

across complex tasks.68

Training from Simulation for VLA models enables scalable learning but faces challenges in sim-to-69

real transfer. DexGraspVLA [22] combines a pre-trained vision-language planner with a diffusion-70

based controller, using a mix of real and simulated data to achieve robust zero-shot dexterous grasping.71

Robot manipulation benchmarks like CALVIN [23] and RLBench [24] provide simulated tasks to72

support large-scale model training. Advances in simulation domain randomization, heterogeneous73

datasets, and real-world alignment are key to bridging the sim-to-real gap.74

Auxiliary Visual Tasks help VLAs ground their predictions spatially. LLARVA [25] uses 2D trace75

supervision to align vision and action, improving task success rates. Gemini Robotics-ER [26]76

leverages auxiliary outputs such as keypoint detection and motion sketching to enhance multistep77

reasoning and manipulation. Incorporating segmentation, depth estimation, and affordance prediction78

further improves generalization to unseen scenarios. 3D-VLA [27] defines multiple auxiliary tasks79

and also takes depth values as inputs.80

Evaluation of VLAs is investigated in a number of recent works. This includes evaluating VLAs81

trained primarily on real data through the use of aligned simulations called real-to-sim evaluations [28,82

29]. Long-horizon trajectory prediction is performed in VLA models for autonomous driving [30],83

and in some cases, also considering metrics sensitive to the diversity of predictions [31].84

Few-Shot Imitation from Demonstrations remains a key challenge in robotics, particularly when85

scaling efficiently to new tasks. Early approaches introduced meta-learning for one-shot imita-86

2



Figure 1: Overview of cVLA. Our lightweight method is based on fine-tuning a PaliGemma2 [40] model for
trajectory prediction using our curated dataset with a single image, robot state, and task description as inputs.
Our synthetic training dataset is built from different simulations of pick-and-place tasks, which enables easy
scaling and an efficient training pipeline. The approach shows good generalization across different application
domains, including simulation, real data, and real robot setups, and offers a simpler setup for experimental
research and development of VLAs.

tion using task-specific demonstration-action pairs [32] and employing metric learning to embed87

demonstrations, enabling strong retrieval-based generalization [33]. Recent works explore data-88

efficient retrieval by selectively utilizing extensive unlabeled datasets [34] and enhancing retrieval89

with optical flow representations [35]. One-shot methods [36, 37] achieve success with a single90

unannotated demonstration, while Di Palo and Johns [38] demonstrate a few-shot visual imitation91

through in-context learning with pre-trained transformers. Parallel to us, Fu et al. [39] proposes an92

in-context imitation learning method which requires training and context data collected in the same93

environment.94

3 Technical Approach95

In the following, we detail our technical approach, summarized in Fig. 1. First, we describe our base96

model architecture in Sec. 3.1. Then, we introduce our novel action representations, combining image-97

frame coordinates and camera frame-poses in Sec. 3.1. Thirdly, we explain how depth information is98

incorporated into our model in Sec. 3.1. Finally, Sec. 3.2 outlines the extension of the base method to99

few-shot trajectory imitation set-up.100

3.1 Base Model101

We fine-tune a pre-trained vision language model (VLM), in our case PaliGemma2 [40]. By using an102

already pre-trained model, the result is an efficient and robust VLA system. Following standard VLA103

prompting conventions, we design our prompts as: <live img(s)> + <robot state> + <task104

description>→ <estimated trajectory>, where <live img(s)> are an RGB and optional105

depth image (see Sec. 3.1), <robot state> is the current end-effector pose of the robot and <task106

description> an instruction in natural language. For <estimated trajectory>, unlike most107

other VLAs, we also make the following design decisions: a) instead of predicting a full trajectory,108

we predict trajectory keyposes, of which we predict only two. These are then converted into a robot109

trajectory using a low-level planner. Then b) we also make a one-step prediction, i.e., we predict the110

entire trajectory for a scene in one step. This choice has the drawback of restricting the flexibility of111

