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Abstract
The primary focus of recent work with large-001
scale transformers has been on optimizing the002
amount of information packed into the model’s003
parameters. In this work, we ask a complemen-004
tary question: Can multimodal transformers005
leverage explicit knowledge in their reasoning?006
Existing, primarily unimodal, methods have007
explored approaches under the paradigm of008
knowledge retrieval followed by answer predic-009
tion, but leave open questions about the qual-010
ity and relevance of the retrieved knowledge011
used, and how the reasoning processes over012
implicit and explicit knowledge should be in-013
tegrated. To address these challenges, we pro-014
pose a - Knowledge Augmented Transformer015
(KAT) - which achieves a strong state-of-the-016
art result (+6% absolute) on the open-domain017
multimodal task of OK-VQA. Our approach018
integrates implicit and explicit knowledge in an019
encoder-decoder architecture, while still jointly020
reasoning over both knowledge sources dur-021
ing answer generation. Additionally, explicit022
knowledge integration improves interpretabil-023
ity of model predictions in our analysis.024

1 Introduction025

There has been a revival of interest in knowledge-026

intensive tasks which require an external knowl-027

edge source for humans to perform. Many applica-028

tions in real-world scenarios, such as autonomous029

AI agents, need to seamlessly integrate implicit030

(i.e., commonsense) and explicit knowledge (e.g.,031

Wikidata) to answer questions. In this work, we032

investigate how to effectively integrate implicit and033

explicit knowledge for reasoning. Tasks like Out-034

side Knowledge Visual Question Answering (OK-035

VQA) (Marino et al., 2019) require that models use036

knowledge not present in the input to answer ques-037

tions, making it an ideal test bed for investigating038

this implicit-explicit knowledge trade-off.039

Consider the examples from OK-VQA shown in040

Figure 1. To answer the question in the left exam-041

ple, the system needs to both ground organism to042

Figure 1: Examples of knowledge-based VQA that re-
quires external knowledge. Success on this task requires
not only visual recognition, but also logical reasoning
to incorporate external knowledge about the world.

bird through explicit knowledge and then apply the 043

implicit knowledge birds evolved from reptiles to 044

answer the question. Similarly for the question in 045

the right example, the system needs to recognize 046

boats and harbor and requires the implicit knowl- 047

edge anchors are used to stop boats from moving. 048

A key challenge here is to accurately link image 049

content to abstract external knowledge. There have 050

been a number of recent developments demonstrat- 051

ing the feasibility of incorporating external knowl- 052

edge into Question Answering models (Wang et al., 053

2017b; Li et al., 2020b; Marino et al., 2021; Wu 054

et al., 2022; Garderes et al., 2020). Existing meth- 055

ods first retrieve external knowledge from external 056

knowledge resources, such as DBPedia (Auer et al., 057

2007) and ConceptNet (Liu and Singh, 2004) be- 058

fore jointly reasoning over the retrieved knowledge 059

and image content to predict an answer. 060

However, most existing approaches have several 061

drawbacks. First, explicit knowledge retrieved us- 062

ing keywords from questions or image tags may be 063

too generic, which leads noise or irrelevant knowl- 064

edge during knowledge reasoning. Second, exist- 065

ing work mainly focuses on explicit knowledge 066

which is often in the form of encyclopedia articles 067

or knowledge graphs. While this type of knowl- 068
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edge can be useful, it is insufficient to answer many069

