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Abstract
Integrating task-relevant information into neural
representations is a fundamental ability of both
biological and artificial intelligence systems. Re-
cent theories have categorized learning into two
regimes: the rich regime, where neural networks
actively learn task-relevant features, and the lazy
regime, where networks behave like random fea-
ture models. Yet this simple lazy–rich dichotomy
overlooks a diverse underlying taxonomy of fea-
ture learning, shaped by differences in learning
algorithms, network architectures, and data prop-
erties. To address this gap, we introduce an anal-
ysis framework to study feature learning via the
geometry of neural representations. Rather than
inspecting individual learned features, we char-
acterize how task-relevant representational mani-
folds evolve throughout the learning process. We
show, in both theoretical and empirical settings,
that as networks learn features, task-relevant man-
ifolds untangle, with changes in manifold geom-
etry revealing distinct learning stages and strate-
gies beyond the lazy–rich dichotomy. This frame-
work provides novel insights into feature learning
across neuroscience and machine learning, shed-
ding light on structural inductive biases in neural
circuits and the mechanisms underlying out-of-
distribution generalization.

1. Introduction
Learning induces changes in brain activity, whether it in-
volves navigating a new city, adapting novel motor skills, or
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Figure 1. Schematic illustration. a, We propose to investigate fea-
ture learning using representational geometry and task-relevant
manifolds. b, Feature learning (i.e., rich regime) can be viewed as
a process of untangling task-relevant manifolds—structuring the
neural activity space to improve separation among manifolds.

acquiring new cognitive tasks. These changes are reflected
in the incorporation of task-relevant features into neural rep-
resentations (Olshausen & Field, 1996; Poort et al., 2015;
Niv, 2019; Reinert et al., 2021; Gurnani & Gajic, 2023).
Similarly, the remarkable success of deep learning is of-
ten attributed to the ability of neural networks to learn
problem-specific features1. For example, in deep neural
networks (DNNs) (LeCun et al., 1998; Krizhevsky et al.,
2012), the ability to learn rich feature hierarchies enables
superior image classification performance (Girshick et al.,
2014). Meanwhile, the seminal work of (Chizat et al., 2019)
demonstrated that neural networks can perform well even
when there are negligible changes in the weights of the net-
works. These observations raise important questions: Do
neural networks always need to learn task-relevant features?
How can we evaluate the quality of the features they learn?

1In this paper, features broadly refer to measurable properties
or characteristics of patterns in data/input.
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To answer these questions, researchers in representation
learning have developed several methods to determine
whether a neural network operates in the lazy regime (learn-
ing without changing internal features) or the rich regime
(learning task-relevant features)2. These methods include
measuring changes in the weights of the network, tracking
activated neurons, and assessing differences in the linearized
model (also known as the neural tangent kernel, NTK (Jacot
et al., 2018)). Factors such as initial weight norm, learning
rate, and readout weight have been found to play a role
in whether a network is lazy or rich (Chizat et al., 2019).
Moreover, recent theoretical evidence has suggested that
networks could perform better in the rich regime compared
to the lazy regime (Yang & Hu, 2021; Shi et al., 2022; Karp
et al., 2021; Damian et al., 2022; Ba et al., 2022).

However, feature learning is much richer than the lazy ver-
sus rich dichotomy. For example, changes in representations
are not always beneficial as they can lead to issues such as
catastrophic forgetting (Kirkpatrick et al., 2017). More-
over, different network architectures, training procedures,
objective functions, and initializations can result in different
inductive biases for feature learning (Chizat et al., 2019;
Bordelon & Pehlevan, 2022; Ba et al., 2022; Damian et al.,
2022), yet all of these scenarios could fall under the broad
category of rich learning. Lastly, limitations in neuroscience
technology for tracking synaptic weight changes in neural
circuits necessitate a framework based on neural activities
rather than network weights or neural tangent kernel.

1.1. Contributions

We go beyond the lazy-versus-rich dichotomy and address
the above-mentioned gaps by investigating feature learning
though the geometric properties of task-relevant manifolds.
Here, task-relevant manifolds refer to the point clouds of
neural activity patterns that are related to the tasks. In clas-
sification, for instance, a manifold could be the point cloud
of neural activations corresponding to a stimulus category
(e.g., the cat and dog manifolds in Figure 1a, left). In other
domains, a manifold could correspond to a context (e.g.,
environmental cues) in a neuroscience experiment or to a
concept (e.g., semantic categories) in a language model.

Instead of explicitly identifying which features a network
learns, we ask: what changes occur in task-relevant mani-
folds as a network undergoes feature learning?

When a neural network learns useful features from
data for solving some task(s), task-relevant mani-
folds become better organized and more separable.

2These two regimes are also known as kernel regime and feature
learning regime .

From this perspective, feature learning can be viewed as
a process of untangling tangled manifolds at initialization
(i.e., random features) to facilitate easy separation.

To make this intuition concrete and quantitative, we use
manifold capacity3 (Chung et al., 2018; Chou et al., 2025)
(Definition 2.1 and Definition B.3), to quantify the degree
of richness in feature learning (Figure 2b). Additionally,
we use geometric measures that are analytically connected
to manifold capacity as mechanistic descriptors to explain
how task-relevant manifolds untangle. To demonstrate our
proposed method, we systematically study a wide range of
settings, from theoretical models to machine learning and
neuroscience problems. Our contributions include:

• (Section 3) We use manifold capacity as a
representation-based method to quantify the degree of
feature learning and demonstrate that it is better than
conventional measures across a wide range of settings.

• (Section 4) Manifold geometry reveals previously un-
reported subtypes of feature learning. We find that the
training of neural networks undergoes various learning
stages as shown by the dynamics of manifold geometry,
and there are emergent learning strategies as networks
having different degree of richness in learning.

• (Section 5) We find new geometric insights that have
not been reported in problems from neuroscience (e.g.,
structural inductive biases in neural circuits) and ma-
chine learning (e.g., out-of-distribution generalization).

1.2. Related work

Feature learning has been a fundamental research problem
in various domains, including neuroscience and machine
learning. In neuroscience, understanding the relationship
between neural representations and task performance is a
central focus (Gao & Ganguli, 2015). Representational ge-
ometry (Chung & Abbott, 2021) has emerged as a promising
approach to investigate how different organizations of fea-
tures can lead to better task performance (Bernardi et al.,
2020; Flesch et al., 2022; Gurnani & Gajic, 2023). Several
studies have explored methods for inferring the underlying
learning rules of a neural network using representational
geometry (Cao et al., 2020; Sorscher et al., 2022) and low-
order statistics (Nayebi et al., 2020). In machine learning,
visualization techniques (Zeiler & Fergus, 2014) have been
widely used to gain intuitive insights into learned represen-

3Manifold untangling originates from neuroscience (DiCarlo &
Cox, 2007) and refers to the intuition that task-relevant manifolds
become increasingly separable in a high-dimensional state space.
While there have been methods (Yamins & DiCarlo, 2016; Hong
et al., 2016) using worst-case decoding accuracy to quantify the
degree of manifold untangling, manifold capacity is an average-
case method that is known to be better in capturing complex shapes
of manifolds. See Section 2.2 and Appendix B for more details.
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Figure 2. Our methods. a, We adopt the method from (Chizat et al., 2019) which interpolates lazy (in blue) and rich (in red) learning via
adjusting a scale factor of learning rate (see Section 2.1). b, We propose to use changes of capacity across training to study task-relevant
richness/laziness in feature learning (Section 3). c, Effective geometric measures are analytically connected to the capacity value (Chou
et al., 2025), providing mechanistic descriptors to study representational changes in feature learning. d, Our three main contributions.

tations. On the theoretical front, the kernel method (Jacot
et al., 2018; Lee et al., 2019) has been a leading approach
to analytically characterize the behavior of neural networks,
particularly in terms of their deviation from the correspond-
ing kernel. This line of research includes studies on the
distinction between lazy and rich regimes (Chizat et al.,
2019; Geiger et al., 2020) and identifying problem settings
where neural networks with feature learning outperform
kernel methods (Ba et al., 2022; Dandi et al., 2023; Yang &
Hu, 2021). See Appendix A for more on related work.

2. Method and Setup
2.1. Rich and lazy training in neural networks

We studied rich versus lazy learning in two standard set-
tings: 2-layer non-linear neural networks on synthetic data
and feedforward deep neural networks on real image clas-
sification datasets (Chizat et al., 2019). All analyses were
performed on the test data representations in the last layer.

Interpolating between rich and lazy regime. In all ex-
periments, we use the inverse scale factor η̄ as a tunable
ground truth for the degree of feature learning. In particu-
lar, η̄ controls the magnitude of the output of the network,
as in (Chizat et al., 2019). Intuitively, a larger η̄ leads to

higher learning rate of intermediate layers compared to that
of the readout weights, resulting in a richer learning process
(Figure 2a). See Appendix D and Appendix E for details.

Neural networks. For 2-layer networks, we considered
synthetic data models with random point clouds as input
manifolds. This setting serves as a testbed for testing the
proposed method and building intuitions. See Appendix D
for details. For feedforward DNNs, as the goal of this work
is to understand neural representations rather than push-
ing benchmarks, we focused on models and settings that
are large enough to see interesting phenomena. Specif-
ically, we considered VGG-11 (Simonyan & Zisserman,
2015) and ResNet-18 (He et al., 2016) and datasets CIFAR-
10 (Krizhevsky & Hinton, 2009), CIFAR-100 (Krizhevsky &
Hinton, 2009), CIFAR-10C (Hendrycks & Dietterich, 2018).
See Appendix E for details. In all reported experimental
results, we trained 5 models initialized with different seed.

Task-relevant manifolds. Let P be the number of classes
and N be the number of neurons (in the layer of interest,
e.g., the last layer). The i-th class manifold is modeled as
the convex set (as in linear classification, it is mathemat-
ically equivalent to study the convex hull of a manifold)
Mi = conv({Φ(x) : x ∈ Xi}) where Xi is the collection
of inputs in the i-th class, Φ(x) is the representation for x,
and conv(·) denotes the convex hull.
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2.2. Manifold capacity theory

Manifold capacity theory (Chung et al., 2018; Chou et al.,
2025) extends the classic notion of storage capacity of
points (Cover, 1965; Gardner & Derrida, 1988; Gardner,
1988) to object manifolds for study the untangling hypothe-
sis4 of invariant object recognition in vision neuroscience
(DiCarlo & Cox, 2007). Manifold capacity quantifies mani-
fold packability in terms of linear classification, making it a
useful metric for assessing the degree of untangling.

Definition 2.1 (Simulated manifold capacity (Chou et al.,
2025)). Let P,N ∈ N andMi ⊆ RN be convex sets for
each i ∈ [P ] = {1, . . . , P}. For each n ∈ [N ], define

pn := Pr
y,Πn

[∃θ ∈ Rn : yi⟨θ, s⟩ ≥ 0, ∀i ∈ [P ], s ∈Mi)]

where y is a dichotomy vector randomly sampled6 from
Y ⊂ {±1}P and Πn is a random projection from RN to Rn.
Suppose pN = 1 (which means that the input manifolds
are linearly separable in RN ), the simulated capacity of
{Mi}i∈[P ] is defined as

αsim :=
P∑

n(1− pn)
.

Figure 3. The area above the curve of linearly separable probability
is the critical dimensionN∗ :=

∑
n(1−pn) ≈ minn : pn≥0.5{n},

which appears in the denominator of the definition for αsim.

Intuitively, the simulated manifold capacity measures the
packability (Chung et al., 2018) of manifolds by determin-
ing the smallest dimensional subspace needed to ensure that
the manifolds can be separated. Namely, manifolds that are
more packable (i.e., separable when projected to smaller
dimensional subspaces) exhibit higher manifold capacity.
While Definition 2.1 can be numerically simulated (Algo-
rithm 1), a recent theory, Geometry Linked to Untangling
Efficiency (GLUE) (Chou et al., 2025) further derived an an-
alytical formula through techniques from statistical physics

4The “untangling hypothesis” posits that the brain transforms
complex, entangled sensory inputs into more linearly separable
representations, facilitating efficient object recognition.

6Typically we pick Y to be the collection of all 1-versus-rest
dichotomies.

6See Figure 4 for how NTK-label alignment and representation-
label alignment could fail at quantifying task-relevant features.

and convex geometry (Definition B.3):

α−1
M =

1

P
E

y∼Y
t∼N (0,IN )

[
max
si∈Mi

{
∥projcone({yisi})t∥

2
2

}]
(1)

whereN (·, ·) denotes the multivariate Gaussian distribution
and cone(·) is the convex cone spanned by the vectors,
i.e., cone({yisi}) = {

∑
i λiyisi : λi ≥ 0}. Specifically,

|αsim−αM| = O(1/N) and αM can be computed by solving
quadratic programs (Algorithm 2).

2.3. Effective geometric measures

Equation 1 connects manifold capacity to the structure
of the manifolds {Mi}. Concretely, for each y, t,
define{si(y, t)} = yi · argmax{si} ∥projcone({yisi})t∥

2
2 as

the anchor points with respect to y and t. Intuitively, these
anchor points are the support vectors with respect to some
random projection t and dichotomy y. Namely, the random-
ness induces a distribution of anchor points supported on the
manifolds {Mi}; manifold capacity then emerges naturally
as a summary statistic derived from this distribution. This
connection between manifold capacity and anchor points
motivated previous work (Chung et al., 2018; Chou et al.,
2025) to define the following effective manifold geometric
measures that capture the structure of manifolds while being
analytically connected to capacity (see Figure 2c and Ap-
pendix B).
Definition 2.2 (Effective manifold geometric mea-
sures (Chung et al., 2018; Chou et al., 2025), informal).
For each i ∈ [P ], define s0i := Ey,t[si(y, t)] as the center
of the i-th manifold and define s1i (y, t) := si(y, t)− s0i to
be the axis part of si(y, t) for each pair of (y, t).

