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Abstract

Diffusion-based robotic policies trained with imitation learning have achieved
remarkable results in complex manipulation tasks. However, such policies are con-
strained by the quality and coverage of their training data, limiting their adaptation
to new environments. Existing approaches to address this obstacle typically rely on
fine-tuning the diffusion model, which can be unstable and require costly human
demonstrations. We instead study the online adaptation of pretrained diffusion
policies without parameter updates. We introduce Value-Guided Denoising (VGD),
a simple method that steers a frozen diffusion policy using gradients from a learned
value function. At inference, VGD guides diffusion denoising steps toward actions
with higher Q-values. This enables adaptation with only black-box access to the
pretrained policy. On Robomimic benchmarks, our method achieves substantially
higher success rates than existing RL-with-diffusion approaches. These results
demonstrate that diffusion policies can be steered efficiently at deployment, yield-
ing strong performance gains with minimal data and computation. Code is available
at https://github.com/DozenDucc/VGD.

1 Introduction

Large-scale pretraining has produced highly capable foundation models in vision and language
[1L 2L 13]]. Inspired by this success, robot learning has achieved impressive results with imitation
learning, where expert demonstrations train policies via supervised behavior cloning (BC). Diffusion
models in particular have emerged as a strong parameterization for BC policies, achieving state-of-
the-art results in manipulation [4} 5, 16]. Due to their scalability and simplicity, such methods form
the emerging paradigm for robot learning.

However, imitation learning is inherently limited by its data. Policy performance depends on the
quality, coverage, and diversity of data [7]]. At test time, small imprecisions in control can accumulate,
eventually leading the policy to states far from those in demonstrations. This leads to degraded
behavior, such as misaligned grasps or mistimed gripper closure [8]]. Consequently, BC-learned
policies can struggle to achieve satisfactory performance, especially in novel environments and under
nuisance shifts such as changes in lighting or camera pose [9} [10].

How can we improve the proficiency of diffusion-based BC policies? A natural solution is fine-
tuning on additional data. However, collecting quality demonstrations requires expensive and time-
consuming procedures like human teleoperation [[11]. Recent work has used reinforcement learning
(RL) to fine-tune policies using autonomous interactions between the agent and the environment
(1201311144 1501164 [17]. But these approaches are often too sample-inefficient or unstable for practical
use [[L7,[15]. These limitations motivate a different question: can we adapt diffusion policies without
updating their parameters, and simply steer them towards better actions at inference?

This prompts us to examine the diffusion sampling process. Our insight is that each denoising step in

the diffusion process is a weighted sum of the predicted denoised target aAc(()T) and the predicted noise
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Figure 1: Illustration of our approach, Value-Guided Denoising (VGD). In a standard application
of a diffusion-based BC policy, we sample an initial noise latent 7, then successively denoise it
through the DDIM sampling process. At each denoising step ¢, the standard DDIM decoding maps
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target (given by Equation|l)) and €, ’ is the predicted noise. To steer the output of the diffusion model

towards more desirable actions, we shift the predicted target af:((f) along the gradient of a RL-learnt

critic to :E/O(T), which we use as the new denoising target to calculate the next latent /. _,. We repeat

this procedure throughout the denoising process, steering the pretrained diffusion model onto more
desirable actions without altering its weights.

eét) [L8]]. We observe that ﬁ:(()T) can be nudged toward higher-value actions using gradients from a

learned critic, while leaving eét) unchanged. Details can be found in Section This procedure enables

policy steering at inference time, using only black-box access to the pretrained model. Crucially, it
also avoids unstable backpropagation through the full diffusion chain and sidesteps the challenges
of fine-tuning large, complex architectures [[12,[19},120]]. Instead, we only train a lightweight critic
on state-action pairs — a standard RL task. Figure 1 illustrates this process.

We formalize this steering process as Value-Guided Denoising (VGD). Compared to prior RL-with-
diffusion methods, we show that VGD leverages the structure of diffusion models to steer actions with
greater sample-efficiency. On Robomimic benchmarks [21], VGD substantially improves success
rates over state-of-the-art baselines.

