
Causal-IQA: Towards the Generalization of Image Quality
Assessment Based on Causal Inference

Yan Zhong 1 2 Xingyu Wu 3 Li Zhang 4 Chenxi Yang 1 2 Tingting Jiang 2 5

Abstract

Due to the high cost of Image Quality Assessment
(IQA) datasets, achieving robust generalization
remains challenging for prevalent deep learning-
based IQA methods. To address this, this paper
proposes a novel end-to-end blind IQA method:
Causal-IQA. Specifically, we first analyze the
causal mechanisms in IQA tasks and construct
a causal graph to understand the interplay and
confounding effects between distortion types, im-
age contents, and subjective human ratings. Then,
through shifting the focus from correlations to
causality, Causal-IQA aims to improve the esti-
mation accuracy of image quality scores by miti-
gating the confounding effects using a causality-
based optimization strategy. This optimization
strategy is implemented on the sample subsets
constructed by a Counterfactual Division process
based on the Backdoor Criterion. Extensive exper-
iments illustrate the superiority of Causal-IQA.

1. Introduction
Image quality assessment (IQA) plays a crucial role in opti-
mizing visual experiences across different domains, includ-
ing image denoising (Tian et al., 2020), restoration (Cui
et al., 2023), and generation (Elasri et al., 2022). Its primary
objective is to develop algorithms that accurately quantify
the perceptual quality of images. Based on the availabil-
ity of reference information, existing IQA methods can
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be classified into Full-Reference IQA (FR-IQA), Reduced-
Reference IQA (RR-IQA), and Blind IQA (BIQA) (Zhai &
Min, 2020), where BIQA exhibits broader applicability due
to its independence from reference image (Su et al., 2020;
Simeng Sun, 2023; Feng et al., 2021).

Traditional BIQA methods aim to predict image quality
scores that align with subjective human ratings, such as
Mean Opinion Scores (MOS), by relying on manually ex-
tracted statistical features from the provided distorted im-
ages (Jiang et al., 2017; Liu et al., 2020; Zhou et al., 2017).
Although these methods are flexible and easy to imple-
ment, they cannot achieve ideal performance when con-
fronted with complex scenes or diverse distortions. Con-
sequently, Deep Learning (DL)-based IQA methods have
received widespread attention due to their strong ability in
fusing discriminative features in visual domains. (Ke et al.,
2021; Talebi & Milanfar, 2018; Madhusudana et al., 2022;
Simeng Sun, 2023). However, the high cost of annotat-
ing IQA datasets restricts DL-based BIQA methods to be
trained only on small-scale datasets, leading to overfitting
and limited generalization on unseen distorted information
and images with authentical distortions (Yue et al., 2022).

To address this issue, one intuitive strategy is to initialize
BIQA models with the backbones pre-trained on large-scale
databases in the field of image classification, such as Ima-
geNet (Deng et al., 2009). Although this enables DL-based
models to learn general image features, its effectiveness in
IQA tasks is limited due to the lack of specific representa-
tion learning for distortions. Another strategy is to design
unsupervised IQA method for test time adaptation (Roy
et al., 2023), which can effectively mitigate distribution
shifts between train and test data, thus improving the per-
formance. However, this strategy has limited applicability
as it requires additional unsupervised training to improve
the prediction accuracy on different test datasets. Further-
more, these studies often overlook the investigation of the
underlying factors that lead to the limited generalization
capability in IQA models. Therefore, we focus on exploring
an end-to-end BIQA method with good interpretability and
generalization capability.

In the standard training paradigm for an IQA network fθ,
the goal is to mine the correlation between distorted image
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Figure 1. The structural causal graph in IQA tasks, where the ar-
rows denotes the causations between parent nodes to child nodes.
We only consider distortion type in D in our method.

Id and its corresponding MOS label m, which is achieved
by maximizing the conditional probability P (m|Id) through
empirical risk minimization (ERM). However, it’s important
to note that P (m|Id) is influenced by both the distortion
types and the image contents (Li et al., 2018), leading to
the detrimental confounding effects and poor generalization
in the standard training paradigm (Li et al., 2023). To ad-
dress this issue, we analyze the causal mechanisms in IQA
tasks and construct a causal graph (Figure 1) that sheds light
on the underlying causal mechanisms in IQA tasks. This
Directed Acyclic Graph (DAG) provides valuable insights
into the interplay and potential confounding effects between
these variables, allowing us to better understand the chal-
lenges associated with the standard training paradigm and
the limitations of correlation-based IQA models. Accord-
ing to Figure 1, distortion types and image contents are
confounders of cause-effect pair Id and m. The learning
objective of the aforementioned standard training paradigm
focuses solely on the correlations between Id and m within
the specific IQA datasets used for training, which is the
main reason for their poor generalization since correlation
does not imply causation (Pearl et al., 2016).

Based on the above analyses, a generalizable IQA model
should be robust to different distortion information and im-
age contents. To achieve this goal, we propose a Causal
Learning-based Image Quality Assessment model (Causal-
IQA). By shifting the focus from correlations to causal-
ity between variables Id and m, Causal-IQA aims to im-
prove the estimation accuracy of the conditional probabil-
ity P (m|Id) through the learning of causal relationships.
Specifically, we first construct sample subsets based on con-
founder sets (including distortion type and image content)
from the perspective of causality (Pearl, 2009). To distin-
guish the content C for each image, the extracted semantic
features of these images are partitioned through Gaussian
mixture clustering (Do & Batzoglou, 2008). Subsequently,
sample subsets1 with invariant D and C are constructed

1This process conforms to the calculating of Counterfactuals
from the perspective of Causal Learning. See appendix for details.

to achieve distortion-invariant and content-invariant repre-
sentation learning, which can eliminate the confounding
effects (caused by C and D) on the causal relationship be-
tween Id and m to improve the robustness of BIQA model.
Ultimately, inspired by Meta-Learning (Finn et al., 2017;
Nichol et al., 2018), the causal learning process is instan-
tiated according to a causality-based optimization strategy
based on the Backdoor Criterion (Pearl et al., 2016). The
contributions of this paper are summarized as follows:

• We provide a comprehensive theoretical analysis from
a causal perspective, shedding light on the underlying
reasons for the limited generalization of IQA models.
We identify that the training process commonly strug-
gles to effectively eliminate the confounding effects
caused by distortion and content information, which
sets the stage for the introduction of our novel method.

• The proposed Causal-IQA model, as a breakthrough in
BIQA training, possesses at least three advantages: (1)
Enhanced generalization capacity due to the effective
elimination of the confounding effects caused by dis-
torted images and image content; (2) Interpretability
for providing valuable insights into the IQA process;
(3) Adaptability that can be seamlessly integrated into
any BIQA network.

• We conduct extensive experiments on both authenti-
cally and synthetically distorted image databases to val-
idate the effectiveness and generalization capabilities
of the proposed method. These experiments provide
empirical evidence of the superiority of Causal-IQA
over existing approaches.

