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Abstract001

Drawing real world social inferences usually002
requires taking into account information from003
multiple modalities. Language is a particu-004
larly powerful source of information in social005
settings, especially in novel situations where006
language can provide both abstract informa-007
tion about the environment dynamics and con-008
crete specifics about an agent that cannot be009
easily visually observed. In this paper, we010
propose Language-Informed Rational Agent011
Synthesis (LIRAS), a framework for drawing012
context-specific social inferences that integrate013
linguistic and visual inputs. LIRAS frames014
multimodal social reasoning as a process of015
constructing structured but situation-specific016
agent and environment representations – lever-017
aging multimodal language models to parse018
language and visual inputs into unified sym-019
bolic representations, over which a Bayesian020
inverse planning engine can be run to produce021
granular probabilistic judgments. On a range of022
existing and new social reasoning tasks derived023
from cognitive science experiments, we find024
that our model (instantiated with a compara-025
tively lightweight VLM) outperforms ablations026
and state-of-the-art models in capturing human027
judgments across all domains.028

1 Introduction029

Making sense of any real social situation requires030

integrating many different sources of information.031

Language, in particular, can fundamentally recast032

our understanding of the social environment around033

us. Being told the abstract dynamics underlying034

a social institution, from the rules of American035

football to the norms of drive-through restaurants,036

gives us a useful overarching picture of people’s037

goals and intentions in unfamiliar settings. Other038

times, language can provide specifics about particu-039

lar people and environments. Hearing that a friend040

tends to get hungry around midnight and keeps a041

spare stash of chocolate in the highest pantry shelf,042

for instance, gives new meaning to a few glimpses 043

of someone bumbling around the kitchen in the 044

dark. These tidbits of socially-relevant informa- 045

tion from language allow us to draw much richer, 046

more flexible, and often quite situation-dependent 047

conclusions about the behavior we see. 048

How do we integrate language with perceptual 049

information to support this kind of grounded but 050

often highly ad-hoc social reasoning, in which lan- 051

guage can flexibly restructure our inferences about 052

the agents we observe? This setting poses par- 053

ticularly acute challenges for two dominant fla- 054

vors of computational work in social reasoning. 055

For approaches that cast social reasoning as prin- 056

cipled inferences over structured models of agents 057

and environments, as in many symbolic AI and 058

cognitive science frameworks (e.g., Baker et al. 059

2011; Jara-Ettinger et al. 2016), this setting tests 060

the scalability and breadth that can be achieved 061

using (usually hand-engineered) symbolic models 062

of particular environments and domains. For ap- 063

proaches that use large-scale neural models trained 064

on language and visual inputs, like recent LLM 065

and VLM-based systems (e.g., Kosinski 2024; Jin 066

et al. 2024), this setting tests the generalizability 067

of complex decision-making and latent inference 068

over particularly novel inputs. Ongoing evaluations 069

suggest that each component of grounded, ad-hoc 070

social reasoning poses challenges for both domi- 071

nant approaches (Hu et al., 2025; Schulze Buschoff 072

et al., 2025; Jin et al., 2024) – challenges that only 073

compound in the harder multi-modal setting. 074

In this paper, we develop Language-Informed 075

Rational Agent Synthesis (LIRAS), a framework 076

that can integrate linguistic and visual inputs 077

to draw ad-hoc, probabilistic inferences about 078

agents’ mental states in grounded settings. Our 079

approach achieves this by using neural models 080

to parse language and visual inputs into unified 081

symbolic representations, which support automatic 082

Bayesian inference and inverse planning. Impor- 083
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Figure 1: Overview of Language-Informed Rational Agent Synthesis (LIRAS). (a) Overall architecture. (b)
LIRAS uses a vision-capable large language model (LLM) to parse linguistic descriptions into a domain-specific
environment model expressed in PDDL, which specifies object types, predicates, functions and action definitions.
(c) LIRAS constructs a rational agent model based on the linguistic descriptions about the agent, including the
space of the agent’s goals, beliefs, etc. (d) LIRAS parses visual inputs into symbolic PDDL environment states, and
derives agent actions from those states.

tantly, our approach casts multimodal social reason-084

ing as a process of constructing small but structured085

environment representations on-the-fly, tailored to a086

particular set of inputs. Rather than hand-construct087

domain-specific world models, or seek to derive088

universal features for visual understanding, our ap-089

proach lets new, relevant details from language090

change how we parse and reason about any particu-091

lar visual scene.092

We evaluate our approach on a suite of popular093

domains used for social cognition experiments, as094

well as novel variants designed to probe people095

and models’ generalization capacities under new096

environment dynamics and abstract rule structures.097

We demonstrate that our framework, even when098

built with a lightweight VLM, can capture human-099

like social reasoning in a context-sensitive way100

across each of these domains. In contrast, we find101

that much larger state-of-the-art VLMs, such as102

OpenAI’s o3 model, often fail to reliably integrate103

linguistic details with visual observations and gen-104

erally are much more uneven in capturing human105

judgments across these domains.106

2 Language-Informed Rational Agent107

Synthesis (LIRAS)108

In this paper, we consider how to solve ad-hoc109

social reasoning tasks that are grounded in visual110

observations of an agent taking actions over time. 111

Each task (L,Q, V1:T ) is defined by a linguistic 112

description L of the agent and its environment, 113

a social inference query Q expressed in natural 114

language, and a sequence of T + 1 video frames 115

V0:T showing how the agent interacts with the en- 116

vironment over time. Given (L,Q, V0:T ), LIRAS 117

produces k ≥ 1 graded ratings R1:k ∈ Rk about 118

the agent’s mental states (e.g. goals, beliefs, etc.) 119

based on the query Q. Since probabilistic social 120

reasoning lacks a “ground-truth” answer (Baker 121

et al., 2017; Ying et al., 2025a), we assess task 122

performance based on how human-like the ratings 123

R1:k are, measuring correlation with a dataset of 124

collected human responses (see Section 3). 125

To solve these tasks, we propose Language- 126

Informed Rational Agent Synthesis (LIRAS, Figure 127

1). LIRAS differs from social reasoning methods 128

which rely on either prompting a single LLM (Sap 129

et al., 2022; Moghaddam and Honey, 2023) or scaf- 130

folding of LLM calls within a structured probabilis- 131

tic inference procedure (Cross et al., 2024; Kim 132

et al., 2025; Zhang et al., 2025). Instead, given a 133

language description L, LIRAS synthesizes a ratio- 134

nal model of an agent and its environment — which 135

assigns likelihoods to an agents’ actions by solving 136

the (Partially Observable) Markov Decision Pro- 137

cess ((PO)MDP) (Bellman, 1958; Kaelbling et al., 138
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1998) that describes the agent’s decision problem139