• Manifold dimension captures the degree of freedom of
the noises/variations within the manifolds. It is approx-

imately DM ≈ Ey,t

[
1
P

∑
i

(
⟨s1i (y,t),t⟩
∥s1i (y,t)∥2

)2]
, which is

analogous to the Gaussian width of the manifolds (Ver-
shynin, 2018, Section 7.7).

• Manifold radius captures the noise-to-signal ra-
tio of the manifolds. It is approximately RM ≈
Ey,t

[
1
P

∑
i
∥s1i (y,t)∥

2
2

∥s0i ∥2
2

]
.

• Center alignment captures the correlation between
the center of manifolds and is defined as ρcM :=

1
P (P−1)

∑
i ̸=j |⟨s0i , s0j ⟩|.

• Axis alignment captures the correlation between
the axis of manifolds and is defined as ρaM :=

1
P (P−1)

∑
i ̸=j Ey,t[|⟨s1i (y, t), s1j (y, t)⟩|].

• Center-axis alignment captures the correlation be-
tween the center and axis of manifolds and is defined
as ψM := 1

P (P−1)

∑
i ̸=j Ey,t[|⟨s0i , s1j (y, t)⟩|].
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Table 1. Comparison to conventional measures used in lazy versus rich learning.
Our approach

(manifold geometry) Accuracy Weight
changes

NTK-label
alignment

Representation-label
alignment

Detect the changes
in features

√
×

√ √ √

Quantify the amount of
task-relevant features

√
× × ×5 ×5

Representation-based
√

× × ×
√

Delineate subtypes of
feature learning

√
× × × ×

Three important remarks on effective manifold geometric
measures to be made: First, the changes in manifold ca-
pacity can be explained by the changes of these geomet-
ric measures. For example, the decrease of manifold ra-
dius and dimension makes the capacity higher (see Fig-
ure 2c, Section B.4). Second, these effective geometric
measures faithfully track the corresponding underlying ge-
ometric properties in well-studied mathematical settings
(see Section B.5). Moreover, there is a simple formula con-
necting manifold capacity with effective geometric measure:
αM ≈ (1+R−2

M )/DM (see Appendix B for details). Finally,
combining the above two points, these effective geometric
measures serve as intermediate-level descriptors to investi-
gate how different structural properties of neural manifolds
contribute to the changes of task-level performance.

3. Manifold capacity quantifies the degree of
feature learning

In this section, we provide both empirical and theoretical
justifications for using the increase in capacity during train-
ing as a measure to quantify the degree of richness (or
the amount of task-relevant features) in feature learning.
Furthermore, we compare our method with conventional
approaches in the study of lazy versus rich learning, high-
lighting the new insights uncovered by our approach.

3.1. Justifications of capacity for quantifying the lazy
versus rich dichotomy

Empirical justification in standard settings. We start
with empirically justifying the use of capacity to quantify the
degree of feature learning. A classic result in the literature of
lazy versus rich training is to train a lazy network where the
test accuracy improves, but the weight matrices (or kernels)
do not change much before and after training. We consider
two settings in (Chizat et al., 2019), one is feedforward
DNNs (VGG-11 and ResNet-18) trained on CIFAR-10 (Fig-
ure 2a-b, Figure 15, and Figure 14), and the other is 2-layer
non-linear NNs trained on random point clouds (Figure 4a).
In both cases, we observe that the manifolds are more un-
tangled when training is richer and capacity correctly tracks
the degree of feature learning (the ground truth is η̄). This
provides empirical justification for the use of capacity and

manifold untangling to quantify feature learning.

Theoretical justification on 2-layer non-linear neural net-
works. To strengthen the connection between capacity and
feature learning, we next consider a well-studied theoretical
model (Ba et al., 2022; Montanari et al., 2025) and analyti-
cally characterize the relationship between capacity, predic-
tion error, and the effective degree of richness. Concretely,
we consider the training of a fully-connected 2-layer net-
work of the form f(x) = 1√

N
a⊤σ(W⊤x), where x ∈ Rd

is an input, W ∈ RN×d is the hidden layer matrix, a ∈ RN
is the readout weight, and σ : R → R is the (non-linear)
activation function. To study feature learning in this setting,
it is common to consider W to be randomly initialized (i.e.,
random feature model (Rahimi & Recht, 2007)) and update
via gradient descent with squared loss. Meanwhile, the
readout weight a is randomly initialized and fixed to avoid
lazy learning (where the network minimally adjusts the hid-
den layer and focuses on learning a good readout weight)
as well as enable mathematical analysis (Ba et al., 2022).
Input data and label (x1, y1), . . . , (xPtrain , yPtrain) were ran-
domly generated by a teacher-student setting, where there
is a hidden signal direction β∗ that correlates with the label
(see Setting C.2 for the full setting). As previously proved
in (Ba et al., 2022) (see Theorem C.5), in the proportional
asymptotic limit (i.e., Ptrain, d,N → ∞ at the same rate),
the first-step gradient update can be approximated by a rank-
1 matrix that contains label information, resulting in the
updated weight to be more aligned with the hidden signal
β∗. Hence, in this setting, the learning rate η can be used
as the ground-truth to measure the amount of task-relevant
information (i.e., richness in learning) in the model repre-
sentation after gradient updates.

We extend the previous results in (Ba et al., 2022) from a
regression setting to a classification setting. Specifically,
We prove that capacity correctly tracks the effective degree
of richness after one gradient step7. Moreover, we derive a
monotone connection between capacity and prediction accu-

7Here we follow the convention in (Ba et al., 2022) and study
only the first gradient step as the key Gaussian equivalence step
might not hold for more steps as remarked in footnote 2 of (Ba
et al., 2022).
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Figure 4. Capacity as a measure for the degree of feature learning. See Section D.1 for details. a, We interpolated between lazy and
rich regime in 2-layer NNs trained to classify Gaussian clouds. We found that capacity could tell the difference between the underlying
scale parameter better than the other conventional methods. b, We fixed a scale parameter and initialized the input Gaussian clouds with
different dimensions (higher dimension leads to poorer initial representations). We found that capacity could tell the difference in the
amount of tasks-relevant features at initialization. Other conventional methods, e.g., the representation-label alignment, could characterize
the wrong ordering of wealthiness in initial features.

racy. Here, we provide an informal statement of our results
and leave the formal version and proof in Appendix C.

Theorem 3.1. Given Theorem C.1 and Setting C.2. Let 0 <
η <∞ be the learning rate of a one-step gradient descent
with squared loss and ψ1 = N

d , ψ2 = Ptrain
d where Ptrain is

the number of training points, d is the input dimension, and
N is the number of hidden neurons. Let αPtrain,d,N (η) be the
capacity and let AccPtrain,d,N (η) be the prediction accuracy
after a gradient step with learning rate η. We have

1. (Capacity tracks the degree of richness)

αPtrain,d,N (η)
Ptrain,d,N→∞−−−−−−−−→ α(η, ψ1, ψ2) where

α(·, ·, ·) is defined in Theorem C.4. Specifically,
α(η, ψ1, ψ2) < α(η′, ψ1, ψ2) for every 0 < η < η′.

2. (Capacity links to prediction accuracy)

AccPtrain,d,N (η)
Ptrain,d,N→∞−−−−−−−−→ Acc(η, ψ1, ψ2) where

Acc(η, ψ1, ψ2) is formally defined in Theorem C.4.
In particular, there exists an increasing and in-
vertible function hψ1,ψ2

: R+ → [0, 1] such that
Acc(η, ψ1, ψ2) = hψ1,ψ2(α(η, ψ1, ψ2)).

The above theorem justifies the usage of capacity as a mea-
sure for the degree of richness in feature learning within a
well-studied theoretical setting. We remark that our proof
requires substantial technical improvements from (Ba et al.,
2022) due to the difference between regression and classifi-
cation (e.g., analyzing the margin of the Gaussian equivalent
model after one-step gradient using tools from (Montanari
et al., 2025), Theorem C.7).

3.2. Comparison to conventional methods

Here we compare our method with several common
measures for feature learning: accuracy curves, weight

changes, and alignment methods (Table 1). Concretely,
weight changes at the t-th epoch is defined as ∥Wt −
W0∥F /∥W0∥F where Wt is the weight matrix at the t-th
epoch. NTK-label alignment and representation-label align-
ment at the t-th epoch are defined as CKA(KNTK

t ,yy⊤) and
CKA(XtX

⊤
t ,yy

⊤) respectively, where y is the label vec-
tor, CKA(·, ·) is the center kernel alignment measure (Ko-
rnblith et al., 2019), KNTK

t is the neural tangent kernel and
Xt is the representational matrix at the t-th epoch. To test
these measures in a wide variety of settings, we consider
2-layer NNs with synthetic data where we can vary a wide
range of parameters. See Appendix A for details about these
methods and Appendix D for details about experiments.

Capacity can detect task-relevant features in the pres-
ence of complex structures in data (Figure 4a). We
consider 2-layer NNs trained on random Gaussian clouds
with gradient descent. We vary the scale parameter of the
network to interpolate between lazy and rich regimes as
done in (Chizat et al., 2019). We find that capacity is better
at telling the difference of effective richness (i.e., the scale
parameter) of the training than other conventional measures
(Figure 4a). In particular, when the training is richer, we
expect the representations to exhibit more complex struc-
tures. Manifold capacity excels at extracting task-relevant
structures in representations because it is data-driven and
free from additional statistical assumptions on the data.

Capacity can quantify the differences in task-relevant
features at initialization (Figure 4b). When comparing
two networks with different initializations, focusing solely
on network changes can overlook differences in features
present at initialization. Here, we use the capacity value at
initialization to determine whether a network is in a wealthy

6
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Figure 5. Manifold geometry characterizes learning strategies and learning stages. a, Capacity contour plot of the example from Figure 4a.
The x-axis is the average manifold radius RM, the y-axis is the average manifold dimension DM, and the contour is the geometric
approximation of capacity, i.e., αM ≈ (1 + R−2

M )/DM (see Appendix B). b, Capacity contour plot of the example from Figure 4b. c,
Normalized manifold geometry dynamics plot of VGG-11 trained with CIFAR-10. The values in each row are rescaled so that the min
and max values are 0 and 1.

regime (i.e., possessing more task-relevant features) or a
poor regime (i.e., possessing less task-relevant features),
as shown in (Figure 4b). For example, a network is in a
wealthy (resp. poor) regime when the manifolds are lower
(resp. higher) dimensional because there are more (resp.
less) features that are useful for telling the manifolds apart.
The wealthy versus poor distinction provides insight into the
network’s initial state, allowing for a more comprehensive
comparison of different settings (see Section 5.1).

4. Manifold Geometry Reveals Subtypes of
Feature Learning

In this section, we demonstrate that feature learning is much
richer than the lazy versus rich dichotomy. In particular,
we use manifold geometric measures (Figure 2c, and Ap-
pendix B for details) to delineate the differences in the
learned features (learning strategies) and representational
changes throughout training (learning stages). The key take-
away from this section is the ability of our method to reveal
task-relevant changes in neural representations.

4.1. Geometric differences in learned features: Learning
strategies

To increase capacity, a network can shrink the radius and/or
compress the dimension of neural manifolds (Figure 2c).

We demonstrate in 2-layer NNs the emergence of distinct
learning strategies driven by different factors of training.
In Figure 5a, we consider 2-layer networks trained on Gaus-
sian clouds (as in Figure 4a). As training moves from the
lazy to a richer regime (blue to gray), the network com-
presses both the radius and dimension to increase capacity.
Interestingly, in an even richer regime (gray to red), the
network sacrifices radius to further reduce dimension.

In Figure 5b, we consider the setting in Figure 4b where
we interpolate the wealth of initialization by varying input
data dimension. For the wealthiest initialization (purple),
the network primarily compresses radius. For poorer initial-
ization (green), both radius and dimension are compressed
in lazier training, while in the richer regime (e.g., inverse
scale factor 24), the network sacrifices radius for further
dimension compression. In summary, varying degrees of
richness in feature learning can exhibit different learning
mechanisms, as captured by manifold geometry.

4.2. Geometric changes during training: Learning
stages

Neural networks learn in a highly non-monotonic manner
throughout the training period. Examples include double
descent (Belkin et al., 2019; Nakkiran et al., 2021; Mei &
Montanari, 2022) and grokking (Power et al., 2022; Liu
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et al., 2022; Nanda et al., 2023; Kumar et al., 2024). Pre-
vious works have analytically or empirically described the
different stages/phases such as comprehension, grokking,
memorization, and confusion (Liu et al., 2022) through the
trajectory of accuracy curves.

From Figure 5a,b we observe distinct stages of manifold
geometry evolution during training in 2-layer networks. In
the very rich regime, the network initially compresses both
radius and dimension, then increases radius to further reduce
dimension. In Figure 5c, we examine a standard setting
where VGG-11 is trained on CIFAR-10. Despite the rapid
saturation of training and test accuracy, at least four stages of
geometric changes are evident (see Figure 2c for analytical
connections between geometric measures and capacity): a
clustering stage (initial manifold compression), followed
by a structuring stage (increasing alignment), a separating
stage (decreasing alignment to push manifolds apart), and a
final stabilizing stage (further reducing center alignment).