2 Related Works

Behavior cloning and Diffusion models.  Diffusion-based behavioral cloning has emerged as
a strong class of policies for robotic control. Diffusion Policy demonstrated visuomotor policy
learning via conditional action denoising [S]. Extensions have incorporated 3D representations
[22], goal-masking for exploration [23]], and transformer-based backbones [24]]. Methods such as
JUICER enable efficient long-horizon assembly from few demonstrations [25]], while DP3 attains
strong generalization across real-world tasks [22]]. Diffusion-based policies have also been scaled
to multi-task and generalist settings, including Octo [26], 7 [27] and GrOOt N1 [28]]. These works
establish diffusion models as a scalable and expressive policy class, but do not address adaptation
after pretraining.

Guided diffusion. Beyond robotics, a large body of prior work has aimed at modifying diffusion
models to produce more desirable outputs, such as images that better match language prompts.
Two notable methods are classifier and classifier-free guidance [29, [30], which inject gradients or



conditional predictions into the denoising process to bias samples toward higher-probability or more
semantically aligned regions. The success of these two methods in image generation—steering the
generation process via auxiliary objectives—motivates our method of applying value-based gradients
during action denoising. Later work include Q-score matching [15], energy-weighted diffusion
[31) 132]], and diffusion-based variational optimization [33] embed critic signals into denoising
objectives. Other approaches use rejection sampling [34} [13]], score regularization [35]], or advantage-
weighted classifiers [36] to bias samples toward higher-value actions [37, 38} [39]. In contrast, our
method applies critic gradients directly to denoising targets at inference, enabling fine-grained,
step-wise policy steering without retraining.

RL-based adaptation of diffusion policies. Prior work improves diffusion policies with RL in
three broad ways. Firstly, by updating the policy weights. DPPO fine-tunes with PPO-style gradients
[12]; DIPO treats the diffusion model as the actor and optimizes it with RL losses [40]; QSM aligns
the denoiser’s score with A, @ [15]. As we demonstrate empirically, altering diffusion weights lead
to greater instability and is less sample-efficient compared to our method. The second category of
methods keep weights fixed and use RL to effectively sharpen the distribution of actions produced
by the pretrained diffusion policy. DSRL applies RL to the initial latent noise space to induce better
actions [41]], while IDQL [13]] and V-GPS [42] use a critic to reweight or rerank sampled candidates.
However, because these methods do not modify the denoising process, the action outputs from these
methods are constrained by the output distribution and the expressivity of the diffusion policy, as
noted by [41] as well. Lastly, works like Policy Decorator [8] and RESIP [43]] learn a residual RL
policy, so that the final action taken is the sum of the diffusion policy’s output and the residual
policy’s output. Compared to VGD, this category of methods helps increase motor precision (such
as improving gripper alignment), but may struggle to induce larger mode shifts in the action output
(such as steering the diffusion policy to grasp with the left arm instead of the right arm).

3 Preliminaries

Markov Decision Process (MDP) We consider an MDP M = (S, A, P,r,v). At time ¢, the
agent observes s; € S (i.e. environment and proprioceptive states), takes action a; € A, receives
reward r; = r(s¢, a;), and transitions to the next state s;11 ~ P(- | s¢, a;). For a given policy T,
the Q-function Q™ (s, a) represents the y-discounted return of policy 7 from taking action a after
observing state s. That is,

o
Q" (s,a) :=FE. |> 'ri|so=sa=a
=0

In our VGD algorithm, this state-action critic is the only network we train; all other components of
the diffusion policy remain frozen.

Diffusion policies Diffusion policies treat action generation as conditional denoising [5]. Instead
of predicting an action chunk x directly, the policy learns to invert a forward noising process
that gradually corrupts xo into Gaussian noise. Concretely, given & and a decreasing sequence
{a;}T_, € (0,1]7, the forward process produces noisy latents ., via

a(@, | zo) = N(yar o, (1 - a,)D).

A neural network eéﬂ (z., s), conditioned on the current observation s, learns to predict the noise

injected at step 7, forming the generative process. At inference, we start by sampling 7 ~ A(0, 1)
and iteratively denoise it using this network until we obtain an action chunk x to execute.