— and draws probabilistic inferences about mental140

states from the agent’s actions via Bayesian inverse141

planning with respect to that agent model (Baker142

et al., 2009, 2017; Zhi-Xuan et al., 2020). This143

process is decomposed into four components: (i)144

synthesis of an environment model (Fig. 1b); (ii)145

synthesis of a rational agent model (Fig. 1c); (iii)146

parsing environment states and agent actions (Fig.147

1d); (iv) mental state inference via Sequential In-148

verse Agent Modeling (SIAM) (Fig. 1a, right), a149

flexible engine for Bayesian inverse planning that150

extends Sequential Inverse Plan Search (Zhi-Xuan151

et al., 2020). We describe each component below.152

2.1 Synthesizing Environment Models153

In order to synthesize a rational agent model,154

we first need to synthesize a environment model155

or world model that the agent model is situated156

within. Following work that translates language157

into symbolic world models represented as pro-158

grams (Wong et al., 2023; Tang et al., 2024; Wong159

et al., 2024; Liu et al., 2023; Xie et al., 2023), LI-160

RAS achieves this by using an LLM to translate161

the task description L into a planning domain D162

represented in the Planning Domain Definition Lan-163

guage (PDDL) (Aeronautiques et al., 1998; Zhi-164

Xuan, 2022). Given L and an instruction prompt165

Ienv, we rejection sample from the LLM to ensure166

syntactic and semantic validity of the generated167

PDDL domain:168

D ∼ PLLM(D|L, Ienv,D is valid) (1)169

As shown in Figure 1(b), a planning domain170

D = (T ,P,A) consists of a set of object types T ,171

predicates P , and action templates A. Given a spe-172

cific set of (typed) objects O, a planning domain173

defines a concrete environment E = (S,A, Ps),174

where S is the set of possible environment states175

formed from predicates defined over objects in176

O, A is the set of possible actions derived by fill-177

ing in action templates with object arguments and178

Ps(st|st−1, at) is an environment transition distri-179

bution. This gives us the basic structure on top of180

which we can define an agent model and perform181

visual parsing of environment states.182

2.2 Synthesizing Rational Agent Models183

When people reason about the mental states of an-184

other agent, we form an implicit model of that185

agent that predicts and explains their actions in186

light of their goals, beliefs, and other mental states187

(Dennett, 1981). Importantly, we assume that the 188

agent is approximately rational — their beliefs are 189

consistent with what they observe, and they take 190

efficient actions to achieve their goals and satisfy 191

their desires. To formalize this, we follow work in 192

Bayesian theory-of-mind (Baker et al., 2017; Jara- 193

Ettinger et al., 2016; Alanqary et al., 2021; Ying 194

et al., 2025b), treating an agent as a generative 195

processes of the following form: 196

Mental Prior: m0 ∼ Pθ0(m0; s0) (2) 197

Mental Update: mt ∼ Pθm(mt|st−1,mt−1) (3) 198

Action Selection: at ∼ Pa(at|mt, st−1) (4) 199

Here, mt represents the mental state of the agent 200

at step t, which can include beliefs bt, goals gt, 201

rewards rt that the agent assigns to achieving a 202

goal, or the perceived costs ct of certain actions. 203

At each step t, the agent may update their beliefs 204

bt ∈ mt based on their observations in st−1 in a 205

way that preserves consistency: If some predicate 206

p is observed to hold true in state st−1, then p 207

must also hold true in the updated belief bt. They 208

then take an action at to efficiently achieve the 209

goals or rewards specified in mt while minimizing 210

costs. Specifically, we assume that at follows a 211

Boltzmann-rational distribution: 212

Pa(at|mt, st−1) ∝ exp
(
Q̂mt(st−1, at)

)
(5) 213

where Q̂m(st−1, at) is an estimate of the expected 214

utility of reaching any goal in mental state mt by 215

taking action at at state s. Action at then causes 216

a change in the environment st ∼ Ps(st|st−1, at) 217

per the environment model described earlier, and 218

the process repeats. 219

Depending on the situation, an observer may not 220

need to model all of the agent’s mental states. For 221

instance, if the agent has full observability of the 222

environment st, there is no need to represent the 223

agents’ belief state bt, since bt will always agree 224

with st. As such, LIRAS constructs agent models 225

in an ad-hoc manner: Given the language descrip- 226

tion L, (and an instruction prompt Iagent), we use 227

an LLM to synthesize the parameters Θ = (θ0, θm) 228

that define the agent model (Figure 1(c)): 229

Θ ∼ PLLM(Θ|L, Iagent) (6) 230

θ0 includes information like the space of possible 231

initial beliefs, goals, goal rewards, or action costs 232

(over which we assume a uniform prior), and θm 233

includes information like the observability of var- 234

ious objects in state st (since this affects how the 235

agent updates their beliefs). By flexibly synthesiz- 236
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ing different models based on the social situation237

described in L, LIRAS captures human-like flex-238

ibility in social reasoning, while preserving the239

rationality assumptions of belief consistency and240

action efficiency described above.241

2.3 Parsing Environment States and Actions242

To infer an agent’s mental states, LIRAS first needs243

to parse the images I0:T into a sequence of sym-244

bolically represented environment states s0:T and245

actions a1:T (Figure 1(d)). We achieve this us-246

ing a vision-language model (VLM) in a decoding247

procedure that exploits the grid-based of our en-248

vironments.1 Specifically, for each grid cell in a249

video frame Vt, we use the VLM to detect the ob-250

ject in that cell (if any), and generate corresponding251

PDDL code for the object’s properties. This allows252

us to parse a state st from frame Vt:253

st ∼ PVLM(st|Vt, Istates) (7)254

where Istates in an instruction prompt. Given the255

full sequence of environment states s1:t, we can256

then greedily reconstruct each action at under the257

environment model Ps(st|st−1, at):258

at = argmaxa Ps(st|st−1, a) (8)259

2.4 Bayesian Mental State Inference via260

Sequential Inverse Agent Modeling261

Having synthesized an environment model, agent262

model, environment states s1:T and actions a1:T ,263

LIRAS answers the social inference queries in Q264

via Bayesian inverse planning. Specifically, we265

use Sequential Inverse Agent Modeling (SIAM),266

an extension of the SIPS probabilistic program-267

ming architecture for inverse planning (Zhi-Xuan268

et al., 2020, 2024a) that supports joint inference269

over not just goals g (as in Zhi-Xuan et al. (2020)),270

but also goal preferences/rewards r (similar to Zhi-271

Xuan et al. (2022)), beliefs (as in belief-space SIPS272

(Ying et al., 2025b)) and action costs c (similar273

to Zhi-Xuan et al. (2024b)). SIAM efficiently in-274

verts the rational agent model described in Section275

2.2, computing a posterior distribution over the full276

sequence of latent mental states m0:T :277

PΘ(m0:T |s0:T , a1:t) ∝ Pθ0(m0; s0)278 ∏T
t=1 Pθm(mt|st−1,mt−1)Pa(at|mt, st−1)279

where the mental state mt can be a subset of280

(gt, bt, rt, ct) depending on the agent model con-281

1This is not key to our architecture, but simply what we
found was necessary given the current unreliability of VLMs
and parsing full 2D visual scenes.