knowledge-based questions. As shown in Figure 1,070

questions require the system to jointly reason over071

explicit and implicit knowledge, which is analo-072

gous to the way humans do. To address these073

challenges, we propose an approach, KAT, to ef-074

fectively integrate implicit and explicit knowledge075

during reasoning. The main contributions of our076

work are as follows:077

i) Knowledge extraction. We adopt two novel078

methods for knowledge extraction that significantly079

improve the quality and relevance of extracted080

knowledge: for implicit knowledge, we design081

new prompts to extract both tentative answers and082

supporting evidence from a frozen GPT-3 model;083

for explicit knowledge, we design a contrastive-084

learning-based explicit knowledge retriever using085

the CLIP model, where all the retrieved knowledge086

are centered around visually-aligned entities.087

ii) Reasoning in an encoder-decoder trans-088

former. We design a novel reasoning module089

in KAT to perform jointly reasoning over explicit090

and implicit knowledge during answer generation,091

which is trained by using an end-to-end encoder-092

decoder transformer architecture.093

iii) OK-VQA performance. KAT sets a new state094

of the art on the challenging OK-VQA (Marino095

et al., 2019) benchmark, and significantly outper-096

forms existing approaches.097

2 Related Work098

Vision-Language Transformer. Multimodal099

transformers have made significant progress100

over the past few years, by pre-trained on large-101

scale image and text pairs, then finetuned on102

downstream tasks. VisualBERT (Li et al., 2019),103

Unicoder-VL (Li et al., 2020a) and VL-BERT (Su104

et al., 2020) propose the single-stream architecture105

to work on both images and text. ViLBERT (Lu106

et al., 2019) and LXMERT (Tan and Bansal, 2019)107

propose a two-stream architecture to process108

images and text independently and fused by a109

third transformer in ta later stage. While these110

models have shown to store in-depth cross-modal111

knowledge and achieved impressive performance112

on knowledge-based VQA (Marino et al., 2021;113

Wu et al., 2022; Luo et al., 2021), this type of114

implicitly learned knowledge is not sufficient to115

answer many knowledge-based questions (Marino116

et al., 2021). Another line of work for multimodal117

transformers, such as CLIP (Radford et al., 2021)118

or ALIGN (Jia et al., 2021), aligns visual and 119

language representations by contrastive learning. 120

These models achieve state-of-the-art performance 121

on image-text retrieval tasks. Different from 122

existing work that uses multimodal transformers as 123

implicit knowledge bases, we focus primarily on 124

how to associate images with external knowledge. 125

Importantly, our model only relies on multimodal 126

transformers learned by contrastive learning which 127

do not require any labeled images. This makes our 128

model more flexible in real-world scenarios. 129

Knowledge-based VQA. Some Knowledge- 130

based visual language tasks requires external 131

knowledge beyond the image to answer a ques- 132

tion. Early exploration, such as FVQA (Wang 133

et al., 2017a), creates a fact-based VQA dataset 134

by selecting a fact (e.g., <Cat, CapableOf, Climb- 135

ingTrees>) from a fixed knowledge base. A recent 136

Outside Knowledge VQA (OK-VQA) dataset is a 137

more challenging dataset, covering a wide range of 138

knowledge categories. In our work, we focus on 139

OK-VQA due to its large-scale knowledge-based 140

questions as well as its open-ended nature. 141

Recent approaches have shown a great potential 142

to incorporate external knowledge for knowledge- 143

based VQA. Several methods explore aggregat- 144

ing the external knowledge either in the form 145

of structured knowledge graphs (Garderes et al., 146

2020; Narasimhan et al., 2018; Li et al., 2020b; 147

Wang et al., 2017a,b) or unstructured knowledge 148

bases (Marino et al., 2021; Wu et al., 2022; Luo 149

et al., 2021). In these methods, object detec- 150

tors (Ren et al., 2015) and scene classifiers (He 151

et al., 2016) are used to associate images with ex- 152

ternal knowledge. Further, external APIs, such as 153

Google (Wu et al., 2022; Luo et al., 2021), Mi- 154

crosoft (Yang et al., 2022), and OCR (Luo et al., 155

2021; Wu et al., 2022) are used to enrich the asso- 156

ciated knowledge. Finally, pre-trained transformer- 157

based language models (Yang et al., 2022) or mul- 158

timodal models (Wu et al., 2022; Luo et al., 2021; 159

Wu et al., 2022; Garderes et al., 2020; Marino et al., 160

2021) are leveraged as implicit knowledge bases 161

for answer predictions. 162

Different from previous approaches, Our work 163

aims to develop a single, unified architecture, 164

by jointly reasoning over explicit and implicit 165

knowledge to augment generative language models. 166

While part of our approach is similar to PICa (Yang 167

et al., 2022) which considers GPT-3 as implicit 168

knowledge base, our model takes one step further 169

2



by showing that how explicit and implicit knowl-170

edge can be integrated during knowledge reasoning.171

Another similar work Vis-DPR (Luo et al., 2021)172

collects a knowledge corpus from training set by173

Google Search which is specific to a certain dataset.174

Our proposed model is more generic by collecting175

entities from Wikidata and not limited to the train-176

ing set.177

Open-Domain Question Answering (ODQA).178

ODQA is the NLP task of answering general do-179

main questions, in which the evidence is not given180

as input to the system. Several approaches (Chen181

et al., 2017; Karpukhin et al., 2020) propose to182

predict the answers by first retrieving support doc-183

ument from Wikipedia, before extracting answers184

from the retrieved document. Recent works (Izac-185

ard and Grave, 2020; Lewis et al., 2020b) combine186

text retrieval models with language generative mod-187

els which achieve state-of-the-art performance on188

knowledge-intensive natural language processing189

tasks. Similar to these works as part of our method,190

we extend this framework to VQA domain and191

show the effectiveness of aggregating explicit and192

implicit knowledge for knowledge-based VQA.193

3 Method194

3.1 Overview195

When humans reason about the world, they process196

multiple modalities and combine external and inter-197

nal knowledge related to these inputs. Inspired by198

this idea, we introduce a new KAT approach. The199

overview of the proposed KAT model is shown in200

Figure 2. We define the knowledge from explicit201

knowledge bases as the explicit knowledge, and202

the knowledge stored in large-scale language mod-203

els as the implicit knowledge (i.e., implicit com-204

monsense knowledge). We describe the retrieval205

method of our explicit knowledge (§3.2) and the206

retrieval method of our implicit knowledge (§3.3).207