5. Applications to Neuroscience and Machine
Learning Problems

In previous sections, we used capacity to quantify the degree
of feature learning and delineate the learning stages and
strategies through effective geometry. In this section, we
apply our framework to find geometric insights in problems
from neuroscience and machine learning.

5.1. Structural inductive biases in neural circuits

Structural variations (e.g., neural connectivity pattern) can
play a crucial role in learning dynamics (Campagnola et al.,
2022; Goudar et al., 2023; Xie et al., 2023; Raman &
O’Leary, 2021). Theoretical studies have shown that certain
patterns of neural connections can enhance the speed and/or
performance at which specific tasks are learned (Canatar
et al., 2021; Flesch et al., 2021; Braun et al., 2022). How-
ever, there is a gap between theory and experiments as
currently there is no experimental technology that can easily
measure the precise changes in synaptic weight of multiple
neurons simultaneously. Meanwhile, studying the changes
in neural activity can provide an alternative lens to probe
the functional changes in neural circuits. We study recurrent
neural networks (RNNs) that are trained on standard neuro-
science tasks such as perceptual decision making (Britten
et al., 1992) (Figure 6a). We adopt the setting from previous
work (Liu et al., 2024) on investigating how differences in
connectivity initialization affect the learning process.

Experimental setup. We use the neurogym package
(Molano-Mazon et al., 2022) to simulate common cognitive
tasks, e.g., perceptual decision making. To study how con-
nectivity structure impacts learning strategies, we follow the
setup in (Liu et al., 2024) and initialize recurrent neural net-

Figure 6. Structural inductive biases in neural circuits. a, We con-
sider RNNs trained on standard neuroscience tasks. b, Previous
work (Liu et al., 2024) found that the initial weight rank of the
recurrent connectivity matrix leads to an inductive bias toward
effectively richer or lazier training. c, We find that RNNs trained
with different initial weight rank reach the same capacity value
at final epoch. It is the difference in capacity at initialization that
makes RNNs with small initial weight rank richer in training. d,
Despite having the same capacity at final epoch, RNNs with differ-
ent initial weight rank exhibit different manifold geometry.

works (RNN) weights with varying ranks via Singular Value
Decomposition. The RNN have 300 hidden units, 1 layer,
with ReLU activations, and are trained for 10000 iterations
using SGD optimizer. Manifold capacity and effective geo-
metric measures are computed using representations from
the hidden states. See Appendix F for details.

Our findings. First, we study the training dynamics of
capacity value in RNNs with various initial weight rank
(Figure 6c). In agreement with the previous finding in (Liu
et al., 2024) using weight changes, we find that the capacity
changes of the small initial weight rank RNNs are higher
than those of the large initial weight rank RNNs. Inter-
estingly, the capacity values at the final epoch are about
the same for RNNs with different initial weight rank. It
is the difference in capacity value at initialization that dis-
tinguishes the learning dynamics of RNNs with different
initial weight rank. Namely, small initial weight rank RNNs
are in the poorer-richer feature learning regime, while large
initial weight rank RNNs are in the wealthier-lazier feature
learning (Figure 6c).
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Figure 7. Out of distribution generalization. a, CIFAR-10C as a domain adaptation (DA) dataset and CIFAR-100 as an OOD dataset.
b, Test accuracy improves for CIFAR-10 and CIFAR-10C as the training becomes richer and richer while the linear probe accuracy
for CIFAR-100 would drastically drop in the ultra-rich training regime. c, Effective manifold geometry of CIFAR-100 reveals that the
expansion of manifold radius and the increase of center-axis alignment explain the failure of OOD generalization in the ultra-rich regime.
The color is normalized for each row respectively.

Next, we find that manifold geometric organizations are
quite different for different initial weight ranks (Figure 6d).
For example, poorer-richer learning (i.e., small initial weight
rank) ends up with a larger radius and smaller dimension,
while it is the opposite for wealthier-lazier learning (i.e.,
large initial weight rank). This finding suggests that RNNs
exhibit structural biases at the manifold geometry level.

5.2. Out-of-distribution generalization

Understanding how neural networks learn and represent
features is crucial not only for task performance but also
for their ability to generalize beyond the training distribu-
tion. Out-of-distribution (OOD) generalization remains a
fundamental challenge, as models often struggle when en-
countering data that deviates from their training set.

Experimental setup. For each model pre-trained on
CIFAR-10, we train a linear classifier (i.e., linear
probe (Alain & Bengio, 2016)) on top of the last-layer rep-
resentation with CIFAR-100 train set, and then evaluate the
linear probe’s performance on CIFAR-100 test set (see de-
tails in Appendix Section E.4). We also consider a corrupted
version of CIFAR-10, the CIFAR-10C dataset (Hendrycks
& Dietterich, 2018) as an example of domain adaptation
(DA) task. Finally, we compute the manifold capacity and
effective geometric measures on last-layer representations.

Our findings. We see that the test accuracy of the OOD
dataset increases when the network enters the rich learning
regime (η̄ around 0.1) but decreases drastically when the
degree of feature learning is too rich (η̄ around 1.0). The
failure in such ultra-rich feature learning regime is different
from the test accuracy of both CIFAR-10 and CIFAR-10C
( Figure 7b). Looking at the capacity and effective geometry
( Figure 7c), we first see strong correlations between the

capacity and test accuracy, which warrants the use of effec-
tive geometry. Next, we find that the expansion of manifold
radius and the increase of center-axis alignment in the ultra-
rich regime explain the drop of capacity. Interestingly, we
also see an architectural difference where it is the increment
in dimension in the ultra-rich regime explaining the drop
of capacity in ResNet-18 (Figure 17). We leave it as a fu-
ture direction to extend our study, applying these geometric
insights to improve OOD generalization performance.

6. Conclusion and Discussion
Feature learning is a crucial feature in the study of neural net-
works in computational neuroscience and machine learning,
and it is much richer than the lazy versus rich dichotomy.
Understanding the connection between feature learning and
performance paves the way for designing network architec-
tures and learning algorithms with greater reliability and
transparency for practical applications.

The primary contribution of this work is to demonstrate
how the perspective of task-relevant manifold untangling
(quantified by manifold capacity and delineated by mani-
fold geometric measures) can enhance our understanding
of feature learning at an intermediate level. We propose
several promising future directions, including extending the
theoretical analysis, exploring applications in other types of
DNN (e.g., transformers) and addressing relevant scientific
inquiries in neuroscience, such as inferring plasticity mech-
anisms from observed learning dynamics in neural data, and
predicting learning-induced changes across brain regions.
We believe that investigations in these intermediate-level
understandings can be leveraged to design more robust, gen-
eralizable, and safer deep neural networks, as well as more
accurate models for neuroscience applications.
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A. More on Related Work
Visualization. Due to the black-box and complex nature of deep neural networks, various visualization techniques have
been developed to attempt to characterize the features that models learn during training (feature visualization) and identify
which input pixel and / or feature activation in the hidden layers contribute significantly to the final model outputs (feature
attribution). Feature visualization techniques visualize features (e.g convolutional filter in the case of CNNs) by generating
the input sample that maximizes the activation of that given feature via gradient descent (Olah et al., 2017) (Erhan et al.,
2009) (Zeiler & Fergus, 2014). With its vivid visualization, feature visualization provide good intuition about the qualitative
characteristics of the features that DNNs learn across layers (Zeiler & Fergus, 2014) as well as different types of models
(e.g, standard vs adversarially robust (Engstrom et al., 2019)). Feature attribution techniques generally identify how much
each input and/or hidden features contribute to the final model prediction by computing the gradient of that input/hidden
features to the output (some example techniques include saliency map (Simonyan et al., 2014), Grad-cam (Selvaraju et al.,
2017), integrated gradient (Sundararajan et al., 2017)). Although both feature visualization and feature attribution offer
intuitive understanding about the model’s feature characteristics, the qualitative nature of visualization makes it difficult to
quantify the degree of relevance of the learned features to a given task.

Kernel dynamics. Kernel methods (Hofmann et al., 2008) have been classic machine learning techniques, where the
primary goal is to design an effective embedding that maps inputs to a feature space, thus facilitating efficient algorithms to
find good solutions (e.g., linear classifier). While neural networks are inherently complex, seminal works (Jacot et al., 2018;
Lee et al., 2019) have shown that in the infinite width limit, a network can be linearized by its neural tangent kernel (NTK).
Thus, studying the NTK of a network allows an analytical understanding of various properties of neural networks, such as
convergence to global minima (Du et al., 2018; 2019), generalization performance (Allen-Zhu et al., 2019; Arora et al.,
2019), implicit bias (Bordelon et al., 2020; Canatar et al., 2021), and neural scaling laws (Bahri et al., 2024).

When a network is properly initialized (Chizat et al., 2019), gradient descent can converge to the NTK of the random
initialization, a setting known as the kernel regime (a.k.a., lazy training or random feature regime). On the other hand, a
network can also enter what is known as the feature learning regime (a.k.a., rich training or mean-field limit), where it
deviates from the NTK of the initialization (Geiger et al., 2020). Extensive research has been conducted to characterize
lazy versus rich regimes (Geiger et al., 2020; Woodworth et al., 2020) and to demonstrate instances where feature learning
outperforms lazy training (Yang & Hu, 2021; Ba et al., 2022; Dandi et al., 2023). It is important to note that even when
a network undergoes feature learning, the NTK can still be defined at each epoch. Previous works also analytically
characterized the dynamics of kernel in simpler models (Bordelon et al., 2020). Studying such kernel dynamics also provides
a lens for exploring questions related to feature learning, such as grokking (Kumar et al., 2024).

Representational geometry. The visualization approaches mentioned above focus on studying the geometric properties
of the feature map itself. Another fruitful direction is to examine the geometric properties of the neural representations of
inputs (i.e., embedding vectors) and their connections to performance (Chung & Abbott, 2021; Gurnani & Gajic, 2023).
Various dimensionality reduction methods (e.g., principal components analysis (PCA), Isomap, t-SNE, MDS, and UMAP)
have been proposed to build intuitions about the organization of high-dimensional feature spaces. In addition, there are
approaches that study lower-order statistics of embedding vectors, such as representational similarity (Kriegeskorte &
Kievit, 2013) and spectral methods (Rahaman et al., 2019; Bahri et al., 2024; Ghosh et al., 2022). Methods for extracting
higher-level geometric properties (e.g., dimension) have also been proposed (Chung et al., 2018; Cohen et al., 2020; Chou
et al., 2025; Ansuini et al., 2019), with wide applications in both machine learning (e.g., memorization (Stephenson et al.,
2021), grokking of modular arithmetic (Liu et al., 2022; Nanda et al., 2023), in-context learning in LLM (Kirsanov et al.,
2025), self-supervised learning (Yerxa et al., 2023; Kuoch et al., 2024)), and neuroscience (e.g., perceptual untangling in
object categorization (Chung et al., 2018), olfactory memory (Hu et al., 2024), abstraction (Bernardi et al., 2020), few-shot
learning (Sorscher et al., 2022), social learning (Paraouty et al., 2023)).

A.1. Previous work on storage capacity

Storage capacity is defined as the information load for linear readouts and has been studied in several communities, including
learning theory (Cover, 1965) and statistical physics of neural networks (Gardner & Derrida, 1988; Gardner, 1988). To
enable a mathematical treatment, we focus on the proportional limit (a.k.a. the high-dimensional limit, the thermodynamic
limit), i.e., N,P →∞ and limN,P→∞N/P = O(1). For a given network and input data, we denote the representation of
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the i-th input xi as Φ(xi) ∈ RN where Φ is the (non-linear) feature map. The storage capacity of Φ is defined as.

α(Φ) := lim
N→∞

max
P

{
P

N
: Pr

y

[
∃θ ∈ RN , ∀i ∈ [P ], yi⟨θ,Φ(xi)⟩ ≥ 0

]
≥ 1− oN (1)

}
(2)

where y ∈ {±1}P is uniformly random sampled, θ is the linear classifier, and oN (1) denotes vanishing terms (i.e.,
oN (1) → 0 as N → ∞). One can also consider the setting where the distribution of y is biased toward some task
direction (Montanari et al., 2025). Intuitively, α(Φ) quantifies the number of patterns per neuron that a network can store
and decode with linear readouts.

Recall that storage capacity is defined as the critical ratio between the number of stored patterns and the number of neurons
(Equation (2)). Cover’s theorem (Cover, 1965) shows that the success probability of having a linear classifier for P points
with random binary labels in general position 8 is p(N,P ) = 21−P

∑N−1
k=0

(
P−1
k

)
. In particular, for P/N < 2 we have

limN→∞ p(N,P ) = 0 and for P/N > 2 we have limN→∞ p(N,P ) = 1. Namely, the storage capacity of points in general
position with random binary label is 2. See also Figure 8 for finite-size and numerical examples.

Figure 8. Storage capacity of random points and labels. Storage capacity is defined as the critical ration P/N = 2 where the success
probability undergoes a phase transition. Left: finite size success probability curves proved in Cover’s theorem. Right: a numerical check
for Cover’s theorem.

In the seminal works of Gardner and Derrida (Gardner & Derrida, 1988; Gardner, 1988), the storage capacity for random
points with non-zero margin is analytically characterized using replica method. In the context of associative memory, the
storage capacity of Hopfield networks (Hopfield, 1982) is calculated by (Amit et al., 1987).

