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ABSTRACT

Recent years have witnessed an increasing interest in training machines with
reasoning ability, which deeply relies on accurate, clearly presented clue forms that
are usually modeled as entity-like knowledge in existing studies. However, in real
hierarchical reasoning motivated machine reading comprehension, such one-sided
modeling is insufficient for those indispensable local complete facts or events when
only "global" knowledge is really paid attention to. Thus, in view of language being
a complete knowledge/clue carrier, we propose a general formalism to support
representing logic units by extracting backbone constituents of the sentence such as
the subject-verb-object formed "facts", covering both global and local knowledge
pieces that are necessary as the basis for logic reasoning. Beyond building the
ad-hoc graphs, we propose a more general and convenient fact-driven approach to
construct a supergraph on top of our newly defined fact units, benefiting from both
sides of the connections between facts and internal knowledge such as concepts or
actions inside a fact. Experiments on two challenging logic reasoning benchmarks
show that our proposed model, FOCAL REASONER, outperforms the baseline
models dramatically and achieves state-of-the-art results.

1 INTRODUCTION

To understand human language, deep neural networks have been widely applied and achieved
impressive benchmark results (Chen et al.,[2016bj [Sachan & Xing, 2016;|Seo et al., | 2017; |Dhingra
et al.| |2017; |Cui et al.|, 2017; |Song et al., 2018} [Hu et al., 2019; [Zhang et al., 2020a; Back et al.|
2020; Zhang et al.l 2020bj; [Hermann et al.,2015). However, the core requirement among the natural
language understanding, logic reasoning, cannot be simply solved by the current design philosophy
of extracting statistical patterns from data (Shi et al.,|2020). In order to solve such a problem, there
emerges an interest that accounts for human intuition about the entailment of sentences and reflects
the semantic relations between sentential constituents (Iwanskal, [1993)). In this paper, we focus on
logic reasoning in the form of natural language understanding (NLU) as logic reasoning may be
naturally embodied in such a task and natural language offers sufficient enough clues for effective
logic reasoning. In detail, we concern about a logic reasoning question-answering (QA) task, where
given passage, question, and candidate answer options, the model has to make a proper decision with
its logic reasoning ability. There are examples shown in Figure [T] from logic reasoning benchmark
datasets, ReClor (Yu et al., [2020) and LogiQA (Liu et al., [ 2020).
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Question Passage Answer
;I-E):a-n;F;h; :I‘I Xiao Wang is than Xiao Li, +/ A. Xiao Liis than Xiao Zhao.
""""" Xiao Zhao is than Xiao Qian, B. Xiao Wang is than Xiao Zhao.
From this we Xiao Liis than Xiao Sun, and C. Xiao Sun is than Xiao Wang
Xiao Sun is than Xiao Qian. D. Xiao Sun is than Xiao Zhao.
lE)(_a_rn_p_le_ ?,I .... Allarge enough comet
. with Earth could have a cloud B. It cannot be determined from dinosaur skeletons whether
Wh'Ch one of the fOIIOW'. of dust that the planet the animals died from the effects of a dust cloud.
ing statements, most seriously d he cli | P h C. The consequences for vegetation and animals of a comet
the argument? an N the c.lmate ong enoug colliding with Earth are not fully understood.
to in the dinosaurs’ demise. v

Figure 1: Two examples from LogiQA and ReClor respectively are illustrated. There are arguments
and relations between arguments. Both are emphasized by different colors: arguments, . Key
words in questions are highlighted in . Key options are highlighted in