the system, however it has the advantage of making training more efficient.2112

Our efficient VLA model is fine-tuned only on attention layer parameters, which, although a simple113

and lightweight modification, ensures creation of a strong trajectory prediction model for our use cases,114

which also allows investigating inference-time strategies. The training procedure and hyperparameters115

are described in detail in the appendix.116

2Again here we do not aim to train a foundation model, however strategies like increasing temporal resolution
is a possible extension.
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Action Representations: Similar to RT-1 [41], we encode 6-DoF gripper poses using discretized117

tokens. PaliGemma2 [40] contains special tokens for image detection and segmentation, which we118

repurpose for pose prediction similar to [42]. Instead of encoding actions as end-effector deltas in119

robot frame coordinates, we encode actions as absolute positions in either the robot-base coordinates120

or image-frame coordinates, i.e., the normalized width, height, and distance from the camera. We121

extend the localization tokens (n=1024) to also predict depth, given the gripper position. Orientations122

are encoded using the segmentation tokens (n=128). The same scheme is used for both image-frame123

and robot-frame actions. Additionally, we experiment with using a smaller number of tokens to124

predict the position (n=512, 256, 128). This frees up the tokens to be used for predicting depth125

separately, an approach we also evaluate. An example of the logit distribution is shown in Fig. 4.126

Depth Input: We extend our approach to utilize depth observations as input. To leverage the strong127

image encoders available for RGB images, we convert our depth maps into RGB using Matplotlib’s128

viridis color map. These images are then processed with the same pre-trained image encoder as the129

natural images.130

3.2 Robotic Imitation131

We extend our approach to few-shot imitation learning by conditioning trajectory prediction on132

demonstration image-trajectory pairs instead of a natural language text description. The system133

infers the task from the given demonstration image-trajectory pair and must apply it to a new scene134

image - similar to in-context imitation learning, but in our case, we train the model to learn how to do135

imitation. We do not perform any fine-tuning on the novel scene image during inference time.136

Our extended approach now introduces a multi-step reasoning process: given the context template of137

<demo img> + <demo trajectory> + <live img> → <estimated trajectory>, the model138

must infer the task from the demonstration image (input) and trajectory (output) pair, map the object139

positions to the associated tokens, and establish the correspondence between the objects in the new140

scene and the predicted trajectory. At test time, we sample demonstration pairs from hold-out data141

where the task is shared between the demonstration pair and the live image.142

To enable this, we expand our training datasets by building a task-demonstration sampler. We build a143

look-up table of available tasks and generate a large number of random demonstration-query pairs144

from available scenes. Every scene can be seen only once in the pair, either as a demonstration or145

as a query. Due to the high number of possible demonstration pairs, we fine-tune the model for 16k146

iterations, keeping other hyperparameters unchanged from the original setting. Further details and147

exact prompt examples are provided in the appendix.148

4 Dataset Generation149

Our VLA sysem makes use of simulated data for training, and a combination of simulated and real150

data for evaluation. In the following, we describe the data collection procedure.151

4.1 Simulated Training Dataset Generation152

We use the ManiSkill [13] simulator to create our environments. The following outlines our data153

generation procedure, the 3D objects used, and our suggested augmentation strategies.154

Generation Procedure: To generate a new data sample, we spawn a set of objects and an instruction,155

and then calculate the target object pose. We then use an analytical grasp model to generate grasps on156

the object and use the privileged information of known object poses to calculate a release pose. While157

this step can be easily performed offline to speed up generation time, we also extend our simulation158

to execute the task and actually verify task success. For further information, see Appendix B.159

3D Model Assets: We use two different sets of object assets – a set of simple geometric shapes and a160

set of real-world objects, scraped from the Objaverse dataset [43]. We show example images of the161

objects in Appendix D.162
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CLEVR: Simple geometric shapes of different sizes, inspired by the CLEVR [44] dataset. Specifically,163

our environment consisted of three shapes: a cube, a block, and a sphere; two different sizes, with164

diameters of 7 cm and 3.5 cm, respectively; and eight colors.165

Objaverse: To create a more diverse training and testing scenario, we construct a simulation with a166

large and diverse set of assets. To automatically generate text instructions for training, we require167

realistically scaled models combined with a concise text description. This is done similarly to168