B. Manifold Capacity Theory and Effective Geometry
Manifold capacity theory (MCT)(Chung et al., 2018; Chung & Abbott, 2021; Wakhloo et al., 2023; Chou et al., 2025) was
originally developed for the study of manifold untangling (DiCarlo & Cox, 2007) in theoretical/computational neuroscience.
Intuitively, manifold untangling refers to the increased separation of high-dimensional manifolds (e.g., point cloud manifolds)
in the eyes of a downstream readout. MCT quantifies this intuition via modeling a downstream neuron as a linear
classifier, and uses the packing efficiency of the neural representational space to evaluate the degree of manifold untangling.
Mathematically, such packing efficiency coincides with support vector machine (SVM) in an average-case setting.

B.1. Neural manifolds as convex hulls of pre-readout representations

As we are studying feature learning, we are interested in the neural representations that correspond to activations obtained
from the pre-linear readout layer neurons. The readers can refer to Appendix D and Appendix E for details on activation
extraction. Notation wise, let N be the number of neurons. Therefore, all neural representations live in RN space.

Next, we group neural representations by their category labels assigned during training to obtain P data manifolds. For
i ∈ {1, . . . , P}, the i-th data manifold, denoted asMi, is a convex set in RN . To ensure convexity in practice, we take Mi

to be the convex hull of a collection of vectorsMi = {xi1, . . . ,xiMi
} where Mi is the number of points in the i-th manifold.

8Meaning that every N ′ ≤ N points are linearly independent. Note that random points are in general position with probability
1− o(1).
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Notice that the each data manifold lives in its own subspace of dimension Di ≤ N . Therefore, we can rewrite each data
manifold in its own coordinate system:

Mi =

ui0 +

Di∑
j=1

sju
i
j

∣∣∣∣∣ s = (s1, . . . , sDi) ∈ Si

 (3)

Here, ui0 is the center of the i-th manifold and {uij}
Di
j=1 is an orthonormal basis. The shape set Si ⊂ RDi is a convex set

denoting coordinates of the manifold points in its subspace. In practice, the manifold axes and shape sets Si are completely
data driven.

B.2. A simulation definition for manifold capacity

Recall from Section 2 that the simulation version of manifold capacity is defined as follows.

Definition B.1 (Simulated manifold capacity (Chou et al., 2025)). Let P,N ∈ N andMi ⊆ RN be convex sets for each
i ∈ [P ] = {1, . . . , P}. For each n ∈ [N ], define

pn := Pr
y,Πn

[∃θ ∈ Rn : yi⟨θ, s⟩ ≥ 0, ∀i ∈ [P ], s ∈Mi)]

where y is a dichotomy vector randomly sampled9 from Y ⊂ {±1}P and Πn is a random projection from RN to Rn.
Suppose pN = 1 (which means that the input manifolds are linearly separable in RN ), the simulated capacity of {Mi}i∈[P ]

is defined as

αsim :=
P∑

n(1− pn)
.

Intuitively, the simulated manifold capacity measures the packability (Chung et al., 2018) of manifolds by determining
the smallest dimensional subspace needed to ensure they can be separated. Namely, manifolds that are more packable10

(i.e., separable when projected to smaller dimensional subspaces) exhibit higher manifold capacity. Note that the simulated
capacity can be estimated from data by empirically estimate pn and perform binary search to find the critical dimension
minpn≥0.5{n}. This procedure is computationally expensive and requires some choices of hyperparameters (which makes
the definition a little ad hoc). Nevertheless, Definition 2.1 provides good intuition on how to think about manifold capacity
(and its connection to packing).

We remark that one don’t necessarily need to sample y uniformly at random from {±1}P . It is also reasonable to fix a
choice of y or sample y from a subset of {±1}P (e.g., all the 1-versus-rest dichotomies) as discussed in (Chou et al., 2025).

B.3. A mean-field definition for manifold capacity

To overcome the above-mentioned drawbacks of simulated manifold capacity, previous work (Chung et al., 2018; Wakhloo
et al., 2023; Chou et al., 2025) defined a mean-field models to enable a mathematical definition of manifold capacity while
providing a good approximation to the simulated manifold capacity. In particular, in this paper we use the GLUE (Geometry
Linked to Untangling Efficiency) theory developed in (Chou et al., 2025).

Mean-field model from GLUE (Chou et al., 2025). Given a collection of (finite) data manifolds {Mi}Pµ=1. A mean-field
model is to generate infinitely many (PM) manifolds in an infinite-dimensional (NM) space and characterizing the largest
possible PM/NM such that these “mean-field” manifolds are separable. The key idea is that if this generating process nicely
preserve the structure in the data manifolds, then the packing property of these mean-field manifolds will be very similar

Definition B.2 (Mean-field model from (Chou et al., 2025)). Let {Mi}i∈[P ] be a collection of data manifolds in RN as
defined in Equation 3. Let α ∈ R≥0 and PM, NM be integers with the following properties: (i) PM, NM → ∞ and (ii)
PM/NM = α <∞, and PM be divisible by P . We define the mean-field manifoldsMM(PM, NM) = {Ma,i

M }a∈[PM/P ],i∈[P ]

as follows.
9Typically we pick Y to be the collection of all 1-versus-rest dichotomies.

10The reason why this is called “packing” is that projecting manifolds into smaller dimensional subspace is like packing them into a
smaller neural representational space.
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Algorithm 1 Estimate simulated manifold capacity
Input: {Mi}: P point clouds, each containing M points in an N -dimensional ambient space.
Output: αsim: Simulated manifold capacity.

n∗ ← BinarySearch({Mi}, 1, N).
αsim ← P/n∗.
return αsim.

% Binary search for the smallest n such that pn ≥ 0.5.
function BinarySearch({Mi}, nl, nr)
nm ← ⌊(nl + nr)/2⌋.
if nm = nl then

return nm.
else
pnm ← EstProb({Mi}, nm).
if pnm > 0.5 then

return BinarySearch({Mi}, nl, nm).
else

return BinarySearch({Mi}, nm, nr).
end if

end if
end function

% Estimate the probability of linear separability after random projection.
function EstProb({Mi}, n,m = 1000)

cnt← 0
for i from 1 to m do
Π← a random projection from RN to Rn.
y← a random vector from {±1}P .
{M′

i} ← {ΠMi}.
if {M′

i} is linearly separable then
cnt← cnt + 1.

end if
end for
return cnt/m.

end function
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• First, find an orthogonal basis {ek}Nk=1 in RN for the basis vectors of all the data manifolds. Namely, for each i ∈ [P ],
there exists a linear transformation Qi ∈ R(Di+1)×N such that uij =

∑
kQ

i,j
k ek for each j ∈ {0, 1, . . . , Di}.

• Next, for each a ∈ [PM/P ], generate va1 , . . . ,v
a
N ∼ N (0, INM) independently and let Va be the NM ×N matrix with

vaj on its columns.

• Define Ma,i
M =

{
(VaQi)0 +

∑Di
j=1 sj(V

aQi)j : s = (s1, . . . , sDi) ∈ Si
}

as the i-th manifold in the a-th cloud

where (VaQi)i =
∑
k v

a
kQ

i,j
k for every a ∈ [PM/P ] and i ∈ [P ].

Now, we are ready to formally define the mean-field version of manifold capacity.

Definition B.3 (Mean-field manifold capacity (Chung et al., 2018; Chou et al., 2025)). Let {Mi}i∈[P ] be a collection of
data manifolds in RN as defined in Equation 3. The manifold capacity of {Mi}i∈[P ] is defined as

αM := lim
NM→∞

max
PM

{
PM

NM
: Pr

y,MM(PM,NM)

[
∃θ∈RNM , ∀a∈[PM/P ], i∈[P ],

min
s∈Ma,i

M
yi⟨θ,s⟩≥0

]
≥ 1− oNM(1)

}
where and oNM(1)→ 0 as NM →∞.

Finally, previous work (Chung et al., 2018; Chou et al., 2025) derived a formula for mean-field manifold capacity as follows.

α−1
M =

1

P
E

y∼{±1}P
T∼N (0,IN )

[
max
si∈Mi

{
∥projcone({yisi})t∥

2
2

}]
(4)

=
1

P
E

y∼{±1}P
T∼N (0,IN )

 max
si∈Mi
λi≥0

{(
−T ·

∑
i λiyisi

∥
∑
i λiyisi∥2

)2

+

}
where N (µ,Σ) denotes the multivariate Gaussian distribution with mean µ and covariance Σ and cone(·) is the convex
cone spanned by the vectors, i.e., cone({yisi}) = {

∑
i λiyisi : λi ≥ 0}.

B.4. Effective geometric measures from capacity formula

The advantages of mean-field manifold capacity are: (i) αM can be estimated via solving a quadratic program (Algorithm 2)
and (ii) Equation 1 connects manifold capacity to the structure of the manifolds {Mi}. Specifically, for each y, t,
define{si(y, t)} = yi · argmax{si} ∥projcone({yisi})t∥

2
2 as the anchor points with respect to y and T . Intuitively, these

anchor points are the support vectors with respect to some random projection and dichotomy as in Definition 2.1. Specifically,
these anchor points are analytically linked to manifold capacity via Equation 1 and are distributed over the manifolds {Mi}.
This connection inspired the previous work (Chung et al., 2018; Chou et al., 2025) to define the following effective manifold
geometric measures that capture the structure of manifolds while being analytically connected to capacity.

The first key idea of defining effective geometric measure is the segregation of anchor points into their center part and
their axis part. Concretely, for each i ∈ [P ], define s0i := Ey,t[si(y, t)] as the center of the i-th manifold and define
s1i (y, t) := si(y, t)− s0i to be the axis part of si(y, t) for each pair of (y, t).

Next, (Chung et al., 2018) used an identity: a = b
1+ b−a

a

, and set a = ∥projcone({si(y,t)}i)t∥
2
2 and b =

∥projcone({s1i (y,t)}i)
t∥22 to rewrite the capacity formula (Equation 4) as follows.

α−1
M =

1

P
E
y,t

[
∥projcone({si(y,t)}i)t∥

2
2

]

=
1

P
E
y,t

 ∥projcone({s1i (y,t)}i)
t∥22

1 +
∥projcone({s1

i
(y,t)}i)

t∥2
2−∥projcone({si(y,t)}i)

t∥2
2

∥projcone({si(y,t)}i)
t∥2

2

 .
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Then, they proceeded with the following approximation.

≈
1
P Ey,t

[
∥projcone({s1i (y,t)}i)

t∥22
]

Ey,t

[
1 +

∥projcone({s1
i
(y,t)}i)

t∥2
2−∥projcone({si(y,t)}i)

t∥2
2

∥projcone({si(y,t)}i)
t∥2

2

] . (5)

(Chung et al., 2018; Chou et al., 2025) found that the above approximation empirically performs well. Furthermore, as the
numerator mimics the notion of Gaussian width of a convex body and the denominator behaves like (normalized) radius of a
sphere, they defined effective manifold dimension and radius as follows.
Definition B.4 (Effective manifold geometric measures (Chung et al., 2018; Chou et al., 2025)). For each i ∈ [P ], define
s0i := Ey,t[si(y, t)] as the center of the i-th manifold and define s1i (y, t) := si(y, t)− s0i to be the axis part of si(y, t) for
each pair of (y, t).

• Manifold dimension captures the degree of freedom of the noises/variations within the manifolds. Formally, it is
defined as DM := Ey,t[∥projcone({s1i (y,t)}i)

t∥22].

• Manifold radius captures the noise-to-signal ratio of the manifolds. Formally, it is defiend as RM :=√
Ey,t

[
∥projcone({si(y,t)}i)

t∥2

∥projcone({s1
i
(y,t)}i)

t∥2−∥projcone({si(y,t)}i)
t∥2

]
.

• Center alignment captures the correlation between the center of different manifolds. Formally, it is defined as
ρcM := 1

P (P−1)

∑
i ̸=j |⟨s0i , s0j ⟩|.

• Axis alignment captures the correlation between the axis of different manifolds. Formally, it is defined as ρaM :=
1

P (P−1)

∑
i ̸=j Ey,t[|⟨s1i (y, t), s1j (y, t)⟩|].

• Center-axis alignment captures the correlation between the center and axis of different manifolds. Formally, it is
defined as ψM := 1

P (P−1)

∑
i̸=j Ey,t[|⟨s0i , s1j (y, t)⟩|].

A capacity approximation formula by dimension and radius. Recall that in Equation 5 previous work (Chung et al.,
2018) used the identity a = b

1+ b−a
a

to approximate the manifold capacity. After defining manifold dimension and radius,
one can then plug them back to Equation 5 and get the following approximation of manifold capacity via effective manifold
dimension and radius.

αM ≈
1 +R−2

M

DM
. (6)

B.5. Connections between manifold capacity and its effective geometric measures

Here, we demonstrate the connections between manifold capacity and its effective geometric measures by synthetic
manifolds. In particular, we consider isotropic Gaussian clouds parametrized by a set of ground truth latent parameters:
dimension Dground, radius Rground, center correlations ρcground, axis correlations ρaground, and center-axis correlations ψground.
See Section D.1.1 for more details on the generative process. In this section, we focus on showing that the effective
geometric measures DM, RM, ρ

c
M, ρ

a
M, ψM capture the corresponding ground truth parameter.

Effective manifold dimension and radius. We first set all the manifold correlations to be zero and vary the ground truth
radius and dimension. Here we pick N = 1000 neurons, P = 2 manifold, M = 200 points per manifold, varying the
underlying dimension from 2 to 10, and varying the underlying radius from 0.8 to 2. In Figure 9, we vary the ground truth
dimension in the x-axis, and in Figure 10, we vary the ground truth radius in the x-axis.