capture the logical structure inherent in the texts

since logical supervision is rarely available during pre-training. Existing logic reasoning has shown
serious dependence on knowledge-like clues. This is due to the lengthy, noisy text in human language
which is though a natural carrier of knowledge but does not provide a clean, exact knowledge form.
Thus, an increasing interest is in using graph networks to model the entity-aware relationships in
the passages (Yasunaga et al., [2021; Ren & Leskovec) 2020; [Huang et al.| 2021} [Krishna et al.|
2020; |[Lv et al.l 2020). However, all these methods may insufficiently capture indispensable logical
units from two perspectives. First, they mostly focus on entity-aware commonsense knowledge,
but pay little attention to those non-entity, non-commonsense clues (Zhong et al., [2021)). Second,
when existing models extract predicate logic inside language into knowledge, they only exploit quite
limited predicates like hasA and isA but ignore a broad range of predicates in real language. From
either of the perspectives, the existing methods actually only concern about those "global" knowledge
that keeps valid across the entire data, without sufficient "local" perception of complete facts or
events in the given specific part of logic reasoning task. We argue such insufficient modeling on
logic units roots from the ignorance of language itself being the complete knowledge/clue carrier.
Thus, we propose extracting a kind of broad facts according to backbone constituents of a sentence to
effectively cover such indispensable logic reasoning basis, filling the gap of local, non-commonsense,
non-entity, or even non-knowledge clues in existing methods as shown in Figure [2] For example,
these units may reflect the facts of who did what to whom, or who is what in Figure[3] Such groups
can be defined as "fact unit" following Nakashole & Mitchelll (2014)) in Definition (1| The fact units
are further organized into a supergraph following Definition [2]

Definition 1 (Fact Unit) Given an triplet T = {E1, P, Es}, where Ey and E5 are arguments
(including entity and non-entity), P is the predicate, a fact unit F is the set of all entities in T and
their corresponding relations.

Definition 2 (Supergraph) A supergraph is a structure made of fact units (regarded as subgraphs)
as the vertices, and the relations between fact units as undirected edges.

As shown in Figure[2] we regard the defined facr as the results of syntactic processing, rather than
those from semantic role labeling (SRL) as in previous study, thus the proposed fact also extends
the processing means in existing work. Correspondingly, in this work, we propose a fact-driven
logical reasoning model, called FOCAL REASONER, which builds supergraphs on top of fact units
as the basis for logic reasoning, to capture both global connections between facts and the local
concepts or actions inside the fact. Our model FOCAL REASONER is evaluated on two challenging
logic reasoning benchmarks including ReClor, LogiQA, one dialogue reasoning dataset Mutual, for
verifying the effectiveness and the generalizability across different domains and question formats.

2 RELATED WORK

Machine Reading Comprehension Recent years have witnessed massive researches on Machine
Reading Comprehension (MRC) whose goal is training machines to understand human languages,
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which has become one of the most important areas of NLP (Chen et al.l [2016b; [Sachan & Xing]
2016} Seo et al.| [2017; Dhingra et al., 2017} |Cui et al., 2017} [Song et al., 2018} |Hu et al., [2019;
Zhang et al.,[2020a; |Back et al.||2020; |[Zhang et al.||2020b). Despite the success of MRC models on
various datasets such as CNN/Daily Mail (Hermann et al.l 2015)), SQuAD (Rajpurkar et al.}2016),
RACE (Lai et al.,[2017) and so on, researchers began to rethink what extent does the problem been
solved. Nowadays, there are massive researches into the reasoning ability of machines. According to
(Kaushik & Lipton, [2018;Zhou et al.| [2020; |Chen et al.,[2016a)), reasoning abilities can be broadly
categorized into (1) commonsense reasoning (Davis & Marcus|, [2015; Bhagavatula et al., [2019;
Talmor et al.,|2019; |Huang et al., 2019); (2) numerical reasoning (Dua et al., 2019)); (3) multi-hop
reasoning (Yang et al.;|2018)) and (4) logic reasoning (Yu et al.,|2020; [Liu et al.,2020), among which
logic reasoning is essential in human intelligence but has merely been delved into. Natural Language
Inference (NLI) (Bowman et al., | 2015; Williams et al., [2018; Nie et al.l 2020) is a task closely related
to logic reasoning. However, it has two obvious drawbacks in measuring logic reasoning abilities.
One is that it only has three logical types which are entailment, contradiction and neutral. The other
is its limitation on sentence-level reasoning. Hence, it is important to research more comprehensive
and deeper logic reasoning abilities.

logic reasoning in MRC There are two main kinds
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which are obviously not sufficient. In this work, we
strengthen the basis for logic reasoning by unifying
both types of the features as "facts". Different from
previous studies that focus on the knowledge com-
ponents, we propose a fact-driven logic reasoning
framework that builds supergraphs on top of fact units
to capture both global connections between entity-
aware facts and the local concepts or events inside
the fact.