Spoc [45], using the Objaverse-1M [43] dataset and described in detail in Appendix C.169

Augmentations and Randomization: We apply standard image augmentations, similar to [45].170

Additionally, we perform background image randomization, similar to Kubric [46], using indoor171

scene images from [47] to replace everything except the robot and objects, with a probability of 0.2.172

We perform text randomization by constructing text templates from the training split of our test data173

and filling in the relevant object names.174

We also include randomization in the scene generation pipeline, offering easier and harder versions of175

the dataset. The easier version features less randomization, while the harder version includes severe176

scene and camera field-of-view randomization. For the harder variant of the dataset, we additionally177

perform a visibility test to ensure that only physically plausible environments are considered. Thus,178

we have four variants of the training data: CLEVR-easy, CLEVR-hard, Mix-easy, and Mix-hard.179

Simulation experiments are conducted using either the CLEVR variants or the Objaverse-easy and180

Objaverse-hard sets.181

4.2 Real Evaluation Data Generation182

We use sequences from DROID [12] dataset, an existing robot manipulation dataset, to evaluate our183

model’s performance. It has a diverse mix of scenes and actions, as well as the extrinsic calibration184

information necessary to evaluate our system. However, the quality of the extrinsic calibration is185

inconsistent, thus we need to manually filter the data using the projection of the end-effector position186

into the image. For further information, see Appendix D.187

To simplify the evaluation, and since our training data only involves move-A-to-B actions, we extract188

two subsets from DROID [12] in which cubes are moved in this manner. From these sequences, we189

take only the initial frames. The first subset, DROID-hard, includes images with confounding objects.190

It is created to test the model’s ability to predict the multi-modal distribution of trajectories. The191

second, DROID-easy, has confounding objects blurred out, creating an easier setting in which to test192

generalization performance.193

For offline evaluation, we calculate the L1 error for positions and rotations between predicted and194

ground-truth poses. For further details see Appendix A.195

5 Experiments196

We evaluate several aspects of our VLA system. First, the effect of various design choices on197

performance within the simulation domain in Sec. 5.1. Second, how our model can be used to do198

one-shot imitation in Sec. 5.2. Third, we investigate how inference time strategies can be used to199

boost performance in Sec. 5.3. Finally, we show zero-shot inference on a real robot without any200

real-world fine-tuning in Sec. 5.4.201

5.1 Action Encoding, Depth, and Domain Randomization Ablations202

As described earlier, our method leverages two different versions of the training dataset, followed by203

visual and textual enhancements. In Tab. 1, we evaluate the influence of each component on the final204

model as well as including auxiliary depth information in simulation (see Appendix B for further205

information about the simulation setup). All methods are trained on a harder version of the mix206

dataset, which includes camera and scene randomization.207
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Table 1: Ablation study on simulation success rate. We evaluate using CLEVR or Objaverse assets for
differently randomized versions of the simulation (where easy uses fewer cameras and scene randomness). We
observe clear patterns; adding depth to the prompt improves performance in all scenarios, and training with
augmentation harms simulation performance.

CLEVR Objaverse Augs. Depth Objaverse SR (↑) CLEVR SR (↑)
easy hard easy hard

✓ 8% 4% 40% 42%
✓ ✓ 0% 4% 46% 26%
✓ ✓ 18% 24% 44% 42%
✓ ✓ ✓ 18% 20% 34% 32%
✓ ✓ ✓ 6% 6% 56% 50%
✓ ✓ ✓ ✓ 20% 30% 52% 54%

Table 2: One-shot imitation with demonstrations. Our efficient pipeline can be easily extended into an
imitation learning model, which achieves good success rates in robotic simulations.