While both DDPM [44] and DDIM [18]] samplers are compatible with our method, we focus on
DDIM - a popular sampling algorithm that enables faster inference with fewer decoding steps. With
DDIM, we update from x to ,_; via
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We set o, = 0 so that the decoding process is deterministic given the initial noise 7. Here, the first

term can be viewed as an estimate of the clean action output x( [18]]. We denote this term as :i:((f).
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Thus, each update is a linear combination of & ’ and the noise prediction €, ' (x,).

As the diffusion proceeds and 7 — 0, .- —1 tends to 1 so that x converges to ﬁ:éT). Thus, we can

interpret :i:((f) as an evolving “denoising target" toward which the latent trajectory drifts. We are

motivated to utilize the denoising targets :E(()T) for steering because they lie closer to the distribution
of action outputs than the intermediate latents :cTE] This makes it a natural interface for steering with
a learned value function, as we describe next, eliminating the need for backpropagation through the

diffusion policy in previous methods.

4 Value-Guided Denoising

The VGD algorithm comprises two parts: the diffusion procedure, and the training process. We begin
by describing diffusion with VGD.

4.1 Diffusion with VGD

At each denoising step 7, the denoising target

() Tr—+1—a; eéT)(mT,s)
Ty = N
provides an increasingly accurate proxy for the final action that will be produced by the diffusion
process. Our goal is to steer this process so that the final action is biased toward higher-value
outcomes. Given a pretrained diffusion model, let ’ﬂ'ZGD denote the policy obtained by applying
VGD steering onto this model using critic (). To sample from wZGD (s)

noisy latent z7 ~ A(0, 1). Then, at each step 7, we treat aEéT) as an action candidate, shift it in the

direction of increasing ()-value, then use this new denoising target to update .

(@)

, we begin by sampling a

Specifically, given x., at step 7, we first compute the denoising target a?;(()T) using Equation then
derive the new denoising target as

a0 = a0 + A VaQu(s,a)| .
a:mo

Here, A > 0 is a guidance strength, which we anneal over the start of training to stabilize learning
(see Appendix [B] for details). In practice, we parametrize this Q-value critic as an MLP, and use
Pytorch’s automatic differentiation to compute the gradient above. Then, we simply substitute this
new target into Equation [I]to obtain the next latent:

x| =1 53/0(7) ++/1—a, 1 ~e§T)(a:T). 3)

We repeat this procedure, using @/ _; as the starting latent ., _; for the next denoising step, until we
obtain the final action output oy = a. This describes how we sample a ~ 7T¢YGD (s). Algorithm
provides a summary. As detailed in Appendix [B] we also experiment with disabling VGD for the
initial denoising steps to improve performance, as the initial denoising targets :iéT) are far away from
the target action distribution for large 7.

'The intermediate latents lie between the standard Gaussian and the distribution of desired action outputs, so
they cannot be evaluated by a state-action critic effectively. For more analysis on the differences between the
two terms in the realm of image generation, see Section 4 in [44].



Crucially, no gradients flow through the pretrained diffusion policy €g; we only backpropagate
through the critic. This differs from previous policy fine-tuning methods [[12, [19, 20]. We steer

directly in action space via :%E)T), which stabilizes guidance and improves sample efficiency.

4.2 Critic

Algorithm 1 Online Critic Training with Value-Guided Denoising

1: input: frozen diffusion policy el
2: Initialize critic @y, replay buffer 5.
3: for each environment step do

4 Sample a ~ WXGD(S) > Sample action according to Value-Guided Denoising
5 Execute action a; observe (r, '), and add (s, a,r,s") to B

6 for u = 1 to updates_per_step do

T Sample {(Sia A, T, S{L)}zB;l ~B

8: for i = 1 to batch_size do

9 Sample a] ~ 7P (s})
10 yi <1 +vQy(s], al) > Form Q-learning targets
11 end for

1 & 2

12: Update ¢ to minimize Ly = B ; (Q¢(si, a;) — yl)
13: end for
14: end for

VGD only requires a critic Q4(s, a). We train this function online with off-policy TD learning.
Transitions (s, a,r, s') enter a replay buffer. After every interaction, we update the critic for a fixed
number of gradient steps. Each update samples a minibatch of transitions from the buffer. For each
transition, we resample a new action from W;GD (s) to obtain a candidate action a’. This ensures that

the target matches the policy used to act.