Figure 3: An example of constructed super-
graph. In contrast, the dotted vertices and
edges are focused in most existing studies
(Qiu et al., 2019; Ding et al., |2019; |Chen et al.,
2019b).

3 METHODOLOGY

In this section, we present a fact-driven approach for logic reasoning and the overall architecture of
the model is shown in Figure ] The framework can be divided into three steps as following. We
first extract fact units from raw texts via syntactic processing to construct a supergraph. Then it
performs reasoning over the supergraph along with a logical fact regularization. Finally, it aggregates
the learned representation to decode for the right answer.

3.1 FAcT UNIT EXTRACTION AND SUPERGRAPH CONSTRUCTION

Fact Unit Extraction. Figure[5]illustrates our method for constructing a supergraph from raw text
inputs. The first step is to obtain triplets that constitute a fact unit. To keep the framework generic, we
use a fairly simple fact unit extractor based on the syntactic relations. Given a context consisting of
multiple sentences, we first conduct dependency parsing of each sentence. After that, we extract the
subject, the predicate, and the object tokens to get the "Argument-Predicate-Argument"
triplets corresponding to each sentence in the context.
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Figure 4: The framework or our model. For supergraph reasoning, in each iteration, each node
selectively receives the message from the neighboring nodes to update its representation. The dashed
circle means zero vector.
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extinct when..

Figure 5: The process of constructing the fact chain and its corresponding Levi graph form of an
example in Figure[I] Entities and relations are illustrated in their corresponding color.

Supergraph Construction. With the obtained triplets, the fact units are organized in the form
of Levi graph (Levi, |1942)), which turns arguments and predicates all into nodes. An original fact
unit is in the form of F' = (V, E, R), where V is the set of the arguments, E is the set of edges
connected between arguments, and R is the relations of each edge which are predicates here. The
corresponding Levi graph is denoted as F; = (Vy,, F, Ry) where V;, = V U R, which makes
the originally directly connected arguments be intermediately connected via relations. As for Ry,
previous works such as (Marcheggiani & Titov, 2017} |Beck et al.,[2018a) designed three types of
edges Ry, = {default,reverse, sel f} to enhance information flow. Here in our settings, we extend
it into five types: default-in, default-out, reverse-in, reverse-out, self, corresponding to the directions
of edges towards the predicates. Detailed description for edge types can be found in Appendix

We construct the supergraph by making connections between fact units F;. In particular, we take
three strategies according to global information, identical concept and co-reference information. (1)
We add a node V initialized with the question-option representation and connect it to all the fact
unit nodes. The edge type is set as aggregate for better information interaction. (2) There can be
identical mentions in different sentences, resulting in repeated nodes in fact units. We connect nodes
corresponding to the same non-pronoun arguments by edges with edge type same. (3) We conduct
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co-reference resolution on context using an off-to-shelf modeﬂin order to identify arguments in fact
units that refer to the same one. We add edges with type coref between them. The final supergraph is
denoted as S = (F; UV, E) where E is the set of edges added with the previous three strategies.

3.2 REASONING PROCESS

Graph Reasoning. A natural way to model the supergraph is via Relational Graph Convolution
Networks (Schlichtkrull et al.,[2018). We first feed the contexts, stated as [C'LS|C[SEP]|q||o[SEP],
into a pre-trained model to get the encoded representation. We initialize the nodes with averaged
hidden states of its tokens because our triplets extraction performs in word-level. For edges, we use a
one-hot embedding layer to encode the relations.

Based on the relational graph convolutional network and given the initial representation h{ for every

node v;, the feed-forward or the message-passing process with information control can be written as
41 l HINC .

R = ReLU(Y, cr, 20 en(vn) s )%wﬁ )hg- )), where ;. (v;) denotes the neighbors of node

v; under relation r and ¢; ,- is the number of those nodes. wfnl) is the learnable parameters of layer .

g((ll) is a gated value between 0 and 1.