figuration Θ. SIAM achieves efficiency by using 282

incremental planning algorithms to rapidly estimate 283

the expected utility of an action Q̂mt(st−1, at). We 284

provide details in the Appendix. 285

Having computed a posterior over all mental 286

states PΘ(m0:T |s0:T , a1:t), LIRAS can answer a 287

social inference query Q by computing marginal 288

probabilities or posterior expected values. For ex- 289

ample, if Q asks for how likely each goal is given 290

the actions, LIRAS returns the marginal posterior 291

P (g0|s0:T , a1:t) over the agent’s goal. If Q instead 292

asks for the cost ca0 of some action a ∈ A, LIRAS 293

returns the posterior expectation E[ca0|s0:T , a1:t]. 294

When Q contains k sub-queries, LIRAS produces 295

k corresponding ratings R1:k from these quantities. 296

3 Experiments 297

3.1 Domains 298

We compare our model and baselines to human 299

social inferences on existing cognitive science do- 300

mains from the social reasoning literature, and 301

a set of expanded multimodal variants that are 302

derived from earlier work but that we construct 303

specifically to evaluate the role of language in 304

more complex, grounded environments. The exist- 305

ing experiments have been well-modeled by hand- 306

constructed, domain-specific symbolic models; we 307

choose these to assess how well our approach (and 308

baselines) can capture judgments by synthesizing 309

these structured models from inputs. Collectively, 310

we choose these multi-modal domains to represent 311

a diverse range of social reasoning tasks that vary in 312

features including number of agents, observability, 313

and variables of interest. 314

The two existing cognitive science domains we 315

consider are: 316

• Food trucks (78 stimuli): a domain from 317

(Baker et al., 2017) in which the instructions 318

describe a student navigating a campus while 319

choosing which (movable) food truck to go to 320

for lunch. The visual stimuli depicts varying 321

paths taken by the agent with partial observ- 322

ability of the trucks. Participants are asked to 323

jointly infer the agents’ beliefs and desires. 324

• Astronaut (47 stimuli): a domain from (Jara- 325

Ettinger et al., 2016) in which the instructions 326

describe an astronaut navigating alien terrain 327

to pick up care packages on the way to a space 328

station. The visual stimuli show various col- 329

ored terrains and paths. Participants must infer 330
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the relative costs of walking on each terrain331

type and the rewards of the care packages.332

We also evaluate on an expanded set of multi-333

modal domains derived from the Doors, Keys, and334

Gems (DKG) stimuli (introduced in Zhi-Xuan et al.335

2020, with a multi-agent version introduced in Ying336

et al. 2023). The original domains evaluate multi-337

step planning and inverse planning. Instructions338

describe an obstacle course in which a player is339

navigating a maze to reach one of several colored340

gems, but must first acquire various keys that un-341

lock doors in the maze. We extend both original342

domains (adding significantly more stimuli to the343

mutli-agent case), and construct new variants that344

modify the linguistic instructions which specify the345

underlying environment dynamics:346

• DKG-Simple (32 stimuli): One colored key347

unlocks one door of the same color.348

• DKG-Double (16 stimuli): Two colored keys349

unlock one door of the same color.350

• DKG-Reuse (16 stimuli): One colored key351

unlocks all doors of the same color.352

• DKG-Inverse (16 stimuli): One colored key353

unlocks one door of a different color.354

• Multiagent DKG (m-DKG) (30 stimuli):355

Mazes contain two players, a principal and356

an assistant. The team works together to get357

one goal gem to the principal agent.358

Each of the visual stimuli in the DKG-Double,359

DKG-Reuse, and DKG-Inverse variants has an360

identical corresponding stimulus in the base DKG-361

Simple domain, allowing paired comparison of the362

role of language in inferences about agent behavior.363

3.2 Human Data Collection364

For the food truck (Baker et al., 2017) and as-365

tronaut (Jara-Ettinger et al., 2016) domains, we366

evaluate on the original published data, which only367

contains mean human judgments (averaged over all368

participants) for each inference question. For our369

extended DKG domains, we recruit n = 20 par-370

ticipants for each variant (totaling 100 participants371

across 5 variants; mean age = 39.40, 55 female, 45372

male). All human data collection took place over a373

customized web interface (see interface examples374

in the Appendix), where the participants first com-375

pleted a tutorial and comprehension check. The376

experiment is approved by an IRB Board at a US377

University. Participants were paid $15 USD per378

hour. We excluded 13 participants who gave high 379

likelihood scores to all options. 380

3.3 LIRAS Model Configuration 381

We instantiate the LIRAS model with Gemini 2.0 382

Flash (Team et al., 2025) as our base VLM for all 383

parsing and code synthesis, and the execution of 384

the inference by SIAM takes place on a PC. Dur- 385

ing code synthesis, we provide the VLM with a 386

generic prompt shared across all domains and vari- 387

ants. This prompt includes a tutorial on SIAM 388

syntax and primitives, and one example toy do- 389

main with accompanying parses (see Appendix). 390

We synthesize all code with temp= 1.0 to ensure 391

sufficient diversity in initial synthesis, using rejec- 392

tion sampling until we generate a sample for each 393

stimulus in which the full pipeline runs to comple- 394

tion. In our experiments we use k = 1 samples per 395

stimulus, as qualitatively semantic variation among 396

models that actually compile is minimal (the fully 397

specified stimuli in the domains we use do not ulti- 398

mately suggest much uncertainty over environment 399

dynamics – an interesting grounds for future work). 400

For each stimulus, we provide the model with 401

the full visual input and linguistic experimental 402

setup (including instructions explaining the task, 403

concatenated with the scene scenario and query for 404

each stimulus) shown to human participants. We 405

also augment the instructions to explicitly specify 406

which actions the agent can perform, and the size 407

of the environment grid. These same visual and 408

linguistic specifications are used for all baselines. 409

3.4 Ablations and Baselines 410

We compare against the following alternatives: 411

• No explicit inference (ablation): to probe 412

the role of the explicit Bayesian inference en- 413

gine (SIAM), we run the LIRAS pipeline to 414

fully synthesize the same symbolic environ- 415

ment and model representations (using the 416

same base Gemini 2.0 Flash model), but then 417

prompt the LLM to directly generate the an- 418

swers to questions conditioned on the stimulus 419

and generated symbolic model. 420

• Chain-of-thought: we also compare our 421

pipeline to more standard chain-of-thought 422

(Wei et al., 2022) prompting. We evaluate on 423

Gemini 2.0 Flash (our base neural model), 424

GPT-4o (OpenAI et al., 2024) (an alternate 425

SOTA LM), and OpenAI o3 (an explicit rea- 426

soning model). For all CoT baselines, we use 427
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temp=1 (to match our model) and report av-428