Train CLEVR Sim. SR (↑) Static data traj. L1 error (↓)
Data easy hard DROID-easy Simulation data Objaverse-easy

CLEVR-easy 70 % 18% 16.37 3.19 15.31
CLEVR-hard 44% 28% 11.56 6.41 14.37

We observe that adding depth information to the model significantly improves performance in208

simulation success rates and results in fewer drastic failure cases. Moreover, training solely on209

CLEVR assets improves performance on CLEVR-based simulations, but fails to generalize to210

Objaverse-based simulations, demonstrating the need for diverse 3D assets.211

Next, we compare different action representation schemes in Fig. 2. We compare the performance212

in terms of success rate on the CLEVR-easy simulation, where we observe that the camera frame213

performs better on average. This likely underestimates the utility of image frame coordinates, as in214

these simple environments, it is easier to overfit, e.g., on gripper appearance and camera intrinsics.215

5.2 One-Shot Imitation Experiments216

We further evaluate our system for simple one-shot trajectory-conditioned imitation from demonstra-217

tions, where the task is inferred from a single demonstration consisting of an image and a trajectory,218

rather than a natural language description. As described in Sec. 3.2, this set-up poses additional219

challenges, since the task needs to be deduced from a multi-step reasoning chain.220

We train the imitation model only on CLEVR versions of the dataset, including both CLEVR-221

easy (with less camera and scene randomization) and CLEVR-hard (with more camera and scene222

randomization), and report the success rate in simulation. We further evaluate the performance on real223

data of the simplest variant of the DROID dataset, using hold-out validation data whose distributions224

are aligned with the training distributions of CLEVR-easy and CLEVR-hard. Finally, we evaluate225

generalization to novel objects in the scene on the Objaverse version of the data.226

Results are show in Tab. 2. We report a success rate of 70% for the easy version of the dataset and227

28% on the harder setup. Furthermore, we observe better results on real data and generalization data228

for the dataset trained with a harder version of itself, showing that camera and scene randomization229

are essential for achieving robustness. Visualizations of predicted trajectories and demonstration230

pairs are available in Appendix F.231

5.3 Inference-Time Strategies232

In addition to the discussed technical and dataset advances, we also evaluate recent trends in VLMs233

and their impact on VLAs’ performance, namely image cropping and next-token decoding strategies.234
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Figure 4: Exemplary motivation for decoding. We qualitatively visualize results on episode 81 of the DROID-
hard dataset. The most probable beam corresponds to the red cube, but our proposed NMS-based beam decoding
strategy also detects the correct target object location (blue cup).

Input Image Cropping. Accurate object localization is crucial for successful robotic manipulation,235

as even small errors in identifying object positions can result in task failure. In our system, two factors236

contribute to sensitivity in localization: (a) the model operates on relatively low-resolution input237

images (224× 224 px), and (b) we predict trajectories in a single step without iterative refinement.238

As a result, the model’s performance is susceptible to the scale of the objects within the image;239

smaller objects may not be resolved clearly enough to enable precise keyposes prediction. To address240

this, we investigate the impact of different image cropping strategies. See Fig. 3 for the results and241

Appendix G for details. Cropping significantly improves performance and is used in subsequent242

experiments.243

Multiple Prediction Generation and Evaluation. In language generation, decoding strategies244

approximate the most probable token sequence under the model. While greedy decoding is the245

default, alternative methods can improve quality by identifying high-probability sequences, but at246

the cost of increased computation. Generating multiple plausible predictions also enables evaluation247

of both solution accuracy and ability to make diverse predictions.We tested the following standard248

decoding approaches: Beam search, which keeps n most probable candidate sequences at each249

decoding step, and sampling, which diversifies the output by sampling from the token probability250

distribution.251

Our contribution is a custom decoding strategy for VLA models, beam-search-NMS (Non-Maximum252

Suppression). We observe that the predicted distribution of VLA models for dense pose tokens253

behaves differently from sparse language tokens (Fig. 4), they are smooth and have multiple peaks, so254
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Table 3: Results for different decoding strategies. For all methods, we select exactly one prediction for each
episode and compute the mean L1 error between the ground truth and predicted trajectories. All methods except
greedy are combined with beam search with n = 3 beams. The top-3 row shows the lowest error among the
predicted beams.

