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ABSTRACT

Multivariate time series (MTS) data are ubiquitous in domains such as healthcare,
climate science, and industrial monitoring, but their high dimensionality, scarce
labels, and non-stationary nature pose significant challenges for conventional ma-
chine learning methods. While recent self-supervised learning (SSL) approaches
mitigate label scarcity by data augmentations or time point-based contrastive strat-
egy, they overlook the intrinsic periodic structure of MTS and fail to capture the
dynamic evolution of latent states. We propose PLanTS, a periodicity-aware self-
supervised learning framework that explicitly models irregular latent states and
their transitions. We first designed a periodicity-aware multi-granularity patching
mechanism and a generalized contrastive loss to preserve both instance-level and
state-level similarities across multiple temporal resolutions. To further capture
temporal dynamics, we design a next-transition prediction pretext task that en-
courages representations to encode predictive information about future state evo-
lution. We evaluate PLanTS across a wide range of downstream tasks—including
classification, forecasting, trajectory tracking, and anomaly detection. PLanTS
consistently improves the representation quality over existing SSL methods and
demonstrates superior computational efficiency compared to baseline methods.

1 INTRODUCTION

Multivariate time series (MTS) data are now prevalent across a wide range of domains, including
healthcare, climate science, and industrial monitoring (Zhang et al., 2018; Nguyen et al., 2017; Cook
et al., 2019). However, MTS data is inherently high-dimensional, often non-stationary, and typically
exhibit limited labeled instances, which presents significant challenges for supervised learning ap-
proaches (Montgomery et al., 2015; Cheng et al., 2015; Liu et al., 2022). In different application
settings, tasks such as classification (Ismail Fawaz et al., 2019), forecasting (Lim & Zohren, 2021)
and anomaly detection (Zamanzadeh Darban et al., 2024) often require extracting distinct and task-
specific information from the temporal signals. Training task-specific model for each objective is
not only computationally expensive but also lacks knowledge sharing across tasks.

To overcome these limitations, self-supervised learning (SSL) has emerged as a promising paradigm
for learning general-purpose representations from unlabeled MTS data (Zhang et al., 2024; Tri-
rat et al., 2024). Recent SSL methods typically rely on either handcrafted augmentations (Zheng
et al., 2024) or context-based modeling (Yue et al., 2022; Lee et al., 2024) to construct positive and
negative pairs for contrastive learning. These pairs are designed to encourage the model to learn
representations that are invariant to noise and transformation, while preserving semantic similarity.

However, the effectiveness of the representations depends on the alignment between semantic sim-
ilarity and the pairwise relationships constructed by the SSL methods (Wang et al., 2022; Demirel
& Holz, 2024). Naive pairing strategies overlook the periodic structures inherent in real-world MTS
data (Nagendra et al., 2011; Rhif et al., 2019), resulting in false positive and negative pairs that
undermine the contrastive objective and diminish downstream performance. Furthermore, existing
SSL methods generate instance-wise or timestamp-wise contrastive labels (Yue et al., 2022; Fraikin
et al., 2024; Lee et al., 2024) that ignore the latent states and their temporal transitions. This is
a critical limitation, as real-world MTS data involve non-stationary latent states whose dynamics

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

affect the observed signals over time (Tonekaboni et al., 2021). For example, in Human Activity
Recognition (HAR) tasks using wearable sensors, the motion states (e.g., walking, sitting, running)
in each individual are irregular and with variable durations (Figure 1). Similarly, identifying pa-
tients’ disease progression states using MTS clinical record data is critical for disease management
and decision making (Schulam et al., 2015; Suresh et al., 2018). In such cases, learning representa-
tions that not only discriminate between latent states but also capture the transitions between states
are essential for accurately tracking, forecasting, and utilizing MTS data.

Real-world MTS exhibit quasi-periodicity, nonstationarity, and multi-scale temporal dependencies.
Local segments capture fine-grained fluctuations, while longer windows reveal latent regime transi-
tions. Conventional point-level(Yue et al., 2022; Lee et al., 2024) or fixed-window(Tonekaboni et al.,
2021) contrastive learning fails to respect these structures, causing misaligned similarity assignments
and unstable representations under distributional shifts. Periodicity-aware multi-granularity model-
ing allows the SSL framework to (1) align patching with intrinsic rhythmicity in the data, (2) capture
latent-state structure at multiple temporal resolutions, and (3) encode both short-term dynamics and
long-term transitions.

To address the above challenges, we propose PLanTS, a Periodicity-aware Latent-state represen-
tation learning framework for robust and generalizable representation of complex, non-stationary
MTS data. PLanTS introduces a multi-granularity generalized contrastive loss guided by varied
periodic structures inferred from the input, based on the intuition that dominant periodic patterns of-
ten correspond to latent state transitions. Unlike conventional approaches that treat states as binary
positive/negative pairs, PLanTS evaluates the similarity among latent states. In addition, PLanTS
incorporates a pretext task to ensure that the learned embeddings encode predictive information of
future state transitions, thereby explicitly modeling temporal dependencies across latent states.

We conduct a series of experiments across a wide range of downstream tasks, including multi-
class and multi-label classification, forecasting, trajectory tracking, and anomaly detection. The
benchmarking is conducted on five public MTS datasets, spanning healthcare, human activity recog-
nition, energy systems, and web traffic domains. Our results demonstrate that PLanTS consis-
tently improves the representation quality over existing SSL methods and achieves the best per-
formance across diverse tasks compared to 13 baseline methods. Code is available at: https:
//anonymous.4open.science/r/ICLR_2026_PLanTS-03DF/README.md.

The key contributions of this work include:

• We propose PLanTS, a periodicity-aware, multi-granularity self-supervised learning frame-
work for representing non-stationary multivariate time series. The embedding learned by
PLanTS can be effectively applied in downstream MTS analysis tasks.

• In PLanTS, we introduce a generalized contrastive loss to effectively capture the periodic
similarity for latent state representation; we also design a next transition prediction pretext
task to model the temporal transition of latent states.

• PLanTS outperforms SOTA methods across four downstream tasks. We also demonstrated
that the embedding learned by PLanTS more accurately captured the latent states and their
transitions than baseline methods.

Motion State

Original 
Data Space

Embeddings

Figure 1: Human activity recognition tasks using wearable sensors. Background colors in the orig-
inal data space indicate ground-truth motion states. PLanTS is designed to distinguish unknown
motion states and model the dynamic transitions between them.
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2 RELATED WORK

Self-supervised learning. Self-supervised learning has emerged as a powerful paradigm for ex-
tracting informative representations from unlabeled data by formulating pretext tasks that transform
unsupervised objectives into supervised learning problems(Liu et al., 2021). In natural language pro-
cessing, common pretext tasks include next-token prediction and masked-token prediction(Devlin
et al., 2019; Rethmeier & Augenstein, 2023), while in computer vision, tasks such as solving jig-
saw puzzles(Noroozi & Favaro, 2016), predicting image rotations(Gidaris et al., 2018) and clus-
tering augmented views(Caron et al., 2018) have been widely adopted. More recently, contrastive
learning-exemplified by frameworks such as SimCLR(Chen et al., 2020) and MoCo(He et al., 2020),
has gained significant attention by constructing multiple views of the same instance and encourag-
ing alignment of positive pairs while pushing apart negative pairs based on InfoNCE loss(Oord
et al., 2018). However, many SSL methods developed for vision and language domains rely on
domain-specific inductive biases, which are not directly applicable to time series data, where peri-
odic structures and temporal continuity are critical.