Next, we introduce the details of our knowledge208

reasoning module which jointly reasons over both209

explicit and implicit knowledge (§3.4).210

Problem Formulation. We apply our KAT on211

OK-VQA task in this paper. Formally, given a train-212

ing dataset D = {(vi, qi, ai)}si=1, where vi denotes213

the ith training image; s is the total number of the214

training images; qi and ai represent the ith question215

and its corresponding answer, respectively. We use216

a sequence-to-sequence model that is composed of217

an encoder and a decoder, which is a comparison218

method of T5 (Raffel et al., 2020) or BART (Lewis 219

et al., 2020a). Let θ be the parameters of the model 220

p that needs to be trained. Our goal is to take vi 221

and qi as inputs and generate the answer ai in an 222

auto-regressive manner. 223

3.2 Explicit Knowledge Retrieval 224

Given an image vi and corresponding question qi, 225

it is important to ground image regions with fine- 226

grained descriptions, which is conducive to under- 227

standing both the image content and the question 228

with the referred items. Existing approaches (Rad- 229

ford et al., 2021; Jia et al., 2021) on OK-VQA apply 230

object detectors to generate image tags which are 231

used for explicit knowledge retrieval. Such image 232

tags can be generic and have a limited vocabulary 233

size, leading noise or irrelevant knowledge. Mo- 234

tivated by the recent progress of visual-semantic 235

matching approaches (Radford et al., 2021; Jia 236

et al., 2021), we leverage a contrastive-learning- 237

based model to associate image regions with exter- 238

nal knowledge bases. 239

Similar to the previous work (Marino et al., 2021; 240

Luo et al., 2021) which uses a subset of exter- 241

nal knowledge, we construct an explicit knowl- 242

edge base that covers the 8 categories of animals, 243

vehicles and other common objects from Wiki- 244

data (Vrandecic and Krotzsch, 2014). The details 245

can be found in Section 4.1. We denote the con- 246

structed knowledge base as K. Each knowledge 247

entry e from K is a concatenation of the entity and 248

its corresponding description. 249

The goal of our explicit knowledge retriever is 250

to index all knowledge entries in dr-dimensional 251

dense representations by a dense encoder Eent(·), 252

such that it can efficiently retrieve the top m knowl- 253

edge entries relevant to each input image. Given 254

an image vi, we use a sliding window with a stride 255

to generate N image patches {v1i , ..., vNi }. Then 256

an image encoder Eimg(·) is applied to map each 257

patch to a dr-dimensional dense representation, and 258

retrieves k knowledge entries from K whose rep- 259

resentations are closest to the patch-level represen- 260

tation. To define the similarity score between the 261

image patch vji and the entity e, we use the inner 262

product of their normalized representations: 263

sim(vji , e) = Eent(e)
TEimg(v

j
i ). (1) 264

In total, we retrieve the top N × k knowledge en- 265

tries relevant to image vi. We keep top-m knowl- 266

edge entries ranked by similarity scores as explicit 267

knowledge source xexp. 268
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Figure 2: Our KAT model uses a contrastive-learning-based module to retrieve knowledge entries from an explicit
knowledge base, and uses GPT-3 to retrieve implicit knowledge with supporting evidence. The integration of
knowledge is processed by the respective encoder transformer, and jointly with reasoning module and the decoder
transformer as an end-to-end training with the answer generation.

In principle, the image and knowledge entry en-269

coders can be implemented by any multimodal270

transformer. We use the CLIP model (ViT-B/16271

variant) (Radford et al., 2021) in our work and take272

the [CLS] as representations. We pre-extract rep-273

resentations of the knowledge entries in the knowl-274

edge base K using the entity encoder Eent and275

index them using FAISS (Johnson et al., 2019).276

The qualitative example for the extracting explicit277

knowledge model is presented in Appendix A.278

3.3 Implicit Knowledge Retrieval279

While our explicit knowledge retriever focuses280

on semantic matching between image regions and281

knowledge entries, it lacks implicit commonsense282

knowledge (e.g., Lemons are sour) which is usu-283

ally stored in large-scale language models. In this284

section, we retrieve implicit knowledge with sup-285

porting evidence by prompting from a large-scale286

pre-trained language model.287

We design our implicit knowledge retriever with288

inspirations from the previous work (Yang et al.,289

2022). We leverage GPT-3 as an implicit language290

knowledge base and treat VQA as an open-ended291

text generation task. For each image-question pair,292

we first convert the image vi into a textual de-293

scription C via a state-of-the-art image caption-294

ing model (Li et al., 2020c), and then construct295

a carefully designed text prompt consisting of a296

general instruction sentence, the textual descrip-297

tion C, the question, and a set of context-question-298

answer triplets taken from the training dataset that299

a re semantically most similar to the current image- 300

question pair (see Figure 7 in Appendix B for a 301

concrete example). We then input this text prompt 302

to the GPT-3 model in its frozen version and ob- 303

tain the output from GPT-3 as the tentative answer 304

candidate to the current image-question pair. 305

To gain deeper insights from the implicit knowl- 306

edge coming out of GPT-3 and its rationale, we 307

design another prompt to query GPT-3 for support- 308

ing evidence behind the tentative answer candidate 309

that it generates. More specifically, for each image- 310

question pair (vi, qi), and for a tentative answer a 311

generated by GPT-3, we construct the prompt in 312

the form of: “(question qi)? (answer a). This is 313

because” to query GPT-3 for supporting evidence 314

(see Figure 6 in Appendix B for a concrete exam- 315

ple). We finally compile both the tentative answers 316

and the corresponding supporting evidence from 317

GPT-3 as implicit knowledge source ximp. 318

3.4 KAT Model 319

As showed in the Figure 2, the explicit knowl- 320

edge entries are from an image, which are con- 321

cerned with semantic matching of the image re- 322

gions. These knowledge entries could be noisy or 323

irrelevant to its corresponding question. Moreover, 324

some of the supporting evidence prompted from 325

GPT-3 is generic or not related to image content. 326

Simple concatenation of different knowledge may 327

introduce noise during model training. We design 328

a knowledge reasoning module with inspirations 329

from the previous work (Karpukhin et al., 2020). 330
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Our knowledge reasoning module encodes each331