erage inferences over k=3 samples to better429

estimate the posterior (our Appendix shows430

that we find significantly more variability, and431

worse performance, with any set of just k=1432

samples.)433

We also experimented with the AutoToM (Zhang434

et al., 2025) framework, which is explicitly de-435

signed for text-based Bayesian Theory of Mind.436

As AutoToM was only designed for natural lan-437

guage inputs, we experimented with first prompt-438

ing a VLM (we tried both Gemini 2.0 Flash and439

GPT-4o) to generate a verbal narrative of the visual440

stimuli which could be provided to the text-based441

AutoToM model for end-to-end reasoning. How-442

ever, we found widespread failure using either base443

neural model to directly generate an accurate or444

complete account of the visual inputs in natural lan-445

guage, making downstream text-based reasoning446

unreliable (see Appendix).447

4 Results448

LIRAS demonstrates human-like reasoning on449

social reasoning tasks across domains. We com-450

pare LIRAS and baselines against human data.451

Table 1 and 2 presents the correlations between452

model predictions and human judgments. We find453

that LIRAS achieves substantially higher correla-454

tion with human responses compared to many alter-455

natives (Table 1), with the exception of the “Cost”456

questions for the Astronaut domain. The Gemini457

2.0 Flash vanilla model, the foundational visual and458

parsing component for LIRAS, shows markedly459

weaker performance (and even several instances of460

negative correlation with human judgments). One461

natural question however is whether such models462

simply cannot reason over visual inputs. We find463

that the ablated LIRAS model, which synthesizes464

symbolic world and agent models, but instead uses465

an LLM to perform probabilistic inference, per-466

forms significantly worse than the full model and467

no better than the Gemini 2.0 Flash base model.468

This demonstrates the importance of the Bayesian469

inference engine and highlights that the failure of470

the smaller VLM models may be beyond visual471

parsing: even when given a full symbolic repre-472

sentation, they are unable to perform human-like473

probabilistic social reasoning.474

While the state-of-the-art multimodal reason-475

ing model OpenAI o3 exhibits stronger align-476

ment with human judgments than lighter-weight477

models such as Gemini Flash, its performance 478

still lags significantly behind that of LIRAS and 479

shows a much weaker correlation against human 480

judgments (average r = 0.63) on these classical 481

cognitive social reasoning domains. These find- 482

ings underscore a key limitation of contemporary 483

vision-language models: even when extensively 484

pre-trained and fine-tuned for complex reasoning 485

tasks, they still face challenges in achieving human- 486

like multimodal social reasoning, particularly when 487

prompted to interpret visual scenes conditioned 488

on complex linguistic information about the do- 489

main. These results show that grounded Theory- 490

of-Mind reasoning with both language and visual 491

inputs is challenging for most state-of-the-art foun- 492

dation models – even in classic relatively simple 493

social reasoning domains, echoing recent findings 494

by Buschoff et al. (2025). 495

Human
vs

Gemini 
2.0-Flash

Human
vs

GPT-4o

Human
vs

OpenAI o3

Human
vs

LIRAS

``The player no longer possesses 
the key after unlocking the door.``

``All keys can be reused and they don’t 
disappear after unlocking a door.``

t = 1 t = 4

Figure 2: A qualitative example showing how models
and human participants adjust their goal inference sub-
ject to changes in game dynamics. Top) Two Frames
showing the agent walk a few steps up then turn right.
Bottom) Model vs Human judgments on the player’s
goal. In the DKG-Reuse condition where each key can
unlock multiple doors, humans and LIRAS find Gem A
and B to be almost equally likely, where other baselines
generally infer that Gem B is likely the agent’s goal.

LIRAS’s inference is adaptive and robust to 496

meaningful changes in linguistic inputs. A key 497

motivation for this work is to computationally ac- 498
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Models Foodtruck Astronaut
Inference Belief Desire Rewards Cost

Gemini 2 Flash 0.01 [-0.13, 0.15] 0.23 [0.10, 0.35] 0.11 [-0.15, 0.33] 0.02 [-0.24, 0.23]
GPT 4o -0.03 [-0.18, 0.12] 0.15 [0.02, 0.26] -0.20 [-0.42, 0.05] -0.17 [-0.36, 0.04]
OpenAI o3 0.52 [0.41, 0.62] 0.45 [0.35, 0.54] 0.33 [0.12, 0.49] 0.80 [0.69, 0.88]
LIRAS (Ablated) 0.03 [-0.10, 0.15] 0.19 [0.06, 0.32] 0.20 [-0.04, 0.40] -0.08 [-0.28, 0.14]
LIRAS (Full) 0.80 [0.73, 0.86] 0.75 [0.67, 0.82] 0.84 [0.71, 0.93] 0.56 [0.38, 0.72]

Table 1: Correlation coefficients and corresponding 95% confidence intervals comparing each model against human
judgments on various cognitive domains for social reasoning. DKG results are displayed in Table 2. Scatterplots for
each domain are shown in the Appendix.

Models DKG-Single DKG-Double DKG-Reuse DKG-Inverse m-DKG

Gemini 2.0 Flash 0.50 [0.34, 0.64] 0.19 [-0.10, 0.47] 0.21 [-0.01, 0.41] 0.12 [-0.15, 0.38] 0.11 [-0.16, 0.37]
GPT 4o 0.40 [0.24, 0.55] 0.39 [0.07, 0.68] 0.29 [-0.00, 0.58] 0.11 [-0.13, 0.35] 0.36 [0.13, 0.57]
OpenAI o3 0.73 [0.60, 0.83] 0.73 [0.60, 0.83] 0.52 [0.34, 0.69] 0.79 [0.70, 0.87] 0.81 [0.73, 0.88]
LIRAS (Ablated) 0.57 [0.42, 0.69] 0.42 [0.12, 0.66] 0.45 [0.20, 0.66] -0.11 [-0.31, 0.13] 0.53 [0.33, 0.71]
LIRAS (Full) 0.79 [0.70, 0.84] 0.74 [0.58, 0.83] 0.75 [0.61, 0.83] 0.75 [0.58, 0.84] 0.78 [0.69, 0.84]
Human (Split-half) 0.78 [0.70, 0.84] 0.73 [0.60, 0.84] 0.80 [0.72, 0.88] 0.80 [0.74, 0.86] 0.73 [0.63,0.81]