Effective alignment measures. Next, we fix the ground truth dimension to be Dground = 4 and radius to be Rground = 1
and vary ρcground, ρ

a
ground, ψground from 0 to 0.8. In Figure 11, we vary the center correlations, and in Figure 12, we vary the

axis correlations.

B.6. Algorithms for estimating manifold capacity and effective geometric measure

We provide pseudocodes for estimating manifold capacity and effective geometric measure in Algorithm 2.
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Algorithm 2 Estimate manifold capacity and effective geometric measures
Input: {Mi}: P point clouds, each containing M points in an N -dimensional ambient space; nt: number of samples for
estimating the expectation.
Output: αM: Manifold capacity; DM: Effective dimension; RM: Effective radius; ρaM: Effective axis alignment; ρcM:
Effective center alignment; ψM: Effective center-axis alignment.

% Step 1: Sample anchor points.
for k from 1 to nt do
tk ← a vector sampled from isotropic N -dimensional Gaussian distribution.
y← a random dichotomy vector from {±1}P .
A← IN ; q← −tk; h← 0N .
G← (y ⊙ {Mi}Pi=1). {Gi,j = yis is a row vector where s is the j-th point inMi.}
output← qp(A,q,G,h). {minx

1
2x

⊤Ax+ q⊤x s.t. Gx ≤ h. }
zdual ← output[“dual′′] {The support vectors }
for i from 1 to P do
si[k]←

∑
j(zdual)

⊤
i,jG/

∑
j(zdual)i,j

end for
end for

% Step 2: Estimate (anchor) manifold centers.
for i from 1 to P do
s0i ← 1

nt

∑nt
k=1 si[k]).

end for
G0 ←

∑
i s

0
i (s

0
i )

⊤. {Anchor center gram matrix.}

% Step 3: Separate the center and axis part of anchor points.
for k from 1 to nt do

for i from 1 to P do
s1i [k]← si[k]− s0i . {The axis part of the anchor poitn in the i-th manifold.}

end for
t1[k]←

∑
i s

1
i [k]tk.

G1[k]←
∑
i s

1
i [k](s

1
i [k])

⊤. {Anchor axis gram matrix.}
end for

% Step 4: Estimate manifold capacity and effective geometric measures.
αM ← ( 1

ntP

∑nt
k=1(si[k]tk)

⊤(si[k](si[k]
⊤)†(si[k]tk))

−1.
DM ← 1

ntP

∑nt
k=1 t

1[k]⊤G1[k]†t1[k].

RM ←
√

1
nt

∑nt
k=1

t1[k]⊤(G1[k]+G0)†t1[k]
t1[k]⊤(G1[k]+G1[k](G0)†G1[k])†t1[k]

. {Equivalent to the definition of radius after applying the Wood-
bury formula for numerical stabiltiy.}
ρcM ← 1

P (P−1)

∑P
i=1

∑
i̸=j

(s0i )
⊤s0j

∥s0i ∥2·∥s0j∥2
.

ρaM ← 1
P (P−1)

∑P
i=1

∑
j ̸=i

1
nk

∑nk
k=1

s1i [k]
⊤s1j [k]

∥s1i [k]∥2·∥s1j [k]∥2
.

ψM ← 1
P (P−1)

∑P
i=1

∑
j ̸=i

1
nk

∑nk
k=1

(s0i )
⊤s1j [k]

∥s0i ∥2·∥s1j [k]∥2
.

return αM, DM, RM, ρ
a
M, ρ

c
M, ψM.
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Figure 9. Effective manifold dimension tracks the ground truth dimension of uncorrelated isotropic Gaussian clouds. Note that the higher
the dimension, the smaller capacity, as discussed in Figure 2c.

Figure 10. Effective manifold radius tracks the ground truth radius of uncorrelated isotropic Gaussian clouds. Note that the higher the
radius, the smaller capacity, as discussed in Figure 2c.

C. Theoretical Results
We consider the training of a fully-connected 2-layer network of the form f(x) = 1√

N
a⊤σ(W⊤x), where x ∈ Rd is

an input, W ∈ RN×d is the hidden layer matrix, a ∈ RN is the readout weight, and σ : R → R is the (non-linear)
activation function. To study feature learning in this setting, it is common to consider W to be randomly initialized (i.e.,
random feature model (Rahimi & Recht, 2007)) and update via gradient descent with squared loss. Meanwhile, the readout
weight a is randomly initialized and fixed to avoid lazy learning (where the network minimally adjusts the hidden layer
and focuses on learning a good readout weight) as well as enable mathematical analysis (Ba et al., 2022). Input data
and label (x1, y1), . . . , (xPtrain , yPtrain) were randomly generated by a teacher-student setting, where there is a hidden signal
direction β∗ that correlates with the label (see Setting C.2 for the full setting). As previously proved in (Ba et al., 2022)
(see Proposition C.5), in the proportional asymptotic limit (i.e., Ptrain, d,N →∞ at the same rate), the first-step gradient
update can be approximated by a rank-1 matrix that contains label information, resulting in the updated weight to be more
aligned with the hidden signal β∗. Hence, in this setting, the learning rate η can be used as the ground-truth to measure the
amount of task-relevant information (i.e., richness in learning) in the model representation after gradient updates.

We extend the previous results in (Ba et al., 2022) from a regression setting to a classification setting. Specifically, We prove
that capacity correctly tracks the effective degree of richness after one gradient step11. Moreover, we derive a monotone
connection between capacity and prediction accuracy, thereby justifying the use of capacity as a measure of richness in
feature learning within a well-studied theoretical setting. Here, we provide an informal statement of our results and leave the
formal version and proof in Appendix C.

C.1. Formal theorem statement

Let d ∈ N be the input dimension and N ∈ N be the number of hidden units. Let W0 ∈ RN×d be the weight matrix of a
fully connected 2-layer neural network. The feature of an input vector is defined as Φ0(x) = σ(W0x) where σ(·) : R→ R
is a non-linear activation function, e.g., ReLU or tanh. The readout weight is denoted as a ∈ RN . Finally, the output of the
2-layer NN is the sign of the readout, i.e., f(x) = sgn(a⊤Φ(x)).

11Here we follow the convention in (Ba et al., 2022) and study only the first gradient step as the key Gaussian equivalence step might
not hold for more steps as remarked in footnote 2 of (Ba et al., 2022).

22



Feature Learning beyond the Lazy-Rich Dichotomy: Insights from Representational Geometry

Figure 11. Effective manifold center alignment tracks the ground truth center correlations of isotropic Gaussian clouds. Note that the
higher the center alignment, the smaller capacity, as discussed in Figure 2c. Also, in the large center correlations regime, the effective
radius increases.

Figure 12. Effective manifold axis alignment tracks the ground truth axis correlations of isotropic Gaussian clouds. Note that the higher
the axis alignment, the higher capacity, as discussed in Figure 2c. Also, in the large axis correlations regime, the effective dimension
decreases.

Let {(xi, yi)}i∈[Ptrain] be the collection of training data. We consider gradient descent over the mean square error (MSE) of
the 2-layer NN, i.e., L(f) = 1

Ptrain

∑
i∈[Ptrain]

ℓ(f(xi), yi) where ℓ(zi, yi) = 1
2 (z − y)

2. The gradient update with learning
rate η > 0 is Wt+1 =Wt + ηGt where

Gt =
1

Ptrain

∑
i∈[Ptrain]

[
(yi − a⊤σ(Wtxi))a⊙ σ′(Wtxi)

]
x⊤
i

and σ′(·) denotes the first order derivative of σ(·).
Assumption C.1. We adopt the following assumptions used in (Montanari et al., 2025; Ba et al., 2022).

1. (Proportional limit) Ptrain, d,N →∞ with ψ1 = N/d, ψ2 = Ptrain/d, and 0 < ψ1, ψ2 <∞.

2. (Gaussian initialization) [W0]kj ∼ N (0, 1/N) for each k ∈ [N ] and j ∈ [d].

3. (Gaussian readout) ak ∼ N (0, 1/N) for each k ∈ [N ].

4. (Normalized activation) The non-linear activation function σ(·) has O(1)-bounded first three derivatives almost surely.
In addition, E[σ(G)] = 0 and E[Gσ(G)] ̸= 0 for G ∼ N (0, 1).

5. (Non-degenerate label function) Let F : R→ [0, 1] be a continuous function satisfying

inf {x : Pr[T < x] > 0} = −∞ and sup {x : Pr[T > x] > 0} =∞

where T = Y G, G ∼ N (0, 1), and Pr[Y = 1 |G] = 1− Pr[Y = −1 |G] = F (G).

Setting C.2. We consider the following data generation process. Let F : R→ [0, 1] be a function satisfying Assumption C.1.
Let β∗ ∈ Rd be a hidden vector with ∥β∗∥2 = 1. The data distribution DF (β∗) is defined by the following two steps: (i)
sample x ∼ N (0, Id), and (ii) sample y with Pr[y = 1] = 1− Pr[y = −1] = F (⟨β∗,x⟩). Finally, the prediction accuracy
of a network is defined as the expected accuracy of a fresh sample, i.e., Pr(x,y)∼DF (β∗)[yf(x) ≥ 0].
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Parameter C.3. Given ψ1, ψ2, F, β∗ from Assumption C.1 and Setting C.2. We define the following parameters.

γ1 = E
G∼N (0,1)

[Gσ(G)]

γ22 = E
G∼N (0,1)

[σ(G)2]− E
G∼N (0,1)

[Gσ(G)]2

θ1 = E
X∼µψ1

[
γ21

γ21X + γ22

]
θ2 = ψ1 E

X∼µψ1

[
γ21X

γ21X + γ22

]
θ3 = E

(G,Y )∼DF
[Y G]

θ4 =

(
1

ψ2
+ E

(G,Y ),(G′,Y ′)
i.i.d.∼DF

[Y Y ′GG′]

)

where µψ1
is the Marchenko-Pastur distribution with the ratio parameter being ψ1 and (G, Y ) ∼ DF is defined as the

sampling process: G ∼ N (0, 1) and Pr[Y = 1] = 1− Pr[Y = −1] = F (G).

Theorem C.4. Given Assumption C.1 and consider 0 < ψ1, ψ2, η <∞.

1. (Capacity tracks the degree of feature learning) The storage capacity of 2-layer network trained with synthetic data
defined in Setting C.2 after one gradient step is αPtrain,d,N (ψ1, ψ2, η) and

αPtrain,d,N (ψ1, ψ2, η)
Ptrain,d,N→∞−−−−−−−−→ α(ψ1, ψ2, η)

Here the function α(·) is defined as

α(ψ1, ψ2, η) =

(
min
c∈R

E
(Z,G,Y )∼Dψ1,ψ2,η

[
(−cY G− Z)2+

])−1

where (Z,G, Y ) ∼ Dψ1,ψ2,η is defined as the following sampling process

Z ∼ N (0, 1), G ∼ N (0, 1), Pr[Y = 1] = 1− Pr[Y = −1] = fτ(ψ1,ψ2,η)(G)

and the scalar function fτ (·) and τ(ψ1, ψ2, η) are defined as

fτ (G) = E
G′∼N (0,1)

[
F (
√

1− τ2G+ τG′)
]

and
τ = τ(ψ1, ψ2, η) =

√
τ0(ψ1, ψ2)2 − τ∆(ψ1, ψ2, η)2

where τ0(·) and τ∆(·) are scalar functions defined as

τ0(ψ1, ψ2)
2 = 1− θ2

and

τ∆(ψ1, ψ2, η)
2 =

η2θ1(1− θ2)2θ23
1 + η2θ1(1− θ2)θ4

where the parameters θi’s are defined in Parameter C.3. In particular, 0 < α(ψ1, ψ2, η) < α(ψ1, ψ2, η
′) for all

0 < η < η′.

2. (Capacity analytically links to prediction accuracy) The prediction accuracy of 2-layer network trained with synthetic
data defined in Setting C.2 after one gradient step is AccPtrain,d,N (ψ1, ψ2, η) and

AccPtrain,d,N (ψ1, ψ2, η)
Ptrain,d,N→∞−−−−−−−−→ Acc(ψ1, ψ2, η)
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Here the function Acc(·) is defined as

Acc(ψ1, ψ2, η) = E
(G,Y )∼DF

Φ
 ηγ21θ3√

η2γ4
1

ψ2
+ γ21 + γ2∗

Y G


In particular, there exists an increasing and invertible function gψ1,ψ2

: [0, 1]→ R+ such that

Acc(ψ1, ψ2, η) = gψ1,ψ2
(α(ψ1, ψ2, η)) .

C.2. Proof for Theorem Theorem C.4

Step 1: Rank-1 approximation of gradient descent in 2-layer networks by ref. (Ba et al., 2022). When the learning
rate is constant, i.e., η = O(1), ref. (Ba et al., 2022) shows that the gradient update matrix can be approximated by a rank-1
matrix. In particular, the following is a restatement of Proposition 2 in (Ba et al., 2022).

Proposition C.5 (Proposition 2 in (Ba et al., 2022)). Given Assumption C.1 and Setting C.2, there exist some constants
c, C > 0 such that for all large Ptrain, N, d, the following holds∥∥∥∥G0 − γ1a

(∑
i yix

⊤
i

Ptrain

)∥∥∥∥ ≤ C log2 Ptrain√
Ptrain

· ∥G0∥

with probability at least 1− Ptraine
−c log2 Ptrain and ∥ · ∥ denotes the operator norm.

Step 2: A formula for the storage capacity of a Gaussian model by ref. (Montanari et al., 2025). The storage capacity
of a Gaussian model is proven in (Montanari et al., 2025). In particular, the following is a restatement of the Proposition 5.1
in (Montanari et al., 2025).