question and knowledge pair separately, and jointly332

reason over both explicit and implicit knowledge333

when generating an answer.334

Encoder. We concatenate question qi with each335

knowledge as a question-knowledge pair. Firstly,336

we add sentinel tokens question:, entity:337

and description: before the question, the338

retrieved entity, and its description separately.339

Similarly, we add sentinel tokens question:,340

candidate: and evidence: before the ques-341

tion, the tentative answer, and its evidence. Sec-342

ondly, we use an embedding layer followed by a343

sequence of encoder layers to encode the question-344

knowledge pairs separately. We average the token345

embeddings of each question-knowledge pair from346

the last encoder layer, which results in an embed-347

ding matrix of explicit knowledge Xexp ∈ Rm×d348

and implicit knowledge Ximp ∈ Rp×d, where d,349

m and p are the embedding dimension, the num-350

ber of explicit knowledge xexp, and the number of351

implicit knowledge ximp, respectively.352

Reasoning Module. To jointly reason over im-353

plicit and explicit knowledge, we concatenate the354

embeddings of explicit and implicit knowledge355

form a global representation X ∈ R(m+p)×d. The356

cross-attention module takes the global represen-357

tation X of the encoder as the input. Let H ∈ Rd358

be the output of the previous self-attention layer of359

the decoder. By definition (Vaswani et al., 2017),360

the scaled dot-product attention can be expressed361

as:362

Qv = softmax(
QKT

√
d

)V, (2)363

where queries Q, keys K, and values V are com-364

puted by applying linear transformations: Q =365

WQH,K = WKX,V = WV X . The attended366

representation Qv is a weighted sum of the values,367

and implies that our model performs a joint rea-368

soning over explicit and implicit knowledge when369

generating answers.370

Decoder. We feed the embeddings of explicit and371

implicit knowledge to a sequence of decoder layers372

for answer generation. We train our model with a373

cross-entropy loss:374

LCE = −
n∑

t=1

log pθ(yt|y<t, x
exp;ximp), (3)375

where yt is predicted autoregressively.376

4 Experiment 377

We first describe the knowledge base construction 378

(§4.1) our experimental setup (§4.2-§4.3). In §4.4, 379

we compare our model to existing approaches. 380

Subclass Number
Role (Q214339) 162,027
Point of interest (Q960648) 85,900
Tool (Q39546) 78,621
Vehicle (Q42889) 44,274
Animal (Q729) 18,581
Clothing (Q11460) 17,711
Company (Q891723) 12,173
Sport (Q349) 4,233
Total 423,520

Table 1: We collect a subset of Wikidata that covers com-
mon objects in real-life scenarios as our explicit knowl-
edge base. Above are statistics of these subclasses.

4.1 Knowledge Base Construction 381

We use the English Wikidata (Vrandecic and 382

Krotzsch, 2014) dump from Sep. 20, 2021 as 383

the explicit knowledge source base which contains 384

95, 870, 584 entities. Each data item is stored in 385

a structured format constituted of property-value 386

pairs. Properties are objects and have their own 387

Wikidata pages with labels, aliases, and descrip- 388

tions. We extract a subset that covers common 389

objects in real-world scenarios. We remove all 390

entities whose string labels or corresponding de- 391

scriptions are empty or non-English. This results 392

in a total of 423, 520 entity triplets in the end (e.g., 393

<Q2813, Coca-Cola, carbonated brown colored 394

soft drink>) (See Table 1). 395

4.2 Dataset 396

OK-VQA (Marino et al., 2019) is currently the 397

largest knowledge-based VQA dataset, The ques- 398

tions are crowdsourced from Amazon Mechani- 399

cal Turkers and require outside knowledge beyond 400

the images in order to be answered correctly. The 401

dataset contains 14, 031 images and 14, 055 ques- 402

tions covering a variety of knowledge categories. 403

We follow the standard evaluation metric recom- 404

mended by the VQA challenge (Antol et al., 2015). 405

4.3 Implementation Details 406

For the knowledge reasoning module, we initialize 407

our model with the pre-trained T5 model (Raffel 408

et al., 2020). We compare two model sizes, base 409
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Method Knowledge Resources Acc (%)
N

o
kn

ow
le

dg
e Q only (Marino et al., 2019) - 14.93

Vanilla T5 - 18.56
MLP (Marino et al., 2019) - 20.67
BAN (Marino et al., 2019) - 25.1
MUTAN (Marino et al., 2019) - 26.41