Greedy search Sampling Beam search Beam search-NMS

Top-1 34.44 34.31 34.17 33.42
Top-3 - 33.94 33.94 25.00

Figure 5: Real-world demonstration of our approach. The top row illustrates the task of placing a spatula
onto a cutting board, while the bottom row depicts the robot placing a mango onto a plate.

choosing the top k tokens often results in almost the same pose. To find the peaks of the distribution,255

we do beam search (n = 3) and search for local maxima with non-maximum suppression within a256

window of size w = 100, see Appendix H for details and Tab. 3 for results.257

To evaluate the distribution of predicted trajectories, we propose using mean Average Precision258

(mAP)—either with respect to success rate (SR) in simulation as is done in [48, 49] or thresholded259

Euclidean distance in offline settings. This metric offers a more informative assessment of distribu-260

tional accuracy than traditional pointwise comparisons such as L1 or L2 distances. For manipulation,261

we suggest mAP[0.5 50], meaning the mAP over L1 distances APs at thresholds of [.5, 1, 2, 5, 10, 20,262

50] cm, with 1cm = 10 degrees. AP calculation and curves are shown in Appendix I.263

5.4 Real Robot Setup and Experiments264

We conduct our experiments using a Franka Panda robotic arm mounted on a mobile base, performing265

15 distinct tabletop manipulation tasks involving everyday household items. Our setup supports both266

external-view cameras and wrist-mounted vision systems. For convenience, we use the wrist-mounted267

camera, the StereoLabs ZED2i. To ensure our method is robust to different viewpoints, we randomize268

the robots starting position in each trial. Fig. 5 presents two sample scenarios. Example videos are269

included in the supplementary.270

6 Conclusion271

We present an efficient VLA that is trained using image frame coordinates and makes a direct 1-step272

prediction of two end-effector keyposes. While this system is limited in flexibility and is not a273

foundation model, it is well-suited to run a wide range of VLA experiments, including ablations,274

1-shot imitation, and the applicability of LLM inference strategies to VLA tasks. Finally, we show275

that our system is applicable in realrobot experiments without any fine-tuning. We believe that it can276

provide a good foundation for further research into simulation-trained VLMs.277
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7 Limitations278

While our work demonstrates the effectiveness of a lightweight VLA system for keypose prediction in279

image frame coordinates, it has several limitations that constrain its applicability and generalizability.280

First, the model is evaluated on a single manipulation task involving small objects and top-down281

grasps. As such, the learned policy may not transfer well to more diverse tasks, larger objects, or282

more complex grasping strategies (e.g., side grasps or in-hand manipulation). Second, although we283

include rotation information in keypose predictions, the system exhibits poor rotation accuracy on284

real-world data, which limits its effectiveness in tasks that require precise orientation control. Finally,285

the model is trained and evaluated in simulation with limited real-world testing. This suggests a286

need for future work on improving robustness and generalization, potentially better data generation.287

Additionally, broader testing across embodiments and task types would be necessary to establish the288

scalability and reliability of the proposed system.289
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Supplementary Material479

480

A Pose and Trajectory L1 Metric481

We define an L1-based metric for pose error that combines the positional and rotational components482

in a single scalar. The position error is computed as the L1 norm of the difference between predicted483

and ground truth translation vectors. The rotation error is measured in degrees, and we normalize484

both terms using the equivalence of 1 cm = 1°. The overall pose L1 error is given by:485

mean taj. L1 =
1

N

N∑
i=1

(
∥ti − t̂i∥1 + ∠

(
R̂−1

i Ri

))
(1)

where:486

• N is the number of poses in the trajectory.487

• ti, t̂i ∈ R3 are the predicted and ground truth translation vectors for sample i.488