Table 2: Correlation coefficients for each model on the four variants of the single-agent DKG domain and the
multi-agent DKG domain. Overall, LIRAS shows robust correlation against humans across all variants. Other VLM
baselines correlate moderately well on the DKG-Single variant, but they are less robust on some other variants with
more unusual but interesting dynamics. Model results statistically significant from others are bolded. Scatterplots
for each variant are shown in the Appendix.

count for how language shapes inferences about so-499

cial situations. To that end, we next assess LIRAS500

under variants of the DKG domain that modulate501

the underlying rule structure, using language. We502

find in Table 2 that that, similar to the model per-503

formances across domains, LIRAS performance504

is robust across all DKG variants, with correla-505

tions roughly at the noise ceiling of the human data506

(as computed under split-half correlations). We507

again find that ablations of LIRAS impair perfor-508

mance – as do alternate VLM baselines (Gemini509

2.0 Flash and GPT-4o) especially as rules become510

more unusual. While o3 generally achieves similar511

performance, we similarly notice a marked drop in512

performance for the DKG-Reuse condition, where513

a key can be reused to unlock multiple doors.514

To illustrate, we also show a qualitative example515

in Figure 2. In this example, there are four gems,516

A, B, C, D. The same visual stimulus were tested517

under DKG-Single and DKG-Reuse variants. In518

the Single condition, the OpenAI o3 model finds519

A and B to be similarly likely, where humans and520

LIRAS both rate gem B to be more likely. This521

is because the agent would have gone to get the522

closer blue key(s) on the left, if they are aiming for523

gem A, C, or D. Under the DKG-Reuse condition,524

where the participants are told that each key can525

be reused after unlocking doors, human judgments526

change significantly. LIRAS is able to capture this527

shift in probability distribution, reasoning that now 528

the agent is equally likely to go for gem A or gem 529

B, since the top right blue key can now unlock both 530

blue doors to get to gem A. On the other hand, all 531

other baseline models judge only gem B to be the 532

most likely option. 533

4.1 Error Analysis 534

Overall after inspecting the CoT tokens by the Gem- 535

ini 2.0 and GPT 4o model, we find widespread hal- 536

lucination and factual errors in its reasoning. We 537

highlight some in the appendix. The OpenAI o3 538

model does not output its thinking tokens. We in- 539

stead ask it to justify its answer with reasoning and 540

we also find factual mistakes and illogical state- 541

ments even if the final results appear to be similar 542

to human judgments. 543

In LIRAS, we also noticed some hallucination 544

and syntax errors in world model synthesis and 545

visual parsing. However by giving a structured 546

prompt and parsing the grid cell by cell, LIRAS 547

reduces the inaccuracy in the final synthesized out- 548

put. Multiple checks and resampling were needed 549

to ensure the model synthesized can be compiled 550

and executed. 551

Notably, in Table 1, we find that LIRAS has 552

moderate correlation against human ratings for ter- 553

rain costs. Upon inspecting the model outputs, we 554

hypothesize that it might be because the LLM is 555
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prompted to construct a small set of possible costs556