W
ith

kn
ow

le
dg

e BAN+AN (Marino et al., 2019) Wikipedia 25.61
BAN+KG-AUG (Li et al., 2020b) Wikipedia+ConceptNet 26.71
MUTAN+AN (Marino et al., 2019) Wikipedia 27.84
ConceptBERT (Garderes et al., 2020) ConceptNet 33.66
KRISP (Marino et al., 2021) Wikipedia+ConceptNet 38.35
Vis-DPR (Luo et al., 2021) Google Search 39.2
MAVEx (Wu et al., 2022) Wikipedia+ConceptNet+Google Images 39.4

G
PT

-3 PICa-Base (Yang et al., 2022) Frozen GPT-3 (175B) 43.3
PICa-Full (Yang et al., 2022) Frozen GPT-3 (175B) 48.0

KAT-explicit (w/ reasoning) Wikidata 44.25
KAT-implicit (w/ reasoning) Frozen GPT-3 (175B) 49.72
KAT (w/o reasoning) Wikidata+Frozen GPT-3 (175B) 51.97
KAT Wikidata+Frozen GPT-3 (175B) 54.41

Table 2: Results of OK-VQA comparing to standard baselines show that our KAT (large size) model achieves
state-of-the-art performance on OK-VQA full testing set. It is important (see table sections) to compare methods
based on their access to increasingly large implicit sources of knowledge and utilization of explicit knowledge
sources. Our four KAT models variants make the relative importance of these decisions explicit.

and large, each containing 220M and 770M pa-410

rameters respectively. We fine-tune the models on411

OK-VQA dataset, using AdamW (Loshchilov and412

Hutter, 2019). We use a learning rate of 3e − 5413

to warm up for 2K iterations and train for 10K414

iterations. Limited by the computational resources,415

we set the number of retrieved entities to 40. The416

model is trained with a batch size of 32, using417

16 V100 GPUs with 32Gb of memory each. Un-418

less otherwise specified, all results reported in this419

paper as KAT use this model which we found to420

perform best. We evaluate our predictions with421

ground-truth after normalization. The normaliza-422

tion step consists of lowercasing, and removing arti-423

cles, punctuation and duplicated whitespace (Chen424

et al., 2017; Lee et al., 2019).425

4.4 Comparison with Existing Approaches426

We compare our model against existing approaches427

on the OK-VQA dataset and the results are summa-428

rized in Table 2. Our model outperforms state-of-429

the-art methods by significant margins. We com-430

pare our model with existing approaches from two431

aspects. (1) If we only consider using explicit432

knowledge, our model achieves 44.25% which is433

4.85% and 5.9% higher than MAVEx and KRISP, 434

respectively. Our model uses contrastive-learning- 435

based model to extract knowledge, leaving head- 436

room by incorporating supervised pre-trained mod- 437

els, such as pre-trained object detectors. It should 438

be noted that our proposed model is working on a 439

more challenging problem. As the generated an- 440

swer could contain an arbitrary number of words 441

from the entire vocabulary. Our model is slightly 442

better than PICa-Base which is a plain version of 443

PICa-Full without example engineering. It implies 444

that our single, unified architecture can effectively 445

associate images with the explicit knowledge base. 446

(2) If we take the implicit knowledge from GPT- 447

3 as the additional input, our model outperforms 448

PICa-Full by 6.41% which indicates it is important 449

to integrate knowledge of different types when gen- 450

erating answers. The detailed comparison can be 451

found in Table 3. 452

5 Ablation Study 453

To unpack the performance gain and understand 454

the impact of different components, we ablate and 455

compare different model architectures, types of 456

knowledge and the number of explicit knowledge. 457
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Model architecture Knowledge Accuracy (%)
Base Large Explicit Implicit
√

18.56√ √
40.93√ √
44.25√ √
47.60√ √
49.72√ √ √
50.58√ √ √
54.41

Table 3: Ablation study on model architectures and
types of knowledge. Our experiments show that larger
model has more capacity for implicit knowledge reason-
ing and jointly reasoning over both knowledge sources
has a consistent improvement with baselines.

Specifically, as shown in Table 3, our KAT-large458

shows a consistent improvement over using KAT-459

base. This larger model has more capacity for460

implicit knowledge reasoning. The integration of461

explicit and implicit knowledge achieves a perfor-462

mance gain of ∼4%, supporting the intuition that463

these two types of knowledge provide complemen-464

tary pieces of knowledge.465

5.1 Effectiveness of Knowledge Reasoning466

Method Accuracy (%)

KAT (w/o reasoning) 51.97
KAT 54.41

Table 4: Comparison with KAT (w/o reasoning) which
uses the concatenated knowledge as inputs without the
knowledge reasoning module.

