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ABSTRACT

Multivariate time series (MTS) data are ubiquitous in domains such as healthcare,
climate science, and industrial monitoring, but their high dimensionality, scarce
labels, and non-stationary nature pose significant challenges for conventional ma-
chine learning methods. While recent self-supervised learning (SSL) approaches
mitigate label scarcity by data augmentations or time point-based contrastive strat-
egy, they overlook the intrinsic periodic structure of MTS and fail to capture the
dynamic evolution of latent states. We propose PLanTS, a periodicity-aware self-
supervised learning framework that explicitly models irregular latent states and
their transitions. We first designed a periodicity-aware multi-granularity patching
mechanism and a generalized contrastive loss to preserve both instance-level and
state-level similarities across multiple temporal resolutions. To further capture
temporal dynamics, we design a next-transition prediction pretext task that en-
courages representations to encode predictive information about future state evo-
lution. We evaluate PLanTS across a wide range of downstream tasks—including
classification, forecasting, trajectory tracking, and anomaly detection. PLanTS
consistently improves the representation quality over existing SSL methods and
demonstrates superior computational efficiency compared to baseline methods.

1 INTRODUCTION

Multivariate time series (MTS) data are now prevalent across a wide range of domains, including
healthcare, climate science, and industrial monitoring (Zhang et al., 2018;|[Nguyen et al.,[2017;|Cook
et al.,2019). However, MTS data is inherently high-dimensional, often non-stationary, and typically
exhibit limited labeled instances, which presents significant challenges for supervised learning ap-
proaches (Montgomery et al., 2015} |[Cheng et al., 2015} [Liu et al.l [2022). In different application
settings, tasks such as classification (Ismail Fawaz et al.l [2019)), forecasting (Lim & Zohren) 2021)
and anomaly detection (Zamanzadeh Darban et al.| 2024)) often require extracting distinct and task-
specific information from the temporal signals. Training task-specific model for each objective is
not only computationally expensive but also lacks knowledge sharing across tasks.

To overcome these limitations, self-supervised learning (SSL) has emerged as a promising paradigm
for learning general-purpose representations from unlabeled MTS data (Zhang et al., 2024; [Tri-
rat et al.l [2024). Recent SSL methods typically rely on either handcrafted augmentations (Zheng
et al.| 2024)) or context-based modeling (Yue et al., [2022; [Lee et al.,|2024) to construct positive and
negative pairs for contrastive learning. These pairs are designed to encourage the model to learn
representations that are invariant to noise and transformation, while preserving semantic similarity.

However, the effectiveness of the representations depends on the alignment between semantic sim-
ilarity and the pairwise relationships constructed by the SSL methods (Wang et al., 2022; Demirel
& Holz,2024). Naive pairing strategies overlook the periodic structures inherent in real-world MTS
data (Nagendra et al., 2011} [Rhif et al., [2019), resulting in false positive and negative pairs that
undermine the contrastive objective and diminish downstream performance. Furthermore, existing
SSL methods generate instance-wise or timestamp-wise contrastive labels (Yue et al.| 2022} Fraikin
et al.l 2024} [Lee et al,, [2024) that ignore the latent states and their temporal transitions. This is
a critical limitation, as real-world MTS data involve non-stationary latent states whose dynamics
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affect the observed signals over time (Tonekaboni et al., [2021). For example, in Human Activity
Recognition (HAR) tasks using wearable sensors, the motion states (e.g., walking, sitting, running)
in each individual are irregular and with variable durations (Figure [I). Similarly, identifying pa-
tients” disease progression states using MTS clinical record data is critical for disease management
and decision making (Schulam et al., 2015 Suresh et al., |2018)). In such cases, learning representa-
tions that not only discriminate between latent states but also capture the transitions between states
are essential for accurately tracking, forecasting, and utilizing MTS data.

To address the above challenges, we propose PLanTS, a Periodicity-aware Latent-state represen-
tation learning framework for robust and generalizable representation of complex, non-stationary
MTS data. PLanTS introduces a multi-granularity generalized contrastive loss guided by varied
periodic structures inferred from the input, based on the intuition that dominant periodic patterns of-
ten correspond to latent state transitions. Unlike conventional approaches that treat states as binary
positive/negative pairs, PLanTS evaluates the similarity among latent states. In addition, PLanTS
incorporates a pretext task to ensure that the learned embeddings encode predictive information of
future state transitions, thereby explicitly modeling temporal dependencies across latent states.

We conduct a series of experiments across a wide range of downstream tasks, including multi-
class and multi-label classification, forecasting, trajectory tracking, and anomaly detection. The
benchmarking is conducted on five public MTS datasets, spanning healthcare, human activity recog-
nition, energy systems, and web traffic domains. Our results demonstrate that PLanTS consis-
tently improves the representation quality over existing SSL methods and achieves the best per-
formance across diverse tasks compared to 13 baseline methods. Code is available at: https:
//anonymous.4open.science/r/ICLR_2026_PLanTS—03DF/README .md.

The key contributions of this work include:

* We propose PLanTS, a periodicity-aware, multi-granularity self-supervised learning frame-
work for representing non-stationary multivariate time series. The embedding learned by
PLanTS can be effectively applied in downstream MTS analysis tasks.