Finally, we update the critic parameters ¢ by minimizing the squared Bellman error over the batch.
Importantly, the pretrained diffusion policy itself is never updated. The only learning occurs in the
critic, whose gradients are later used for steering the denoising process. See Algorithm [I] for the
pseudocode summary of this procedure. This setup allows us to benefit from reinforcement signals
without disturbing the diffusion policy’s prior.

In summary, we learn a state—action critic (s, @) from replay using standard TD targets. At action
time, we treat the frozen diffusion policy as a prior and perform a locally greedy improvement at each
denoising step.

S Experiments

We evaluate the ability of Value-Guided Denoising (VGD) to improve pretrained diffusion policies
using online interaction. Experiments are conducted on ROBOMIMIC [21] manipulation benchmarks,
following the diffusion-policy evaluation protocol in prior work. For Robomimic Square and
Transport, we use the diffusion policy checkpoints from Ren et al. [[12] as our pretrained model.
For Can and Square, we use the diffusion policies from Wagenmaker et al. [41]. In all cases, we
freeze the diffusion policy and apply Algorithm I]to train a critic online. We also anneal the VGD
strength coefficient A\ over the initial stage of each run to stabilize learning. Details can be found in
Appendix Each experiment is averaged over 4 seeds, and error bands show the 95% confidence
interval.

We compare against several state-of-the-art methods that combine diffusion policies with reinforce-
ment learning. The first group of these methods directly adapt a pre-trained diffusion policy. DPPO

*This approximates solving arg max, Q4 (s, @) in the neighborhood defined by the diffusion decoder, rather
than taking a global argmax. It is therefore not Q-learning nor direct policy optimization in the classic sense: it
has no explicit argmax and no actor updates. We experimented with applying Soft-Actor-Ceritic to steer denoising
targets in lieu of gradient ascent on (), but this did not yield significant improvements.
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Figure 2: On RoBOMIMIC [21] benchmarks, VGD achieves sample-efficient adaptation of diffusion-
based policies using online data.

[12] fine-tunes with a PPO-style objective to perform policy-gradient updates to the diffusion model’s
weights. Additionally, IDQL [13]] and IQL [14] add a Q-learning term to the fine-tuning of the
diffusion model. The second group of methods learn from scratch with a diffusion policy. DIPO
[17] treats the diffusion model as the policy class and optimizes it online via standard RL gradients,
whereas QSM [[15] seeks to align the diffusion score with the action-value gradient.

Figure 2] summarizes results. VGD (black) consistently matches or outperforms prior methods across
all tasks. In each task, VGD substantially improves upon the pretrained policy, achieving near-perfect
success rates on Can, Lift and Square. On Transport, the most challenging task involves two
robotic arms, VGD delivers the largest relative gains. This highlights how VGD applies corrections
without destabilizing the pretrained model. In addition, VGD adapts the pretrained policy with less
online data than existing methods on a majority of tasks, highlighting its sample-efficiency.

6 Discussion and Limitations

We introduce Value-Guided Denoising (VGD), a method that steers frozen diffusion policies using
reinforcement-learned value gradients. VGD provides a practical solution to the performance gaps of
BC-trained policies. This makes it a promising tool for model deployment and sim-to-real transfer
[45], even when the underlying model weights are not available. VGD applies broadly to any policy
with a diffusion action head. This includes generalist vision-language-action (VLA) models that
condition on language, such as Nvidia’s GROOT N1 [28]]. Another natural extension is to pretrain the
critic with offline RL, providing a stronger initialization before online adaptation.

Despite its lightweight training requirements, VGD introduces higher inference costs: each environ-
ment step requires differentiating the critic at multiple denoising steps. One solution is to use VGD
to generate additional demonstrations, and then fine-tune the diffusion model on these data to remove
the critic from the loop. Concurrent work has done exactly this (using similar RL methods) to achieve
SOTA performance[46]]. Another limitation is that fixed-size gradient updates may be suboptimal



for tasks requiring very fine-grained control. Future work could address this by learning an actor to
adaptively adjust denoising targets :&éT). Finally, the scope of our empirical experiments was narrow.
A broader empirical evaluation, such as ones including high-dimension image inputs and real-world
tasks, would further demonstrate the broader applicability of our method. We expect to address these

limitations in upcoming work.