2. Background
2.1. Blind Image Quality Assessment

Blind Image Quality Assessment (BIQA) has gained sig-
nificant attention recently due to the absence of reference
images in realistically distorted image datasets (Zhai & Min,
2020). With the development and wide applications of
Deep Learning (DL), there spring up various DL-based
methods achieving remarkable progress in BIQA (Ke et al.,
2021; Golestaneh et al., 2022). For example, RankIQA (Liu
et al., 2017) proposed a Siamese Network to rank image
pairs that are synthetically distorted. CONTRIQUE (Mad-
husudana et al., 2022) considered the problem of ob-
taining image quality representations in a self-supervised
manner, which is trained with contrastive learning. And
GraphIQA (Simeng Sun, 2023) integrated graph represen-
tation learning into IQA to learn the distortion graph repre-
sentations. Although these studies can improve the ability
of quality perception on training datasets, they lack enough
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Figure 2. Overview of Causal-IQA. In Stage 1 (Counterfactual Division), GMM and confounding factors in Figure 1 are used to construct
image subsets, where images are distortion-invariant and content-invariant in the same subset. In Stage 2, the IQA network fθ is trained
on these sample subsets with a causality-based representation learning method, to improve the generalization of fθ . In Stage 3, the priori
IQA model be can used to assess the quality score for new images with unseen information about distortions and contents.

generalization since the scale of the training IQA datasets
are limited. In this regard, MetaIQA (Zhu et al., 2020)
introduces meta-learning with synthetic distortions, employ-
ing a shared quality prior knowledge model for versatile
adaptation to diverse distortion types. In order to address
different distortions and content variations in images, Su
et al. (Su et al., 2020) devise a self-adaptive hypernetwork
to assign weights to parameters in the quality prediction
module. More recently, one of the latest methods is to inte-
grate domain adaptive and ensemble learning into the IOA
task, such as (Roy et al., 2023). Unfortunately, the improve-
ments in generalization in these existing methods come at
the expense of training costs. On the contrary, we improve
the generalization and robustness of BIQA model from a
causality view, which is end-to-end and interpretable.

2.2. Causal Learning

Traditional machine learning approaches often consider the
statistical dependencies between inputs and outputs, which
can hinder the model’s ability to generalize to unknown data
(Yao et al., 2021). To address this limitation and identify
the true causal impact of inputs on outputs, causal inference
has been introduced as a means to discover and leverage
causal relationship information embedded in the data. By
employing causal graph models and intervention operations,
causal inference aims to eliminate confounding effects on
the outputs, ultimately yielding causal effects. This aspect
is crucial for enhancing both the interpretability and gener-
alization capabilities of models. In recent years, causal in-
ference methods based on Structural Causal Models (SCM)
(Pearl, 2010; Pawlowski et al., 2020) have witnessed sig-
nificant advancements and garnered widespread adoption
among computer science researchers due to their ability to
offer clearer descriptions of causal relationships between

variables (Gresele et al., 2022). Leveraging the structural
information between variables, SCM enables causal analy-
sis even in scenarios where interventions on variables are
not fully observed, thus presenting a distinct advantage for
tackling complex tasks. In the domain of computer vision,
various tasks are susceptible to the influence of latent con-
founding factors. Causal inference techniques provide a
valuable framework for identifying and leveraging causal
relationships to mitigate the impact of confounding factors,
such as scene graph generation (Chen et al., 2019), image
recognition (Tang et al., 2020), video analysis (Kanehira
et al., 2019), etc. In this paper, we investigate the perfor-
mance gains afforded by causal relationships within the
context of IQA problems.

3. Method
In this section, we initially present the overview of Causal-
IQA. Then, we analyze the causal mechanism in BIQA tasks,
based on which we propose the IQA formula for robust
representation learning, followed by its training paradigm.

3.1. Overview of the Proposed Method

As shown in Figure 2, the basic idea of our method is to
learn the distortion-invariant and content-invariant represen-
tations based on causal learning. And the whole framework
consists of three stages. Given the reference images from
synthetically distorted image datasets, we construct sam-
ple subsets based on confounding factors first in Stage 1:
images with the same distortion type are collected into the
same sample subset. Due to unavailability of content la-
bels in IQA datasets, we utilize the GMM (Do & Batzoglou,
2008) model for clustering after extracting semantic features
by pretrained backbone (ResNet18 (He et al., 2016) is cho-
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sen in our method), to prepare for the subsequent training
process. In Stage 2, we propose a causality-based training
paradigm to improve the generalization of IQA, which can
be used to eliminate the confounding effects from distortion
types and image contents, so that the causal relationship
between distorted images and corresponding MOS labels is
identifiable (the optimization progress is executed based on
a meta-learning strategy using the sample subsets and the
cluster probabilities obtained in Stage 1). Finally, in Stage
3, the trained IQA model can be used to assess the quality
score for new images with unseen distortions and contents.

3.2. The Causal Mechanism of BIQA

BIQA aims to predict the MOS score m of distorted image
Id without reference images, denoted as m = fθ(Id), where
θ means the model parameters. From a causal perspective,
we model this BIQA progress with a causal structure graph
in Figure 1, where Id and m are regarded as Intervention
Object and Intervention Outcome respectively. Suppose
there exists an ideal image Iv for each distorted image Id,
the path D → Id ← C in Figure 1 means the degradation
process from Iv to Id, where D and C denote the variables
of distortions and image contents (For distortion informa-
tion, we only consider distortion type in D in our method,
and the discussion about distortion degrees is presented in
the Appendix). Besides, the path D → m← C in Figure 1
denotes the knowledge learned from D and C to m.

In order to improve the generalization of the IQA model, fθ
should be trained to learn the causal representation based
on the causation between Id to m. However, there are two
virtual paths connected Id and m, including Id ← C → m
and Id ← D → m caused by C and D, which are the con-
founding factors that bring confounding affects on both the
Intervention Object (i.e. Id) and Intervention Outcome (i.e.
m) under study. More precisely, the existing of virtual paths
causes the conditional probability P (m|Id) learned by IQA
network fθ is also conditioned on these two confounding
factors, thus the traditional IQA training paradigm is actu-
ally fitting P (m|Id, C,D), leading to the IQA network fθ
not robust to different distortions and contents due to that
it is not independent of D and C. To address this issue,
we learn the robust IQA representation by Counterfactu-
als (Pearl, 2022) and Backdoor Adjustment (Pearl, 1995) in
the causal learning domain since D is observable in synthet-
ically distorted image datasets.

Backdoor Adjustment: In causal inference, the primary ob-
jective of backdoor adjustment is to estimate the intervention
distribution, enabling the identification of the causal relation-
ship of the target variables, which is based on Backdoor Cri-
teria (see details in supplementary materials). Specifically
speaking, we make a do-calculus based on the discretization
results of confounding factors C and D, and do-calculus

transforms the intervention distribution required for causal
inference into a probability distribution in statistical learn-
ing (Pearl, 1995), which can block the causal relationships
from C and D to Id to eliminate their confounding effects.
In this way, we can learn the robust IQA representation
independent of distortion types and image contents by in-
stantiating the conditional probability P (m | do (Id)). We
have the following proposition for Backdoor Adjustment:
Proposition 3.1. The causal conditional probability in IQA
tasks can be formulated as:

P (m | do (Id))=
∑

(ci,dj)∈S

P (m | Id, ci, dj)P (ci, dj) (1)

where P (ci, dj) denotes the probability of each distortion
type and content cluster.

Proof. See supplementary materials.

Suppose there exist p distortion types and the cluster number
is set as q in Eq. 1, which satisfy uniform distribution in
IQA datasets, then we have P (ci, dj) = P (ci)P (dj) =

1
pq .

Counterfactual Division: In order to make the trained IQA
model independent of different distortion types and image
contents with enough generalization ability, we construct
the confounders S = {(ci, dj)} first in Stage 1 of Figure 1,
which consists of different (distortion type, image content)
pairs. According to (Li et al., 2023), it is better for each ref-
erence image to have corresponding distorted images with
varying distortion types and image contents. Therefore, we
collect images with the same distortion type in the same
content cluster into the same sample subset, and each sam-
ple subset is corresponding to one element in S. We call
this process Counterfactual Division. In fact, the label of
distortion type is available in synthetically distorted image
datasets, and we obtain the cluster probabilities about image
contents by GMM (Do & Batzoglou, 2008) and the lower-
dimensional semantic features extracted by ResNet18 and
TSNE (Van der Maaten & Hinton, 2008)). Here we have the
following proposition to support the rightness of Backdoor
Adjustment and the division based on S.
Proposition 3.2. The construction of above IQA data sub-
sets conforms to the calculating of Counterfactuals. Given
S, for ∀id ∈ Id, counterfactual mid is conditionally inde-
pendent of Id (i.e. mid ⊥ Id | S).