* In PLanTS, we introduce a generalized contrastive loss to effectively capture the periodic
similarity for latent state representation; we also design a next transition prediction pretext
task to model the temporal transition of latent states.

* PLanTS outperforms SOTA methods across four downstream tasks. We also demonstrated
that the embedding learned by PLanTS more accurately captured the latent states and their
transitions than baseline methods.
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Figure 1: Human activity recognition tasks using wearable sensors. Background colors in the orig-
inal data space indicate ground-truth motion states. PLanTS is designed to distinguish unknown
motion states and model the dynamic transitions between them.

2 RELATED WORK

Self-supervised learning. Self-supervised learning has emerged as a powerful paradigm for ex-
tracting informative representations from unlabeled data by formulating pretext tasks that transform
unsupervised objectives into supervised learning problems(Liu et al.,[2021)). In natural language pro-
cessing, common pretext tasks include next-token prediction and masked-token prediction(Devlin
et al., 2019; Rethmeier & Augenstein, 2023)), while in computer vision, tasks such as solving jig-
saw puzzles(Noroozi & Favaro| [2016), predicting image rotations(Gidaris et al., |2018) and clus-
tering augmented views(Caron et al.| [2018)) have been widely adopted. More recently, contrastive
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learning-exemplified by frameworks such as SiImCLR(Chen et al.,[2020) and MoCo(He et al.,|2020),
has gained significant attention by constructing multiple views of the same instance and encourag-
ing alignment of positive pairs while pushing apart negative pairs based on InfoNCE loss(Oord
et al 2018). However, many SSL methods developed for vision and language domains rely on
domain-specific inductive biases, which are not directly applicable to time series data, where peri-
odic structures and temporal continuity are critical.

Contrastive learning for time series data. Recent studies have demonstrated the effectiveness of
contrastive learning (CL) in time series representation learning. T-loss (Franceschi et al.,[2019) intro-
duces a triplet-loss-based approach that employs time-based negative sampling for multivariate time
series. TSTCC (Eldele et al.,[2021) proposes a temporal and contextual contrasting framework that
generates two related views via weak and strong augmentations. TF-C (Zhang et al.,|2022)) incorpo-
rates a time-frequency consistency mechanism to jointly learn time-domain and frequency-domain
representations. While these methods focus primarily on instance-level contrast, they often struggle
with temporally-sensitive downstream tasks such as forecasting. To address this, TS2Vec (Yue et al.,
2022) introduces a hierarchical contrastive strategy that combines instance-wise and temporal-wise
losses. T-Rep (Fraikin et al.l [2024) further enhances temporal modeling by leveraging time-aware
embeddings in the pretext task. SoftCLT (Lee et al., [2024) replaces the traditional hard contrastive
objective with a soft contrastive loss. However, most existing methods neglect the inherent periodic
structures present in real-world MTS. Moreover, approaches such as SoftCLT require a precomputed
pairwise distance matrix, which becomes computationally prohibitive for long-term MTS data.

Latent state representation in time series. Latent states, such as motion states in human activity
recognition (HAR) or clinical states in healthcare, play a crucial role in characterizing the dynamics
of time series data. Learning how these states evolve over time is essential for capturing long-term
trajectories and predicting future trends. To model such latent states, TNC (Tonekaboni et al.| [2021)
introduces the notion of temporal neighborhoods, treating temporally adjacent windows as positive
pairs and distant windows as negative pairs. Time2State (Wang et al., 2023) proposes an unsuper-
vised framework that applies a sliding window mechanism to extract distinguishable representations.
However, existing methods focus primarily on identifying latent states in isolation and neglect the
similarity and transitions between them. As a result, these approaches often yield coarse-grained
representations that perform well for classification but generalize poorly to other downstream tasks.

3 METHODS

The overall framework of PLanTS is illustrated in Figure[2b. PLanTS is designed to learn a represen-
tation by modeling two components: the intrinsic variation within latent states and the transitions
between states. Specifically, PLanTS consists of three main components: (1) a periodicity-aware
multi-granularity patching module, which decomposes MTS data into structured patches aligned
with dominant periodic patterns; (2) two dedicated encoders, namely the Latent State Encoder (LSE)
and the Dynamic Transition Encoder (DTE), that complementarily capture the representations of
within-state variations and state-to-state transitions; and (3) a fusion module, which integrates the
latent state and transition embeddings for downstream tasks.

3.1 NOTATIONS AND PROBLEM DEFINITION

Consider a multivariate time series input X = {x;,X2,...,Xy} € RNXLXC \where N, L and C
denote the total number of samples, timestamps and channels respectively. The objective is to learn
a non-linear embedding function Fy : REX¢ — REXP to project each input sample x; into a latent
representation z; € RY*? where D is the embedding dimension. In PLanTS, F is composed of
two sub-modules: the Latent State Encoder F7, : REXC — REXDi which captures latent states and
is learned via a multi-granularity generalized contrastive loss; and the Dynamic Transition Encoder
Fr : REXC 5 RIXDt which models temporal transitions between latent states using a novel self-
supervised pretext task. The final representation is a concatenation of F7,(x;) and Fr(x;), namely,
Z; = [-FL(XZ) || FT(XZ)} € RLXD, with D = D; + Dy.
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3.2 PERIODICITY-AWARE MULTI-GRANULARITY PATCHING MECHANISM

Real-world MTS data often comprises multiple latent states, making it challenging to capture transi-
tions between intertwined latent states. Unlike words in sentence, the semantic ambiguity of individ-
ual time points diminishes the performance of point-wise contrastive methods (Yue et al., 2022} Lee
et al.,|2024). To capture latent states, TNC (Tonekaboni et al.,|2021)) employs a fixed-size window-
based contrastive approach to capture the statistical changes (Figure[Za). However, in practice, latent
states can occur at diverse time scales. The reliance on a fixed window size fails to capture the vari-
ability, substantially limiting applicability to real-world MTS data. To overcome this limitation, we
introduce a periodicity-aware, multi-granularity patching approach that adaptively selects window
sizes based on dominant periodic structures inferred from the input time series.