Contrastive learning for time series data. Recent studies have demonstrated the effectiveness of
contrastive learning (CL) in time series representation learning. T-loss (Franceschi et al., 2019) intro-
duces a triplet-loss-based approach that employs time-based negative sampling for multivariate time
series. TSTCC (Eldele et al., 2021) proposes a temporal and contextual contrasting framework that
generates two related views via weak and strong augmentations. TF-C (Zhang et al., 2022) incorpo-
rates a time-frequency consistency mechanism to jointly learn time-domain and frequency-domain
representations. While these methods focus primarily on instance-level contrast, they often struggle
with temporally-sensitive downstream tasks such as forecasting. To address this, TS2Vec (Yue et al.,
2022) introduces a hierarchical contrastive strategy that combines instance-wise and temporal-wise
losses. T-Rep (Fraikin et al., 2024) further enhances temporal modeling by leveraging time-aware
embeddings in the pretext task. SoftCLT (Lee et al., 2024) replaces the traditional hard contrastive
objective with a soft contrastive loss. However, most existing methods neglect the inherent periodic
structures present in real-world MTS. Moreover, approaches such as SoftCLT require a precomputed
pairwise distance matrix, which becomes computationally prohibitive for long-term MTS data.

Latent state representation in time series. Latent states, such as motion states in human activity
recognition (HAR) or clinical states in healthcare, play a crucial role in characterizing the dynamics
of time series data. Learning how these states evolve over time is essential for capturing long-term
trajectories and predicting future trends. To model such latent states, TNC (Tonekaboni et al., 2021)
introduces the notion of temporal neighborhoods, treating temporally adjacent windows as positive
pairs and distant windows as negative pairs. Time2State (Wang et al., 2023) proposes an unsuper-
vised framework that applies a sliding window mechanism to extract distinguishable representations.
However, existing methods focus primarily on identifying latent states in isolation and neglect the
similarity and transitions between them. As a result, these approaches often yield coarse-grained
representations that perform well for classification but generalize poorly to other downstream tasks.

3 METHODS

The overall framework of PLanTS is illustrated in Figure 2b. PLanTS is designed to learn a represen-
tation by modeling two components: the intrinsic variation within latent states and the transitions
between states. Specifically, PLanTS consists of three main components: (1) a periodicity-aware
multi-granularity patching module, which decomposes MTS data into structured patches aligned
with dominant periodic patterns; (2) two dedicated encoders, namely the Latent State Encoder (LSE)
and the Dynamic Transition Encoder (DTE), that complementarily capture the representations of
within-state variations and state-to-state transitions; and (3) a fusion module, which integrates the
latent state and transition embeddings for downstream tasks.

3.1 NOTATIONS AND PROBLEM DEFINITION

Consider a multivariate time series input X = {x1,x2, ...,xN} ∈ RN×L×C , where N , L and C
denote the total number of samples, timestamps and channels respectively. The objective is to learn
a non-linear embedding function Fθ : RL×C → RL×D to project each input sample xi into a latent
representation zi ∈ RL×D, where D is the embedding dimension. In PLanTS, Fθ is composed of
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two sub-modules: the Latent State Encoder FL : RL×C → RL×Dl , which captures latent states and
is learned via a multi-granularity generalized contrastive loss; and the Dynamic Transition Encoder
FT : RL×C → RL×Dt , which models temporal transitions between latent states using a novel self-
supervised pretext task. The final representation is a concatenation of FL(xi) and FT (xi), namely,
zi =

[
FL(xi) ∥FT (xi)

]
∈ RL×D, with D = Dl +Dt.

3.2 PERIODICITY-AWARE MULTI-GRANULARITY PATCHING MECHANISM

Real-world MTS data often comprises multiple latent states, making it challenging to capture tran-
sitions between intertwined latent states. Figure 2a compares contrastive learning paradigms from
prior self-supervised learning methods with our proposed PLanTS framework. TNC (Tonekaboni
et al., 2021)formulates a fixed window-based contrastive task, defining temporally neighboring win-
dows as positives and distant ones as negatives, while TS2Vec (Yue et al., 2022) adopts a time-
point–based contrastive formulation, encouraging contextual consistency at each timestamp. How-
ever, in practice, latent states can occur at diverse time scales. The reliance on a fixed window size
or a time-point fails to capture the variability, substantially limiting applicability to real-world MTS
data. To overcome this limitation, we introduce a periodicity-aware, multi-granularity patching ap-
proach that adaptively selects window sizes based on dominant periodic structures inferred from the
input time series.

Real-world MTS data often comprises multiple latent states, making it challenging to capture tran-
sitions between intertwined latent states. Figure 2a compares contrastive learning paradigms from
prior self-supervised learning methods with our proposed PLanTS framework. TNC (Tonekaboni
et al., 2021)formulates a fixed window-based contrastive task, defining temporally neighboring win-
dows as positives and distant ones as negatives, while TS2Vec (Yue et al., 2022) adopts a time-
point–based contrastive formulation, encouraging contextual consistency at each timestamp. How-
ever, in practice, latent states can occur at diverse time scales. The reliance on a fixed window size
or a time-point fails to capture the variability, substantially limiting applicability to real-world MTS
data. To overcome this limitation, we introduce a periodicity-aware, multi-granularity patching ap-
proach that adaptively selects window sizes based on dominant periodic structures inferred from the
input time series.

Inspired by Wu et al. (2022), we employ the Fast Fourier Transform (FFT) to identify prominent
periodic patterns and determine appropriate time scales for patching. Basically, for each input X ,
we start by computing the channel-averaged amplitude spectrum:

F = Avg(Amp(FFT(X))), f1, . . . , fK = arg
Top-K
max

f∗∈[1,L3 ]
(F ), wj = ⌈ L

fj
⌉ (1)

Here, FFT(·) denotes the Fourier transform applied along the temporal axis and Amp(·) computes
the corresponding amplitude spectrum. To reduce the effect of high-frequency noise, we restrict
attention to the lower-frequency index set f∗ = {1, . . . , ⌊L/3⌋}. We then order the amplitudes in
descending magnitude, and denote fj as the frequency index attaining the j-th largest amplitudes.
Each selected frequency fj is associated with a period length wj = ⌈ L

fj
⌉, j = 1, . . . ,K, which is

subsequently used as the window size in the dynamic-granularity patching module.

Given an input multivariate time series sample xi ∈ RL×C and the set of computed window sizes
{w1, ...wK}, we treat each window size as a granularity and partition the input into non-overlapping
patches of length wk. Specifically, for granularity wk, the input is divided into Mk = ⌈ L

wk
⌉ patches,

denoted as X
(k)
i = {xk

i,1, ...,x
k
i,Mk

}, with xk
i,m ∈ Rwk×C ,m = 1, . . .Mk, denoting the m-th

patch at granularity k. Zero-padding is applied to ensure divisibility if necessary. The data patch
Xpatch

i = {X(1)
i , ..., X

(K)
i } are then fed into LSE and DTE to extract latent state representations

and dynamic transition representations.