P (mid | Id, S) = P (mid | S) (2)

An easy corollary of Proposition 3.2 is the following:
Corollary 3.3. The probability of counterfactual mid is
equal to the calculation of P (m | do (Id)). That is:

P (mid = y) =
∑

s=(ci,dj)

P (m = y | S = s, Id = id)P (s)

(3)

4



Causal-IQA: Towards the Generalization of Image Quality Assessment Based on Causal Inference

Algorithm 1 Causal-IQA-S (CIS)
Input: training dataset X = {(Id,m) | d ∈ S},
confounders S = {(ci, dj)} , 1 ≤ i ≤ q, 1 ≤ j ≤ p,
learning rate α and β for inner and outer loop updating.
Initial: BIQA network fθ.
repeat
ϕs̄ ← θ.
for si,j in S do

Sample training pairs (Isi,j ,m) from X
Task Updating: ϕs̄ = ϕs̄−α∇ϕs̄L

(
fϕs̄

(
Isi,j

)
,m
)

end for
Meta Updating: θ ← θ − β(ϕs̄ − θ)

until convergence.
Output: convergent meta parameters θ∗.

Proof. See Appendixes for the proof of Eq. 2 and Eq. 3.

3.3. Causality-based Representation Learning

With the causality-based optimization direction defined in
Eq. 1, we can achieve a robust representation learning by
instantiating the intervention of different distortion types
and image contents. In the traditional ERM-based training
paradigm in BIQA tasks, the network fθ is trained by mini-
mize the loss function L (fθ (Id) ,m) in the entire training
dataset X = {(Id,m) | d ∈ S} to maximize the condition
probability P (m|Id), which can be denoted as:

θ∗ = argmin
θ

E(Id,m)∈X [L (fθ (Id) ,m)] , (4)

where L(·) is usually L1 loss or EMD loss (Talebi & Mi-
lanfar, 2018), and θ∗ is the learned parameters. As men-
tioned above, due to the poor generalization in this training
paradigm, we implement the causality-based representation
learning by maximizing the causal conditional probability
P (m | do (Id)) instead of P (m | Id).

In order to model the intervention from confounders S to
instantiate conditional probability P (m|Id, ci, dj) in Eq. 1,
we execute the one-step update for each pair (ci, dj) ∈ S
to obtain the IQA model fθ conditioned on specific distor-
tion type and content cluster, which is implemented on the
corresponding sample subset obtained in the Counterfactual
Division stage in Figure 1, derived as:

ϕsi,j = θ − α∇θL
(
fθ
(
Isi,j

)
,m
)
, si,j ∈ S (5)

where Isi,j denotes the distorted images Id in content cluster
ci with distortion type dj , and ϕsi,j is the corresponding
one-step updated model. Note that one image in the wild
does not necessarily belong strictly to one content cluster, so
the loss L

(
fθ
(
Isi,j

)
,m
)

can be computed with the cluster
probabilities of each samples:

L(fθ
(
Isi,j

)
,m) =

∑
r

wr,j

w:,j
L
(
fθ
(
Isi,j (r)

)
,m(r)

)
(6)

Algorithm 2 Causal-IQA-P (CIP )
Input: training dataset X = {(Id,m) | d ∈ S},
confounders S = {(ci, dj)} , 1 ≤ i ≤ q, 1 ≤ j ≤ p,
learning rate α and β for task updating and meta updating.
Initial: BIQA network fθ.
repeat

ϕs̄ ← θ.
Sample training pairs

{
(Isi,j ,m)

}
i,j

from X
Task Updating:

ϕs̄ = ϕs̄ − α∇ϕs̄

1
pq

∑
si,j∈S L

(
fϕs̄

(
Isi,j

)
,m
)

Meta Updating: θ ← θ − β(ϕs̄ − θ)
until convergence.
Output: convergent meta parameters θ∗.

where wr,j (
∑

j wr,j=1) denotes the probability of the r-th
sample attaching to j-th content cluster, and w:,j=

∑
r wr,j .

Then we can maximize P (m|Id, ci, dj) by minimize the
overall loss L(fϕsi,j

(Id),m). Therefore, P (m | do (Id))
can be maximized on the whole training set:

θ∗ = argmin
θ

E(Id,m)∈X [
∑

si,j∈S

L
(
fϕsi,j

(
Isi,j

)
,m
)
]

(7)
Finally, we can learn the generalizable BIQA networks by
the optimization direction in Eq. 7

3.4. The Proposed Training Paradigm

It is evident that the optimization procedure derived in
Eq. 5 6 7 is challenging to execute, which is memory-
consuming and computationally expensive. We have the
following proposition to address this issue.

Proposition 3.4. The optimization procedure for Causal-
IQA in Eq. 5 7 is equivalent to the optimization direction
described as follows:

θ∗ = argmin
θ

E(Id,m)∈X [L (fϕs̄ (Id) ,m)]

and ϕs̄ = θ − α∇θ
1

pq

∑
si,j∈S

L
(
fθ
(
Isi,j

)
,m
) (8)

where L
(
fθ
(
Isi,j

)
,m
)

is defined in Eq. 6.

Proof. See supplementary materials.

According to Proposition 3.4, ϕs̄ is the median model pa-
rameters virtually updated with loss function L(·) on all the
image subsets obtained in Counterfactual Division, thus the
optimization procedure in Eq. 8 can be implemented by em-
ulating the meta-learning strategy MAML (Finn et al., 2017).
However, a second-order gradient needs to be calculated
during the iteration in MAML, which is relatively compli-
cated in computation. Inspired by Reptile (Nichol et al.,
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Table 1. Attributes of five typical IQA databases in experiments.

Databases Number MOS Range Distortion Type

TID2013 3,000 [0,9] Synthetic
KADID-10K 10,125 [1,5] Synthetic
KonIQ-10K 10,073 [1,5] Authentic

LIVE-C 1,162 [0,100] Authentic
CID2013 480 [0,100] Authentic

2018), we use the sequential parameter updating strategy
based on the one-order gradient to approximate the second-
order gradient, thus the optimization process can be greatly
simplified. Eventually, according to the updating mode of
the median parameters ϕs̄, we propose two versions of the
optimization algorithm for Causal-IQA method, which are
summarized in Algorithm 1 and Algorithm 2 termed as
Causal-IQA-S (CIS for short) and Causal-IQA-P (CIP for
short) respectively. Causal-IQA-S Causal-IQA-P compute
the task loss for virtual updating in the serial and parallel
manner respectively, the relevant analyses are illustrated in
supplementary materials.

4. Experiments
4.1. Datasets

In this paper, we perform experiments on the following five
representative IQA databases:

• TID2013 (Ponomarenko et al., 2015). This database
contains 3000 images, which is obtained from 25 refer-
ence images, 24 types of distortions for each reference
image,and 5 levels for each type of distortion.

• KADID-10K (Lin et al., 2019). It includes 81 pristine
images, where each pristine image was degraded by
25 distortions in 5 levels. For each distorted image, 30
reliable degradation category ratings were obtained by
crowdsourcing performed by 2,209 crowd workers.

• KonIQ-10K (Hosu et al., 2020). It consists of
10,073 authentically distorted images chosen from
YFCC100M (Thomee et al., 2016) with a wide distri-
bution about brightness, color, contrast and sharpness.

• LIVE-C (Ghadiyaram & Bovik, 2015). LIVE-C con-
sists of 1162 authentically distorted images captured
from many diverse mobile devices. Each image was
assessed by an average of 175 unique subjects.