• Ri, R̂i ∈ SO(3) are the predicted and ground truth rotation matrices.489

• ∠(·) denotes the angle (in degrees) of the relative rotation.490

B Simulation Setup491

We make use of the Maniskill3 simulation environment [13]. For each interaction, we predict two492

waypoints corresponding to the grasping and gripper opening position. These are converted into a493

trajectory by adding a raising and destination alignment movement. These are then executed using an494

inverse kinematics planning system. The reward is computed by comparing the L2 norm between the495

object’s current and goal poses. This quantity is mapped to the unit range by normalizing it with the496

initial distance between the initial pose and the goal and computing 1 - this quantity. The resulting497

rewards are clipped to the unit range. Success rates are computed using a reward threshold of 0.75.498

reward = clamp
(
1−

∥pA − pgoal∥
∥pinit

A − pgoal∥
, [0, 1]

)
(2)

where:499

• pA ∈ R3 is the current position of object,500

• pinit
A ∈ R3 is the initial position of the object at the start of the episode,501

• pgoal ∈ R3 is the target goal position for object502

C Objaverse Asset Curation503

Objaverse assets were created by a mix of artists, the sizes of the objects are not scaled canonically,504

and the provided category label is not fine-grained enough to generate descriptions. We follow the505

following procedure to create a large dataset of diverse high-quality models with good, concise506

text descriptions. We start by subsampling the dataset of 1M shapes to 600k. Then, to obtain the507

relevant meta-information of model scale as well as text description, we start by using GPT-4V508

to produce long-form descriptions including a guess of the object’s dimensions, based on several509

rendered perspectives. We do an intermediate filtering step where each object is filtered by size: a)510

only objects with all side lengths between 0.01 m and 0.20 m are retained, and b) objects with a side511

length ratio exceeding 5 (i.e., too elongated) are excluded. After filtering, objects are rescaled such512

that the smallest side in the x–y plane is at most 0.07 m, ensuring compatibility with the gripper size513

(0.08 m), including margin.514

14



To further obtain concise descriptions, we use GPT-4 to summarize the long-form descriptions. In515

the final verification step, the short form descriptions were evaluated using SigLIP [50]. Specifically,516

we compare the embeddings of the images against the short descriptions. Further, we use SigLIP to517

evaluate the alignment of the short descriptions with the captions “grayscale image” and ”cartoon518

low-poly model”. Eventually, we only select objects for our asset set where the distance between519

SigLIP embeddings passes a threshold, resulting in a final object set of around 7k models.520

D Simulation and Real Experiments521

We use different versions of the training and evaluation datasets in our pipeline. Training datasets are522

curated using ManiSkill3 simulation environment [13], where the objects in the scene come from523

either CLEVR [44] or Objaverse [43] datasets. We further introduce two difficulty levels of the524

training datasets CLEVR/Objaverse-easy and CLEVR/Objaverse-hard, where the difference is in the525

scene and camera field-of-view randomization between them. Fig. 6 shows examples from the harder526

version of the training datasets with both CLEVR and Objaverse assets.527

(a) CLEVR assets (b) Objaverse assets

Figure 6: Qualitative examples of our training data. Our training data consists of different 3D objects placed
into the scene. We distinguish between 2 different object groups - CLEVR-like assets and Objaverse assets.

We evaluated our models on four different application domains - simulated data, real data, simulations,528

and real robot setups. Evaluations on simulated data and simulations were performed in the same529

setup as the training data was curated, but with new environments and scenes.530
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For the real data evaluations, we used different subsets of the DROID dataset [12]. This data first531

needs to be filtered as the quality of the extrinsic calibration is very variable, something that has532

been noted and systemically addressed in recent work here. For our small-scale evaluation sets, we533

manually filtered the data using the projection of the end-effector position into the image. For our534

testing purposes, after manual filtering based on calibration, we selected text prompts containing535

the word “block” and took 160 episodes without background clutter, which made our DROID-hard536