and rewards in order to perform exact Bayesian557

inference but the model may not propose the right558

action costs in some cases different from the few-559

shot examples.560

5 Discussion561

In this paper, we propose LIRAS, a multimodal562

model synthesis architecture capable of synthesiz-563

ing agent and world models “on the fly”, from564

visual and linguistic inputs, to reason about agents’565

mental states from observation. We test our model566

on a variety of popular cognitive science domains567

with different aspects of social reasoning under dif-568

ferent settings. Like people, our model flexibly569

adapts to variations in the underlying rules of the570

scenario at hand. Our work provides a computa-571

tional account of how language can help construct572

an ad-hoc world model for people to contextualize573

and interpret other agents’ behavior.574

On the other hand, despite using Gemini 2.0575

Flash, a lightweight VLM, in the model architec-576

ture, LIRAS is able to match or outperform state-577

of-the-art multimodal reasoning models on most578

social reasoning tasks, and significantly exceeds the579

performance of the same Gemini 2.0 Flash model580

that LIRAS uses for model synthesis. By construct-581

ing these ad-hoc world and agent models on-the-fly,582

our study is a step towards a generalized cognitive583

model capable of human-like flexible social reason-584

ing navigating the social world.585

6 Related Work586

6.1 Model-based Theory-of-Mind Reasoning587

Our work builds on a long history of research in588

cognitive science and AI that shows that humans589

interpret others’ behaviors by assuming they are590

rational agents (Dennett, 1981; Baillargeon et al.,591

2016). Numerous computational models have been592

proposed to capture this model-based reasoning593

process (Baker et al., 2017; Shum et al., 2019;594

Wu et al., 2021; Alanqary et al., 2021; Ying et al.,595

2025b) and have been shown to capture graded hu-596

man judgments in reasoning about agents’ mental597

states from observations.598

6.2 Theory-of-Mind in Foundation Models599

Theory-of-Mind reasoning in Foundation Models600

has been subject to great interests and heated de-601

bates from the AI and NLP community. Many602

studies have shown that Foundational Models are603

capable of human-like Theory-of-Mind reasoning 604

in many real world tasks (Kosinski, 2023), while 605

some have highlighted numerous limitations (Ying 606

et al., 2025a; Ullman, 2023). Recent work has 607

also proposed cognitively inspired approach to 608

teach LLMs to reason about linguistic social sce- 609

narios in a Bayesian way through prompting or 610

fine-tuning (Zhang et al., 2025; Kim et al., 2025; 611

Qiu et al., 2025; Zhu and Griffiths, 2024). Recent 612

work (Jin et al., 2024; Shi et al., 2025) has also 613

applied Bayesian Theory of Mind to multimodal 614

settings by having a VLM first converting video to 615

action predicates, although most of such existing 616

work has focused on QA and not capturing graded 617

human uncertainty in Theory-of-Mind reasoning. 618

6.3 Automated Model Synthesis 619

The ability for Foundation Models to to synthe- 620

size code unlocks new possibilities for automated 621

model synthesis. Automated model synthesis has 622

been applied in different areas, from statistical rea- 623

soning (Li et al., 2024; Domke, 2025) and plan- 624

ning (Silver et al., 2023) to cognitive modeling 625

(Wong et al., 2023; Brooke-Wilson, 2023). This 626

preceding work is restricted only to language-based 627

model synthesis, while the current work extends 628

this to the multimodal domain. It is the first work to 629

apply model synthesis to social reasoning, includ- 630

ing joint synthesis over world and agent models. 631

7 Limitations 632

Our work is not without limitations. First, our cur- 633

rent approach is restricted to discrete domains and 634

does not extend to continuous spaces, reflecting 635

a major limitation inherent in the PDDL frame- 636

work. Additionally, modeling multiagent scenarios 637

remains challenging, particularly in competitive set- 638

tings; our framework cannot yet adequately capture 639

the complexities of multiagent interactions. While 640

we found that a single set of prompts can handle 641

all four tested domains, the generalizability of this 642

approach to novel domains is not guaranteed, due 643

to possible issues with domain-specific syntactic 644

or semantic mismatches. In addition, the LIRAS 645

model currently parses gridworld domains by enu- 646

merating each cell, which does not generalize to 647

more complex visual inputs. 648

Lastly, our model depends on explicitly provided 649

linguistic information—such as a clearly enumer- 650

ated action space and well-defined transition dy- 651

namics (e.g., specifying that agents cannot walk 652

8



through buildings). In contrast, humans can of-653

ten infer such rules implicitly from context, draw-654

ing upon commonsense knowledge to build mental655

models of new environments without explicit in-656

structions.657

To address these limitations, future research658

could focus on scaling up and improving gen-659

eralization by fine-tuning vision-language mod-660

els (VLMs) with more diverse training examples661

across broader domains. This could enable more662

robust handling of new task domains on-the-fly.663

Furthermore, enhancing the model’s capacity to664

infer implicit domain constraints — possibly by665

incorporating structured priors — could make this666

approach more generalizable to cases where the667

linguistic information is ambiguous or incomplete.668
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A Human Data Collection894

The interface used for human data collection is shown in Fig. 3. Human participants first complete a895

consent form and a tutorial for the experiment. They then complete 16 trials of the study in a randomized896

order. In each trial, they are asked to watch the animation and then rate the likelihood for each goal897

gem from 0 (Extremely Unlikely) to 100 (Extremely Likely). The results are then normalized as a898

probability distribution across four ratings such that they sum up to 1. All human subject data collected899

are anonymized.900

Figure 3: Experiment Interface for the human data collection.

B Analysis of Qualitative Examples901

Snippets of Gemini 2.0 Flash reasoning on the DKG-Reuse condition for the example highlighted in Fig.902

2.903

**Gem-A**: Far from the starting position, requiring navigation across the locked doors. No
indication of movement in that direction so far. **Gem-B**: Accessible directly without requiring
a key. The player didn’t move toward it, even though it’s relatively close. **Gem-C**: Behind
a door that requires a blue key. The player hasn’t moved toward a key to unlock it. **Gem-D**:
Also behind a door requiring a blue key. Similar to Gem-C, no movements have been made toward
unlocking it.

Snippets of GPT 4o 2.0 reasoning on the DKG-Reuse condition for the example highlighted in Fig. 2.904

The player is likely trying to collect gem B as there is no way for the player to reach gem A or D
without going to the right, and the player is heading towards that side. Alternatively, the player could
be heading to get the key to unlock gem D or C.But, the key on the right is more accessible. So, it is
more likely that the player is going to collect gem B. [5, 80, 5, 10]
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Snippets of OpenAI o3’s reasoning on the DKG-Reuse condition for the example highlighted in Fig. 2. 905

• Gem B (right-centre): From the current square the quickest, completely key-free way to a gem is to
walk right through the top of the vertical gap (col 6) and then drop down to gem B. This route is open
and costs only a few steps, so B is the most natural target.

• Gem A (top-left): To obtain A the player must – keep moving right to the column-6 opening, –
climb to the top row, – walk all the way to the blue key at the far right, – return left and unlock two
blue doors, then collect A. The present position is consistent with the first of those steps, but the plan
is quite a bit longer and key-dependent.

<answer>[10,60,5,25]</answer>

C Representing Spatial Input for Text-Based Reasoning Models 906

We also attempted to compare LIRAS against AutoToM (Zhang et al., 2025) a recent work which 907

similarly combines LLM-guided model synthesis with Bayesian inference for social reasoning. However, 908

AutoToM is restricted to textual input. Our stimuli here critically revolve around rich visual input extended 909

over multiple time steps. While we attempted to automatically convert the GIFs to text-only narratives 910

describing the scene, we found that the descriptions were often impoverished and not giving AutoToM a 911

fair chance. We show a few example narratives to demonstrate the challenges. We do so not to illustrate 912

that current models are incapable of describing such scenarios but to highlight that baseline use for such 913

visual description is nontrivial. 914

We tried both Gemini 2.0 Flash and GPT-4o. We prompted Gemini through the API, concatenating 915

png slices of the GIF; we used the default temperature 1.0. We separately prompted GPT-4o through the 916

chat interface (uploading the GIF directly). In both cases, we described the Doors, Keys, Gems game 917

environment and task the models with describing the scene in detail (where objects were and what the 918

agent did). We depict example representative narrative descriptions for the figure we show in Figure 2. 919

Gemini: 920

The player begins in the middle of the screen. The player moves down one square. Then the player
moves up one square.

GPT-4o: 921

The player starts near the center of the grid. They move up one space to get a better view. Spotting a
blue key to the left, they move left and pick it up. With the first key in hand, the player returns to the
center and heads right. They acquire a second blue key on the right side.

D Sequential Inverse Agent Modeling 922

In Algorithm 1, we provide pseudo-code for the Sequential Inverse Agent Modeling (SIAM) algorithm 923

introduced in Section 2.4. We show the case where all possible mental states we consider (goals, rewards, 924

costs, and beliefs) are jointly inferred, since dropping any of the mental states corresponds to a special 925

case.2 We note that since we consider deterministic PDDL environments, the expected utility of reaching 926

a goal g is equivalent to the goal reward rg plus the cost of the shortest path of reaching that goal. The cost 927

of the shortest path PATH-COST can be efficiently computed via A* search, with the results memoized. 928

Shortest path computations can even be incrementally computed using approaches like tree-adaptive A* 929

(Hernández et al., 2011), such that once a shortest path is found from state s, finding a shortest path from 930

a nearby state s′ is often much cheaper. We refer the reader to the appendices of Ying et al. (2025b) 931

and Zhi-Xuan et al. (2024b) for more explanation of how memoization and incremental planning can be 932

exploited by SIPS-derived algorithms like SIAM. 933

2Modulo minor differences — when goal rewards R are not specified, goals are assumed to be distributed from a uniform
prior. When rewards are specified, the agent is modeled as initially selecting a goal from a Boltzmann distribution over the net
utility of each goal (i.e. goal reward minus shortest path cost to goal), as in Jara-Ettinger et al. (2020).
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Algorithm 1 Sequential Inverse Agent Modeling (SIAM) for mental state inference
1: procedure SIAM(G,R,C,B0, a1:T , s0:T )
2: H ← G× R× C× B0 ▷ Enumerate all hypotheses (goal, reward, cost, & belief combinations).
3: W ← {wi := P (gi|ri, ci, s0)}|H|

i=1 ▷ Initialize (unnormalized) weights for all hypotheses.
4: for t ∈ [1, T ] do
5: for hi := (gi, ri, ci, bi0:t−1) ∈ H do
6: bit ← BELIEF-UPDATE(bit−1, s

i
t, at−1) ▷ Simulate agent’s belief update.