Through the graph encoder F(.), we then obtain the hidden representations of nodes in fact units
as {ht',..hE} = Fo({vr0,...vL.m}, EL). hf is the node representation inside fact unit. They are

then concatenated as the representation for supernode as hy. {ho, ...hm } = Fo({h3,...h3}, Ec).

For node features on the supergraph, it is fused via the attention and gating mechanisms with the
original representations of the context encoder H“. We apply attention mechanism to append the
supergraph representation to the original one H = Attn(H®, K¢, V}), where { K, V;} are packed
from the learned representations of the supergraph. We compute A € [0, 1] to weigh the expected
importance of supergraph representation of each source word A\; = O’(W)\I:I + UnHY), where
W) and U, are learnable parameters. H¢ and H are then fused for an effective representation
H=HC+\H € R**4,

Interaction. For the application to the concerned QA tasks that require reasoning, options have
their inherent logical relations, which can be leveraged to aid answer prediction. Inspired by Ran
et al.|(2019), we use an attention-based mechanism to gather option correlation information.

Specifically for an option O;, the information it get by interaction with option O; is calculated
as Ogj) = [0f — OfAtn(Of, 0%;v); O} o Of Attn(O], OF; v)], where O is the representation of
the concatenation for the i-th option and question after the context encoder. Then the option-wise
information are gathered to fuse the option correlation information 0; = tanh(W,[Of; {Of ) Yizs] +
b.), where W, € R?*74 and b, € R9.

For answer prediction, We seek to minimize the cross entropy loss by L,,,s = — log so ftmax(W.C+
b.); € R%, where C is the combined representations of O and H.

Logical Fact Regularization. Since the subject, verb, and object in a fact should be closely related
with some explicit relationships, we design logical fact regularization technique to make the logical
facts more of factual correctness. Without loss of generality, we assume that in our settings, the
summation of the subject vector and the relation vector should be close to the object vector as much
as possible, i.e., Vsybject + Vpredicate — Vobject- Specifically, given the hidden states of the sequence
h; where i = 1,..., L and L is the total length of the sequence, The regularization is defined as
Ly, = Z;n:l (1 — cos(hsuby, + hpredy > Robjy, )), Where m is the total number of logical fact triplets
extracted from the context as well as the option and k indicates the k-th fact triplet.

3.3 TRAINING OBJECTIVE

During training, the overall loss for answer prediction is £ = aLyns + BLiyr, where o and 3 are
two parameters. In our implementation, we set « = 1.0 and 5 = 0.5.

'https://github.com/huggingface/neuralcoref,


https://github.com/huggingface/neuralcoref
lenovo
高亮

lenovo
高亮


Under review as a conference paper at ICLR 2022

Table 1: Experimental results of our model compared with baseline models on ReClor and LogiQA
dataset. Test-E and Test-H denote Test-Easy and Test-Hard respectively. The results in bold are the
best performance except for the human performance. * indicates that the results are taken from |Yu
et al.| (2020) and [Liu et al.|(2020). Results with T is taken from [Wang et al.| (2021)).

Model ReClor LogiQA
Dev Test Test-E Test-H Dev Test
Human Performance* - 63.0 57.1 67.2 - 86.0
BERT* 53.8 49.8 72.0 32.3 34.1 31.0
XLNet* 62.0 56.0 75.7 40.5 - -
RoBERTa* 62.6 55.6 75.5 40.0 35.0 353
DeBERTat 74.4 68.9 83.4 57.5 444 41.5
DAGNRoBERT: * 65.8 58.3 75.9 44.5 36.9 39.3
- data augmentation 65.2 58.2 76.1 441 355 38.7
LReasonerrosertat 66.2 62.4 81.4 47.5 38.1 40.6
- data augmentation 65.2 58.3 78.6 42.3 - -
LReasonerpeertat 74.6 71.8 83.4 62.7 45.8 43.3

FOCAL REASONERRopera  66.8(14.2) 58.9(133) 77.1(11.6) 44.6(14.6) 41.0(16.0) 40.3(15.0)
FOCAL REASONERpeserta  78.6(14.2)  733(14.4) 86.4(13.0) 63.0(15.5) 47.3(12.9) 45.8(14.3)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We conducted the experiments on three datasets. Two for specialized logic reasoning ability testing:
ReClor (Yu et al., 2020) and LogiQA (Liu et al., [2020) and one for logic reasoning in dialogues:
MuTual (Cui et al., [2020).