subset. This subset contains images of blocks as well as a few visually confounding items. The537

presence of these leads to false predictions and makes it suitable to evaluate predictions of multiple538

trajectories. To make predictions without confounding objects, we created DROID-easy subset,539

which blurred out the confounding objects, see Fig. 8 for example.540

For real robot evaluations, we used a Franka Panda robotic arm. The real robot was run using a ROS541

setup, the inverse kinematics planning was done using bio ik package. We used the version of our542

network without depth inputs, as we did not implement any depth augmentation, to compensate for543

the missing depth we projected the grasp point onto the closes valid depth value along the position544

ray.545

E Training Details546

In Tab. 4, we provide an overview of the hyperparameters that we use in our experiments. We leverage547

the Hugging Face library and the pretrained PaliGemma2 [40] model for fine-tuning.548

Hyperparameter Value

Learning rate 3e-5
Learning rate scheduler cosine
Warmup ratio 0.05
Optimizer Adafactor
Batch size train 32
Training epochs 1
Training iterations 4687 (150k samples)
Trainable layers Self-attention layers only

Table 4: Training hyperparameters used throughout in our experiments.

F One-shot Imitation from Demonstrations549

Here we provide more information about extending our system to support few-shot imitation from550

demonstrations. We provide examples of the used prompts and visualize the predictions from551

simulations and real-data evaluations.552

Our imitation extension requires a specific prompt format which follows the template of <demo553

img> + <demo robot state> + <demo trajectory> + <live img> + <live robot state>554

→ <estimated trajectory>. We further provide the information of the robot state after the555

images. An example of one prompt is shown in Fig. 7, note that no explicit text description is given,556

only the tokens of the demonstration trajectory.557

To create demonstration - live image pairs, we implemented a look-up table in the dataset. We558

sample demonstration–live image pairs such that each unique combination is used only once and559

never repeated during training. For the evaluation, we are using a hold-out validation dataset with the560

same distribution as the training, but in new environments. We again repeat the sampling process and561

conduct an evaluation over 10k pre-sampled combinations. When evaluating in simulation, we use562

a hold-out validation dataset to fetch a demonstration pair that corresponds to the given simulation563

task. Fig. 8 shows predictions of the imitation model trained on CLEVR-hard dataset version. Our564

imitation model generalizes well to different application domains, especially to the Objaverse dataset,565

where the imitation is performed with completely unseen objects.566
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Inputs Output

<loc0243><loc0423><loc0751>

<seg063><seg079><seg112>

<loc0403><loc0241><loc0732>

<seg063><seg079><seg112>

<loc0354><loc0050><loc0772>

<seg045><seg067><seg071>

<loc0314><loc0317><loc0768>

<seg045><seg067><seg071>

<demo img> <demo traj.> <live img> <est. traj.>

Figure 7: One-shot prompt example. Prompts consist of a demonstration image-trajectory path and a live
image for which the model should predict the trajectory of the task represented with demonstration data. No
language description is provided, yet the model is able to imitate the task. The given prompt represents the task,
”move large yellow sphere onto large yellow cube”. The pink line in the first image presents the demonstration
trajectory, while the pink line in the second image presents the predicted trajectory. Ground truth of the live
image trajectory is presented with a green line, but it is not visible due to overlapping. Robot state inputs not
included for brevity.

G Input Image Cropping567

We evaluate the effect of different crop strategies on performance by choosing different crop centers568

and applying zero padding, as shown in Fig. 3. When cropping, the region of interest around the569

task-relevant objects is enlarged before processing. The center is set to: 1) image center, 2) start object,570

3) middle point between start and end objects. The crop of size w × w is taken without zero-padding571

(valid mode) or with zero-padding (non-valid mode) and resized to model image resolution 224×224.572