• CID2013 (Virtanen et al., 2014). It includes six image
sets; on average, 30 subjects have evaluated 12–14
devices depicting eight different scenes for a total of
79 different cameras, 480 images, and 188 subjects.

The details of these datasets are shown in Table 1, where
synthetically distorted image datasets are mainly used for
training and the authentically distorted datasets are used

Table 2. Fine-tuning results on authentically distorted image
datasets with models trained on TID2013 and KADID-10K. Bold
indicates the best performance, and the same convention is applied
to other metrics and tables.

METHODS
CID2013 LIVE-C KONIQ-10K

PLCC SROCC PLCC SROCC PLCC SROCC
BLIINDS-II 0.565 0.487 0.507 0.463 0.615 0.529
BRISQUE 0.648 0.615 0.645 0.607 0.537 0.473
ILNIQE 0.538 0.346 0.589 0.594 0.537 0.501
CORNIA 0.680 0.624 0.662 0.618 0.795 0.780
HOSA 0.685 0.663 0.678 0.659 0.813 0.805
BIECON 0.620 0.606 0.613 0.595 / /
MEON 0.703 0.701 0.693 0.688 / /
WADIQAM-NR 0.729 0.708 0.680 0.671 0.761 0.739
DISTNET-Q3 / / 0.601 0.570 0.710 0.702
DIQA 0.720 0.708 0.704 0.703 / /
NSSADNN 0.825 0.748 0.813 0.745 / /
METAIQA 0.784 0.766 0.835 0.802 0.887 0.850
CIS(Ours) 0.887 0.895 0.847 0.828 0.918 0.881
CIP (Ours) 0.873 0.894 0.844 0.823 0.896 0.865

for verification and fine-tuning. For training and testing
uniformity, all the MOS ranges are normalized to [0, 1].

4.2. Experimental Settings

Implementation Details. During training with Causal-IQA,
we choose the same backbone ResNet18 (He et al., 2016) for
a compelling performance comparison with MetaIQA (Zhu
et al., 2020), which also designed the generalizable training
paradigm based on Meta Learning. In Stage 1 of Counter-
factual Division, we set the number c of clustering in GMM
as 2, which can be considered as contents-based knowledge
guiding for high quality and low quality. Before GMM,
the image features extracted by ResNet18 are reduced in
dimension to 10. The training network is constructed follow-
ing MetaIQA, which is trained with Pytorch library (Paszke
et al., 2017) on two Intel Xeon E5-2609 v4 CPUs and four
NVIDIA RTX 2080Ti GPUs. During training, images are
scaled to the size of 256×256 and then randomly cropped to
224×224 before feeding to models. We use Adam optimizer
with β1 = 0.9 and β1 = 0.9999 for both task updating and
meta updating, and the learning rates for task updating and
meta updating are set as 1e− 4 and 1e− 2 respectively. The
learning rate for task updating drops by 0.8 times after every
10 epochs with the total epoch number set as 100. In the
process of fine-tuning, the learning rate of Adam optimizer
is also set as 1e− 4 with total epoch number 30. The batch
sizes B in TID2013 and KADID-10K are set as 32 and 102
for combined training, and B = 64 during test process. The
backbone is initialized by the pre-training weights obtained
by classification task on ImageNet (Deng et al., 2009).

Evaluation Metrics. We evaluate our Causal-IQA models
by two typical metrics (Bosse et al., 2017), including Pear-
son Linear Correlation Coefficient (PLCC) and Spearman
Rank-order Correlation Coefficient (SROCC).
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Table 3. SROCC results comparison in leave-one-distortion-out cross validation on the synthetically distorted image database KADID-10K.

DIST. TYPE BLIINDS-II BRISQUE ILNIQE CORNIA HOSA WADIQAM-NR METAIQA CIS CIP

K
A

D
ID

-1
0K

GB 0.8799 0.8118 0.8831 0.8655 0.8522 0.8792 0.9461 0.9524 0.9349
LB 0.7810 0.6738 0.8459 0.8109 0.7152 0.7299 0.9168 0.9247 0.9306
MB 0.4816 0.4226 0.7794 0.5323 0.6515 0.7304 0.9262 0.9051 0.9135
CD 0.5719 0.5440 0.6780 0.2432 0.7272 0.8325 0.9194 0.9043 0.9026
CS -0.1392 0.1821 0.0898 -0.0023 0.0495 0.4209 0.7850 0.8112 0.8255
CQ 0.6695 0.6670 0.6763 0.3226 0.6617 0.8055 0.7170 0.7405 0.7231

CSÅ1 0.0906 0.0706 0.0266 -0.0194 0.2158 0.1479 0.3039 0.4513 0.4658
CSA2 0.6017 0.3746 0.6771 0.1197 0.8408 0.8358 0.9310 0.9388 0.9043
JP2K 0.6546 0.5159 0.7895 0.3417 0.6078 0.5387 0.9452 0.9379 0.9508
JPEG 0.4140 0.7821 0.8036 0.5561 0.5823 0.5298 0.9115 0.9348 0.9001
WN 0.6277 0.7080 0.7757 0.3574 0.6796 0.8966 0.9047 0.8934 0.8877

WNCC 0.7567 0.7182 0.8409 0.4183 0.7445 0.9247 0.9303 0.9215 0.9340
IN 0.5469 -0.5425 0.8082 0.2188 0.2535 0.8142 0.8673 0.8810 0.8767

MN 0.7017 0.6741 0.6824 0.3060 0.7757 0.8841 0.9247 0.9316 0.9089
DENOISE 0.4566 0.2213 0.8562 0.2293 0.2466 0.7648 0.8985 0.9428 0.9041

BRIGHTEN 0.4583 0.5754 0.3008 0.2272 0.7525 0.6845 0.7827 0.8267 0.8087
DARKEN 0.4391 0.4050 0.4363 0.2060 0.7436 0.2715 0.6219 0.6851 0.6424

MS 0.1119 0.1441 0.3150 0.1215 0.5907 0.3475 0.5555 0.6429 0.6199
JITTER 0.6287 0.6719 0.4412 0.7186 0.3907 0.7781 0.9278 0.8909 0.8740
NEP 0.0832 0.1911 0.2178 0.1206 0.4607 0.3478 0.4184 0.7012 0.6723

PIXELATE 0.1956 0.6477 0.5770 0.5868 0.7021 0.6998 0.8090 0.8323 0.8122
QUANTIZATION 0.7812 0.7135 0.5714 0.2592 0.6811 0.7345 0.8770 0.8845 0.8313

CB -0.0204 0.0673 0.0029 0.0937 0.3879 0.1602 0.5132 0.6527 0.7446
HS -0.0151 0.3611 0.6809 0.1142 0.2302 0.5581 0.4374 0.5173 0.5091
CC 0.0616 0.1048 0.0723 0.1253 0.4521 0.4214 0.4377 0.4891 0.4589

AVERAGE 0.4328 0.4136 0.5528 0.3149 0.5598 0.6295 0.7672 0.8078 0.7974

4.3. Performances Comparison

We conduct two sets of experiments to verify the superi-
ority of our proposed models. One of them is testing the
generalization to authentically distorted images by Causal-
IQA that is trained on synthetically distorted datasets, an-
other is testing its generalization to unseen distortion types
on synthetically distorted datasets. Twelve typical BIQA
methods are used to make comparisons with Causal-IQA,
which consist of five traditional BIQA methods (includ-
ing BLIINDS-II (Saad et al., 2012), BRISQUE (Mittal
et al., 2012), ILNIQE (Zhang et al., 2015), CORNIA (Ye
et al., 2012) and HOSA (Xu et al., 2016)) and seven DL-
based methods (including BIECON (Kim & Lee, 2016),
MEON (Ma et al., 2017), WaDIQaMNR (Bosse et al., 2017),
DistNet-Q3 (Dendi et al., 2018), DIQA (Kim et al., 2018),
NSSADNN (Yan et al., 2019) and MetaIQA (Zhu et al.,
2020)), among which MetaIQA is one of the state-of-the-art
BIQA training paradigms for generalization enhancement.