Inspired by |Wu et al.| (2022), we employ the Fast Fourier Transform (FFT) to identify prominent
periodic patterns and determine appropriate time scales for patching. Basically, for each input X,
we start by computing the channel-averaged amplitude spectrum:

o L
F = Avg(Amp(FFT(X)). fioooo fic —arg i (). w=[F] ()
I« J

Here, FFT(-) denotes the Fourier transform applied along the temporal axis and Amp(-) computes
the corresponding amplitude spectrum. To reduce the effect of high-frequency noise, we restrict
attention to the lower-frequency index set f, = {1,...,|L/3]}. We then order the amplitudes in
descending magnitude, and denote f; as the frequency index attaining the j-th largest amplitudes.
Each selected frequency f; is associated with a period length w; = (%], j=1,..., K, whichis

subsequently used as the window size in the dynamic-granularity patching module.

Given an input multivariate time series sample x; € RY*¢ and the set of computed window sizes
{wy, ...wk }, we treat each window size as a granularity and partition the input into non-overlapping
patches of length wy,. Specifically, for granularity wy, the input is divided into M}, = (w%] patches,

denoted as X*) = {xFy,oxFy b with xF € R m = 1,... My, denoting the m-th
patch at granularity k. Zero-padding is apphed to ensure divisibility if necessary. The data patch

xreteh — (x® X1 are then fed into LSE and DTE to extract latent state representations
and dynamic transition representations.

3.3 LATENT STATES REPRESENTATION

To effectively capture latent states from multivariate time series, it is crucial to model the semantic
similarity among different states. Conventional contrastive learning falls short because it reduces
these relationships to binary labels, whereas in practical MTS data, they are continuous and hierar-
chical. We address this gap with a multi-granularity generalized contrastive loss that models both
instance-level and state-level similarities across multiple temporal resolutions.

Periodic Feature Similarity. To capture the similarities between time series segments, SoftCLT
Lee et al.| (2024) relies on a precomputed dynamic time warping (DTW) distance matrix, which
is computationally prohibitive for long-term multivariate time series data. Inspired by [Yang et al.
(2023), we avoid explicit alignment by computing Maximum Cross-Correlation (MXCorr) between
time series windows in the input space. MXCorr provides an efficient approximation of latent state
similarity while preserving temporal structure.

Let x,y € R”*% be two MTS patches sliced using the same window size w with C' channels. The
MXCorr between x and y is defined as:

MXCorr(x,y) =5 Z max CC(x (C);’T) 2)

T€[0,w—1]

, where CC(X(C)7 y(©); 7) represents the normalized cross-correlation between x and y shifted by
time lag 7 at the c-th channel (see details in Appendix D). We implemented an efficient batch compu-
tation of MXCorr, and assessed its efficiency by comparing with SoftCLT, as detailed in Appendix[E]
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Figure 2: Overview of the PLanTS framework. a) Comparison with existing contrastive mecha-
nisms for MTS. TS2Vec and SoftCLT utilize point-based contrastive learning, forming positive and
negative pairs via contextual or soft assignment strategies. TNC applies a hard contrastive mecha-
nism over fixed-size windows. In contrast, PLanTS incorporates periodic structure and introduces
a multi-granularity, period-aware generalized contrastive learning framework that operates on dy-
namic latent states. b) Overall PLanTS framework.

Local instance-wise contrastive learning. In real-world MTS, latent states encode identity-specific
characteristics—i.e., even when two time series samples are in the same latent state, their represen-
tations should remain distinguishable due to individual variations. To capture this individual dif-
ference, PLanTS incorporates a local instance-wise contrastive loss that models variations among
samples within the same time window.

® e
patched at k-th granularity. PlanTS treats all other samples in the batch as negative
views weighted by input-space feature similarity. Specifically, for the i-th time series sample in the
m-th window, the local instance-wise contrastive loss is formulated as:

Denote u; € RMexwixDi a5 the latent state embeddings of the i-th time series sample X
RMk Xwpg X C

B m m m
. S u; - u;
lz,m N Z eXp( 1]) IOg eXp(< % J >)

local — B B
. oL D=1, OXP(ST) Doy s exp ({0 - ufh))

3)

Here, B is batch size, s;} = MXCorr(xf; s x;?’m) denotes the input-space similarity between sam-
ples i and j at the m-th window, ¢ = 1,...,N;j5 =1,...,N;m =1, ..., My, and (-,-) denotes
inner product. This formulation extends the InfoNCE loss |Oord et al.| (2018, which assigns equal
weight to all negative pairs. In contrast, our method employs a soft weighting scheme based on
input-space similarity s;;, encouraging alignment between representations based on the similarity
in the original space. We prove in Appendix [D| that this weighted contrastive loss is equivalent to
minimizing the KL divergence between the predicted softmax distribution and the similarity-based
target distribution.