In this setting, each granularity reflects a distinct temporal resolution. PLanTS encodes these patches
independently through the latent-state and dynamic-transition encoders, compute a contrastive loss
for each of them, then integrate the information by taking the average of all these losses. This
hierarchical structure enables the model to capture both within-state variations and between-state
transitions consistently across scales.
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Figure 2: Overview of the PLanTS framework. a) Comparison with existing contrastive mecha-
nisms for MTS. TS2Vec and SoftCLT utilize point-based contrastive learning, forming positive and
negative pairs via contextual or soft assignment strategies. TNC applies a hard contrastive mecha-
nism over fixed-size windows. In contrast, PLanTS incorporates periodic structure and introduces
a multi-granularity, period-aware generalized contrastive learning framework that operates on dy-
namic latent states. b) Overall PLanTS framework.

3.3 LATENT STATES REPRESENTATION

To effectively capture latent states from multivariate time series, it is crucial to model the semantic
similarity among different states. Conventional contrastive learning falls short because it reduces
these relationships to binary labels, whereas in practical MTS data, they are continuous and hierar-
chical. We address this gap with a multi-granularity generalized contrastive loss that models both
instance-level and state-level similarities across multiple temporal resolutions.

Periodic Feature Similarity. To capture the similarities between time series segments, SoftCLT
Lee et al. (2024) relies on a precomputed dynamic time warping (DTW) distance matrix, which
is computationally prohibitive for long-term multivariate time series data. Inspired by Yang et al.
(2023), we compute Maximum Cross-Correlation (MXCorr) between time series windows in the
input space.

Unlike DTW, which explicitly aligns sequences through dynamic programming, MXCorr mea-
sures the phase-invariant similarity between windows by finding the maximal normalized cross-
correlation across possible temporal shifts. This property is particularly beneficial for quasi-periodic
signals (e.g., ECG, sensor motion), where latent states may exhibit small phase shifts. By leveraging
similarities captured through MXCorr, PLanTS effectively preserves latent state structures directly
in the raw data space, providing informative self-supervision for robust latent-state representation
learning.

Let x,y ∈ Rw×C be two MTS patches sliced using the same window size w with C channels. The
MXCorr between x and y is defined as:

MXCorr(x,y) =
1

C

C∑
c=1

max
τ∈[0,w−1]

CC(x(c),y(c); τ) (2)

, where CC(x(c),y(c); τ) represents the normalized cross-correlation between x and y shifted by
time lag τ at the c-th channel (see details in Appendix D). We implemented an efficient batch compu-
tation of MXCorr, and assessed its efficiency by comparing with SoftCLT, as detailed in Appendix E.
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Local instance-wise contrastive learning. In real-world MTS, latent states encode identity-specific
characteristics—i.e., even when two time series samples are in the same latent state, their represen-
tations should remain distinguishable due to individual variations. To capture this individual dif-
ference, PLanTS incorporates a local instance-wise contrastive loss that models variations among
samples within the same time window.

Denote ui ∈ RMk×wk×Dl as the latent state embeddings of the i-th time series sample X
(k)
i ∈

RMk×wk×C patched at k-th granularity. PlanTS treats all other samples in the batch as negative
views weighted by input-space feature similarity. Specifically, for the i-th time series sample in the
m-th window, the local instance-wise contrastive loss is formulated as:

li,mlocal = −
B∑

j=1,j ̸=i

exp(smij )∑B
j′=1,j′ ̸=i exp(s

m
ij′)

log
exp(⟨um

i · um
j ⟩)∑B

j′=1,j′ ̸=i exp(⟨um
i · um

j′ ⟩)
(3)

Here, B is batch size, smij = MXCorr(xk
i,m,xk

j,m) denotes the input-space similarity between sam-
ples i and j at the m-th window, i = 1, . . . , N ; j = 1, . . . , N ;m = 1, . . . ,Mk, and ⟨·, ·⟩ denotes
inner product. This formulation extends the InfoNCE loss Oord et al. (2018), which assigns equal
weight to all negative pairs. In contrast, our method employs a soft weighting scheme based on
input-space similarity sij , encouraging alignment between representations based on the similarity
in the original space. We prove in Appendix D that this weighted contrastive loss is equivalent to
minimizing the KL divergence between the predicted softmax distribution and the similarity-based
target distribution.

Global state-wise contrastive learning. Beyond capturing local variations in short temporal win-
dows, robust representation learning for MTS data requires modeling long-term evolutions. PLanTS
addresses this issue by introducing a global state-wise contrastive loss that explicitly captures con-
tinuous relationships among latent states along the temporal axis.

Denote um
i ∈ Rwk×Dl as the latent state representation of the m-th window from the i-th time series

sample at granularity k. Similar to the local instance-wise contrastive loss, PLanTS compares this
window against all other windows from the same sample. The global contrastive loss for the m-th
window is defined as:

li,mglobal = −
Mk∑

n=1,n̸=m

exp(aimn)∑Mk

n′=1,n′ ̸=m exp(aimn′)
log

exp(⟨um
i · un

i ⟩)∑Mk

n′=1,n′ ̸=m exp(⟨um
i · un′

i ⟩)
(4)

, where aimn = MXCorr(xk
i,m,xk

i,n) denotes the similarity between the m-th and n-th windows of
sample i at granularity k.

Overall contrastive learning loss. The overall contrastive loss for the k-th granularity is the joint
of the local and global contrastive losses:

L
(k)
l =

1

N ·Mk

N∑
i=1

Mk∑
m=1

(
α · li,mlocal + (1− α) · li,mglobal

)
(5)

, where α is a hyperparameter controlling the contribution of each loss.

3.4 DYNAMIC TRANSITION REPRESENTATIONS

Beyond learning representations that distinguish among latent states, it is essential to model the
state transitions to effectively track and forecast latent state trajectories in MTS data. To this end,
we introduce a next-transition prediction pretext task to encourage the model to encode predictive
information about latent states transition.

Next transition prediction. In real-world MTS data, temporal variations often manifest as shifts
between latent states. For example, fluctuations in a patient’s vital signs may reflect disease progres-
sion, which can be viewed as state transitions. To model such dynamics, we propose a next-transition
prediction task that aims at forecasting future transitions conditioned on both the current latent state
and its dynamic transition representation.
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Given a time series sample X(k)
i ∈ RMk×wk×C at k-th granularity, The Dynamic Transition Encoder

FT outputs dynamic transition embedding: vi = FT (x
(k)
i ) ∈ RMk×wk×Dt . At each window m, we

concatenate the latent state representation um
i and dynamic transition representation vm

i , and feed
the result into a prediction head G : RDl+Dt → RDt , which is implemented as a two-layer MLP
with ReLU activations. The objective is to minimize the mean squared error (MSE) between the
predicted next transition and the ground-truth transition at window m+ 1:

L
(k)
t =

1

N · (Mk − 1)

N∑
i=1

Mk−1∑
m=1

∣∣G (concat(um
i ,vm

i ))− vm+1
i

∣∣2 (6)

This loss term encourages the model to encode the predictable transitions between latent states,
enabling temporal-aware representational learning of MTS data.