We take RoBERTa-large (Liu et al.l[2019) and DeBERTa-xlarge (He et al., |2020)) as our backbone
models for convenient comparison with previous works. We also compare our model with DAGN
(Huang et al.||2021)), a framework leveraging RoBERTa-large as the backbone and LReasoner (Wang
et al.,[2021)), the previous state-of-the-art model on the leaderboard using DeBERTa-xlarge. For more
details on datasets and baseline models, one can refer to Appendix A.

4.2 IMPLEMENTATION DETAILS

The overall model is end-to-end trained and updated by Adam (Kingma & Ba| [2015)) optimizer with
an overall learning rate 8e-6 for ReClor and LogiQA, and 4e-6 for MuTual. The weight decay is
0.01. We set the warm-up proportion during training to 0.1. Graph encoders are implemented using
DGL, an open-source lib of python. The layer number of the graph encoder is 2 for ReClor and 3
for LogiQA. The maximum sequence length is 256 for LogiQA and MuTual, and 384 for ReClor.
The model is trained for 10 epochs with a total batch size 16 and an overall dropout rate 0.1 on 4
NVIDIA Tesla V100 GPUs, which takes around 2 hours for ReClor and 4 hours for LogiQAP}

4.3 RESULTS

Tables E] and@] show the results on ReClor, LogiQA, and MuTual, respectively. All the best results
are shown in bold. From the results, we have the following observations:

1) Based on our implemented baseline models (basically consistent with public results), we observe
dramatic improvements on both of the logic reasoning benchmarks, e.g., on ReClor test set, FOCAL
REASONER achieves +4.2% on dev set and +3.3% on the test set. FOCAL REASONER also out-
performs the prior best system LReasone reaching 77.05% on the EASY subset, and 44.64% on
the HARD subset. The performance suggests that FOCAL REASONER makes better use of logical

2Our code has been submitted along with this submission, which will be open after the blind review period.
3The test results are from the official leaderboard https://eval.ai/web/challenges/
challenge-page/503/leaderboard/1347.
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Table 2: Experimental results of our model compared with baseline on MuTual dataset. * indicates
that the results are taken from |Cui et al.| (2020). For fair comparison with our method, we also
report the multi-choice method (RoBERTa-MC) in addition to the default Individual scoring method
(RoBERTa).

MuTual
Model Dev Set Test Set
R4@1 R,@2 MRR R,@1 R,@2 MRR
RoBERTa* 69.5 87.8 824 71.3 89.2 83.6
RoBERTa-MC* 69.3 88.7 82.5 68.6 88.7 82.2

FOCAL REASONER  73.4(14.1) 90.3(11.6) 84.9(12.4) 72.7(14.1) 91.0(12.3) 84.6(12.4)

Table 3: Accuracy on the dev set of ReClor corresponding to several representative question types. S:
Strengthen, W: Weaken, I: Implication, CMP: Conclusion/Main Point, ER: Explain or Resolve, D:
Dispute, R: Role, IF: Identify a Flaw, MS: Match Structures. All results are reported on the same
PrLLM RoBERTa.

Model S w I CMP ER P D R IF MS
RoBERTa 61.7 478 39.1 63.9 583 508 50.0 563 615 56.7
DAGN 63.8 460 39.1 69.4 57.1 539 467 625 624  56.7

FOCAL REASONER 723 664  47.8 91.7 762 769 667 688 735 86.7

structure inherent in the given context to perform reasoning than existing methods. More detailed
ablations will be shown in Section[3

2) Table[3|lists the accuracy of our model on the dev set of ReClor of different question types. Results
show that our model can perform well on most of the question types, especially "Strengthen" and
"Weaken". This means that our model can well interpret the question type from the question statement
and make the correct choice corresponding to the question.