Global state-wise contrastive learning. Beyond capturing local variations in short temporal win-
dows, robust representation learning for MTS data requires modeling long-term evolutions. PLanTS
addresses this issue by introducing a global state-wise contrastive loss that explicitly captures con-
tinuous relationships among latent states along the temporal axis.

Denote u® € R*+*Dt ag the latent state representation of the m-th window from the i-th time series
sample at granularity k. Similar to the local instance-wise contrastive loss, PLanTS compares this
window against all other windows from the same sample. The global contrastive loss for the m-th
window is defined as:
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- uk exp(al,,) exp((u}” - u}))
Leiobat = — Z e log =77 — “4)

M ;
n=1,n#m Zn’il,n/;ém exp(aznn’) Zn’:l,n/#m exp((u}" ’ u?/>)

. where a,, = MXCorr(x},,,x¥ ) denotes the similarity between the m-th and n-th windows of
sample ¢ at granularity k.

Overall contrastive learning loss. The overall contrastive loss for the k-th granularity is the joint
of the local and global contrastive losses:

N M

k 1 im §,m
Ll( = m Z Z (a ’ llocal + (1 - a) ’ lglobal) &)

i=1 m=1

, where « is a hyperparameter controlling the contribution of each loss.

3.4 DYNAMIC TRANSITION REPRESENTATIONS

Beyond learning representations that distinguish among latent states, it is essential to model the
state transitions to effectively track and forecast latent state trajectories in MTS data. To this end,
we introduce a next-transition prediction pretext task to encourage the model to encode predictive
information about latent states transition.

Next transition prediction. In real-world MTS data, temporal variations often manifest as shifts
between latent states. For example, fluctuations in a patient’s vital signs may reflect disease progres-
sion, which can be viewed as state transitions. To model such dynamics, we propose a next-transition
prediction task that aims at forecasting future transitions conditioned on both the current latent state
and its dynamic transition representation.

Given a time series sample X i(k) € RMwxwixC at k_th granularity, The Dynamic Transition Encoder

Fr outputs dynamic transition embedding: v; = Fp (xz(-k)) € RMuxwexDs - At each window m, we
concatenate the latent state representation u}* and dynamic transition representation v;", and feed
the result into a prediction head G' : RP**P¢ — RP+ which is implemented as a two-layer MLP
with ReLU activations. The objective is to minimize the mean squared error (MSE) between the

predicted next transition and the ground-truth transition at window m + 1:

N Mp—1
*) 1 m ..m m+1|2
Ly = mz Z |G (concat(uf", vi")) = v; ©)

i=1 m=1

This loss term encourages the model to encode the predictable transitions between latent states,
enabling temporal-aware representational learning of MTS data.

Final Objective. The overall loss function of PLanTS combines both the loss terms of latent state
representation and dynamic transition representation across all granularities:

1y (k) (k)
L_K;(ALI +(1— NI ) )

, where A is a hyperparameter controlling the contribution of each loss.

4 EXPERIMENTS

To evaluate the performance of PLanTS, We conduct a series of experiments across diverse down-
stream tasks for MTS: (1) multi-class classification, (2) multi-label classification, (3) forecasting,
and (4) anomaly detection (see details in Appendix [F). In addition, we perform ablation studies to
assess the contribution of each core component in PLanTS. Finally, we analyze the temporal tra-
jectories of the learned representations to better understand how latent state transitions are captured
and encoded in the representation space. Detailed experimental setups, additional results, and further
analysis are provided in the Appendix
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Table 2: Performance comparison on PTB-XL
Table 1: Summary of classification results on multi-label classification tasks

the 30 UEA MTS archive. Task Method Accuracy F1 Score AUROC
Method  Avg. Acc. Avg. Rank Ranks I Avg. Diff. (%) Ts2Vec 0.447 0.594 0825
5 . Trep 0.440 0.558 0.836
DTW 0.650 5.517 1 9.214 Diagnostic  ¢;/ /R + DBPM  0.458 0.583 0.806
TST 0.617 6.300 1 10.863 PLanT$S 0.458 0.601 0.852
TS-TCC  0.668 5333 4 6.463
T-Loss 0.658 4.600 4 7.670 Ts2Vec 0.366 0.509 0.768
TNC 0.670 5533 1 5.640 Form T-rep 0.311 0482 0.744
TS2Vee 0704 3533 4 5063 SimCLR + DBPM  0.349 0.480 0.752
T-Rep 0.706 4.067 10 5.430 PLanTS 0.385 0.514 0.784
SoftCLT 0.709 4222 5 4.544 Ts2Vec 0.791 0.825 0.833
PLanTS 0.720 3.400 8 _ Rhythm Tjrep 0.819 0.853 0.833
SimCLR + DBPM  0.808 0.837 0.838
PLanTS 0.819 0.852 0.863

4.1 MULTI-CLASS CLASSIFICATION

We evaluate the instance-level representations learned by PLanTS on 30 benchmark datasets from
the UEA multivariate time series classification archive |[Bagnall et al.| (2018), covering diverse do-
mains such as healthcare, sensor systems, speech, and human activity recognition. We compare
PLanTS with 8 SOTA self-supervised learning baselines: DTW Chen et al| (2013), TST [Zerveas
et al.| (2021), TS-TCC |[Eldele et al.| (2021)), T-Loss [Franceschi et al.| (2019), TNC [Tonekaboni et al.
(2021)), TS2Vec|Yue et al.| (2022)), T-Rep |[Fraikin et al.[(2024)), and SoftCLT |Lee et al.| (2024). Fol-
lowing the evaluation protocol of TS2Vec, we train an SVM classifier with an RBF kernel on top of
the learned representations to perform classification.