7: hi ← (gi, ri, ci, bi0:t)
8: QBel(g

i, ri, ci, bit, ã)← 0 for ã ∈ VALID-ACTIONS(bit) ▷ Initialize belief-space Q-values.
9: for (s̃, w̃) ∈ bit and ã ∈ VALID-ACTIONS(s̃) do ▷ Iterate over environment states in agent’s belief.

10: Q∗(gi, ri, ci, s̃, ã)← MEMOIZED(PATH-COST(s̃, ã, gi, ri, ci) + rigi) ▷ Compute shortest path cost to g.
11: QBel(g

i, ri, ci, bit, ã)← Q∗(gi, ri, ci, bit, ã) + w̃ ·Q(gi, ri, ci, s̃, ã) ▷ Update belief-space Q-values.
12: end for
13: P (at|bit, gi, ri, ci)←

exp(βQBel(g
i,ri,ci,bit,at))∑

a exp(βQBel(g
i,ri,ci,bit,a))

▷ Compute likelihood of action at.

14: wi ← wi · P (at|bit, gi, ri, ci) ▷ Update weight with action likelihood.
15: end for
16: end for
17: return (H,W) ▷ Return all hypotheses and their (unnormalized) weights.
18: end procedure

E LIRAS Model Synthesis Prompts934

E.1 Prompt for synthesizing the PDDL domain model935

"""936
You will read instructions about a game setup and a dictionary of objects presented937
in the problem. You will then synthesize a PDDL domain for the text description you are938
given.939

940
Note that in our PDDL definition, we use a bit-matrix and array to represent different types941
of cells. These cell types generally refer to generic barriers or kinds of terrains / spaces.942

943
If the same actions have different costs depending on the cells it is located, then each type944
of cell should have a separate action definition. Note that the costs of actions on each945
terrain will be represented in a separate file and you do not need to encode that in the PDDL946
domain file. If certain cells represent barriers, then make sure you cannot move onto those947
cells.948

949
You must include all generic_objects from the object dictionary in the PDDL types.950
The predicates should be about the states, relations or attribute of objects951
(e.g. you can define isshape, iscolor, isempty, etc.). Please do not include predicates952
that are not relevant for the agents' goals (i.e. don‘t represent every possible953
object attribute). The types in the PDDL domain definition should refer to broad954
category of objects (e.g. fruit) and attributes (e.g. shape, color) and not specific instances.955

956
The task instructions will provide you with a list of actions that can be taken by the agent(s).957
Please do not invent any new actions in the PDDL domain file.958

959
Here is an example:960

961
Input: In this domain, you are observing a boy trying to reach some balls and plates.962
There are three unique balls: a tennis ball, a basketball and a baseball.963
The plates can have shapes of circle or square. The plates are placed inside cabinets.964
The agent can move up, down, left or right. There are whitespaces and blackspace in the map.965
The agents and objects can only exist in whitespaces.966

967
objects = {'generic_objects': ['ball', 'plate', 'cabinet'],968
'unique_objects': ['tennisball', 'basketball', 'baseball'],969
'background_cells': ['whitespace', 'blackspace'],970
'agent': ['boy']}971

972
Output:973

974
(define (domain example)975

(:requirements :fluents :adl :typing)976
(:types977

ball plate - item ; you may include small generic objects978
item cabinet agent - object ; include 'item', 'agent' and any other objects979
shape ;this can be shape, color or other attributes980

)981
(:predicates982

(has ?a - agent ?i - item)983
(at ?a - agent ?o - object) ; do not change984
(adjacent ?a - agent ?o - object) ; do not change985
(isplateshape ?p - plate ?s - shape)986
(isballshape ?b - ball ?s - shape)987

)988
989

14



(:constants 990
boy - agent ; name(s) of the agent(s) should be listed here, 991
circle square - shape ; list kinds of attributes mentioned 992
tennisball basketball baseball - ball ; list all unique objects 993

) 994
995

(:functions 996
(gridheight) - integer 997
(gridwidth) - integer 998
(xloc ?o - object) (yloc ?o - object) - integer 999
(whitespace) (blackspace) - bit-matrix ; 1000
this should be an exact list as in physical_generic_objects["background_cells"] 1001

) 1002
1003

(:derived (at ?a ?o) (and (= (xloc ?a) (xloc ?o)) (= (yloc ?a) (yloc ?o)))) 1004
1005

(:action pickup 1006
:parameters (?a - agent ?i - item) 1007
:precondition 1008

(and (not (has ?a ?i)) 1009
(adjacent ?a ?i) 1010

:effect 1011
(and (has ?a ?i) 1012
(assign (xloc ?i) -1) (assign (yloc ?i) -1) 1013
) 1014

) 1015
) 1016

1017
(:action up-white 1018
:parameters (?a - agent) 1019
:precondition 1020

(and (> (yloc ?a) 1) 1021
(= (get-index whitespace (yloc ?a) (xloc ?a)) true) 1022
(= (get-index blackspace (- (yloc ?a) 1) (xloc ?a)) false) 1023

) 1024
:effect 1025

(and (decrease (yloc ?a) 1)) 1026
) 1027

1028
[omitting other actions] 1029

1030
) 1031

1032
In cases where you can move on the black space but at a different cost: 1033

1034
(:action right-white 1035
:parameters (?a - agent) 1036
:precondition 1037

(and (< (xloc ?a) (gridwidth)) 1038
(= (get-index whitespace (yloc ?a) (xloc ?a)) true) 1039

) 1040
:effect 1041

(and (increase (xloc ?a) 1)) 1042
) 1043

1044
(:action right-black 1045
:parameters (?a - agent) 1046
:precondition 1047

(and (< (xloc ?a) (gridwidth)) 1048
(= (get-index blackspace (yloc ?a) (xloc ?a)) true) 1049

) 1050
:effect 1051

(and (increase (xloc ?a) 1)) 1052
) 1053

1054
Multiagent cases: 1055

1056
If multiple agents are present, we use an agent-code to number the agents 1057
and a turn variable to indicate which agent is in turn to act. 1058

1059
Include these in the functions only in cases with more than 1 agent: 1060

1061
(agentcode ?a - agent) - integer 1062
(turn)- integer 1063

1064
then you should check (= turn (agentcode ?a)) as a precondition for each agent's action. 1065
Then after completing the action, we would move on to the next agent: (assign turn (- 1 turn)) 1066