To verify the effectiveness of our knowledge rea-467

soning module, we use a KAT without the knowl-468

edge reasoning module which is denoted as KAT469

(w/o reasoning). This model concatenates explicit470

and implicit knowledge as a sentence and adopts a471

maximum length of 256 tokens. We train this vari-472

ant with the same parameter settings. As shown in473

Table 4, simply concatenating knowledge sources is474

2.43% lower than our proposed model. It indicates475

that KAT (w/o reasoning) may introduce noise to476

relevant knowledge during encoding. Our model477

adaptively attend different knowledge sources for478

answer generation that can reduce the influence of479

irrelevant knowledge.480

5.2 Extracting Explicit Knowledge481

From Figure 3 we can see, the performance of our482

model is directly affected by the size of retrieved483

explicit knowledge. When only considering the484

implicit knowledge (i.e., the number of retrieved485

Figure 3: Our model achieves consistent improvement
when aggregating more knowledge entries from an ex-
plicit knowledge base. However, as CLIP-ViT/16 and
RN50 are very different explicit knowledge retrieval
backbones we see the choice of backbone and number
of sources to include are intimately related. Here we
use KAT-base for demonstration.

entities is 0), our model achieves 47.6% which is 486

slightly worse than PICa-Full baseline. It indicates 487

that solely increasing model complexity cannot im- 488

prove the performance. This also demonstrates 489

the importance of explicit knowledge. Our model 490

shows a consistent improvement by incorporating 491

more explicit knowledge. While a more extensive 492

knowledge set may include more distracting knowl- 493

edge, retrieved knowledge entries can share either 494

visually or semantically similar knowledge as the 495

relevant ones. Thus this can massively reduce the 496

search space and/or reduce spurious ambiguity. 497

We compare different explicit knowledge re- 498

trieval module. Though ViT/16 has a large classifi- 499

cation improvement over ResNet-50 (e.g., 6.9% on 500

ImageNet) (Radford et al., 2021), there is a less gap 501

between these two backbones. As the number of re- 502

trieved entities increases, our knowledge reasoning 503

module can further migrate this gap by adaptively 504

attending to different explicit knowledge. 505

5.3 Category Results on OK-VQA 506

Here we present quantitative analyses to illustrate 507

how explicit and implicit knowledge influence the 508

final predictions. Based on the types of knowledge 509

required, questions in OK-VQA are categorized 510

into 11 categories and the accuracy results of each 511

category are reported in Table 5. We re-train our 512

model under the same settings with only either 513

explicit or implicit knowledge, denoted as “exp” 514

and “imp” respectively. 515
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Question:
What is painted on the bench?

Category:
Brands, Companies and Products

Answer:
Exp: strand KAT (w/o KRM): red
Imp: red KAT: Coca cola

Explicit Knowledge:

Tactile paving: system of
textured ground surface
indicators to assist
pedestrians who are blind
or visually impaired.
Coca Cola: carbonated
brown-colored soft drink.
Bench: piece of furniture on
which several people may
sit at the same time.
Street furniture: collective
term for objects and pieces
of equipment installed
outdoors for various
purposes.

Implicit Knowledge:

Red: the bench is painted
red.

Question:
What kind of board is this?

Category:
Sports and recreation

Answer:
Exp: wakeboard KAT (w/o KRM): surfboard
Imp: surfboard KAT: surfboard

Explicit Knowledge:

Wakeboard boat: boat
designed to create a wake
for wakeboarding.
Wakeboarder: someone
practicing wakeboarding.
Kitesurfer: practitioner of
kitesurfing.
Skiboarding: freestyle skiing
using short skis and no
poles.
Boardsport: sports that are
practiced with some sort of
board as the primary
equipment.

Implicit Knowledge:

Surfboard: This sport is
surfboard.

Figure 4: Two examples from OK-VQA dataset that our model generates correct answers by jointly reasoning over
both implicit and explicit knowledge. (exp: predictions by using explicit knowledge only and imp: predictions by
using implicit knowledge only). More examples and analysis can be found in Appendix C.

For most categories, the model using only ex-516

plicit knowledge performs worse than that using517

only implicit knowledge. As implicit knowledge518

comes from the results of state-of-the-art object519

detection, image captioning models and support-520

ing evidence by prompting GPT-3. While explicit521

knowledge is retrieved based on semantic match-522

ing between images and entities from knowledge523

bases, it contains richer but more distracting knowl-524

edge. Note that using explicit knowledge performs525

better for category “Brands, Companies, and Prod-526

ucts" and “Weather and Climate". It indicates that527

accurately recognizing objects with fine-grained528

descriptions in the images is important for these529

categories to answer corresponding questions.530

Question Type Exp Imp Ours ∆

Plants and Animals 42.2 51.5 54.7 +3.2
Science and Technology 44.4 43.3 52.8 +8.3
Sports and Recreation 49.7 53.8 60.4 +6.7
Geo, History, Lang, and Culture 45.6 45.4 55.8 +10.2
Brands, Companies, and Products 41.7 38.2 48.5 +6.8
Vehicles and Transportation 41.5 42.9 51.3 +8.4
Cooking and Food 47.9 47.7 52.7 +4.8
Weather and Climate 51.7 46.3 54.8 +3.1
People and Everyday 43.1 44.4 51.5 +7.1
Objects, Material and Clothing 42.9 45.4 49.3 +3.9
Other 41.5 50.2 51.2 +1.0

Table 5: Accuracy (%) of question types in OK-VQA
full testing set. Our models outperforms exp and imp
models by a large margin on all categories. (exp:
explicit-only model and imp: implicit-only model)