The evaluation results are summarized in Table [l| and the full results are provided in Appendix
PLanTS achieves consistent and substantial improvements over all baselines, increasing average
classification accuracy by 2.3% over TS2Vec and by 2.0% and 1.6% over T-Rep and SoftCLT,
respectively. It also achieves the best average rank and the second-highest number of first-place
finishes, underscoring its strong performance on MTS classification.

4.2 MULTI-LABEL CLASSIFICATION

Unlike multi-class classification, multi-label classification does not assume class exclusivity, where
multiple conditions can occur simultaneously. Thus, it provides a more realistic and stringent evalu-
ation by requiring models to capture overlapping patterns. We evaluate PLanTS on PTB-XL Wagner
et al.| (2020), the largest publicly available clinical ECG waveform dataset, which includes three
multi-label classification tasks: Diagnostic (44 classes), Form (19 classes), and Rhythm (12 classes).

We formulate the evaluation protocol by training a One-vs-Rest SVM classifier with an RBF ker-
nel on top of the learned representations. We compare PLanTS against three SOTA self-supervised
learning methods: Ts2Vec, T-Rep, and DBPMLan et al.[(2024), a recently proposed SSL approach
specifically designed for multi-label tasks. We employ four evaluation metrics: AUROC (macro-
averaged), accuracy, F1 score (micro-averaged), and per-class AUROC. Results are reported in Ta-
ble]and detailed in Appendix

PLanTS consistently achieves superior performance in AUROC, improving from 0.836 to 0.852
on the Diagnostic task, from 0.768 to 0.784 on the Form task, and from 0.838 to 0.863 on the
Rhythm task. For both Diagnostic and Form classification, PLanTS surpasses all baselines across
every metric, with accuracy gains from 0.447 to 0.458 and from 0.366 to 0.385, respectively. In
the Rhythm task, PLanTS attains the highest AUROC while remaining competitive in accuracy and
F1 score. Figure [3]illustrates the per-class AUROC for 10 diagnostic categories: whereas baseline
methods suffer notable drops (e.g., DBPM on “AMI,” T-Rep on “INJIL,” TS2Vec on “LAO/LAE”),
PLanTS achieves consistently high AUROC across all categories, underscoring its robustness and
reliability in capturing fine-grained clinical semantics from multivariate ECG data.

4.3 FORECASTING

We evaluate PLanTS on the MTS forecasting task using four benchmark datasets from the ETT
suite—ETTh1, ETTh2, ETTml, and ETTm2 Zhou et al.| (2021). We forecast multiple future hori-
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Figure 3: Per-class AUROC comparison on 10 selected diagnostic classes from PTB-XL.

Table 3: Forecasting performance on the ETT benchmark.
PLanTS SoftClt T-rep TS2Vec Informer TCN
Dataset MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.708 0.621 0.836 0.670 0.763 0.645 0.803 0.665 0.907 0.739 1.021 0.816
ETTh2 1.685 0.967 1.494 0.925 1.818 1.034 1.802 1.022 2371 1.199 2.574 1.265
ETTml 0.531 0.507 0.628 0.547 0.584 0.529 0.631 0.565 0.749 0.640 0.818 0.849
ETTm2 0.885 0.581 0.645 0.577 0.783 0.603 0.784 0.607 1.173 0.702 3.635 1.891

Avg. Rank 1.6 1.55 3.0 2.8 2.85 2.9 3.7 386 445  4.65 5.4 5.25
Rank 1°? 11 12 5 4 2 2 0 0 1 1 1 1

zons and report the averaged forecasting performance across all horizons. PLanTS is compared
with SOTA methods such as TNC, TS2Vec, T-Rep, SoftCLT, and InformerZhou et al. (2021). The
average forecasting performances for each horizon, average rank, and number of rank first over all
datasets and prediction horizons are presented in Table 3] (full results are in Appendix [G).

Overall, PLanTS achieves the best average performance, ranking first in 11 out of 16 settings (MSE)
and 12 out of 16 settings (MAE). It consistently outperforms baseline methods on ETThl and
ETTml evaluated by both MSE and MAE. On ETThl and ETTm1, PLanTS reduces the average
MSE by 7.2% and 9.1%, and reduces MAE by 3.7% and 4.2%, respectively, compared to the best-
performing baseline (T-Rep). PLanTS also achieves competitive results on ETTh2. Our results
demonstrate the PLanTS’s effectiveness in modeling fine-grained periodic and dynamic patterns for
forecasting tasks. However, PLanTS does not perform as well on ETTm2 under MSE. One reason
could be the higher level of noise and abrupt fluctuations in the ETTm?2 data, which may decrease
the quality of periodicity extraction and weaken the predictive strength of latent state transitions.