Final Objective. The overall loss function of PLanTS combines both the loss terms of latent state
representation and dynamic transition representation across all granularities:

L =
1

K

K∑
k=1

(
λL

(k)
l + (1− λ)L

(k)
t

)
(7)

, where λ is a hyperparameter controlling the contribution of each loss.

4 EXPERIMENTS

To evaluate the performance of PLanTS, We conduct a series of experiments across diverse down-
stream tasks for MTS: (1) multi-class classification, (2) multi-label classification, (3) forecasting,
and (4) anomaly detection (see details in Appendix F). In addition, we perform ablation studies to
assess the contribution of each core component in PLanTS. Finally, we analyze the temporal tra-
jectories of the learned representations to better understand how latent state transitions are captured
and encoded in the representation space. Detailed experimental setups, additional results, and further
analysis are provided in the Appendix B.

4.1 MULTI-CLASS CLASSIFICATION

We evaluate the instance-level representations learned by PLanTS on 30 benchmark datasets from
the UEA multivariate time series classification archive Bagnall et al. (2018), covering diverse do-
mains such as healthcare, sensor systems, speech, and human activity recognition. We compare
PLanTS with 9 SOTA self-supervised learning baselines: DTW Chen et al. (2013), TST Zerveas
et al. (2021), TS-TCC Eldele et al. (2021), T-Loss Franceschi et al. (2019), TNC Tonekaboni et al.
(2021), TS2Vec Yue et al. (2022), CSLLiang et al. (2023), T-Rep Fraikin et al. (2024), and SoftCLT
Lee et al. (2024). Following the evaluation protocol of TS2Vec, we train an SVM classifier with an
RBF kernel on top of the learned representations to perform classification.

The evaluation results are summarized in Table 1 and the full results are provided in Appendix G.
We report the average rank (AR) of each algorithm across all datasets and the number of first-place
finishes. For each pairwise comparison, we also compute the counts of datasets in which PLanTS
wins, ties, or loses (W/T/L) against each counterpart. Statistical significance is assessed using the
Wilcoxon signed-rank test, and the corresponding p-values (p-val) are reported. PLanTS achieves
consistent and substantial improvements over all baselines, increasing average classification accu-
racy by 4.35% over TS2Vec and by 3.90% and 3.15% over T-Rep and CSL, respectively. PLanTS
significantly outperforms all competing methods on the UEA datasets (p-value < 0.05 under most
circumstances). It also achieves the highest number of first-place finishes, underscoring its strong
performance on MTS classification.

4.2 MULTI-LABEL CLASSIFICATION

Unlike multi-class classification, multi-label classification does not assume class exclusivity, where
multiple conditions can occur simultaneously. Thus, it provides a more realistic and stringent evalu-
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Table 1: Summary of classification results on the 30 UEA MTS archive.
Method Avg. Acc. Avg. Rank Ranks 1st Avg. Diff. (%) W/T/L Wilcoxon P-value

DTW 0.650 5.862 1 9.214 21/1/7 0.001
TST 0.617 6.900 2 10.863 24/2/4 0
TS-TCC 0.668 5.633 4 6.463 20/2/8 0.001
T-Loss 0.658 4.833 5 7.670 17/4/9 0.009
TNC 0.670 5.767 2 5.640 23/3/4 0
TS2Vec 0.690 5.100 3 5.063 21/0/9 0.003
T-Rep 0.693 4.667 4 5.430 18/5/7 0.036
SoftCLT 0.709 4.481 5 4.544 16/1/10 0.033
CSL 0.698 4.867 7 4.544 18/0/12 0.089

PLanTS 0.720 3.333 8 – – –

Table 2: Performance comparison on PTB-XL multi-label classification tasks
Task Method Accuracy F1 Score AUROC

Diagnostic

Ts2Vec 0.447 0.594 0.825
T-rep 0.440 0.558 0.836
SimCLR + DBPM 0.458 0.583 0.806
PLanTS 0.458 0.601 0.852

Form

Ts2Vec 0.366 0.509 0.768
T-rep 0.311 0.482 0.744
SimCLR + DBPM 0.349 0.480 0.752
PLanTS 0.385 0.514 0.784

Rhythm

Ts2Vec 0.791 0.825 0.833
T-rep 0.819 0.853 0.833
SimCLR + DBPM 0.808 0.837 0.838
PLanTS 0.819 0.852 0.863

ation by requiring models to capture overlapping patterns. We evaluate PLanTS on PTB-XLWagner
et al. (2020), the largest publicly available clinical ECG waveform dataset, which includes three
multi-label classification tasks: Diagnostic (44 classes), Form (19 classes), and Rhythm (12 classes).

We formulate the evaluation protocol by training a One-vs-Rest SVM classifier with an RBF ker-
nel on top of the learned representations. We compare PLanTS against three SOTA self-supervised
learning methods: Ts2Vec, T-Rep, and DBPMLan et al. (2024), a recently proposed SSL approach
specifically designed for multi-label tasks. We employ four evaluation metrics: AUROC (macro-
averaged), accuracy, F1 score (micro-averaged), and per-class AUROC. Results are reported in Ta-
ble 2 and detailed in Appendix G.

PLanTS consistently achieves superior performance in AUROC, improving from 0.836 to 0.852
on the Diagnostic task, from 0.768 to 0.784 on the Form task, and from 0.838 to 0.863 on the
Rhythm task. For both Diagnostic and Form classification, PLanTS surpasses all baselines across
every metric, with accuracy gains from 0.447 to 0.458 and from 0.366 to 0.385, respectively. In
the Rhythm task, PLanTS attains the highest AUROC while remaining competitive in accuracy and
F1 score. Figure 3 illustrates the per-class AUROC for 10 diagnostic categories: whereas baseline
methods suffer notable drops (e.g., DBPM on “AMI,” T-Rep on “INJIL,” TS2Vec on “LAO/LAE”),
PLanTS achieves consistently high AUROC across all categories, underscoring its robustness and
reliability in capturing fine-grained clinical semantics from multivariate ECG data.

Need to mention that: in the PTB-XL experiments, we set the hyperparameter λ = 1 (see Ap-
pendix B implementation details), disabling the next-transition prediction loss in the total objective.
Because PTB-XL samples are short (10s) and do not exhibit meaningful latent transitions within
each recording, making the dynamic transition pretext task less informative.

4.3 FORECASTING

We evaluate PLanTS on the MTS forecasting task using five benchmark datasets from the ETT
suite—ETTh1, ETTh2, ETTm1, ETTm2 Zhou et al. (2021) and weather datasetMax Planck Insti-
tute for Biogeochemistry (2025). Following the standard evaluation protocol used by TS2Vec (Yue
et al., 2022), we freeze the pretrained encoder and fit a ridge regression head on top of the learned
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Figure 3: Per-class AUROC comparison on 10 selected diagnostic classes from PTB-XL.

Table 3: Forecasting performance on the ETT benchmark.