Results on Authentical Distortions. In this part, we train
Causal-IQA methods on two synthetically distorted datasets
and fine-tune the trained model on three authentically dis-
torted datasets, 80% of which are allocated for fine-tuning
with 20% for testing. The comparison results between
Causal-IQA and other methods are displayed in Table 2.

Compared with these baselines, we can observe that: (i).
DL-based methods generally outperform traditional ap-
proaches. (ii). Although CIP performs slightly worse
than CIS, two versions of Causal-IQA both have better per-
formances than MetaIQA, which illustrates the robustness
and effectiveness of the proposed methods.

Results on Synthetical Distortions. To assess how well our
Causal-IQA generalizes to unfamiliar distortion types, we
evaluate our approach by employing Leave-One-Distortion-
Out (Zhu et al., 2020) cross-validation on the TID2013 and
KADID-10K databases. In other words, a data subset with
the specific distortion type is retained for testing, while
all samples with other distortion types are used for train-
ing. The SORCC values on KADID-10K of our methods
are recorded in Table 3 for comparison with seven SOTA
general-purpose BIQA algorithms (See Table 12 in Ap-
pendix for the results on TID2013).

From Table 3 and Table 12, we can observe that: (i). Both
MetaIQA and CausalIQA show significant superiority over
other approaches, demonstrating the generalization of the
meta-learning-based training paradigm. (ii). The average
SORCC values of our methods are two to four points higher
than that of MetaIQA on both TID2013 and KADID-10K,
which proves the enough generalization of Causal-IQA on
unseen distortion types.

4.4. Ablation Study

To further investigate whether the effectiveness and ro-
bustness of our methods are derived from causal relation-
ships, we investigate the impact of different components
of the proposed Causal-IQA in this experiment. To be
specific, we compare the generalization performances of
Baseline, MetaIQA, CIS\C, CIS, CIP\C and CIP on
KonIQ-10K, CID2013 and LIVE-C. Baseline means train-
ing IQA network fθ with the traditional ERM-based training
paradigm in Eq. 4. CIS\C and CIP\C denote training the
same IQA network fθ according to Algorithm 1 and Algo-
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Table 4. Ablation study of test results on wild images without fine-
tuning using models trained on TID2013 and KADID-10K.

METHODS
CID2013 LIVE-C KONIQ-10K

PLCC SROCC PLCC SROCC PLCC SROCC
BASELINE 0.547 0.538 0.562 0.538 0.544 0.553
METAIQA 0.597 0.588 0.606 0.614 0.610 0.629
CIS\C 0.673 0.642 0.664 0.652 0.630 0.628
CIS 0.672 0.651 0.690 0.684 0.662 0.658
CIP\C 0.659 0.641 0.652 0.615 0.601 0.613
CIP 0.712 0.683 0.655 0.624 0.681 0.704

Table 5. Ablation study of fine-tuning results on authentically dis-
torted images with models trained on TID2013 and KADID-10K.

METHODS
CID2013 LIVE-C KONIQ-10K

PLCC SROCC PLCC SROCC PLCC SROCC
BASELINE 0.727 0.712 0.801 0.743 0.832 0.816
METAIQA 0.784 0.766 0.835 0.802 0.887 0.850
CIS\C 0.855 0.871 0.839 0.811 0.861 0.864
CIS 0.887 0.895 0.847 0.828 0.918 0.881
CIP\C 0.863 0.865 0.826 0.807 0.881 0.832
CIP 0.873 0.894 0.844 0.823 0.896 0.865

rithm 2 without considering the confounding factor of image
content. In other words, there is no path Id ← C → m in
the structural causality graph in Figure 1 and confounders
S = {dj}pj=1. Same setup as before, these models are
trained on TID2013 and KADID-10K first, then Table 4
records the PLCC and SORCC results of directly testing on
these authentically distorted image databases without fine-
tuning, while Table 5 records that of fine-tuning with an 8:2
training-testing split. Upon closer examination, it becomes
evident that: (i). CIS\C and CIP\C perform better than
Baseline, yet perform worse than CIS and CIP , which
prove the effectiveness of the elimination of confounding
effects caused by distortion type and image content. (ii).
In Table 4, the PLCC and SROCC of our Causal-IQA is
about 7-8 points higher than that of MetaIQA, showing that
our method has better zero-shot capability due to its inter-
pretability. (iii). CIS performs better than CIP , which
illustrates that the serial manner is more suitable for our
causality-based training strategy in BIQA tasks.

In addition, we make comparisons among the fine-tuned
performances of Causal-IQA models trained with differ-
ent backbones on TID2013 and KADID-10K, including
ResNet18, ResNet34 and ResNet50 (He et al., 2016). Ac-
cording to Table 6, the generalization performances of CIS
get better as the IQA network gets deeper, which is the same
as the conclusion of CIP . See Appendix for details.

We also explore the impact of the partition ratio (set t as the
training ratio and the test ratio is 1−t) during fine-tuning and
number c of clustering in GMM mentioned in Section 4.2.
With the trained CIS and CIP models on TID2013 and
KADID10K, we compare the fine-tuning results on LIVE-
C with different t and c. Figure 3(a) 3(b) describe the

Table 6. Impact of different backbones on the results of CIS.

BACKBONES RESNET18 RESNET34 RESNET50

CID2013 PLCC 0.887 0.910 0.921
SROCC 0.895 0.907 0.923

LIVE-C PLCC 0.847 0.872 0.885
SROCC 0.828 0.869 0.881

KONIQ-10K PLCC 0.918 0.923 0.936
SROCC 0.881 0.899 0.915

(a) PLCC results of c (b) SROCC results of c

(c) PLCC results of t (d) SROCC results of t

Figure 3. Impact of different cluster numbers c (during training)
and training ratios t (during fine-tuning) on database LIVE-C.

variation trends of PLCC and SROCC when c changed in
[1, 5] (c = 1 means S = {dj}pj=1) with t = 0.8 fixedly,
and Figure 3(c) 3(d) describe the trends when t changed in
{0.1, 0.3, 0.5, 0.7, 0.8}. See Appendix for more results on
other datasets, and we can conclude that: (i). Setting c to
2 is optimal, as increasing c leads to larger computational
overhead without improving performance. (ii). As training
ratio t increases, the performance gradually improves.

5. Conclusion
This paper provides a novel BIQA training paradigm named
Causal-IQA, which can improve the generalization on un-
seen distortion types and image contents. Concretely speak-
ing, we first construct the structural causality graph for
BIQA task, which contains two confounding factors hin-
dering the identification of the causal relationship between
image and MOS label. Thus we achieve a Counterfactual
Division for training datasets to eliminate the confounding
effects with Backdoor Adjustment strategy. Finally, we de-
sign two versions of causality-based training paradigm CIS
and CIP that are proved effective and robust by extensive
experiments. It is worth mentioning that Causal-IQA is
interpretable and can be applied to any BIQA network. To
our knowledge, this is the first work to explore IQA tasks
from a causal perspective.
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Figure 4. Three typical causal structures in Causal Learning, in-
cluding Chain structure, Collider structure and For structure.

A. Causation VS. Correlation
According to (Pearl et al., 2000), a causal relationship de-
notes a cause-and-effect connection between two variables,
where a change in one variable influences the other. In this
scenario, one variable is considered the cause, leading to an
observable impact or change in the other variable, known
as the effect. Causal relationships imply a directional flow
of influence, emphasizing the idea that changes in the cause
lead to changes in the effect. Thus causation is interpretable
and directed, such as smoking and lung cancer. While cor-
relation refers to a statistical measure that quantifies the
degree of association or relationship between two variables,
such as yellow fingers and lung cancer. Therefore, correla-
tion alone does not imply causation. Two variables can be
correlated without one causing the other (Pearl et al., 2016;
Pearl, 2009).