Definition C.6 (Gaussian model). Let θ∗ ∈ RN be some latent vector. A sample (xi, yi) ∈ RN × {±1} is i.i.d. sampled as
follows. First, sample xi from N (0,Σ) where Σ is a covariance matrix satisfying certain technical condition as defined in
Assumption 1-2 in (Montanari et al., 2025). Next, let yi = +1 with probability f(⟨θ∗,xi⟩) for some function f satisfying
Assumption 3 in (Montanari et al., 2025).

Proposition C.7 (Theorem 3 in (Montanari et al., 2025)). Consider a Gaussian model satisfying Definition C.6. As
Ptrain, N, d→∞, the storage capacity converges to

α∗ =

(
min
c∈R

E
(Z,G,Y )∼Df

[
(−cY G− Z)2+

])−1

where (Z,G, Y ) ∼ Df is defined as the following sampling process

Z ∼ N (0, 1), G ∼ N (0, 1), Pr[Y = 1] = 1− Pr[Y = −1] = f(ρ ·G) .

where ρ is some scalar related to the Gaussian model as defined in Assumption 2 of (Montanari et al., 2025).

Note that the capacity only depends on the alignment between data and task (as encoded in f ) and does not depend on the
covariance structure. The dependence on the covariance structure will appear when one considers the non-zero margin
version of capacity.

Step 3: A Gaussian equivalent model for 2-layer NNs after one gradient step. Next, we combine a Gaussian equivalent
model for random feature 2-layer NNs in (Montanari et al., 2025) (Theorem 3) and the rank-1 approximation of gradient
step in Proposition C.5 to get a Gaussian equivalent model for 2-layer NNs after one gradient step.

Proposition C.8. Given Assumption C.1 and 0 < ψ1, ψ2, η <∞. Let d ∈ N and (W1, β∗, F ) be the weight matrix, hidden
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vector, and label function from Setting C.2. Let αGM
Ptrain,d,N

(ψ1, ψ2, η) be the capacity of the following Gaussian model:

Σd,η = γ21W1W
⊤
1 + γ2∗I

θ∗,d,η = α−1
d,ηγ1(γ

2
1W1W

⊤
1 + γ2∗I)

−1W1β∗

α2
d,η = γ21β

⊤
∗ W

⊤
1 (γ21W1W

⊤
1 + γ2∗I)

−1W1β∗

τ2d,η = 1− α2
d,η (7)

fd,η(x) = E
G∼N (0,1)

[F (αd,ηx+ τd,ηG)] .

We have that
lim

Ptrain,d,N→∞
|αPtrain,d,N (ψ1, ψ2, η)− αGM

Ptrain,d,N (ψ1, ψ2, η)| = 0

and
αGM
Ptrain,d,N (ψ1, ψ2, η)

Ptrain,d,N→∞−−−−−−−−→ α(ψ1, ψ2, η).

Here the function α(·) is defined as

α(ψ1, ψ2, η) =

(
min
c∈R

E
(Z,G,Y )∼Dfτ (ψ1,ψ2,η)

[
(−cY G− Z)2+

])−1

where the scalar function fτ (·) and τ(ψ1, ψ2, η) are defined as

fτ (G) = E
G′∼N (0,1)

[
F (
√

1− τ2G+ τG′)
]

and
τ = τ(ψ1, ψ2, η) = lim

d→∞
τd,η =

√
τ0(ψ1, ψ2)2 − τ∆(ψ1, ψ2, η)2 .

where τ0(ψ1, ψ2) = limd→∞ τd,0.

To derive the Gaussian equivalent model in Proposition C.8 of the random features model after one gradient step defined
in Setting C.2, we analyze the following random features and their associated labels:

Φ0(xi) = σ(W1xi), Pr[yi = 1|xi] = 1− Pr[yi = −1|xi] = F (⟨β∗,xi⟩), ∥β∗∥2 = 1

where xi ∼ N (0, Id) and W1 =W0 + ηG0 while G0 satisfies the bound given in Proposition C.5. Given the assumptions
in Assumption C.1, we can decompose the nonlinear activation function σ into Hermite polynomials. Following our
parameters in Parameter C.3, we define the Gaussian equivalent features of our model as the linearization of Equation C.2:

gi = γ1W1xi + γ2hi

where hi ∼ N (0, IN ) are independent from everything else. Now, we wish to find a similar linearized Gaussian model
for the labels yi given the Gaussian equivalent features gi. It is easy to check that the Gaussian features has the following
covariance:

gi ∼ N (0,Σd,η), Σd,η = γ21W1W
⊤
1 + γ2∗I

By matching covariance through Equation C.2, we obtain

xi = γ1W
⊤
1 Σ−1

d,ηgi +Q1/2h̃i

where Q = γ22(γ
2
2IN + γ21W

⊤
1 W1)

−1 and h̃i ∼ N (0, IN ) are independent of xi. Therefore, we can rewrite the label
function parameter as

⟨β∗,xi⟩ = αd,η⟨θ∗,d,η,gi⟩+ εi

where εi ∼ N (0, τ2d,η) are independent of gi. Effectively, we obtain an equivalent label function

fd,η(x) = E
G∼N (0,1)

[F (αd,ηx+ τd,ηG)]

such that Pr[yi = 1|xi] = 1− Pr[yi = −1|xi] = fd,η(⟨θ∗,d,η,gi⟩). It is easy to verify that this Gaussian model satisfies
the assumptions in Definition C.6.
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Step 4: Analysis of τ . Finally, we combine Proposition C.5 and Proposition C.8 to get the formula for the right hand side
of Equation 7. From Proposition C.5, we approximate W1 as W1 =W0 + au⊤ where u = η

∑
i yix

⊤
i /Ptrain. To rewrite

the right hand side of Equation 7, we first deal with the matrix inverse term using the same trick as in ref. (Ba et al., 2022).
Let Σt = γ21WtW

⊤
t + γ2∗I . Observe that

Σ1 = Σ0 + γ21
[
a c

] [L1 1
1 0

] [
a⊤

c⊤

]
where c =W0u. By Sherman-Morrison-Woodbury formula, we have

Σ−1
1 = Σ−1

0 − γ21Σ
−1
0

[
a c

]([L1 1
1 0

]−1

+ γ21

[
a⊤

c⊤

]
Σ−1

0

[
a c

])−1 [
a⊤

c⊤

]
Σ−1

0

= Σ−1
0 −∆aa −∆cc +∆ac +∆ca

where

∆aa = γ21
L4 − L1

D
Σ−1

0 aa⊤Σ−1
0

∆cc = γ21
L3

D
Σ−1

0 cc⊤Σ−1
0

∆ac = γ21
1 + L6

D
Σ−1

0 ac⊤Σ−1
0

∆ca = γ21
1 + L6

D
Σ−1

0 ca⊤Σ−1
0

and

L0 = γ21β
⊤
∗ W

⊤
0 Σ−1

0 W0β∗

L1 = u⊤u

L2 = u⊤β∗

L3 = γ21a
⊤Σ−1

0 a

L4 = γ21c
⊤Σ−1

0 c

L5 = γ21c
⊤Σ−1

0 W0β∗

L6 = γ21a
⊤Σ−1

0 c

L7 = a⊤c

L8 = γ21a
⊤Σ−1

0 W0β∗

D = L3(L4 − L1)− (1 + L6)
2

Thus, we can rewrite the right hand side of Equation 7 as follows.

τd,η = 1− γ21β⊤
∗ (W0 + au⊤)⊤Σ−1

0 (W0 + au⊤)β∗

+ γ21β
⊤
∗ (W0 + au⊤)⊤∆aa(W0 + au⊤)β∗

+ γ21β
⊤
∗ (W0 + au⊤)⊤∆cc(W0 + au⊤)β∗

− γ21β⊤
∗ (W0 + au⊤)⊤∆ac(W0 + au⊤)β∗

− γ21β⊤
∗ (W0 + au⊤)⊤∆ca(W0 + au⊤)β∗

= 1− L0 − L2
2L3 − 2L2L8

+
L4 − L1

D
(L2L3 + L8)

2

+
L3

D
(L5 + L2L6)

2

− 2
1 + L6

D
(L2L3 + L8)(L5 + L2L6) .
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Similar to Proposition 29 in (Ba et al., 2022), by Hanson-Wright inequality, we have that L6, L8, L7 → 0.

L0 → θ2

L1 → η2θ4

L2 = ηθ3

L3 → γ21 E
X∼µψ1

[
1

γ21X + γ22

]
= θ1

L4 → γ21η
2θ4 · ψ1 E

X∼µψ1

[
X

γ21X + γ22

]
= η2θ2θ4

L5 → γ21ηθ3 · ψ1 E
X∼µψ1

[
X

γ21X + γ22

]
= ηθ2θ3

L6, L7, L8 → 0

D → L3(L4 − L1)− 1→ η2θ1(θ2 − 1)θ4 − 1

To sum up, we have

lim
d→∞

τd,η = 1− θ2 −
η2θ1θ

2
3(η

2θ1(θ2 − 1)θ4 − 1)

η2θ1(θ2 − 1)θ4 − 1

+
η4θ21(θ2 − 1)θ23θ4
η2θ1(θ2 − 1)θ4 − 1

+
θ1θ

2
2θ

2
3

η2θ1(θ2 − 1)θ4 − 1

− 2
η2θ1θ2θ

2
3

η2θ1(θ2 − 1)θ4 − 1

= 1− θ2 −
η2θ1(1− θ2)2θ23

1 + η2θ1(1− θ2)θ4
.

This completes the proof for the first part of Theorem C.4.

Step 5: Analysis for prediction accuracy. Recall from Setting C.2 the definition of prediction accuracy of the network
after a gradient step is Pr(x,y)∼DF (β∗)[ya

⊤σ(W1x) ≥ 0]. By Gaussian equivalence and Proposition C.5, we have that the
following.

AccPtrain,d,N (ψ1, ψ2, η)

= Pr
(x,y)∼DF (β∗)

a,W1

[ya⊤σ(W1x) ≥ 0] .

By Proposition C.5, we can further approximate the equation as follows.

= Pr
(x,y)∼DF (β∗)

a,W0,u

[ya⊤σ((W0 + au⊤)x) ≥ 0] + o(1) .

By Gaussian equivalence, we can further approximate the equation as follows.

= Pr
(x,y)∼DF (β∗)
a,W0,W∗,u

[ya⊤(γ1(W0 + au⊤) + γ∗W∗)x) ≥ 0] + o(1)

where W∗ ∈ RN×d and ([W∗]kj ∼ N (0, 1/N)) for each k ∈ [N ], j ∈ [d]. Note that as a,W0,W∗ are independent, we can
further simplify the equation as follows.

= Pr
(x,y)∼DF (β∗)

a,W ′
∗,u

[yγ1u
⊤x+

√
γ21 + γ2∗ · ya⊤W ′

∗x+ o(1) ≥ 0] + o(1)
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where W ′
∗ ∈ RN×d and ([W ′

∗]kj ∼ N (0, 1/N)) for each k ∈ [N ], j ∈ [d]. Note that as a,W ′
∗ are independent, we can

further simplify the equation as follows.

= Pr
(x,y)∼DF (β∗)
Z∼N (0,1)

[
ηγ21 E

(x′,y′)∼DF (β∗)
[yy′x′⊤x] +

√
γ21 + γ2∗ · Z + o(1) ≥ 0

]
+ o(1) .

Note that by decomposing x and x′ to direction that’s parallel to β∗ and orthogonal to β∗, we can further simplify the
equation as follows.

= Pr
(G,Y )∼DF
Z,Z′∼N (0,1)

[
ηγ21

(
E

(G′,Y ′)∼DF
[Y Y ′GG′] +

√
1/ψ2Z

′
)
+
√
γ21 + γ2∗ · Z + o(1) ≥ 0

]
+ o(1)

= Pr
(G,Y )∼DF
Z∼N (0,1)

ηγ21θ3Y G+

√
η2γ41
ψ2

+ γ21 + γ2∗ · Z + o(1) ≥ 0

+ o(1)

= E
(G,Y )∼DF

Φ
 ηγ21θ3√

η2γ4
1

ψ2
+ γ21 + γ2∗

Y G

+ o(1) .

Note that when fixing ψ1, ψ2 and non-trivial F , both capacity formula and prediction accuracy formula are increasing and
invertible with respect to η. As a consequence, the two quantities are also analytically connected by an increasing and
invertible function. This completes the proof for the second part of Theorem C.4. We also provide numeric checks for the
formulas in Figure 13.

Figure 13. Numerical checks for the formulas in Theorem C.4. We run the simulation with d = 2000, ψ1 = 1, ReLU activation, and label
function f(x) = 1

1+e−4x for 50 repetitions. Left: numerical checks for the capacity formula. Right: numerical checks for the prediction
accuracy formula.

D. 2-Layer Non-linear Neural Networks
In this paper, we use 2-layer non-linear neural networks and Gaussian mixture models (for input data generation) as a
convenient experimental setup to systematically explore different regimes in feature learning. Moreover, given its medium
level of complexity, it might be possible to have an analytical characterization of our numerical findings, and we leave it as
an interesting future direction.

D.1. Experimental setup

D.1.1. SYNTHETIC DATA GENERATION

We focus on point manifold, which consists of data points associated with the same label. As discussed in the previous
section, we are particularly interested in the effective radius, dimension, center alignment, axes alignment, and center-axes
alignment of the representation manifolds. Therefore, we consider a synthetic model to generate training and test data
with relevant geometric interpretations. Namely, construct P ∈ N synthetic data manifolds with radius R ∈ R+, intrinsic
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dimension D ∈ N, size M ∈ N. The manifold layouts are further determined by center correlation strength ρC ∈ [0, 1),
axes correlation strength ρA ∈ [0, 1), and center-axes correlation strength ψ ∈ [0, 1), all of which we would detail in the
following subsections.