PLanTS SoftClt T-rep TS2Vec Informer TCN

Dataset MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.708 0.621 0.836 0.670 0.763 0.645 0.803 0.665 0.907 0.739 1.021 0.816
ETTh2 1.685 0.967 1.494 0.925 1.818 1.034 1.802 1.022 2.371 1.199 2.574 1.265
ETTm1 0.531 0.507 0.628 0.547 0.584 0.529 0.631 0.565 0.749 0.640 0.818 0.849
ETTm2 0.885 0.581 0.645 0.577 0.783 0.603 0.784 0.607 1.173 0.702 3.635 1.891
Weather 0.262 0.343 0.285 0.349 0.287 0.353 0.522 0.448 0.634 0.548 0.631 0.602

Avg. Rank 1.75 1.75 2.96 2.96 2.88 2.88 3.92 3.92 4.54 4.54 5.96 5.96
Ranks 1st 13 13 5 5 2 2 1 1 1 1 1 1

representations to forecast multiple future horizons and report the averaged forecasting performance
across all horizons. PLanTS is compared with SOTA methods such as TNC, TS2Vec, T-Rep, Soft-
CLT, and InformerZhou et al. (2021). The average forecasting performances for each horizon, aver-
age rank, and number of rank first over all datasets and prediction horizons are presented in Table 3
(full results are in Appendix G).

Overall, PLanTS achieves the best average performance, ranking first in 11 out of 16 settings (MSE)
and 12 out of 16 settings (MAE). It consistently outperforms baseline methods on ETTh1 and
ETTm1 evaluated by both MSE and MAE. On ETTh1 and ETTm1, PLanTS reduces the average
MSE by 7.2% and 9.1%, and reduces MAE by 3.7% and 4.2%, respectively, compared to the best-
performing baseline (T-Rep). PLanTS also achieves competitive results on ETTh2. Our results
demonstrate the PLanTS’s effectiveness in modeling fine-grained periodic and dynamic patterns for
forecasting tasks. However, PLanTS does not perform as well on ETTm2 under MSE. One reason
could be the higher level of noise and abrupt fluctuations in the ETTm2 data, which may decrease
the quality of periodicity extraction and weaken the predictive strength of latent state transitions.

4.4 TRAJECTORY TRACKING

To investigate the latent space structure and validate that PLanTS captures irregular latent states,
we evaluated it on the Human Activity Recognition (HAR) dataset from the UCI Machine Learning
Repository (Anguita et al., 2013). UCI-HAR contains smartwatch-based recordings of 30 individ-
uals performing six activities: walking, walking upstairs, walking downstairs, sitting, standing, and
lying down. Activity switches provide ground-truth latent state transitions. Following (Tonekaboni
et al., 2021), we constructed continuous trajectories by concatenating each individual’s activity seg-
ments, enabling the analysis of state transitions in a realistic and temporally consistent manner.

To demonstrate that the embeddings learned by PLanTS capture latent state transition, we visualized
the top three principal components of the learned embeddings and compared them with embeddings
from TS2Vec and SoftCLT. As shown in Figure 4, the embeddings by PLanTS have sharper tran-
sitions and more distinct activity-specific patterns. In particular, PLanTS better separates similar
motion states such as sitting and standing (marked in red and cyan in the time series sample trajec-
tory), which cannot be identified by baseline methods or be directly seen in the original MTS signals.
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Table 4: Ablation study of PLanTS in forecasting and classification benchmarks.
Forecasting (↓ MSE) Classification (↑ Accuracy)

Variant ETTh1 ETTh2 ETTm1 ETTm2 StandWalkJump Heartbeat RacketSports Handwriting

PLanTS 0.729 1.796 0.595 0.844 0.667 0.746 0.842 0.439
w/o multi-granularity patching 0.708 1.685 0.531 0.885 0.333 0.741 0.803 0.426
w/o local contrastive 0.795 1.916 0.571 0.826 0.200 0.746 0.796 0.165
w/o global contrastive 0.732 1.815 0.594 0.843 0.400 0.692 0.829 0.431
w/o NTP 0.735 1.918 0.571 0.849 0.333 0.737 0.829 0.291

The blue boxes in Figure 4 highlight two states that are clearly separated in the embedding learned
by PLanTS, but remain indistinguishable in the representations of TS2Vec and SoftCLT. Additional
results are provided in Appendix G. The results demonstrates PLanTS’s ability to model latent state
transitions—an essential property for post-hoc analysis and downstream applications in healthcare.

TS2Vec

SoftCLT

PLanTS

1 2 7 8

Figure 4: The top-3 PCs of a HAR signal trajectory encoded by TS2Vec, SoftCLT, and PlanTS. Only
the embedding learned by PLanTS captured the transition between states 1-2 and states 7-8.

4.5 ABLATION STUDY

To assess the contribution of each component in PLanTS, we conducted comprehensive ablation
studies on four forecasting datasets and four classification datasets. We compared the full version of
PLanTS with the following variations: w/o multi-granularity patching: removes the periodicity-
aware multi-granularity patching mechanism and segments inputs into non-overlapping patches us-
ing a fixed window size of 50. w/o local contrastive: disables the local instance-wise contrastive
loss by setting α = 0. w/o global contrastive: disables the global state-wise contrastive loss by
setting α = 1. w/o NTP: removes the next transition prediction pretext task by setting λ = 1.

Table 4 details the ablation results. The multi-granularity patching mechanism is critical for classi-
fication, with its removal causing large accuracy drops (e.g., –50.07% on StandWalkJump), while
a single fixed-size strategy slightly benefits forecasting (MSE reductions of 2.88–10.76% on ETT
datasets), likely due to their large periodicities. Contrastive losses and the next-transition prediction
(NTP) objective are also essential: removing the local contrastive loss yields the steepest classi-
fication declines (–60.02% on StandWalkJump, –62.41% on Handwriting), eliminating the global
loss reduces accuracy by 7.24% on Heartbeat, and discarding NTP lowers accuracy by 33.71% on
Handwriting and increases MSE by 6.79% on ETTh2.

5 CONCLUSION

We propose PLanTS, a self-supervised framework for learning latent state representations in non-
stationary MTS data. To capture irregular latent states, we introduce a periodicity-guided multi-
granularity contrastive loss that preserves both instance-level and state-level similarities across mul-
tiple temporal resolutions. To further model state transitions, we design a next-transition prediction
pretext task that encourages the representations to encode predictive transition dynamics. Extensive
experiments across classification, forecasting, trajectory tracking, and anomaly detection demon-
strate consistent performance improvements. PLanTS effectively encodes, tracks, and predicts latent
states, making it broadly applicable to domains such as healthcare and human activity monitoring.
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REPRODUCIBILITY STATEMENT

The complete source code for PLanTS, can be seen in an anonymous link: https://
anonymous.4open.science/r/ICLR_2026_PLanTS-03DF/README.md and will be
made publicly available on GitHub upon publication. All datasets used in this work are publicly
available, including 30 UEA, ETT (ETTh1, ETTh2, ETTm1, ETTm2), UCI-HAR, PTB-XL and
Yahoo. We provide preprocessing scripts, configuration files, and documented hyperparameters
(Appendix B) to facilitate exact replication.
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Table 5: Dataset description.
Dataset Train Val Test Channels Length Categories