3) Our model also achieves comparable performance with the unpublished LReasoner. It employs
symbolic reasoning and data augmentation techniques, which is in a different research line from ours.
Without data argumentation, LReasoner shows relatively poorer results, showing that our fact-driven
approach would be beneficial compared with the symbolic-driven technique. Compared with the
neural methods for logic reasoning, symbolic approaches would rely heavily on dataset-related
predefined patterns which entail massive manual labor, potentially restricting the generalizability of
models.

4) On the dialogue reasoning dataset MuTual, our model achieves quite a jump compared with the
RoBERTa-base LME] This verifies our model’s generalizability on other downstream reasoning task
settings.

5) For the model complexity, our method basically keeps as simple as previous models like DAGN.
Our model only has 414M parameters compared with 355M in the baseline ROBERTa, and 400M in
DAGN which also employs GNN.

5 ANALYSIS

5.1 ABLATION STUDY

To dive into the effectiveness of different components in FOCAL REASONER, we conduct analysis by
taking RoBERTa as the backbone on the ReClor dev set. Tables [5}{6] summarize the results.

*Since there are no official results on ROBERTa-large LM, we use ROBERTa-base LM instead for consistency.
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Table 4: Statistics for fact unit entities and tradi- Table 5: Replacing fact units with named entities

tional named entities in datasets. or semantic roles on the ReClor dev set.
ReClor LogiQA Model Accuracy
Number . ;
Train  Dev  Train Dev FocAL REASONER 66.840.13
Fact Unit Argument 14,895 1,665 20,676 1,981 w/ named entity only 62.8+0.26
Named Entity 9,495 984 12,439 1,515 w/ semantic role only 62.2+0.32

Fact Units Variants Apart from our syntactically constructed fact units, there are two other ways
in different granularities for construction. We replace the fact units with named entities that are used
in previous works like (Chen et al.[(2019a). The statistics of fact units and named entities of ReClor
and LogiQA are stated in Table || from which we can infer that there are indeed more fact units than
named entities. Thus using fact units can better incorporate the logical information within the context.
When replacing all the fact units with named entities, we can see from Table [5]that it significantly
decreases the performance. We also explore the performance using semantic role labeling a similar
way as in|[Zhong et al.|(2020). We can see that SRL, leveraging much more complex information as
well as computation complexity, fails to achieve performance as good as our original fact unit.

Supergraph Reasoning: The first key com-
ponent is supergraph reasoning. We ablate the
global atom and erase all the edges connected  Table 6: Ablation results on the ReClor dev set.
with it. The results suggest that the global atom

indeed betters message propagation, leveraging Model Accuracy
performance from 64.6% to 66.8%. We also FOCAL REASONER 66.840.13
ﬁqd that replacing the initial QA pair represen- Supergraph Reasoning

tation of the global atom with only question - global edge 64.64-0.32
representation hurts the performance. In addi- - co-reference edges 64.840.24
tion, without the logical fact regularization, the - logical fact regularization 64.2+0.12
performance drops from 66.8% to 64.2%, indi- - edge type 63.7+0.19
cating its usefulness. For edgg analysis, when Interactions

(1) all edges are regarded as a single type rather - interactions 65.540.52

than the original designed 8 types in total and (2)
co-reference edges are removed, the accuracy
drops to 63.7% and 64.8%, respectively. It is proved that in our supergraph, edges link the fact units
in reasonable manners, which properly uncovers the logical structures.

Interactions: We further experimented with the query-option-interactions setting to see how it
affects the performance. The results suggest that the features learned from the interaction process
enhance the model. Considering that the logical relations between different options are a strong
indicator of the right answer, this means that the model learns from a comparative reasoning strategy.

5.2 EFFECTS OF FACT UNITS NUMBERS

To inspect the effects of the number of fact units, we split the original dev set of ReClor and LogiQA
into 5 subsets. The statistics of the fact unit distribution on the datasets are shown in Table[Z] The
numbers of fact units for most contexts in ReClor and LogiQA are in [3, 6) and [0, 3), respectively.