5.4 Qualitative Analysis531

Analyzed in previous sections, jointly reasoning532

over both knowledge sources during answer gener-533

ation improves the explicit-only and implicit-only534

models by large margins. Figure 4 shows two ex-535

amples comparing answers generated by different 536

models along with retrieved knowledge. The left 537

example shows that while explicit knowledge re- 538

trieved from the knowledge base contains the nec- 539

essary knowledge entries for reasoning, it fails to 540

generate the answer which requires the relation be- 541

tween bench and Coca Cola logos. On the other 542

side, implicit knowledge retrieved from GPT-3 can 543

only infer the bench is painted red, failing to rec- 544

ognize its logo. By jointly considering both knowl- 545

edge sources, our model can associate the color of 546

Coca Cola logo with the painted color of the bench 547

which derives the correct answer. The right ex- 548

ample shows that though explicit knowledge does 549

not contain the right knowledge entries, it provides 550

visually similar descriptions of this sport which fur- 551

ther constrains the search space of our model and 552

verifies the correctness of the implicit knowledge. 553

6 Conclusion 554

This paper takes a step towards understanding the 555

complementary role of implicit knowledge gained 556

from continuing to scale models and explicit knowl- 557

edge from structured knowledge bases. Impor- 558

tantly, it appears that there is headroom in both 559

directions (i.g. improving retrieval and reasoning). 560

Our conceptually simple yet effective approach for 561

knowledge-based VQA makes these relationships 562

explicit while still achieving a significant improve- 563

ment against state-of-the-art results. Additional 564

challenges remain, for example how best to align 565

image regions with meaningful external semantics 566

deserves and how to efficiently and accurately inte- 567

grate multiple knowledge bases. 568
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Appendix699

A Figure of Explicit Knowledge700

In this section, we show one example Figure 5 to701

extract explicit knowledge from an image, which702

use the CLIP model to conduct the explicit knowl-703

edge retrieval with the image and a wiki knowledge704

base.705

Figure 5: Overview of the explicit knowledge extraction.
We use a sliding window to crop image regions and
retrieve knowledge entries from an explicit knowledge
base by CLIP.

B Examples of Prompts of Implicit706

Knowledge707

In this Section B of the Appendix, we show two708

concrete examples (Figure 6 and Figure 7) for the709

prompts that constructed to query GPT-3 for im-710

plicit knowledge in our experiments:711

Figure 6: An example of the evidence of rationale that
we obtain from GPT-3 by using a combination of ques-
tion and answer candidate to query it.

C Analysis on More Examples712

In this section, we showcase more predictions from713

variants of our model. As shown in Figure 8, we714

analyze the predictions based on different type of715

knowledge from several aspects:716

Effectiveness of explicit knowledge retriever.717

Our explicit knowledge retriever can retrieve fine-718

grained knowledge entries from the explicit knowl-719

edge base, such as golden retriever (a fine-grained720

breed of dogs), cucumber sandwich (a specific type721

of sandwich) and Macbook Pro (a specific model722

Figure 7: An example of the prompts that we use to
query GPT-3 in our knowledge-aumented GPT-3 query
system.

of Apple products). These fine-grained entities are 723

hardly obtained from existing object detection mod- 724

els, which can constraint the search space of our 725

model and are beneficial to our answer generation 726

process. 727

Effectiveness of implicit knowledge retriever. 728

Our implicit knowledge retriever can retrieve sup- 729

porting evidence from GPT-3, such as Thomas: the 730

train is named after the man who designed it. and 731

Refrigerator: the refrigerator is used to keep food 732

cold. These kinds of knowledge are highly related 733

to commonsense knowledge which needs further 734

inference based on entities and provide comple- 735

mentary explanation to explicit knowledge. 736

Answer generation & classification. As most 737

previous work on OK-VQA task, such as KRISP or 738

MAVEx method, implement OK-VQA as a classi- 739

fication task. The prediction vocabulary is dataset- 740

specific and assumes the training and test set are 741

sharing a similar vocabulary. The limitation of 742

these methods is the generalization ability. Our 743

proposed KAT model initialize and perform the 744

OK-VQA as a kind of open-end generation task. 745

From these examples we found, our model can gen- 746

erate answers like Iphone or Hercules that are vi- 747

sually and semantically reasonable. Our proposed 748

11



Question:
Can you guess the material used to make the

bag shown in this picture?

Category:
Objects, Material and Clothing

Answer:
Exp: canvas KAT (w/o KRM): leather
Imp: leather KAT: canvas

Explicit Knowledge:
(entity:description)

Acer Aspire one: line of
notebooks by Acer Inc.
Drawing instrument: tool used
for drawing or drafting.
Writing implement: tool used
for writing
Book bag: a bag, usually a
backpack, used by students to
carry their textbooks.

Implicit Knowledge:
(candidate:evidence)

leather: the bag is made of
leather.

Question:
What breed are the dogs?

Category:
Other

Answer:
Exp: golden retriever KAT (w/o KRM): husky
Imp: husky KAT: golden retriever

Explicit Knowledge:
(entity:description)

Snow pillow: measuring
device for snowpack.
Search and rescue dog : dog
trained to locate or retrieve
a missing or trapped person.
Golden retriever: dog breed.
Mushing: Sport or dog
powered transport method.