Isotropic spherical manifolds. First, we consider the simplest case: manifolds with isotropic Gaussian center distribution
and axes distribution with no correlations. This is the scenario considered in Section 3 and Section 4.

Let d ∈ N be the dimension of the data. We consider P point manifolds {Mi}i∈[P ] with manifold size M ∈ N and radius
R that lies in a subspace of dimension D. Each manifold is defined as

Mi = {u0 +R ·
D∑
j=1

skjuj + ϵvk}k∈[M ]

where the axes uj ∼ N(0, Id/d), the coordinates skj ∼ N(0, 1), the noise vectors vk ∼ N(0, Id/d), and ϵ = 10−2. The
pre-scaled points in the manifolds {

∑D
j=1 s

k
juj}k∈[M ] are well-normalized to unit norm.

Test manifolds share the same model except that the noise vectors vj are sampled again in the same distribution.

Isotropic Gaussian manifolds. In certain experiments, we drop in the intrinsic dimension D and directly consider
manifolds defined as

Mi = {u0 +R · vk}k∈[M ]

where the noise vectors are vk ∼ N(0, Id/d). Test manifolds share the same model except that the noise vectors vk are
sampled again in the same distribution.

Correlated spherical manifolds. To generated correlated manifolds, we consider an auto-regressive model described by
the covariance matrix C = (ρ|i−j|)ij ∈ RP×P , where ρ ∈ [0, 1) is either the center correlation strength ρC or axes correla-
tion strength ρA. The center covariance CC is then mixed into the isotropic manifold centers {uj0 ∼ N(0, Id/d)}j∈[M ]. The
axes covariance matrices CiA is mixed into the isotropic axes {uji ∼ N(0, Id/d)}j∈[M ] for each i = 1, 2, . . . , D respectively.
The mixing is performed through multiplying the column matrix MC or M j

A ∈ RP×d of centers or each axes with the
Cholesky decomposition of CC or CiA. To incorporate center-axes correlation, we scale each center vector u0 by a factor of
(1 + ψ · q) where q ∼ N(0, 1).

Labels. For P manifolds with manifold size M , the P labels are randomly sampled from a uniform distribution on {±1}.
Each label is associated with M data points in the individual manifold. When learning with binary cross entropy, the labels
are reassigned as {0, 1} during loss and gradient computation.

D.1.2. 2-LAYER NEURAL NETWORK ARCHITECTURE

The model architecture we consider is similar to the architecture mentioned in Appendix C.

Let d ∈ N be the input data dimension, N ∈ N be the number of hidden neurons, K ∈ N be the number of linear readouts,
α ∈ R+ be the scaling factor of the readout weights.

Let W =W0 ∈ RN×d be the initial weight matrix of a fully connected 2-layer neural network. Let {ai0}i∈[K] be a list of
initial readout weights where ai0 ∈ RN . Let σ(·) : R→ R be a non-linear activation function, e.g. ReLU or tanh.

The feature of an input vector is defined as ϕ(x) = σ(Wx). The 2-layer neural network parameterized by W and ai is
defined as

f(W,ai;x) =
α√
N

a⊤ϕ(x)

where the label prediction for data point x is sgn(f(x)) when learning with the mean squared error loss function. When
learning with binary cross entropy loss function, we use {0, 1} as labels and ς(f(x)) as prediction instead, where ς is the
standard sigmoid function.
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D.1.3. LEARNING RULE

Loss function and gradient update. Let η ∈ R+ be the learning rate of the weight matrix, c ∈ R+ be the scaling factor
of the readout learning rate, and let {(xi, yi)}i∈[PM ] be the collection of training data, where P is the number of manifolds
and M is the manifold size.

We consider gradient descent over the loss function

L(f) = 1

α2

1

PM

∑
i∈[PM ]

ℓ(f(xi), yi)

where ℓ : R× {±1} → R is either the mean squared error (MSE)

ℓMSE(z, y) =
1

2
(z − y)2

or l : R× {0, 1} → R is the binary cross entropy (BCE)

ℓBCE(z, y) = y · log(1 + e−z) + (1− y) · log(1 + ez)

Mean squared error. For the weight matrix, the gradient update with learning rate η > 0 is Wt+1 =Wt + ηGt where

Gt =
1

α2

1

PM

∑
i∈[PM ]

1

K

∑
j∈[K]

[
(yi −

α√
N

ajt
⊤
σ(Wtxi))

α√
N

ajt ⊙ σ′(Wtxi)

]
x⊤
i

and σ′(·) denotes the first order derivative of σ(·). For each linear readout, the gradient update is at+1 = at + cηgt where

gt =
1

α2

1

PM

∑
i∈[PM ]

[
yi −

α√
N

a⊤t σ(Wtxi)

]
α√
N
σ(Wtxi)

Note that the α−2 multiplier on the loss function to ensure common convergence time when α → ∞ as mentioned in
(Geiger et al., 2020).

Binary cross entropy. For the weight matrix, the gradient update with learning rate η > 0 is Wt+1 =Wt + ηGt where

Gt =
1

α2

1

PM

∑
i∈[PM ]

1

K

∑
j∈[K]

[
(yi − ς[

α√
N

ajt
⊤
σ(Wtxi)])

α√
N

ajt ⊙ σ′(Wtxi)

]
x⊤
i

where ς denotes the standard sigmoid function and σ denotes the activation function. For each linear readout, the gradient
update is at+1 = at + cηgt where

gt =
1

α2

1

PM

∑
i∈[PM ]

[
yi − ς[

α√
N

a⊤t σ(Wtxi)]

]
α√
N
σ(Wtxi)

If not otherwise noted, we conduct experiments with the MSE loss function and ReLU activation function by default.

A Note on Learning rate. We define η̄ = ηα−1 as the normalized effective learning rate. During training, We implicitly
scale the learning rate η by a factor of

√
N in the experiments to enter the rich regime as mentioned in (Ba et al., 2022).

D.1.4. TRAINING

For each 2-layer neural network experiment conducted in the paper, forty random seeds are chosen from 0 to 39000 with an
interval of 1000 to train forty models in parallel for 105 epochs. All training are conducted on the Flatiron Institute high
performance computing clusters.

31



Feature Learning beyond the Lazy-Rich Dichotomy: Insights from Representational Geometry

D.1.5. FEATURE EXTRACTION

During analysis, fifty epochs are sampled uniformly in log-scale. For each model at checkpoint epoch t, we extract total P
size M manifold representations {Φt(xi)}i∈[PM ] associated with labels {yi}i∈[PM ]. We perform conventional analysis and
manifold capacity analysis described in Appendix A and Appendix B respectively. We will present more details in the
following experiment sections.

D.2. Capacity is a robust measure of feature learning across architecture, data, and learning rule variations

The purpose of this section is to support Section 3 by showcasing that capacity is able to quantify feature learning even
when model architecture, data distribution, and learning rule varies.

D.2.1. FEATURE ANALYSIS METHODS

Here, we briefly present the conventional feature analysis methods and capacity analysis method and how they are computed
in the experimental setup.

Representation level analysis. Activation stability is a representation level metric that intuitively captures how much
neurons are activated in hidden units. Formally, we define it as∑PM

i=1

∑N
j=1 1>0(ϕj(xi))

PMN

Another conventional method to disentangle feature learning at representation level is tracking the norm of deviation from
initial weights (Jacot et al., 2018)

∥Wt −W0∥
∥W0∥

On the other hand, the cosine similarity (Liu et al., 2024) can be used to study alignment at representation level

ΦtΦ0

∥Φt∥∥Φ0∥

where (Φt)ij = ϕt(xi) · ϕt(xj) ∈ RPM×PM is the gram matrix of features over the test data.

Kernel methods. The kernel methods for quantifying feature learning involves computing the Neural Tangent Kernel
(NTK) (Jacot et al., 2018) for each pair of test data points:

Θt(x1,x2) = ∇wtf(x1) · ∇wf(x2)

where ∇wtf denotes the total gradient of the neural network at epoch t with respect to the hidden weights Wt and readout
weights {ajt}. Note that we scale the readout contribution to the total gradient by the readout learning rate factor c ∈ R+

aforementioned. Hence,

∇wf(x) = ∇Wt
f(x) +

1

K

K∑
j=1

∇ajtf(x)

After obtaining the gram matrix Θt = Θt(xi,xj)ij ∈ RPM×PM from the test data, we can compute the NTK change
defined as

∥Θt −Θ0∥
∥Θ0∥

which can be interpreted as the relative deviation of the the kernel from initialization in the Frobenius norm metric.
Conventionally studied, NTK change disentangles lazy and feature learning, as detailed in (Jacot et al., 2018). We present
NTK change in Section 3 Figure 4 to compare it with capacity as the metric to track feature learning.

The kernel alignment can be similarly defined as the cosine similarity of initial and current NTK gram matrices:

ΘtΘ0

∥Θt∥∥Θ0∥
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which can be interpreted as the relative deviation of the kernel from initialization in terms of alignment. Kernel alignment is
also studied in (Liu et al., 2024) to disentangle lazy and feature learning.

The centered kernel alignment (Kornblith et al., 2019) is another approximation method to study kernel evolution when the
gram matrices is large:

HSIC(Θt,Θ0)√
HSIC(Θt,Θt)HSIC(Θ0,Θ0)

where

HSIC =
Tr(ΘtLΘ0L)

(n− 1)2

These kernel metrics can be readily computed from the trained models and extracted features.

Capacity and effective geometry. For more details on data-driven manifold capacity analysis, please refer to Appendix B.

Setup of Figure 4a. In Figure 4a, we showcase that the degree of feature learning is controlled by the effective learning
rate η̄ with the following standard setup:

• Data: Isotropic Gaussian manifolds with R = 0.5,M = 15.

• Model: We set σ = ReLU, N = 1500, d = 1000, P = 100,K = 1.

• Learning rule: We set ℓ = ℓMSE , η = 50, c = 0 and

α = 10/128, 10/112, 10/96, 10/80, 10/64, 10/16, 10/4, 10/1

so that the normalized effective learning rates are

η̄ = 128, 112, 96, 80, 64, 16, 4, 1

which is computed by η̄ = ηα−1

5 where the division by 5 normalizes the smallest ηα−1 to be 1.

• Training: We trained the models for 100000 epochs with 40 repetitions per parameter combination.

• Plotting: We use sample mean and 95% confidence interval for each data point.

D.3. Effective geometry reveals distinct learning dynamics

D.3.1. LEARNING STRATEGIES

Compression strategy setup In Figure 5b where the networks performs the compression strategy, we use a difficult-task
setup with higher data manifold radius and more readout tasks:

• Data: Isotropic spherical manifolds with R = 1.0, D = 8,M = 15.

• Model: We set σ = ReLU, N = 300, d = 200, P = 20,K = 27.

• Learning rule: we set ℓ = ℓMSE , α = 1, c = 0 and

η = 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150

so that the normalized effective learning rates are

η̄ = 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150.

• Training: We trained the models for 100000 epochs with 40 repetitions per parameter combination.

• Plotting: We use sample mean for each data point.

33



Feature Learning beyond the Lazy-Rich Dichotomy: Insights from Representational Geometry

Flattening strategy setup. In Figure 5b where the networks performs the flattening strategy, we use an easy-task setup
with smaller data manifold radius and very few readout tasks:

• Data: Isotropic spherical manifolds with R = 0.5, D = 8,M = 15.

• Model: We set σ = ReLU, N = 300, d = 200, P = 20,K = 3.

• Learning rule: we set ℓ = ℓMSE , α = 1, c = 0 and

η = 80, 90, 100, 110, 120, 130, 140, 150, 160, 170

so that the normalized effective learning rates are

η̄ = 80, 90, 100, 110, 120, 130, 140, 150, 160, 170.

• Training: We trained the models for 100000 epochs with 40 repetitions per parameter combination.

• Plotting: We use sample mean for each data point.

Contour plot of learning strategies. In Figure 5b and c, we use contour plots to visualize the different learning strategies
adopted by the network. We use Equation 34 in (Chung et al., 2018) to approximate capacity using effective radius and
dimension:

α =
1 +

(
1
R2
M

)
DM

The scatter points with the same color correspond to a model trained with the same normalized effective learning rate η̄ over
different epochs.

D.3.2. LEARNING STAGES

Setup. In Figure 5a, we adopt a setup with moderate radius and number of readout tasks that shows clean learning stages:

• Data: Isotropic spherical manifolds with R = 1, D = 8,M = 15.

• Model: We set σ = ReLU, N = 300, d = 200, P = 20,K = 5.

• Learning rule: we set ℓ = ℓMSE , η = 10, α = 1, c = 0 so that the normalized effective learning rate is η̄ = 10.

• Training: We trained the models for 100000 epochs with 40 repetitions per parameter combination.

• Plotting: We use sample mean for each data point.

E. Deep Neural Networks
E.1. Experimental setup

In this section, we provide detailed information about the experimental setup for deep neural networks, including model
architectures, datasets, training procedure, and manifold capacity measurements.