In summary, VGD highlights how reward signals can be leveraged to guide pretrained diffusion
policies efficiently at deployment. We hope this perspective motivates further exploration of inference-
time steering as a complement to traditional fine-tuning in robot learning.
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A VGD algorithm

Algorithm 2 Value-Guided Denoising

Require: state s; pretrained e(eT) (-, 8); critic Q) 4; guidance strength A > 0
: Sample initial latent 7 ~ N(0,I)
cforr=T,T—-1,...,1do

:)Z"E)T) — (2, —VI—ar e((,T)(wT, s))/var > predicted x

gr < VaQou(s,a) ‘aﬂi“) > autodiff; no gradients through €4
-0

: Trq — JOr_1 :f:g(T) +VI—a,_; eéT)(mT, s)
: end for

1

2

3

4

si &7 2+ 2g,
6

7

8: return a < x

B Experimental details

Code is available at https://anonymous.4open.science/r/VGD,

We evaluate VGD on four ROBOMIMIC: Can, Lift, Square, and Transport using frozen diffusion policies and
training only a state—action critic online. Data for the methods we compare to (eg. DPPO, DIPO) are taken from
[41]. Otherwise, VGD experiments were run on a Nvidia Geforce RTX 5090 GPU, with each run taking ~ 12
hours. Environments are vectorized. Observations are low-dimensional, comprised of proprioceptive and object
states. The frozen diffusion policy conditions on each observation step, and executes actions in chunks (see
Table [T for sizes).

Base policies. For each task we load a pretrained diffusion checkpoint and keep all policy weights frozen.
For Robomimic Square and Transport, we use the diffusion policy checkpoints from Ren et al. [12] as
our pretrained model. For the more challenging tasks Can and Square, we use the diffusion policies from
Wagenmaker et al. [41], which fine-tune upon the Ren et al. policies to provide stronger initial learning signals
for our RL experiments. Decoding uses DDIM with a fixed number of denoising steps depending on task (see
Table[T). Additionally, to stabilize learning, we clip each component of predicted clean actions to 1.0.

VGD decoding. At each denoising step we form the DDIM predicted clean action aEE)T), nudge it along the

critic gradient by a step-dependent coefficient A, and substitute the modified target back into the update. We are
motivated to set A = 0 for the initial few denoising steps, when ﬁ:g) is still noisy and contain little information
about the eventual output of the diffusion process. Empirically, for ROBOMIMIC tasks with 8 to 10 DDIM steps,
we find that setting A = 0 for the first 5 and 7 steps respectively reduces compute without changing performance.
Thus, we use this setting for the experiments. Additionally, we anneal A\ during the very start of training to
stabilize learning. In particular, we increase A from O to its full value over a set number of warmup steps (see
Table[I). Note that they are insignificant in proportion to the total number of environment steps. However, later
experimentation revealed that they have no impact on performance.
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Critic and RL loop. We train only the critic (double-Q with n_critics=2, min backup) via off-policy
TD with Polyak averaging (7 = 0.005) to a target critic. This is implemented via the algorithms provided in
STABLE BASELINES 3 [47]. Before training begins, we first run the frozen diffusion policy for a set number of
steps to initialize the replay buffer with rollouts. In all cases, we use a sparse 0/1 reward: a positive reward is
given only at steps where the robot completes the given task. Parts of this training code are adapted from [41]].

Task Action chunk size UTD o A warmup (updates) DDIM steps initial rollout
Can 4 20 0.99 0.01 0 8 1,501
Lift 4 30 0.99 0.005 50,000 8 1,501
Square 4 20 0.999 0.005 80,000 8 2,001
Transport 8 20 0.99 0.0008 100,000 10 20,001

Table 1: Per-task hyperparameters for ROBOMIMIC tasks.

Hyperparameter Value

Optimizer Adam

Learning rate 3x 1074

Number of environments 4

Batch size 512 or 1024 (per task)

Replay buffer size 10,000,000 transitions

Critic MLP 3 layers X 2048 units, Tanh activations
Target network smoothing 7 0.005

Q critics 2

Table 2: Shared training hyperparameters used across VGD experiments.
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