There are three typical causal structures (Pearl et al., 2000),
including fork structure, chain structure, and collider struc-
ture as shown in Figure 4. For example, in chain structure,
X , Y and Z can be rain, slippery roads, and slip, respec-
tively. We cannot conclude that rain is the cause of the slip.
Hence, the lack of correlation may not necessarily imply
the absence of causation, which may be due to incorrectly
controlling for intermediary variables. In collider structure,
X , Y and Z can be the blood types of the father, mother,
and child, respectively. Therefore, the transformation of
X and Y from being uncorrelated to correlated does not
necessarily indicate a causal relationship, which could be
due to selection bias. In fork structure, X , Y and Z can be
cold, fever and runny nose, respectively. So, high correla-
tion between two variables (Y and Z) does not necessarily
imply a causal relationship.

In general, the model built based on causality is more robust
than that based on correlation (Wu et al., 2020).

B. Backdoor Adjustment in Causal Inference
and The Proof of Proposition 3.1

Backdoor Adjustment is designed based on Backdoor Crite-
rion (Pearl et al., 2016; Pearl, 2009), which aims to elimi-
nating the confounding effects for making the causal rela-
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Figure 5. A structural causal graph with is confounding factor C.

Figure 6. The do operation eliminating confounding effects based
on Back-door Criterion.

tionship identifiable between two target variables. Here, the
concept of confounding is introduced first.

Definition B.1. Confounder: Given three random variables,
A, B, and C. C is the confounder of causality between A
and B if C is the common cause between A and B, leading
to the confounding effect:

P (B | do(A)) ̸= P (B | A) (9)

In Definition B.1, do(A) denotes the intervention on vari-
able A by setting it to the specific value, P (B | do(A)) in-
dicates the direct causal relationship from the path A→ B
and P (B | A) denotes the correlation between A and B. For
example, as shown in Figure 5, there is a spurious correla-
tion between A and B in the fork connection A← C → B,
leading to a confounding effect on the identification of the
causal relationship from A to B. Therefore, it is necessary
to eliminate confounders for estimating the causality from
parent node to child node, that is the conditional probability
P (B | do(A)). In other words, as shown in Figure 6, the
do operation aims to cut off the connection from C to A,
which is implemented based on Backdoor Criterion.

Definition B.2. Backdoor Criterion: In a directed acyclic
graph G = (V, E), given a pair of variables (A,B) ∈ V ,
the variable set Z satisfies the Backdoor Criterion relative
to (A,B) if and only if any element in C is not a successor
node of A, and C blocks all paths from variables in A to B
that are toward A.

Proposition B.3. If C is observable and satisfies the Back-
door Criterion with respect to (A,B) in the structural
causal graph of Figure 5, the causal effect from A to B
can be calculated by:

P (B | do(A)) =
∑
c

P (B | A,C = c)P (C = c) (10)

Proof. Without loss of generality, we set A = a and B = b,

then we have:

P (B = b | do(A = a))

=
∑
c

P (B = b|do(A = a), C = c)P (C = c|do(A = a))

=
∑
c

P (B = b|A = a,C = c)P (C = c|do(A = a))

=
∑
c

P (B = b|A = a,C = c)P (C = c)

(11)
Eq. 11 is equivalent to Eq. 10, Q.E.D.

Therefore, we can eliminate confounding effects of C to esti-
mating the causality from A to B by Eq.10 and Eq.11 based
on the Backdoor Criterion, which proves Proposition 3.1.

C. Application of Backdoor Criteria in BIQA
As shown in Figure 1, we construct the structural causal
graph for BIQA task, where image contents C and distor-
tion type D constitute the confounders S = {(ci, dj)} that
interferes with the estimation of causality between distorted
images Id and MOS labels m consistent with human ratings.
Since the confounders in BIQA task are both observable or
discretizable variables, the causal relationship from A to B
can be estimated by Backdoor Criteria, which is derived as:

P (m | do (Id))

=
∑

(ci,dj)∈S

P (m | Id, ci, dj)P (ci, dj)

=

q∑
i=1

p∑
j=1

P (m | Id, ci, dj)P (C = ci)P (D = dj)

(12)
According to (Li et al., 2018), distortion level is another kind
of distortion information. However, we have not considered
it as a confounding factor in Eq. 12 with two objective rea-
sons: One is that distortion level is strongly correlated with
MOS, and the distributions of distortion levels in syntheti-
cally distorted image datasets follow a uniform distribution,
which are not consistent with the MOS distributions of im-
ages in the real-world (i.e. normal distribution). Another
reason is that the scale of the sample subset obtained by
Counterfactual Division for training will be too small, lead-
ing to performance degradation.

To verify the above statements, we compared the experi-
mental results of CIP and CIS with the Causal-IQA meth-
ods treating distortion level as an extra confounding fac-
tor, the serial and parallel versions of which are named as
CIS+L and CIP+L. There are five distortion levels in both
TID2013 and KADID-10K, and the results are displayed
in Table 7 and Table 8 with the experimental setup same as
that in Section 4.4.
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Table 7. Ablation study of test results on wild images without fine-
tuning using models trained on TID2013 and KADID-10K.

METHODS
CID2013 LIVE-C KONIQ-10K

PLCC SROCC PLCC SROCC PLCC SROCC
CIS+L 0.634 0.646 0.653 0.629 0.642 0.637
CIP +L 0.628 0.650 0.638 0.621 0.659 0.655
CIS 0.672 0.651 0.690 0.684 0.662 0.658
CIP 0.712 0.683 0.655 0.624 0.681 0.704

Table 8. Ablation study of fine-tuning results on authentically dis-
torted images with models trained on TID2013 and KADID-10K.

METHODS
CID2013 LIVE-C KONIQ-10K

PLCC SROCC PLCC SROCC PLCC SROCC
CIS+L 0.782 0.786 0.801 0.773 0.832 0.816
CIP +L 0.757 0.762 0.789 0.768 0.836 0.805
CIS 0.887 0.895 0.847 0.828 0.918 0.881
CIP 0.873 0.894 0.844 0.823 0.896 0.865

According to Table 7 and Table 8, we can observe that the
performances of CIS+L and CIP+L have significantly
decreased compared to CIP and CIS, which proves the
correctness of our inferences.

D. A Proof of Proposition 3.4
Here, we give the proof of Proposition 3.4:

θ∗ = argmin
θ

E(Id,m)∈X

{
1

pq

∑
(ci,dj)∈S

[
L
(
fθ(Id),m

)
− α∇θ

∑
r

wr,j

w:,j
L
(
fθ(Isi,j (r)),m(r)

)
∇θL

(
fθ(Id),m

)
+ o
(
∇θL

(
fθ(Id),m

))]}

= argmin
θ

E(Id,m)∈X

{
L
(
fθ(Id),m

)
− 1

pq

∑
(ci,di)∈S

α

[
∇θ

∑
r

wr,j

w:,j
L
(
fθ(Isi,j (r)),m(r)

)]

×∇θL
(
fθ(Id),m

)
+ o
(
∇θL

(
fθ(Id),m

))}

= argmin
θ

E(Id,m)∈X

{
L
(
fθ(Id),m

)
− α∇θ

[ ∑
(ci,di)∈S

1

pq

∑
r

wr,j

w:,j
L
(
fθ(Isi,j (r)),m(r)

)]

×∇θL
(
fθ(Id),m

)
+ o
(
∇θL

(
fθ(Id),m

))}
(13)

(a) Serial paradigm (CIS) (b) Parallel paradigm (CIP )

Figure 7. The comparison of serial training paradigm and parallel
training paradigm.