PTB-XL Diagnostic 13688 3422 4278 12 1000 44
PTB-XL Form 5745 1437 1796 12 1000 19
PTB-XL Rhythm 13459 3365 4206 12 1000 12

HAR 21 – 9 561 281,288 6

A DATASET DESCRIPTIONS

Human Activity Recognition (HAR) dataset

The UCI HAR dataset (Anguita et al., 2013)is a widely used benchmark for human activity recog-
nition tasks. It consists of sensor data collected from 30 subjects aged 19–48 while performing six
activities of daily living: walking, walking upstairs, walking downstairs, sitting, standing, and lay-
ing. Each subject wore a Samsung Galaxy S II smartphone on their waist, which recorded tri-axial
linear acceleration and angular velocity at a sampling rate of 50 Hz. The raw signals were segmented
into fixed-width windows of 2.56 seconds (128 time steps) with a 50% overlap. For each window,
a set of 561 handcrafted time- and frequency-domain features was extracted. The dataset is split
into training and test sets based on subject IDs. In our trajectory tracking experiment, we construct
continuous activity trajectories for each subject by concatenating their activity sequences based on
subject identifiers. Details are shown in Table 5.

PTB-XL ECG Database

PTB-XL is a large-scale, publicly available electrocardiogram (ECG) dataset (Wagner et al., 2020)
published by the PhysioNet initiative. It contains 21,837 clinical 12-lead ECG records, each lasting
10 seconds and sampled at 500 Hz, from 18,885 unique patients. The dataset includes diagnostic
annotations covering multiple labeling dimensions such as diagnostic, form, and rhythm classes,
enabling both single- and multi-label classification tasks. Altogether, there are 71 distinct state-
ments, comprised of 44 diagnostic, 12 rhythm, and 19 form statements, with 4 of these also serving
as diagnostic ECG statements. Based on the ECG annotation method, there are three multi-label
classification tasks: Diagnostic Classification (44 classes), Form Classification (19 classes), and
Rhythm Classification (12 classes). We use data spliting rate 0.6,0.2,0.2 to split training, testing and
validation sets and follow the data pre-processing steps from Lan et al. (2024). Table 5 provides a
summarization of PTB-XL dataset.

Yahoo dataset

Yahoo datasetRen et al. (2019) is a widely used benchmark for time-series anomaly detection, con-
taining 367 synthetic and real-valued univariate time series grouped into four subsets (A1–A4), each
labeled with point-wise anomalies. For fair comparison, we follow the same evaluation strategy as
Yue et al. (2022). The anomalies detected within a certain delay (7 steps for minutely data and 3
steps for hourly data) are considered correct. Additionally, during preprocessing, the raw time series
is differenced d times to mitigate non-stationary drift, where d is the number of unit roots estimated
using the Augmented Dickey-Fuller (ADF) test.

B IMPLEMENTATION DETAILS

The models are implemented in Python 3.12.11, using PyTorch 2.3.0 for deep learning and scikit-
learn for SVMs, linear regressions, and data pre-processing. We employ the Adam optimizer in all
experiments. Training is conducted on AWS g5 xlarge and g5 2xlarge instances, each equipped with
NVIDIA A10G GPUs, using CUDA 11.6.

Encoder architecture. The PlanTS encoder consists of two parallel components: a Latent State
Encoder (LSE) and a Dynamic Transition Encoder (DTE). Both modules follow a deep dilated
convolutional architecture. Each branch first projects the input sequence through a fully connected
layer (64 dimensions), followed by a stack of 10 residual convolutional blocks with exponentially
increasing dilation factors (from 20 to 29), GELU activations, and skip connections. LSE and DTE
outputs representations of dimension 128; both are regularized with dropout (p = 0.1).
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Table 6: Hyperparameter settings for various tasks.
Hyperparameter Classification Trajectory tracking Anomaly detection Multi-label classification Forecasting
(α, λ) (0.5,0.5),(0.9,1) (0.5,0.5) (0.9,1) (0.5,0.5)
K 3 window size=[20,30] window size=50
lr 0.0001-0.001 0.001
bs 128

Hyperparameters. The hyperparameter configurations used in our experiments are summarized in
Table 6. There are five hyperparameters used in PLanTS: α, λ, K, window size, learning rate (lr),
and batch size (bs). Here, α and λ control the relative contributions of the local contrastive, global
contrastive, and next-transition prediction losses; we report them as pairs. K denotes the number
of dominant periodicities used in the period-aware multi-granularity patching strategy. When this
mechanism is not applied, we instead report the fixed window size used. lr represents learning rate
and bs denotes batch size. For (α, λ), we select from {(0.5, 0.5), (0.9, 1)} depending on the task. We
apply the period-aware multi-granularity patching mechanism in the Classification and Trajectory
Tracking tasks, setting K = 3. For Multi-label Classification and Forecasting, we replace K with
fixed window sizes: [20, 30] for multi-label classification and 50 for forecasting. The learning rate
is fixed at 0.001 for all tasks except Classification, where we sweep from 0.0001 to 0.001 to ensure
convergence across all 30 UEA datasets. The batch size is set to 128 for all experiments.

C HYPER-PARAMETER SENSITIVITY

We evaluate the sensitivity of PLanTS to the hyperparameters α and λ (introduced in Equations 5
and 7), which control the relative weights of the loss terms. Figures 5 and 6 report the rela-
tive percentage change in MSE and MAE with respect to the best results across four forecasting
datasets. Overall, PLanTS exhibits stable performance under a wide range of hyperparameter val-
ues, demonstrating the robustness of the framework. We also observe that λ, which balances the
latent state representation loss against the dynamic transition loss, has a stronger influence on perfor-
mance—particularly on ETTh2—suggesting that accurately modeling transition dynamics is critical
for datasets with more complex temporal dependencies.
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Figure 5: Sensitivity analysis of hyper-parameters α in forecasting task.

D DERIVATION OF WEIGHTED CONTRASTIVE LOSS

The cross-correlation for each channel c is computed via FFT as:

CCc(x
(c), y(c); τ) = F−1

(
F(x(c) − x̄(c)) · F(y(c) − ȳ(c))

σ
(c)
x · σ(c)

y + ε

)
τ

(8)
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Figure 6: Sensitivity analysis of hyper-parameters λ in forecasting task.

In this section, we aim at demonstrating that minimizing our weighted contrastive loss is equivalent
to minimizing the KL divergence between the predicted softmax distribution and the similarity-
based target distribution. We define the predicted softmax distribution as Q, and define the input-
space similarity distribution measured by Maximum Cross-Correlation as P , where:

q(i, j) = Qij =
exp(um

i · um
j )∑B

j′=1,j′ ̸=i exp(u
m
i · um

j′ )
(9)

p(i, j) = Pij =
exp(smij )∑B

j′=1,j′ ̸=i exp(s
m
ij′)

(10)

Then the local instance-wise contrastive loss can be formulated as:

li,mlocal = −
B∑

j=1,j ̸=i

p(i, j) log q(i, j)

=

B∑
j=1,j ̸=i

(p(i, j) log p(i, j)− p(i, j) log q(i, j))−
B∑

j=1,j ̸=i

p(i, j) log p(i, j)

=

B∑
j=1,j ̸=i

p(i, j) log
p(i, j)

q(i, j)
−

B∑
j=1,j ̸=i

p(i, j) log p(i, j)

= KL(Q||P ) + constant

E COMPUTATIONAL COMPARISON

To show the computation efficiency of PLanTS, we compare the running time of our method with
one hard contrastive learning method Ts2Vec and one weighted contrastive learning method Spft-
CLT. All experiments are conducted on simulated data under controlled settings. For fairness, we
adopt the TS2Vec backbone architecture, set the batch size to 128 for all methods, and use a single-
granularity strategy for PLanTS in this comparison. To better investgate the effect of sequence length
L, number of samples N and number of channels C to running time, we keep two other variables
fixed (e.g., 5,000 samples, 3 channels), vary only one variable (e.g. sequence length). Runtime is
decomposed into precomputation time, training time, and total runtime (sum of both).