Absence of padding doesn’t preserve aspect ratio. However, we emphasize that solving object scale573

sensitivity is not the primary focus of this work, and we leave more general solutions (e.g., multiscale574

feature extraction or higher-resolution processing) to future research.575

H Beam-Search-NMS Implementation576

We propose a variant of beam-search that also does non-maximum suppression over a span of577

spatially contiguous tokens. This is done in the following manner: a Point x is a local maximum578

if p(x) ≥ p(x′) ∀x′ ∈ [x − w, x + w]. With a noisy distribution, w should be larger; however,579

with too large w, we will suppress all maxima except the global one. Thus, we find that w = 100580

was sufficiently large. Our decoding procedure is beam search with n = 3. After processing the581

coordinate or angle distribution with NMS and suppressing all non-maxima by setting the token582

log-probability to −∞, the next top n tokens are selected.583

We compare our beam search-NMS with other decoding strategies using trajectory mean L1 error584

(Tab. 3). Additionally, we plot the beam score (log-probability) vs. the mean L1 error of the trajectory.585

Both standard beam search and beam search-NMS show correlation between beam log-probability586

and error (Fig. 9), which enables us to compute a precision-recall curve in object detection style by587

replacing IoU with L1 measure (Fig. 10). Our NMS approach has an mAP of 0.31 on original size588

DROID-hard images, while standard beam search has an mAP of 0.11.589

I mAP Calculation590

To evaluate the generation of multiple trajectories, we adapt the mean Average Precision (mAP)591

metric from the COCO object detection challenge [51]:592

1. Instead of bounding boxes, we compare trajectories.593

2. For each episode, we have one ground-truth trajectory and several predictions, for the594

confidence of predictions, we use the log-probability of the beam, see Fig. 9.595
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3. We replace intersection over union (IoU) with the mean L1 error over keyposes, a prediction596

is considered a false positive if the L1 error is larger than a threshold. See Fig. 10.597

In this metric, we don’t average of classes, only different values of L1 thresholds. Using this metric,598

we compared our beam search-NMS with standard beam search, as the latter is the second-best599

variant on the DROID-hard dataset Tab. 3. The mAP and precision-recall curves are shown in Fig. 10.600
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(a) CLEVR-hard: move large
green sphere onto small red box

(b) Objaverse-easy: move terra-
cotta animal onto yellow ball

(c) DROID-easy: put the yellow
block inside the light blue cup

Figure 8: Demonstration and live image with predictions. Examples of demonstration image in the first
row with visualized ground truth trajectory (pink line) and live image with both ground truth (green line) and
predicted trajectory (pink line) in the second row for three different datasets - simulation data matching the
training distribution, the Objaverse dataset, and DROID easy. Our imitation model performs well on all three
application domains, showing good generalization to imitation with completely unseen objects in the Objaverse
dataset.
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a) Standard beam search
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b) Beam Search-NMS (ours)

Figure 9: Beam log-pobs correlate with L1 error. Higher negative log-prob means lower confidence. Existence
of correlation allows us to use log-probs as confidences. Results show an exploration-exploitation tradeoff.
Standard beam search generates low error samples, these predictions are not very diverse, see a). Our approach
generates more diverse predictions, allowing it to explore other possible trajectories. The spearman rank
coefficients are 0.17 and 0.49 respectively.
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(a) Standard beam search, no crop, mAP=0.11
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(b) Beam search-NMS (ours), no crop, mAP=0.31
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(c) Standard beam search, crop size 700, mAP=0.16

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

t=50 cm, AUC=0.98
t=20 cm, AUC=0.98
t=10 cm, AUC=0.89
t=5 cm, AUC=0.32
t=2 cm, AUC=0.00
t=1 cm, AUC=0.00
t=0.5 cm, AUC=0.00

(d) Beam search-NMS (ours), crop size 700,
mAP=0.45

Figure 10: Precision-recall curves at different error thresholds. Upper row – no crop, lower row – crop size 700
with padding. Object sizes are around 10 cm, thus we suggest mAP[0.5 50], meaning the mAP at thresholds of
[.5, 1, 2, 5, 10, 20, 50] cm, with 1cm = 10 degrees.
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