4.4 TRAJECTORY TRACKING

To investigate the latent space structure and validate that PLanTS captures irregular latent states,
we evaluated it on the Human Activity Recognition (HAR) dataset from the UCI Machine Learning
Repository (Anguita et all, 2013). UCI-HAR contains smartwatch-based recordings of 30 individ-
uals performing six activities: walking, walking upstairs, walking downstairs, sitting, standing, and
lying down. Activity switches provide ground-truth latent state transitions. Following
2021)), we constructed continuous trajectories by concatenating each individual’s activity seg-
ments, enabling the analysis of state transitions in a realistic and temporally consistent manner.

To demonstrate that the embeddings learned by PLanTS capture latent state transition, we visualized
the top three principal components of the learned embeddings and compared them with embeddings
from TS2Vec and SoftCLT. As shown in Figure ] the embeddings by PLanTS have sharper tran-
sitions and more distinct activity-specific patterns. In particular, PLanTS better separates similar
motion states such as sitting and standing (marked in red and cyan in the time series sample trajec-
tory), which cannot be identified by baseline methods or be directly seen in the original MTS signals.
The blue boxes in Figure [ highlight two states that are clearly separated in the embedding learned
by PLanTS, but remain indistinguishable in the representations of TS2Vec and SoftCLT. Additional
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Table 4: Ablation study of PLanTS in forecasting and classification benchmarks.

Forecasting (| MSE) Classification (T Accuracy)
Variant ETThl ETTh2 ETTml ETTm2 StandWalkJump Heartbeat RacketSports Handwriting
PLanTS 0.729 1.796 0.595 0.844 0.667 0.746 0.842 0.439
w/o multi-granularity patching ~ 0.708 1.685 0.531 0.885 0.333 0.741 0.803 0.426
w/o local contrastive 0.795 1.916 0.571 0.826 0.200 0.746 0.796 0.165
w/o global contrastive 0.732 1.815 0.594 0.843 0.400 0.692 0.829 0.431
w/o NTP 0.735 1.918 0.571 0.849 0.333 0.737 0.829 0.291

results are provided in Appendix [G] The results demonstrates PLanTS’s ability to model latent state
transitions—an essential property for post-hoc analysis and downstream applications in healthcare.

Time series Sample Trajecto

150
Encoding Trajectory
TS2Vec

SoftCLT

Figure 4: The top-3 PCs of a HAR signal trajectory encoded by TS2Vec, SoftCLT, and PlanTS. Only
the embedding learned by PLanTS captured the transition between states 1-2 and states 7-8.

4.5 ABLATION STUDY

To assess the contribution of each component in PLanTS, we conducted comprehensive ablation
studies on four forecasting datasets and four classification datasets. We compared the full version of
PLanTS with the following variations: w/o multi-granularity patching: removes the periodicity-
aware multi-granularity patching mechanism and segments inputs into non-overlapping patches us-
ing a fixed window size of 50. w/o local contrastive: disables the local instance-wise contrastive
loss by setting o = 0. w/o global contrastive: disables the global state-wise contrastive loss by
setting v = 1. w/o NTP: removes the next transition prediction pretext task by setting A = 1.

Table [] details the ablation results. The multi-granularity patching mechanism is critical for classi-
fication, with its removal causing large accuracy drops (e.g., —50.07% on StandWalkJump), while
a single fixed-size strategy slightly benefits forecasting (MSE reductions of 2.88-10.76% on ETT
datasets), likely due to their large periodicities. Contrastive losses and the next-transition prediction
(NTP) objective are also essential: removing the local contrastive loss yields the steepest classi-
fication declines (—60.02% on StandWalkJump, —62.41% on Handwriting), eliminating the global
loss reduces accuracy by 7.24% on Heartbeat, and discarding NTP lowers accuracy by 33.71% on
Handwriting and increases MSE by 6.79% on ETTh2.

5 CONCLUSION

We propose PLanTS$, a self-supervised framework for learning latent state representations in non-
stationary MTS data. To capture irregular latent states, we introduce a periodicity-guided multi-
granularity contrastive loss that preserves both instance-level and state-level similarities across mul-
tiple temporal resolutions. To further model state transitions, we design a next-transition prediction
pretext task that encourages the representations to encode predictive transition dynamics. Extensive
experiments across classification, forecasting, trajectory tracking, and anomaly detection demon-
strate consistent performance improvements. PLanTS effectively encodes, tracks, and predicts latent
states, making it broadly applicable to domains such as healthcare and human activity monitoring.
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REPRODUCIBILITY STATEMENT

The complete source code for PLanTS, can be seen in an anonymous link: https://
anonymous . 4open.science/r/ICLR_2026_PLanTS—-03DF/README.md and will be
made publicly available on GitHub upon publication. All datasets used in this work are publicly
available, including 30 UEA, ETT (ETThl, ETTh2, ETTml, ETTm2), UCI-HAR, PTB-XL and
Yahoo. We provide preprocessing scripts, configuration files, and documented hyperparameters
(Appendix |B) to facilitate exact replication.
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Table 5: Dataset description.