Implicit Knowledge:
(candidate:evidence)

Husky: The husky is a very
intelligent dog. They are
independent and will do
what they want to do.

Question:
What type of sandwich is being served?

Category:
Cooking and Food

Answer:
Exp: cucumber KAT (w/o KRM): sub
Imp: sub KAT: cucumber

Explicit Knowledge:
(entity:description)

Salad: dish consisting of a
mixture of small pieces of
food, usually vegetables or
fruit.
Cucumber sandwich: the
traditional cucumber
sandwich is composed of
thin slices of cucumber
placed between two thin
slices of crustless, lightly
butterd white bread.
Vegetable chip: cooked chip
prepared using vegetables.

Implicit Knowledge:
(candidate:evidence)

Sub: the sub is a type of
sandwich.

Question:
What sort of phone would you associate with

this computer?

Category:
Brands, Companies and Products

Answer:
Exp: Iphone KAT (w/o KRM): cell
Imp: smartphone KAT: Iphone

Explicit Knowledge:
(entity:description)

Floor lamp: lamp standing on
the floor, often with a hight
reaching up to the vertical
middle of the room.
Macbook Pro: laptop made by
Apple.
MacOS: operating system for
Apple computers, launched in
2001 as Mac OS X.
Smart mattress: Mattress
monitoring sleep patterns.

Implicit Knowledge:
(candidate:evidence)

Smartphone: the computer is
not a smartphone.

Question:
What is the name of the famous train pictured?

Category:
Vehicles and Transportation

Answer:
Exp: Smoot KAT (w/o KRM): Thomas
Imp: Thomas KAT: Thomas

Explicit Knowledge:
(entity:description)

Fog machine: device that
emits a dense vapor that
appears similar to fog.
Draisine: small powered rail
vehicle used by track
maintenance workers.
Oast house: buildings
designed for kilning (drying)
hops as part of the brewing
process.
Clouding agent: type of
emulsifier used to make
beverage such as fruit juice
to look more cloudy.

Implicit Knowledge:
(candidate:evidence)

Thomas: the train is named
after the man who designed
it.

Question:
What is this dog running after?

Category:
Plants and Animals

Answer:
Exp: person KAT (w/o KRM): ball
Imp: ball KAT: ball

Explicit Knowledge:
(entity:description)

Sighthound: dog breed.
American Staffordshire
Terrier: dog breed.
Greyhound racing: canine
racing sport involving the
Greyhound dog breed.
Whipper racing: dog sport.

Implicit Knowledge:
(candidate:evidence)

Ball: the dog is chasing after
the ball.

Question:
How often should someone use this?

Category:
Objects, Material and Clothing

Answer:
Exp: twice day KAT (w/o KRM): daily
Imp: daily KAT: daily

Explicit Knowledge:
(entity:description)

Bathroom linen: household
linen used specifically for
the bathroom.
Toothbrush: oral hygiene
instrument used to clean
the clean the teeth, gums,
and tongue.
Toothbrush holder:
container or rack for
toothbrushes.
Laubwerk: delicate foliage
ornament with interlacing
straps.

Implicit Knowledge:
(candidate:evidence)

Daily: the product is made
with natural ingredients.
This is why it is safe to use
daily.

Question:
What hobby might this depict?

Category:
Objects, Material and Clothing

Answer:
Exp: paper craft KAT (w/o KRM): painting
Imp: scrapbook KAT: scrapbook

Explicit Knowledge:
(entity:description)

Embroidery workshop:
workshop where
embroidery is created.
Scissors: hand-operated
cutting instrument.
Paper knife: an implement
used for cutting open
sealed envelopes.
Leather cutter: craftman.

Implicit Knowledge:
(candidate:evidence)

Scrapbooking: the bobby is
a form of art.

Question:
What type of plane is this?

Category:
Vehicles and Transportation

Answer:
Exp: Hercules KAT (w/o KRM): jet
Imp: jet KAT: jet

Explicit Knowledge:
(entity:description)

Avro Shackleton: maritime
patrol aircraft family by
Avro.
MC-130 Hercules: airlifter
series by Lockheed.
P-3B Orion: anti-submarine
maritime patrol aircraft.
C-130B Hercules: airlifter
series by Lockheed.

Implicit Knowledge:
(candidate:evidence)

Jet: the plane is flying at a
high speed.

Question:
What is this machine used for?

Category:
Brands, Companies and Products

Answer:
Exp: refrigerate food KAT (w/o KRM): freeze
Imp: freezer KAT: keep food cold

Explicit Knowledge:
(entity:description)

Shelf-stable food: food of a
type that can be safely stored
at room temperature in a
sealed container.
Free box: box or location used
to allow for people to rid
themselves of excess items.
Icebox: non-mechanical
household applicance for
cooling foodstuffs.
Refrigenration: process of
moving heat from one
location to another in
controlled conditions.

Implicit Knowledge:
(candidate:evidence)

Refrigerator: the refrigerator
is used to keep food cold.

Figure 8: More examples from OK-VQA dataset that our model generates answers by jointly reasoning over both
implicit and explicit knowledge. 12



novel KAT model using the explicit and implicit749

knowledge is designed to enhance semantic align-750

ment and generate representations with stronger751

knowledge-awareness.752
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