Comparing the accuracies of RoOBERTa-large baseline, prior SOTA LReasoner and our proposed
FOCAL REASONER in Figure[6] our model outperforms baseline models on all the divided subsets,
which demonstrates the effectiveness and robustness of our proposed method. Specifically, for ReClor,
FoCcAL REASONER performers better when there are more fact units in the context, while for LogiQA,
FOCAL REASONER works better when the number of fact units locates in [0, 3) and [9, 12). The
reason may lie in the difference in style of the two datasets. However, all the models include ours
struggle when the number of fact units is above certain thresholds, i.e., the logical structure is more
complicated, calling for better mechanisms to cope with.
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Figure 6: Accuracy of models on number of fact units on dev set of ReClor (left) and LogiQA (right).

5.3 INTERPRETABILITY: A CASE STUDY

We aim to interpret FOCAL REASONER’s rea-

soning process by analyzing the node-to-node

attention weights induced in the supergraph in Table 7: Distribution of fact unit number on dev
Figure [7 We can see that our FOCAL REA- set of the training datasets.

SONER can well bridge the reasoning process
between context, question and option. Specifi- Dataset  [0,3) [3,6) [6,9) [9,12) [12,00)

cally, in the graph, "students rank 30%" attends  ReClor 37.2% 48.6% 12.6% 0.6% 12%
strongly to "playing improve performance”. Un- LogiQA 47.5% 37.5% 10.9% 3.5%  0.6%

der the guidance of question to select the option
that weakens the statement and option interac-
tion, our model is able to tell that "students rank 30% can play" mostly undermines the conclusion
that "playing improves performance".

A recent survey in a key middle school showed that high school students in this school a special preference for football,
and it far other balls.The survey also found that students who regularly play football academic performance
than students who often football.This shows that often playing football can students' academic performance.
V' A. Only high school students who are in the top 30% of grades can often football. Which of the following can
B. Regular football can and a strong learning energy. weaken the above conclusion
C. Often playing football the study time. most?
D. Research has proved that playing football can to intellectual development. .
@ 1. students have preferences ! @ | @ D -
2. preference playing football | 1 e S \ | c -
3. it surpasses balls | / |
4. who play football ;| QA -8 | B ---
5. students better performance | / A | A
6. who Iplay football | 2 & | A B c D
7. playing improve performance | 9 | OptioniSimilarty Matix
students rank 30% after Interaction
students play football I 3 6 I
i | I VA 4.1918 C:-12.3718
Fact Units - 1 Bi5.3050  D:-6.9722

Figure 7: An example of how our model reasons to get the final answer.

6 CONCLUSION

For logic reasoning arising from machine reading comprehension, it is well known that clear and
accurate forms like global knowledge are crucial. In this work, we make a finding that existing studies
miss focusing on quite a lot of non-knowledge parts which is also indispensable for better reasoning.
Thus we propose extracting a general form called "fact unit" to cover both global and local logical
units, hoping to shed light on the basis of structural modeling for logic reasoning. Our proposed
FOCAL REASONER not only better uncovers the logical structures within the context, which can be a
general method for other sophisticated reasoning tasks, but also better captures the logical interactions
between context and options. The experimental results verify the effectiveness of our method.
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A LEVI GRAPH CONSTRUCTION

Levi graph transformation turns labeled edges into additional vertices. There are two types of edges
in a traditional Levi graph: default and reverse. For example, an edge (E1, R1, E2) in the original
graph becomes (F1, de fault, R1), (R1,default, E2), (R1,reverse, E1) and (E2, reverse, R1).

However, the type of source and target vertices in the graph also matters (Beck et al., [2018b).
Specifically, previous works use the same type of edge to pass information, which may reduce the
effectiveness. Thus we propose to transform the default edges into default-in and default-out edges,
and the reverse edges into reverse-in and reverse-out edges.

B DETAILS FOR DATASETS AND BASELINE MODELS

In this section, we describe the datasets and baseline models used in the experiments.

B.1 DATASETS

ReClor ReClor contains 6,138 multiple-choice questions modified from standardized tests such as
GMAT and LSAT, which are randomly split into train/dev/test sets with 4,638/500/1,000 samples
respectively. It contains multiple logic reasoning types. The held-out test set is further divided into
EASY and HARD subsets based on the performance of BERT-based model Devlin et al.|(2019).