Eq. 13 is derived by Talyor expansion for Eq. 6 at at position
θ. Then we conduct the Taylor inverse expansion for Eq. 13,
which can be derived as:

θ∗ = argmin
θ

E(Id,m)∈X

[

L

(
f(

θ−α∇θ

∑
(ci,dj)∈S

1
pqL
(
fθ(Isi,j ),m

))(Id),m)] (14)

where L
(
fθ(Isi,j ),m

))
=
∑

r
wr,j

w:,j
L
(
fθ(Isi,j (r)),m(r)

)
.

Let ϕs̄ = θ − α∇θ

∑
(ci,dj)∈S

1
pqL

(
fθ(Isi,j ),m

)
, Eq. 14

can be rewritten as:

θ∗ = argmin
θ

E(Id,m)∈X [L (fϕs̄
(Id) ,m)]

and ϕs̄ = θ − α∇θ

∑
si,j∈S

1

pq
L
(
fθ
(
Isi,j

)
,m
) (15)

which is the same as Eq. 8.

E. Serial Paradigm VS. Parallel Paradigm
The intuitionistic comparison between serial training
paradigm and parallel training paradigm are shown in Fig-
ure 7, where we suppose there are two sample subsets by
Counterfactual Division. For the sake of simplicity, the
black arrow means the direction of meta updating, and ∇ϕj

i

denotes the (j + 1)-st iteration with i-th subset. Therefore,
we can find that the meta parameters are updated through
the gradient direction on the last subtask (thus the direction
of the black arrow is parallel to the second colored arrow in
Figure 7(a)) in the Algorithm 1 (CIS) training with serial
paradigm . In addition, the meta parameters are updated
through the sum of the gradient direction vectors on all the
subtasks (thus the direction of the black arrow is parallel to
the vector sum of all the colored arrows in Figure 7(b)) in
the Algorithm 2 (CIS) training with parallel paradigm.

13



Causal-IQA: Towards the Generalization of Image Quality Assessment Based on Causal Inference

Table 9. Impact of different backbones on the results of CIP .

BACKBONES RESNET18 RESNET34 RESNET50

CID2013 PLCC 0.873 0.896 0.914
SROCC 0.894 0.903 0.916

LIVE-C PLCC 0.844 0.873 0.889
SROCC 0.823 0.851 0.875

KONIQ-10K PLCC 0.896 0.909 0.917
SROCC 0.865 0.881 0.896

Table 10. Ablation study of test results on wild images without
fine-tuning using models trained on TID2013 and KADID-10K.

METHODS
CID2013 LIVE-C KONIQ-10K

PLCC SROCC PLCC SROCC PLCC SROCC
CIS+M 0.674 0.686 0.693 0.689 0.684 0.687
CIP +M 0.727 0.681 0.666 0.643 0.702 0.715
CIS 0.672 0.651 0.690 0.684 0.662 0.658
CIP 0.712 0.683 0.655 0.624 0.681 0.704

F. A Proof for Proposition 3.2 and
Corollary 3.3

In causal learning, counterfactual refers to situations or
events that are contrary to the facts. Specifically, it means
considering what the results would have been if certain
conditions or factors had been different from what actually
occurred for events that have already taken place. There-
fore, the formal definition of counterfactual can be given as
follows:

Definition F.1. Counterfactual: In the context of the causal
model M under the environment U = u, consider any two
variables X and Y . Let Mx denote the modified version
of M when X is set to x. The counterfactual Yx(u) can
be formally defined as: Yx(u) = YMx

(u). In other words,
the counterfactual Yx(u) in the model M is defined as the
solution for Y in the modified submodel Mx.

According to (Pearl et al., 2016; Pearl, 2009), the calculating
of counterfactuals follows three steps:

• Abduction (Step 1): Determine the value of U by evi-
dence e .

• Action (Step 2): Remove the structural equations for
the variables X to modify the model M . Then, set the
X as X = x to obtain the modified Mx.

• Prediction (Step 3): Use the Mx and U = u to compute
the value of Y (i.e., the results of the counterfactual).

Thus, conterfactual is actually answering the question: In
the situation U , what YX=x(U) would be if X is x. There-
fore, in the BIQA task, we implement Counterfactual Di-
vision in Section 3.2 to construct our sample subsets by
answering the question: if S is (ci, dj), what the distorted
image Id would be with the distribution of distortion and

Table 11. Ablation study of fine-tuning results on authentically
distorted images with models trained on TID2013 and KADID-
10K.

METHODS
CID2013 LIVE-C KONIQ-10K

PLCC SROCC PLCC SROCC PLCC SROCC
CIS+M 0.898 0.896 0.871 0.857 0.922 0.891
CIP +M 0.889 0.906 0.868 0.850 0.913 0.879
CIS 0.887 0.895 0.847 0.828 0.918 0.881
CIP 0.873 0.894 0.844 0.823 0.896 0.865

the corresponding ideal image2 invariant?. Since the image
content and distortion type are available in the syntheti-
cally distorted image datasets, we call this data partitioning
procedure Counterfactual Division.

Therefore, we conduct Counterfactual Division through the
following process:

• Abduction (Step 1): Use the distorted image Id to
determine the value of Iv , that is P (Iv|Id).

• Action (Step 2): Modify the degradation model g, so
that S is adjusted to the counterfactual value (ci, dj).

• Prediction (Step 3): Obtain the consequence Isi,j of
the counterfactual based on estimated Iv and modified
degradation model gsi,j .

In fact, since it is available to high-quality reference images
in synthetically distorted image datasets, which can be re-
garded as the results of degeneration process only based on
content, we can ignore the first step and simplify Step 3 as:
Obtain the consequence Isi,j of the counterfactual based on
corresponding reference images with the i-th content and
modified degradation model gdj .

In Proposition 3.2, counterfactual mid means the potential
assessment result m predicated on image id with fixed S.
And node Id can be regarded as the a result of degradation
from ideal image Iv . From a counterfactual perspective, the
variable S satisfies the Backdoor Criterion on the original
model M in the structural causal graph of BIQA tasks in
Figure 1. Hence, it can block the paths from Id to mid on
the modified model Mx, as well as the paths from Id to
variables that have influence on mid (there is actually no
node from Id to m in Figure 1). Consequently, Id and mid

are conditionally independent for any S = s. In Causal
Inference, the Eq. 2 in Proposition 3.2 is called the Coun-
terfactual Interpretation of Backdoor (Pearl et al., 2016).
Then we can use the correction formula Eq. 16 to calculate
counterfactuals.

2Note that the ideal image (termed as Iv) is virtual and does
not represent the reference image. And we denote the virtual
degeneration process as Id = g(Iv, s)
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(a) PLCC of c (KonIQ-10K) (b) SROCC of c (KonIQ-10K)

(c) PLCC of t (KonIQ-10K) (d) SROCC of t (KonIQ-10K)

(e) PLCC of c (CID2013) (f) SROCC of c (CID2013)

(g) PLCC of t (CID2013) (h) SROCC of t (CID2013)

Figure 8. Impact of different cluster numbers c (during training)
and training ratios t (during fine-tuning) on KonIQ-10K (a,b,c,d)
and CID2013 (e,f,g,h).

In Corollary 3.3, we have the following derivation:

P (mid = y)

=
∑

s=(ci,dj)

P (mid = y | S = s)P (s) 1⃝

=
∑

s=(ci,dj)

P (mid = y | S = s, Id = id)P (s) 2⃝

=
∑

s=(ci,dj)

P (mid = y | S = s, Id = id)P (s) 3⃝

(16)
where 1⃝, 2⃝, 3⃝ are derived from Total Probability Formula,
Proposition 3.2 and the principle of consistency, respectively.
This verifies that P (mid = y) is another way of saying
P (mid = y | do(id)) (Pearl et al., 2016).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. The gradient maps of some authentically distorted images
in KonIQ-10K database.