1067
1068

Now please generate a PDDL domain given the input below: 1069
1070

""" 1071

E.2 Prompt for Parsing Image Cells 1072

Your task is to take an image of a cell in a gridworld, then output a json file describing the object 1073
in the cell, using pddl, based on the pddl domain definition. 1074
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1075
There can be multiple objects in the cell, please make sure you represent them all.1076

1077
The location should be set with xloc and yloc, using placeholder $i and $j for the values.1078
Please also remember to add relevant attributes such as color and shapes if applicable.1079

1080
Example:1081

1082
Input:1083

1084
Instruction: There are pins and balls on the table. The items can be used or new.1085
The pins can have a circle or square shape.1086

1087
1088

object_types:1089
{1090

"generic_objects": ["pin"],1091
"unique_objects": ["tennisball", "basketball", "baseball"],1092
"agent": ["human"]1093

}1094
1095

pddl_predicates: (isShape ?p - pin ?s - shape) (isNew ?i - item)1096
1097
1098

Image: [insert image of the cell showing a new circle pin and a baseball on a white square]1099
1100

Output:1101
1102

{1103
"object_name": ["pin", "baseball"]1104
"object_pddl_str": "(= (yloc pin) $i) \n(= (xloc pin) $j) \n(isShape pin circle) \n(isNew pin) \n(=1105
(yloc baseball) $i) \n(= (xloc baseball) $j)\n "1106
}1107

1108
if you are classifying objects that have attributes such as shapes and colors, you must include those attributes.1109

1110

E.3 Prompt for Synthesizing the Agent Configuration1111

Your task is to synthesize a json configuration file given the problem description.1112
1113

Grid_size: size of the grid, row by column.1114
1115

Observability: should either "full" or "partial", indicating whether the agent can see the full map.1116
1117

Belief config: If observability is full, return an empty dictionary, otherwise,1118
include information below. Note that you should read these from1119

1120
1. Belief_object: In case of partial observability, you should indicate what is the item being hidden.1121

1122
2. Belief_container: In case of partial observability, you should indicate what are the containers1123

for the hidden objects.1124
1125

3. Barrier: Name any physical barrier that obstructs the view of the agent.1126
1127

4. Agent: Name of the agent.1128
1129

Goals: should be a list of predicate strings. If the problem doesn't call for goal inference1130
(i.e. goal is given), then this should be a list with 1 predicate. Please note that sometimes the goal1131
can be a composite if the agent can have multiple objectives. For example, if an agent's goal is to get to get1132
home, but has the option to pick up a flower or pizza on the way home, the goal space would be [["(at agent home)"],1133
["(at agent home)", "(has agent flower)"], ["(at agent home)", "(has agent pizza)"], ["(at agent home)", "(has agent flower)",1134
"(has agent pizza)"] ]. Make sure the predicates are allowed based on the PDDL domain definition. Make sure all goal object1135
names match with the object names provided to you.1136

1137
Costs: should be a list of possible different action cost profiles (dictionary). The action names should match exactly1138
with the actions from the PDDL description file. If the task doesn't call for different action costs (i.e. action costs vary1139
across different cells), then this should have only 1 action cost profile. Action costs should be a real number greater than 0.1140
In general, specific actions such as pickup should have higher costs than movements.1141

1142
Query: should be one or more of the following: "belief", "goal", "reward", "cost". Note that rewards usually asks how much does agent1143
like X, whereas goals questions ask which item is the agent's goal.1144

1145
Temperature: How rational is the agent? The value should be a real number greater than 0. A lower temperature indicates more rational1146
actions. By default this should be 1.1147

1148
1149

=========================1150
1151
1152

Here is an example:1153
1154

Suppose the task is to infer a human's beliefs, goals, as well as the costs of movement in two kinds of terrains, black and1155
white, at a 3 by 4 grid. The human cannot see through the black terrain.1156

1157
The human's goal is to get one of the three balls: baseball, basketball, and tennisball. The balls are hidden in boxes and the agent1158
cannot see which ball is in which box.1159
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1160
actions from PDDL domain: up-white, down-white, left-white, right-white, up-black, down-black, left-black, right-black, pickup 1161

1162
object types: 1163
{ 1164

"generic_objects": ["ball", "box"], 1165
"unique_objects": [ 1166

"baseball", "basketball", "tennisball" 1167
], 1168
"agent": [ 1169

"human" 1170
] 1171

} 1172
1173

Example output: 1174
1175

{ 1176
"grid_size": [3,4], 1177
"observability" : "partial", 1178
"belief_config" : { 1179

"belief_object": "ball", 1180
"belief_container": "box", 1181
"barrier": "blackterrain", 1182
"agent" : "human" 1183

}, 1184
"goals": [["(has human baseball)"], ["(has human basketball)"], ["(has human tennisball)"]], 1185
"costs": [ 1186

{ 1187
"up-white": 1, "down-white": 1, "left-white": 1, "right-white": 4, "up-black": 4, "down-black": 4, 1188
"left-black": 4, "right-black": 4, "pickup": 5, 1189

} 1190
{ 1191

"up-white": 2, "down-white": 2, "left-white": 2, "right-white": 2, "up-black": 2, "down-black": 2, "left-black":2, 1192
"right-black": 2, "pickup": 5, 1193

} 1194
{ 1195

"up-white": 4, "down-white": 4, "left-white": 4, "right-white": 4, "up-black": 1, "down-black": 1, "left-black": 1, 1196
"right-black": 1, "pickup": 5, 1197

} 1198
1199

], 1200
"query":["belief", "goal", "costs"], 1201

} 1202
1203

Now please generate a configuration file for the following scenario: 1204

F Scatterplots for Model and Human Judgments 1205
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Figure 4: Scatterplots of model vs human judgments on Foodtruck and Astronaut domains. Error bar indicates
standard deviation.
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Figure 5: Scatterplots of model vs human judgments on DKG domains and variants. Error bars indicate standard
deviation.

19


	Introduction
	Language-Informed Rational Agent Synthesis (LIRAS)
	Synthesizing Environment Models
	Synthesizing Rational Agent Models
	Parsing Environment States and Actions
	Bayesian Mental State Inference via Sequential Inverse Agent Modeling

	Experiments
	Domains
	Human Data Collection
	LIRAS Model Configuration
	Ablations and Baselines

	Results
	Error Analysis

	Discussion
	Related Work
	Model-based Theory-of-Mind Reasoning
	Theory-of-Mind in Foundation Models
	Automated Model Synthesis

	Limitations
	Human Data Collection
	Analysis of Qualitative Examples
	Representing Spatial Input for Text-Based Reasoning Models
	Sequential Inverse Agent Modeling
	LIRAS Model Synthesis Prompts
	Prompt for synthesizing the PDDL domain model
	Prompt for Parsing Image Cells
	Prompt for Synthesizing the Agent Configuration

	Scatterplots for Model and Human Judgments