Tables 7 summarize the results. For all settings, TS2Vec achieves the lowest overall runtime due
to its hard contrastive strategy. When comparing PLanTS to SoftCLT, we observe a consistent
advantage in total runtime despite PLanTS operating fully end-to-end without any precomputation
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Table 7: End-to-end runtime comparison on simulated data under varying sequence length L, num-
ber of samples N , and number of channels C. All times are in seconds. Precomp: precomputation
time. Train: training time. Total: sum of both.

Varied Value Method Precomp Train Total

L

256 TS2Vec – 26.34±1.32 26.34±1.32

PLanTS – 110.93±0.61 110.93±0.61

SoftCLT 380.78±2.52 335.17±4.78 715.01±8.88

512 TS2Vec – 57.55±0.81 57.55±0.81

PLanTS – 166.26±0.27 166.26±0.27

SoftCLT 24.90±0.09 447.17±4.19 472.08±4.11

1024 TS2Vec – 98.03±3.02 98.03±3.02

PLanTS – 234.07±0.37 234.07±0.37

SoftCLT 25.99±0.17 624.23±2.40 650.23±2.57

N

100 TS2Vec – 17.62±2.80 17.62±2.80

PLanTS – 45.31±0.85 45.31±0.85

SoftCLT 1.21±0.35 91.28±7.57 92.48±7.92

500 TS2Vec – 57.55±0.81 57.55±0.81

PLanTS – 166.26±0.27 166.26±0.27

SoftCLT 24.90±0.09 447.17±4.19 472.08±4.11

1000 TS2Vec – 128.12±2.39 128.12±2.39

PLanTS – 387.98±0.13 387.98±0.13

SoftCLT 99.31±0.43 899.07±13.02 998.39±12.94

C

3 TS2Vec – 57.55±0.81 57.55±0.81

PLanTS – 166.26±0.27 166.26±0.27

SoftCLT 24.90±0.09 447.17±4.19 472.08±4.11

10 TS2Vec – 57.44±4.68 57.44±4.68

PLanTS – 170.59±0.53 170.59±0.53

SoftCLT 40.95±0.39 448.41±7.56 489.36±7.93

20 TS2Vec – 58.24±5.07 58.24±5.07

PLanTS – 178.64±0.58 178.64±0.58

SoftCLT 61.11±0.55 456.37±10.39 517.48±10.95

phase. For example, at L = 256, SoftCLT requires over 715 seconds in total—driven largely by an
expensive DTW-based precomputation step (380.78 ± 2.52 seconds)—whereas PLanTS completes
training in 110.93±0.61 seconds. This advantage is maintained for longer sequences: at L = 1024,
SoftCLT takes 650.23± 2.57 seconds, while PLanTS requires only 234.07± 0.37 seconds. Similar
trends are observed when scaling the number of samples or channels, confirming the scalability and
computational efficiency of PLanTS.

F ANOMALY DETECTION TASK

We preform point-based anomaly detection experiment on Yahoo datasetRen et al. (2019). We
follow the evaluation protocol of Yue et al. (2022). Given time series slice x1, x2, ..., xt, the target is
to determine whether the last time point xt is an anomaly. The anomaly score is computed as the L1

distance between representations with masked and unmasked input. We evaluate PLanTS under two
experiment setting: normal setting and cold-start setting, and compare results against 11 baseline
methods. For normal setting, we consider SPOT, DSPOT ,DONUT and SR. For cold-start setting,
we compare wtih FFT, Twitter-AD, Luminol and SR. We also use SSL methods:TS2Vec, T-Rep and
SoftCLT as baseline methods for both settings. The results are reported in Table 8. From the results,
PLanTS outperforms all the baseline methods in terms of F1 score. Remarkably, PLanTS improves
F1 score approximately 2% with respect to SoftCLT and TS2Vec.
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Table 8: Time series anomaly detection results.
Yahoo Normal Yahoo Cold Start

Method F1 Prec Rec Method F1 Prec Rec

SPOT 33.8 26.9 45.4 FFT 29.1 20.2 51.7
DSPOT 31.6 24.1 45.8 Twitter-AD 24.5 16.6 46.2
DONUT 2.6 1.3 82.5 Luminol 38.8 25.4 81.8
SR 5.63 45.1 74.7 SR 52.9 40.4 76.5
TS2Vec 74.5 72.9 76.2 TS2Vec 72.6 69.2 76.3
T-Rep 75.7 81.0 74.5 T-Rep 76.3 79.4 73.4
SoftCLT 74.2 72.2 76.5 SoftCLT 76.2 75.3 77.3
PLanTS 77.3 84.1 71.5 PLanTS 77.4 83.7 72.0

Table 9: Full classification results on 30 UEA datasets.
Dataset PLanTS CLS softclt T-Rep TS2Vec T-Loss TNC TS-TCC TST DTW