Dataset Train ~ Val ~ Test Channels Length Categories
PTB-XL Diagnostic 13688 3422 4278 12 1000 44
PTB-XL Form 5745 1437 1796 12 1000 19
PTB-XL Rhythm 13459 3365 4206 12 1000 12
HAR 21 - 9 561 281,288 6

A  DATASET DESCRIPTIONS

Human Activity Recognition (HAR) dataset

The UCI HAR dataset (Anguita et al., [2013)is a widely used benchmark for human activity recog-
nition tasks. It consists of sensor data collected from 30 subjects aged 19—48 while performing six
activities of daily living: walking, walking upstairs, walking downstairs, sitting, standing, and lay-
ing. Each subject wore a Samsung Galaxy S II smartphone on their waist, which recorded tri-axial
linear acceleration and angular velocity at a sampling rate of 50 Hz. The raw signals were segmented
into fixed-width windows of 2.56 seconds (128 time steps) with a 50% overlap. For each window,
a set of 561 handcrafted time- and frequency-domain features was extracted. The dataset is split
into training and test sets based on subject IDs. In our trajectory tracking experiment, we construct
continuous activity trajectories for each subject by concatenating their activity sequences based on
subject identifiers. Details are shown in Table 5]

PTB-XL ECG Database

PTB-XL is a large-scale, publicly available electrocardiogram (ECG) dataset (Wagner et al., [2020)
published by the PhysioNet initiative. It contains 21,837 clinical 12-lead ECG records, each lasting
10 seconds and sampled at 500 Hz, from 18,885 unique patients. The dataset includes diagnostic
annotations covering multiple labeling dimensions such as diagnostic, form, and rhythm classes,
enabling both single- and multi-label classification tasks. Altogether, there are 71 distinct state-
ments, comprised of 44 diagnostic, 12 rhythm, and 19 form statements, with 4 of these also serving
as diagnostic ECG statements. Based on the ECG annotation method, there are three multi-label
classification tasks: Diagnostic Classification (44 classes), Form Classification (19 classes), and
Rhythm Classification (12 classes). We use data spliting rate 0.6,0.2,0.2 to split training, testing and
validation sets and follow the data pre-processing steps from [Lan et al.| (2024). Table [5| provides a
summarization of PTB-XL dataset.

Yahoo dataset

Yahoo datasetRen et al.|(2019) is a widely used benchmark for time-series anomaly detection, con-
taining 367 synthetic and real-valued univariate time series grouped into four subsets (A1-A4), each
labeled with point-wise anomalies. For fair comparison, we follow the same evaluation strategy as
Yue et al.[(2022). The anomalies detected within a certain delay (7 steps for minutely data and 3
steps for hourly data) are considered correct. Additionally, during preprocessing, the raw time series
is differenced d times to mitigate non-stationary drift, where d is the number of unit roots estimated
using the Augmented Dickey-Fuller (ADF) test.

B IMPLEMENTATION DETAILS

The models are implemented in Python 3.12.11, using PyTorch 2.3.0 for deep learning and scikit-
learn for SVMs, linear regressions, and data pre-processing. We employ the Adam optimizer in all
experiments. Training is conducted on AWS g5 xlarge and g5 2xlarge instances, each equipped with
NVIDIA A10G GPUs, using CUDA 11.6.

Encoder architecture. The PlanTS encoder consists of two parallel components: a Latent State
Encoder (LSE) and a Dynamic Transition Encoder (DTE). Both modules follow a deep dilated
convolutional architecture. Each branch first projects the input sequence through a fully connected
layer (64 dimensions), followed by a stack of 10 residual convolutional blocks with exponentially
increasing dilation factors (from 29 to 29), GELU activations, and skip connections. LSE and DTE
outputs representations of dimension 128; both are regularized with dropout (p = 0.1).
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Table 6: Hyperparameter settings for various tasks.

Hyperparameter | Classification | Trajectory tracking | Anomaly detection [ Multi-label classification [ Forecasting

(o, A) (0.5,0.5),(0.9,1) | (0.5,0.5) \ 0.9,1) (0.5,0.5)

K 3 \ window size=[20,30] window size=50
Ir 0.0001-0.001 | 0.001

bs 128

Hyperparameters. The hyperparameter configurations used in our experiments are summarized in
Table @ There are five hyperparameters used in PLanTS: «, A\, K, window size, learning rate (Ir),
and batch size (bs). Here, o and A control the relative contributions of the local contrastive, global
contrastive, and next-transition prediction losses; we report them as pairs. K denotes the number
of dominant periodicities used in the period-aware multi-granularity patching strategy. When this
mechanism is not applied, we instead report the fixed window size used. Ir represents learning rate
and bs denotes batch size. For («, \), we select from {(0.5,0.5), (0.9, 1)} depending on the task. We
apply the period-aware multi-granularity patching mechanism in the Classification and Trajectory
Tracking tasks, setting K = 3. For Multi-label Classification and Forecasting, we replace K with
fixed window sizes: [20, 30] for multi-label classification and 50 for forecasting. The learning rate
is fixed at 0.001 for all tasks except Classification, where we sweep from 0.0001 to 0.001 to ensure
convergence across all 30 UEA datasets. The batch size is set to 128 for all experiments.