E.1.1. MODELS

We use the VGG-11 models (Simonyan & Zisserman, 2015) for experimental results in the main paper. We also repeat
these experiments on ResNet-18 (He et al., 2016). The specific implementation follows a similar setting in (Chizat et al.,
2019) and is adapted from https://github.com/edouardoyallon/lazy-training-CNN.
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Output rescaling . As previously studied in (Chizat et al., 2019), multiplying the model outputs by a large scaling factor
β can induce lazy learning (we use the notation β instead of α in (Chizat et al., 2019) to avoid confusion with the notation
α as capacity in Equation (2) ). In this section, we use the inverse scaling factor β−1 as the parameter to control the degree
of feature learning. We define the normalized effective learning rate η = β−1. We also note several adjustments to the
common training framework to adapt to using the inverse scaling factor β−1 as the parameter to control the degree of feature
learning.

• Rescaled loss function: To adjust for using the scaling factor β, we use the rescaled loss function Lβ = L
β2 with L

denotes the loss function to accommodate for the time parameterization of the loss dynamic for large β as previously
indicated in (Chizat et al., 2019) and (Geiger et al., 2020).

• Model’s initial outputs as 0: As mentioned in (Chizat et al., 2019), for the scaling factor β to be able to control the
rate of feature learning, the model output as initialization f(W0) must be equal 0. To ensure this condition, we set
f(Wt) = h(Wt)− h(W0) with Wt be the model’s weight at training step t, h be the output of the network, and f be
the final adjusted network output.

Number of repetitions. All model measurements (train accuracy, test accuracy, activation stability, etc.) are reported
as the mean of 5 independently trained model (with different random seeds). The error bar indicates the bootstraped 95%
confidence interval calculated using seaborn.lineplot(errorbar=(’ci’, 95)).

E.1.2. DATASET

In this section, we list detailed information about the dataset used in the paper.

CIFAR-10. The CIFAR-10 dataset (Krizhevsky & Hinton, 2009) consists of 60000 32x32 colour images in 10 classes,
with 6000 images per class. There are 50000 training images and 10000 test images.

CIFAR-100. The CIFAR-100 dataset (Krizhevsky & Hinton, 2009) is similar to CIFAR-10, except that it has 100 classes
containing 600 images each. There are 500 training images and 100 testing images per class. Note that the images in
CIFAR-10 and CIFAR-100 are mutually exclusive.

CIFAR-10C. The CIFAR-10C dataset (Hendrycks & Dietterich, 2018) includes images from the CIFAR-10 evaluation
set with common corruptions such as Gaussian noise, fog, motion blur, etc. The dataset has 15 different common corruption
types, and 5 different severity levels for each corruption type.

E.1.3. TRAINING PROCEDURE

• Loss function: We follow the theoretical results and practice used in (Chizat et al., 2019) to use mean-squared error
loss to train all DNNs mentioned in the paper.

• Optimizer: We use Stochastic Gradient Descent with momentum (implemented as
torch.optim.SGD(momentum=0.9)) to train the models.

• Data augmentation: We apply the following data augmentation during training: RandomCrop(32, padding=4),
RandomHorizontalFlip.

• Learning rate and learning schedule: We follow the practice in (Chizat et al., 2019) and set initial learning rate η0 = 1.0
for VGG-11 and η0 = 0.2 for ResNet-18. The learning rate schedule is defined as ηt = η0

1+ 1
3 t

.

• Initialization: We follow the practice in (Chizat et al., 2019) to initialize the model’s weight using Xavier initialization
(Glorot & Bengio, 2010) and the bias to be 0.

• Batch size: We use batch size of 128 during training and batch size of 100 during evaluation.
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E.1.4. MANIFOLD CAPACITY MEASUREMENTS

In this section, we provide detailed information about how we define object manifolds from the model’s representations and
measure the manifold capacity and geometric properties (Chung et al., 2018).

• Features extraction: For each image, we extract the object representation from the last linear layer (dimension 512)
before the classification layer (dimension 10).

• Number of manifolds: We use 10 object manifolds for each measurement.

• Number of points per manifold: For each object manifold, we randomly sample 50 images from the interested class.

• Number of repetitions: Every capacity and geometry measurement is repeated 10 times per model instance (50 times
if we have 5 model repetitions) and we report the mean and the error bar as the bootstraped 95% confidence interval
calculated using seaborn.lineplot(errorbar=(’ci’, 95)).

E.2. Capacity quantifies the degree of feature learning in deep neural networks

Capacity and manifold geometry for VGG-11 models. In Figure 4, we show manifold capacity along with other
common metrics used to identify feature learning such as train accuracy, test accuracy, relative weight norm change, and
activation stability. In this section, we provide other manifold geometric measurements along with manifold capacity in
Figure 14.

Figure 14. Manifold capacity and geometry for VGG-11 models trained with different η

Capacity quantifies the degree of feature learning in ResNet-18 models. In section Section 3, we show that manifold
capacity can capture the degree of feature learning in DNNs, specifically in VGG models. In this section, we empirically
show this statement can also be extended to other model architectures, specifically ResNets, in Figure 15.

Capacity quantifies the degree of feature learning in VGG-11 models trained with weight regularizer. While most
theoretical work in the lazy vs rich learning literature are formulated with vanilla mean squared error (MSE) loss (Jacot
et al., 2018) (Chizat et al., 2019), in practice, MSE with weight regularizer (or weight decay) is used widely to prevent
over-fitting and improve model generalization. In Figure 16, we explore the effect of weight decay to feature learning and
demonstrate empirically that capacity can still quantify the degree of feature learning in models trained with L2-regularizer.
We implemented L2-regularizer by setting torch.optim.SGD(weight decay=0.0002). We leave further study
about the impact between the magnitude of weight regularizer and effective learning rate (and/or scaling factor) to the degree
of feature learning as a potential future direction.

E.3. Manifold capacity and manifold geometry delineate learning stages in deep neural networks

In section Section 4.2, we have demonstrated the use of effective manifold geometry to uncover hidden learning stages in
2-layer neural networks. In this section, we showed that using similar technique, we can also discover geometric learning
stages in deep neural networks as well.
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Figure 15. Manifold capacity and geometry of ResNet-18 models trained with different scale factor.

Experiment setup We used similar setup mentioned in Section E.1. In this section, to give a higher resolution
into the learning dynamic, we extracted the model checkpoint at each training step (after each training batch, with
batch size=100) instead of each training epoch (after a whole train dataset iteration).

E.4. Feature learning and downstream task: out-of-distribution generalization

In this section, we measure the performance of the models trained with different degree of feature learning (quantified by
effective learning rate η) on the downstream tasks for OOD using CIFAR-100, a dataset with no overlap with CIFAR-10, the
dataset used to train the model.

E.4.1. EXPERIMENTAL SETUP

We use linear probe (Alain & Bengio, 2016) on representation from the last linear layer (dimension 512) to measure
the performance of models trained on CIFAR-10 on the out-of-distribution dataset, CIFAR-100. Linear probes are linear
classifiers trained on top of the representation to probe how much information the representations encode about a particular
task or characteristic. This approach has been used widely in different fields including natural language processing (Belinkov
et al., 2017) and computer vision (Raghu et al., 2021).

Here we provide detailed information about how we construct the linear probes.

Optimizer. We use Adam optimizer with initial learning rate η0 = 0.1 and learning rate schedule is defined as ηt = η0
1+ 1

3 t
.

Other parameters are default Pytorch parameters.

Number of epochs. The linear probe is trained for 50 epochs, unless it is stopped early, as described by the early stop
method below.
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Figure 16. Manifold capacity and geometry of VGG-11 models with L2-regularizer trained with different scale factor.

Early stop. During training, if the validation loss is greater than the minimum validation loss so far for more than
Npatience epoch, then training is stopped. We set Npatience = 3.

E.4.2. OOD PERFORMANCE FOR RESNET-18

In Section 5.2, we demonstrate how capacity and effective manifold geometry can be used to characterize the OOD
performance of VGG-11 models trained with different effective learning rate η. In this section, we show OOD performance
and effective geometry of ResNet-18 models trained with different effective learning rate η in Figure 17. Interestingly,
unlike VGG-11, for ResNet-18, the failure of models in the ultra-rich regime is characterized by the expansion of manifold
dimension, not manifold radius.

F. Recurrent Neural Networks
F.1. Experimental Setup

In this section, we provide detailed information about the experimental setup for recurrent neural network in Section 5.1,
including model architectures, datasets, training procedure, and manifold capacity measurements.

F.1.1. DATASET

We used the package neurogym (Molano-Mazon et al., 2022) to simulate common cognitive tasks. In this paper, we
trained recurrent neural networks to perform the following cognitive tasks: perceptual decision making, context decision
making, and delay match sample. We followed the task configuration used in (Liu et al., 2024). We list detailed information
of task configuration and descriptions below.
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b Ultra-richRichLazya

Figure 17. OOD performance and effective geometric measure of ResNet-18 models trained with different scale factor.

Perceptual decision making (Britten et al., 1992) (documentation page)

• Task description: In each trial, given two noisy stimulus, the agent needs to integrate the stimulus over time to determine
which stimuli has stronger signal.

• Task configuration: We set up the task using the following parameters: {timing: {fixation: 0,
stimulus: 700, delay: 0, decision: 100}, dt: 100, seq len: 8}

Context decision making (Mante et al., 2013) (documentation page)

• Task description: In each trial, given two noisy stimulus, each has two modalities, the agent needs to integrate the
stimulus in one specific modal while ignoring the other modal. The interested modal is given by the context.

• Task configuration: We set up the task using the following parameters: {timing: {fixation: 0,
stimulus: 200, delay: 500, decision: 100}, dt: 100, seq len: 8}

Delay match sample (Miller et al., 1996) (documentation page)

• Task description: In each trial, a sample stimulus is shown during the sample period, which followed by a delay period.
Afterwards, the test stimulus is shown. The agent needs to determine whether the sample and the test stimuli are
matched.

• Task configuration: We set up the task using the following parameters: {timing: {fixation: 0, sample:
100, delay: 500, test: 100, decision: 100}, dt: 100, seq len: 8}

F.1.2. MODELS

Model architecture We consider time-continuous recurrent neural networks (RNNs) architecture that are commonly used
to model neural circuits (Liu et al., 2024; Ehrlich et al., 2021). Specifically, we consider RNNs with 1 hidden layer, ReLU
activation, Nin input units, Nhidden hidden units, and Nout output unit. Let xt ∈ RNin , yt ∈ RNout be the corresponding
input and output at time-step t. The model’s hidden representation ht and outputs ŷt at time step t can be defined by the
given equations:

ht+1 = ρht + (1− ρ)(Whσ(ht) +Wixt) (8)

ŷt =Woσ(ht) (9)
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In the above equation, Wi ∈ RNin×Nhidden , Wh ∈ RNhidden×Nhidden , Wo ∈ RNhidden×Nout . σ(.) is the non-linear
activation function, in which we used ReLU, and ρ is the decay factor which is defined by ρ = e

−dt
τ with time step dt and

time constant τ . We use Nhidden = 300 for all RNNs models.

Weight rank initialization Following the practice in (Liu et al., 2024), we initialize the recurrence weight Wh by
initializing an initial full-ranked random Gaussian matrix, and then use Singular Value Decomposition to truncate the weight
rank to the desired rank. The truncated weight matrix is then re-scaled to ensure that weight matrices with varying ranks
have the same weight norm.

F.1.3. TRAINING PROCEDURE

• Loss function: Since all three tasks that we consider are classification tasks, we use cross entropy loss.

• Optimizer: We use Stochastic Gradient Descent with momentum (implemented as torch.optim.SGD(lr=0.003,
momentum=0.9)) to train the models.

• Batch size: We use batch size of 32 for each training step.

The models are trained for 10000 iterations and all models being compared achieved similar loss and accuracy after training
(see Figure Figure 18, Figure 19, Figure 20 for more details).

F.1.4. MANIFOLD CAPACITY MEASUREMENTS

In this section, we provide detailed information about how we define object manifolds from the model’s representations and
measure the manifold capacity and geometric properties (Chung et al., 2018).

• Features extraction: We extract the representation ht (in Equation Equation 8) from the hidden layer (dimension 300)
with t being the decision period of the trial.

• Number of manifolds: The number of possible choices in the decision period of all the three tasks that we consider is 2,
so the number of manifolds are 2.

• Number of points per manifold: For each task-relevant manifold, we randomly sample 50 trials of the corresponding
ground truth choices.

• Number of repetitions: Every capacity and geometry measurement is repeated 50 times and we report the mean and the
error bar as the bootstraped 95% confidence interval calculated using seaborn.lineplot(errorbar=(’ci’,
95)).

F.2. Additional results on other cognitive tasks

In section Section 5.1, we present the results on how the initial structural connectivity bias (initialized by varying the rank
of the weight matrix) affects the feature learning regime and representational geometry of a given model in the perceptual
decision making task (also called the two-alternative forced choice task) (Britten et al., 1992). In this section, we show
more detailed results (including accuracy and loss) on the perceptual decision making task in Figure Figure 18, along with
two other cognitive tasks, which are context decision making task (Mante et al., 2013) in Figure Figure 19 and delay match
sample task (Miller et al., 1996) in Figure Figure 20.
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Figure 18. Structural connectivity bias in the two-alternative forced choice task. a. Model train and loss accuracy b. Weight change and
alignment measurements c. Manifold capacity measurements d. Effective manifold geometry measurements.

Figure 19. Structural connectivity bias in the context decision making task a. Model train and loss accuracy b. Weight change and
alignment measurements c. Manifold capacity measurements d. Effective manifold geometry measurements.

Figure 20. Structural connectivity bias in the delay mataching sample task. a. Model train and loss accuracy b. Weight change and
alignment measurements c. Manifold capacity measurements d. Effective manifold geometry measurements.
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