ArticularyWordRecognition 0.973 0.943 0.990 0.957 0.943 0.943 0.973 0.953 0.977 0.987
AtrialFibrillation 0.267 0.467 0.200 0.267 0.133 0.133 0.133 0.267 0.067 0.200
BasicMotions 1.000 0.975 0.975 1.000 0.975 1.000 0.975 1.000 0.975 0.975
CharacterTrajectories 0.983 0.985 0.992 0.983 0.987 0.993 0.967 0.985 0.975 0.989
Cricket 1.000 0.944 0.972 0.972 0.972 0.972 0.958 0.917 1.000 1.000
DuckDuckGeese 0.560 0.440 0.360 0.457 0.680 0.650 0.460 0.380 0.620 0.600
EigenWorms 0.809 0.884 – 0.884 0.847 0.840 0.840 0.779 0.748 0.618
Epilepsy 0.971 0.970 0.942 0.970 0.964 0.971 0.957 0.957 0.949 0.964
ERing 0.852 0.943 0.941 0.943 0.874 0.133 0.852 0.904 0.874 0.133
EthanolConcentration 0.274 0.264 0.278 0.333 0.308 0.205 0.297 0.285 0.262 0.323
FaceDetection 0.550 0.548 0.493 0.581 0.501 0.513 0.536 0.544 0.534 0.529
FingerMovements 0.580 0.540 0.580 0.495 0.480 0.580 0.470 0.460 0.560 0.530
HandMovementDirection 0.446 0.473 0.392 0.536 0.338 0.351 0.324 0.243 0.243 0.231
Handwriting 0.439 0.343 0.467 0.414 0.515 0.451 0.249 0.498 0.225 0.286
Heartbeat 0.746 0.742 0.722 0.725 0.683 0.741 0.746 0.751 0.746 0.717
JapaneseVowels 0.976 0.942 0.978 0.962 0.984 0.989 0.978 0.930 0.978 0.949
Libras 0.861 0.844 0.889 0.829 0.867 0.883 0.817 0.822 0.656 0.870
LSST 0.598 0.526 0.534 0.526 0.537 0.509 0.595 0.474 0.408 0.551
MotorImagery 0.570 0.525 – 0.495 0.510 0.580 0.500 0.610 0.500 0.500
NATOPS 0.917 0.854 0.944 0.804 0.928 0.917 0.911 0.822 0.850 0.883
PEMS-SF 0.803 0.813 0.723 0.800 0.682 0.675 0.699 0.734 0.740 0.711
PenDigits 0.986 0.983 0.987 0.971 0.989 0.981 0.979 0.974 0.560 0.977
PhonemeSpectra 0.247 0.257 0.223 0.232 0.233 0.222 0.207 0.252 0.085 0.151
RacketSports 0.842 0.866 0.855 0.883 0.855 0.855 0.776 0.816 0.809 0.803
SelfRegulationSCP1 0.901 0.847 0.799 0.819 0.812 0.843 0.799 0.823 0.754 0.775
SelfRegulationSCP2 0.544 0.572 0.500 0.591 0.578 0.539 0.550 0.533 0.550 0.539
SpokenArabicDigits 0.951 0.961 0.949 0.994 0.988 0.905 0.934 0.970 0.923 0.963
StandWalkJump 0.667 0.567 0.533 0.441 0.467 0.332 0.400 0.333 0.267 0.200
UWaveGestureLibrary 0.850 0.828 0.925 0.885 0.906 0.875 0.759 0.753 0.575 0.903
InsectWingbeat 0.423 0.363 – 0.328 0.466 0.156 0.469 0.264 0.105 –

Avg. Acc. 0.720 0.698 0.709 0.693 0.690 0.670 0.658 0.668 0.617 0.650
Avg. Rank 3.333 4.867 4.481 4.667 5.100 4.833 5.767 5.633 6.900 5.862
Ranks 1st 8 7 5 4 3 1 2 4 2 1
W/T/L – 18/0/12 16/1/10 18/5/7 21/0/9 17/4/9 23/3/4 20/2/8 24/2/4 21/1/7
p-value – 0.089 0.033 0.036 0.003 0.009 0.000 0.001 0.000 0.001

G FULL RESULTS

The full results of MTS classification task on 30 UEA datasets are shown in Table 9. The full results
for the forecasting task on the 4 ETT datasets are presented in Table 10. Figure 7 and Figure 8
shows the per-class AUROC for 10 selected form categories and 10 selected rhythm categories,
respectively. For trajectory tracking task, Figure 9 shows another example of comparison among top
3 principal components (PCA) of the learned embeddings of PLanTS, TS2Vec and SoftCLT.

H LLM USAGE

This paper used a Large Language Model (OpenAI ChatGPT) as a general-purpose writing assis-
tant. The LLM was employed for: (i) polishing grammar, and (ii) suggesting LaTeX formatting for
equations and tables.
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Figure 7: Per-class AUROC comparison on 10 selected form classes from PTB-XL.
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Figure 8: Per-class AUROC comparison on 10 selected rhythm classes from PTB-XL.

The LLM was not involved in research ideation, algorithm design, experiment implementation, or
result analysis. All technical contributions, models, experiments, and conclusions were conceived,
implemented, and validated solely by the authors.
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Table 10: Forecasting results on ETT datasets across multiple horizons.

PLanTS SoftClt T-rep TS2Vec Informer TCN
Dataset H MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

24 0.518 0.508 0.630 0.550 0.511 0.496 0.575 0.529 0.577 0.549 0.767 0.612
48 0.547 0.529 0.670 0.579 0.546 0.524 0.608 0.553 0.685 0.625 0.713 0.617
168 0.676 0.607 0.814 0.664 0.759 0.649 0.782 0.659 0.931 0.752 0.995 0.738
336 0.827 0.687 0.976 0.749 0.936 0.742 0.956 0.753 1.128 0.873 1.175 0.800
720 0.971 0.773 1.088 0.807 1.061 0.813 1.092 0.831 1.215 0.896 1.453 1.311

ETTh2

24 0.364 0.443 0.384 0.458 0.560 0.565 0.448 0.506 0.720 0.665 1.365 0.888
48 0.630 0.603 0.55 0.564 0.847 0.711 0.685 0.642 1.457 1.001 1.395 0.960
168 2.167 1.137 1.722 1.026 2.327 1.206 2.227 1.164 3.489 1.515 3.166 1.407
336 2.641 1.303 2.174 1.193 2.665 1.324 2.803 1.360 2.723 1.340 3.256 1.481
720 2.623 1.349 2.642 1.383 2.690 1.365 2.849 1.436 3.467 1.473 3.690 1.588

ETTm1

24 0.370 0.398 0.453 0.445 0.417 0.420 0.438 0.435 0.323 0.369 0.324 0.374
48 0.485 0.472 0.604 0.523 0.526 0.484 0.582 0.555 0.494 0.505 0.477 0.450
96 0.526 0.501 0.622 0.537 0.573 0.516 0.602 0.537 0.678 0.614 0.636 0.602
288 0.590 0.551 0.686 0.586 0.648 0.577 0.709 0.610 1.056 0.786 1.270 1.351
672 0.684 0.612 0.774 0.644 0.758 0.649 0.826 0.687 1.192 0.926 1.381 1.467

ETTm2

24 0.129 0.244 0.173 0.293 0.172 0.293 0.189 0.310 0.147 0.277 1.452 1.938
48 0.189 0.304 0.253 0.362 0.263 0.377 0.256 0.369 0.267 0.389 2.181 0.839
96 0.270 0.375 0.371 0.446 0.397 0.470 0.402 0.471 0.317 0.411 3.921 1.714
288 0.783 0.656 0.728 0.662 0.897 0.733 0.879 0.724 1.147 0.834 3.649 3.245
672 3.053 1.328 1.702 1.144 2.185 1.144 2.193 1.159 3.989 1.598 6.973 1.719

Weather

96 0.196 0.279 0.206 0.287 0.203 0.289 0.138 0.213 0.300 0.384 0.615 0.589
192 0.237 0.316 0.250 0.326 0.252 0.330 0.362 0.378 0.598 0.544 0.629 0.600
336 0.298 0.364 0.305 0.368 0.310 0.373 0.653 0.528 0.578 0.523 0.639 0.608
720 0.317 0.411 0.378 0.416 0.383 0.419 0.935 0.674 1.059 0.741 0.639 0.610

Avg. Rank 1.75 1.75 2.96 2.96 2.88 2.88 3.92 3.92 4.54 4.54 5.96 5.96
Ranks 1st 13 13 5 5 2 2 1 1 1 1 1 1

TS2Vec

SoftCLT

PLanTS

Figure 9: Trajectory of another HAR signal encoding.
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