G. Other Experimental Results
G.1. Impact of Different Backbones on CIP

In addition to experiments of exploration on the impact of
different backbones on CIS, we make comparisons among
the fine-tuned performances of Causal-IQA trained with
different backbones on TID2013 and KADID-10K, includ-
ing ResNet18, ResNet34 and ResNet50 (He et al., 2016).
According to Table 9, the generalization performances of
CIP get better as the IQA network gets deeper, which is
the same as the conclusion of CIS.

G.2. Performances of Training with Distortion-mixed
Images

In Section 4, our quality prior Causal-IQA model was
trained on the TID2013 and KADID10K datasets. In Ta-
ble 1, each image sample in both the two synthetically
distorted datasets only contains single distortions, while
real-world distorted images may involve combinations of
multiple distortion types. Therefore, we investigated the
performances of training on an additional distortion-mixed
image dataset MLIVE3 (Jayaraman et al., 2012) based on

3MLIVE involves 37 subjects and 8880 human judgments on
15 pristine reference images and 405 multiply distorted images
of two types, including ”Gaussian blur + Gaussian noise” and
”Gaussian blur +JPEG compression”. DMOS score of MLIVE
ranges from 0 to 100.
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Table 12. SROCC results comparison in leave-one-distortion-out cross validation on the synthetically distorted image database TID2013.

DIST. TYPE BLIINDS-II BRISQUE ILNIQE CORNIA HOSA WADIQAM-NR METAIQA CIS CIP

T
ID

20
13

AGN 0.7984 0.9356 0.8760 0.4465 0.7582 0.9080 0.9473 0.9503 0.9364
ANC 0.8454 0.8114 0.8159 0.1020 0.4670 0.8700 0.9240 0.9327 0.9287
SCN 0.6477 0.5457 0.9233 0.6697 0.6246 0.8802 0.9534 0.9677 0.9594
MN 0.2045 0.5852 0.5120 0.6096 0.5125 0.8065 0.7277 0.7308 0.7566
HFN 0.7590 0.8965 0.8685 0.8402 0.8285 0.9314 0.9518 0.9432 0.9381
IN 0.5061 0.6559 0.7551 0.3526 0.1889 0.8779 0.8653 0.9274 0.8971
QN 0.3086 0.6555 0.8730 0.3723 0.4145 0.8541 0.7454 0.8307 0.8130
GB 0.9069 0.8656 0.8142 0.8879 0.7823 0.7520 0.9767 0.9458 0.9466

DEN 0.7642 0.6143 0.7500 0.6475 0.5436 0.7680 0.9383 0.9402 0.9508
JPEG 0.7951 0.5186 0.8349 0.8295 0.8318 0.7841 0.9340 0.9395 0.9182
JP2K 0.8221 0.7592 0.8578 0.8611 0.5097 0.8706 0.9586 0.9593 0.9647
JGTE 0.4509 0.5604 0.2827 0.7282 0.4494 0.5191 0.9297 0.9380 0.9325
J2TE 0.7281 0.7003 0.5248 0.4817 0.1405 0.4322 0.9034 0.9112 0.9133

NEPN 0.1219 0.3111 -0.0805 0.3571 0.2163 0.1230 0.7238 0.8355 0.7968
BLOCK 0.2789 0.2659 -0.1357 0.2345 0.3767 0.4059 0.3899 0.4631 0.5652

MS 0.0970 0.1852 0.1845 0.1775 0.0633 0.4596 0.4016 0.5422 0.6387
CTC 0.3125 0.0182 0.0141 0.2122 0.0466 0.5401 0.7637 0.8032 0.8386
CCS 0.0480 0.2142 -0.1628 0.2299 -0.1390 0.5640 0.8294 0.7921 0.8409
MGN 0.7641 0.8777 0.6932 0.4931 0.5491 0.8810 0.9392 0.9508 0.9274
CN 0.0870 0.4706 0.3599 0.5069 0.3740 0.6466 0.9516 0.9529 0.9439

LCNI 0.4480 0.8238 0.8287 0.7191 0.5053 0.6882 0.9779 0.9533 0.9386
ICQD 0.7953 0.4883 0.7487 0.7757 0.8036 0.7965 0.8597 0.9712 0.9461
CHA 0.5417 0.7470 0.6793 0.6937 0.6657 0.7950 0.9269 0.9350 0.9488
SSR 0.7416 0.7727 0.8650 0.8867 0.8273 0.8220 0.9744 0.9715 0.9697

AVERAGE 0.5322 0.5950 0.5701 0.5465 0.4725 0.7073 0.8539 0.8786 0.8837

training on TID2013 and KADID10K. The experimental
setup is the same as that in Table 4 and Table 5. The models
trained under the serial paradigm and parallel paradigm are
referred to as CIS+M and CIP+M , respectively. The cor-
responding results are presented in Table 10 and Table 11,
from which we can observe that: CIS+M and CIP+M
perform better than CIS and CIP in both scenarios of pre-
diction with fine-tuning and prediction without fine-tuning
on unseen image datasets in the wild. This may be due to
the addition of more distortion types and sample sets to the
training, which to some extent explains the effectiveness of
our proposed paradigms in Algorithm 1 and Algorithm 2.

G.3. Impact of Different Cluster Numbers c and
Training Ratios t on CID2013 and KonIQ-10K

We compare the experimental results on CID2013 and
KonIQ-10K with different partition ratio t and number c
of clustering in GMM. The experimental setup is the same
as that on LIVE-C: CIS and CIP models are trained on
TID2013 and KADID10K, then we compare the fine-tuning
results on CID2013 and KonIQ-10K when c changed in
[1, 5] and t changed in {0.1, 0.3, 0.5, 0.7, 0.8}. The trend
results are shown in Figure 8, from which we can conclude
that: (i). 2 is optimal for c, as increasing c leads to larger
computational overhead without improving performance.
(ii). As training ratio t increases, the performance improves.

G.4. Visual Analysis for Quality Prior Model

In this part, we conducted a visual experiment to illustrate
the efficacy of our Causal-IQA, which is implemented by
visualizing MOS specific saliency maps. Specifically, we

utilized a CNN visualization code4 to depict gradient maps
at the pixel level under various distortions. The quality
prior model was trained on distortion-specific images from
the TID2013 and KADID-10K databases. Subsequently, 8
severely distorted images from KonIQ-10K were randomly
selected for the visualization experiment. Figure 9 displays
both the images and their corresponding gradient maps. The
results in Figure 9 are obtained by the model trained based
on CIS. We can observe that: the gradient maps success-
fully capture the precise locations of authentic distortions
in the images, such as overexposure in Figure 9(a), blur in
Figure 9(b) and underexposure in Figure 9(c).

G.5. Leave-one-distortion-out Cross Validation on
TID2013

To further evaluate the generalization of our proposed
Causal-IQA to unfamiliar distortion types, we evaluate our
approach by employing Leave-One-Distortion-Out (Zhu
et al., 2020) cross-validation on TID2013. The experimen-
tal setup is the same as that in Table 3. The SORCC values
on TID2013 of our methods are recorded in Table 12 for
comparison with seven SOTA general-purpose algorithms.

From Table 3 and Table 12, we can observe that: (i). Both
MetaIQA and CausalIQA show significant superiority over
other approaches, demonstrating the generalization of the
meta-learning-based training paradigm. (ii). The average
SORCC values of our methods are two to four points higher
than that of MetaIQA, which proves the enough generaliza-
tion of Causal-IQA on unseen distortion types.

4The code is available from https://github.com/
sar-gupta/convisualize_nb.
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