LogiQA LogiQA consists of 8,678 multiple-choice questions collected from National Civil Servants
Examinations of China and are manually translated into English by experts. The dataset is randomly
split into train/dev/test sets with 7,376/651/651 samples correspondingly. LogiQA also contains
various logic reasoning types.

MuTual MuTual has 8,860 dialogues annotated by linguist experts and high-quality annotators from
Chinese high school English listening comprehension test data. It is randomly split into train/dev/test
sets with 7,088/886/886 samples respectively. There more than 6 types of reasoning abilities reflected
in MuTual. MuTual”'** is an advanced version, where one of the candidate responses is replaced by
a safe response (e.g., "could you repeat that?") for each example.

B.2 BASELINE MODELS

DAGN explores passage-level discourse-aware clues used for solving logical reasoning QA. Specifi-
cally, they leverage discourse relations annotated in Penn Discourse TreeBank 2.0 (PDTB 2.0) (Prasad
et al., 2008) and punctuation as the delimiters to split the context into elementary discourse units
(EDUs). They are further organized into a logical graph and feed into a GNN to get the representation.

LReasoner is a symbolic-driven framework for logical reasoning of text. It firstly identifies the
logical symbols and expressions explicitly for the context and options based on manually designed
rules. Then it performs logical inference over the expressions according to logical equivalence laws
such as contraposition (Russell & Norvig, |2002). Finally, it verbalizes the expressions to match the
answer.

FOCAL REASONER enjoys two major merits. (1) Broader knowledge: Compared with DAGN which
uses sententious knowledge such as logical connectives (e.g., becaus, however), FOCAL REASONER
leverages a broader type of knowledge characterized by "fact unit", including global knowledge
and local knowledge. (2) More transferable: Compared with LReasoner which manually design
rules to extract logical patterns and perform logical reasoning in a symbolic way, Focal Reasoner is
neural-based and manual-free, which is more generalizable to other datasets.

C MODEL COMPLEXITY

In this section, we display the statistics for the parameters of FOCAL REASONER and baseline models
to demonstrate the model complexity and the effectiveness.
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From Table [§ we can see that the increase of
parameters is no more than 15% compared Table 8: Distribution of fact unit number on dev
with the baseline models, and is comparable set of the training datasets.

with strong baseline model DAGN. This
indicates that, our model, being quite effective, RoBERTa DAGN  FOCAL REASONER
is not a result of stacking complicated mod- 355M 395M 409M

ules.

D VARIANCES FOR FOCAL REASONER W.R.T EXPERIMENT RESULTS

In this section, we report the average and variances run on 5 random seeds for FOCAL REASONER
with different pre-trained language models.

Table 9: Experimental results for FOCAL REASONER with average results and variances run no 5
random seeds.

ReClor LogiQA
Dev Test Test-E Test-H Dev Test

FOCAL REASONERRoBerTa 606.8+0.13 58.84+0.14 76.9+0.16 44.5+0.12 41.0+0.11 40.3£0.15
FOCAL REASONERpegerta  78.6+0.18  73.24+0.17 86.2+0.21 62.9£0.13 47.3+0.16 45.8£0.17

Model

E FURTHER INTERPRETATION

We change the example in Figure[7]a bit. Specifically, we change the conclusion from "playing
football can improve students’ academic performance" to "football players are held to higher academic
standards than non-athletes". We can observe that our model can select the relatively correct answer,
which indicates that FOCAL REASONER has some logical reasoning ability, instead of simple text
matching and mining ability.

A recent survey in a key middle school showed that high school students in this school a special preference for football,
and it far other balls.The survey also found that students who regularly play football academic performance

than students who often football. Therefore, football players are academic standards than non-athletes.

A. Only high school students who are in the top 30% of grades can often football.
B. Regular football can and a strong learning energy.
C. Often playing football the study time.

v/ D. Research has proved that playing football can to intellectual development.

@ @

Which of the following can
the above conclusion
most?

students have preferences
preference playing football
it surpasses balls

1.

2.

&

4. who play football QA
5.

6.

7.

|
|
|
| — =
students better performance | 4 8
who Iplay football | 2 7
players higher standards |
play !contribute development |
|
|
|

3 6

0 1

Fact Units

Figure 8: An example of how our model reasons to get the final answer on the modified example.
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