C HYPER-PARAMETER SENSITIVITY

We evaluate the sensitivity of PLanTS to the hyperparameters « and A (introduced in Equations [3]
and [7), which control the relative weights of the loss terms. Figures [5] and [6] report the rela-
tive percentage change in MSE and MAE with respect to the best results across four forecasting
datasets. Overall, PLanTS exhibits stable performance under a wide range of hyperparameter val-
ues, demonstrating the robustness of the framework. We also observe that A, which balances the
latent state representation loss against the dynamic transition loss, has a stronger influence on perfor-
mance—particularly on ETTh2—suggesting that accurately modeling transition dynamics is critical
for datasets with more complex temporal dependencies.
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Figure 5: Sensitivity analysis of hyper-parameters « in forecasting task.

D DERIVATION OF WEIGHTED CONTRASTIVE LOSS

The cross-correlation for each channel ¢ is computed via FFT as:
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Figure 6: Sensitivity analysis of hyper-parameters A in forecasting task.

In this section, we aim at demonstrating that minimizing our weighted contrastive loss is equivalent
to minimizing the KL divergence between the predicted softmax distribution and the similarity-
based target distribution. We define the predicted softmax distribution as (), and define the input-
space similarity distribution measured by Maximum Cross-Correlation as P, where:

exp(u" - uj')

q(i,j) = Qij = B

9
2 =10 OXP(U" - )

o exp(s?)
p(lv.j) = Pl] = B 4 m (10)
D s XD(8750)

Then the local instance-wise contrastive loss can be formulated as:

B
loea == > pli,j)logai, )
Jj=1,j#i
B B
= Y (p(i,4)logp(i, 4) — p(i, ) log a(i,j)) — Y p(i,j) log p(i, )
J=1,j#i Jj=1,j#i
¢ (i)
= > p(i,j)log i > pli,§) log p(i, 5)
J=L i R S

= KL(Q||P) + constant

E COMPUTATIONAL COMPARISON

To show the computation efficiency of PLanTS, we compare the running time of our method with
one hard contrastive learning method Ts2Vec and one weighted contrastive learning method Spft-
CLT. All experiments are conducted on simulated data under controlled settings. For fairness, we
adopt the TS2Vec backbone architecture, set the batch size to 128 for all methods, and use a single-
granularity strategy for PLanTS in this comparison. To better investgate the effect of sequence length
L, number of samples N and number of channels C' to running time, we keep two other variables
fixed (e.g., 5,000 samples, 3 channels), vary only one variable (e.g. sequence length). Runtime is
decomposed into precomputation time, training time, and total runtime (sum of both).

Tables [/| summarize the results. For all settings, TS2Vec achieves the lowest overall runtime due
to its hard contrastive strategy. When comparing PLanTS to SoftCLT, we observe a consistent
advantage in total runtime despite PLanTS operating fully end-to-end without any precomputation
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Table 7: End-to-end runtime comparison on simulated data under varying sequence length L, num-
ber of samples NV, and number of channels C. All times are in seconds. Precomp: precomputation

time. Train: training time. Total: sum of both.

Varied Value Method Precomp Train Total
256 TS2Vec - 26.34i1_32 26.34:‘:1.32
PLanTS - 110~93i0.61 110-93i0.61
SoftCLT 380.781250 335171478  715.014g8s

I 512 TS2Vec - 57-55i0.81 57~55i0‘81
PLanTS — 166.26i027 166.26:|:0,27
SoftCLT 24.9040.09 447174419 472.08 4411

1024 TS2Vec - 98.03:‘:3_02 98.03:‘:3,02
PLanTS - 234.07:|:0.37 234.07:|:0_37
SoftCLT 25.9940.17 624.2345 40 650.23 49 57

100 TS2Vec - 17-62i2.80 17~62i2480
PLanTS - 45-3110.85 45~31i0485

SoftCLT 1214935 91.28 757 92.48 17,92

N 500 TS2Vec - 5755:&0‘81 57~55:t0‘81
PLanTS - 166.265:0,27 166.26:|:0_27
SoftCLT 24.9040.09 447174419 472.0844.11
1000 TS2Vec - 128.124039  128.1245 39
PLanTS - 387.98i0,13 387.98i0_13
SoftCLT  99.311p43 899.07113.02 998.39112.94

3 TS2Vec - 57-5510.81 57~55i0‘81
PLanTS — 166.26i0.27 166.26i0,27
SoftCLT 24.9040.09 447174419 472.084411

C 10 TS2Vec - 57~44:t4.68 57‘44&:4.68
PLanTS - 170.59:|:o,53 170.59:|:0_53
SoftCLT  40.95.¢.39 448411756  489.3617.93

20 TS2Vec - 58.2415_07 58~24i5407
PLanTS - 178.64i0‘58 178.64i0,58
SoftCLT 61.1140.55 456.37+10.39 517.48410.95

phase. For example, at L = 256, SoftCLT requires over 715 seconds in total—driven largely by an
expensive DTW-based precomputation step (380.78 £ 2.52 seconds)—whereas PLanTS completes
training in 110.93 +0.61 seconds. This advantage is maintained for longer sequences: at L = 1024,
SoftCLT takes 650.23 4= 2.57 seconds, while PLanTS requires only 234.07 & 0.37 seconds. Similar
trends are observed when scaling the number of samples or channels, confirming the scalability and
computational efficiency of PLanTS.

F ANOMALY DETECTION TASK

We preform point-based anomaly detection experiment on Yahoo datasetRen et al.| (2019). We
follow the evaluation protocol of |Yue et al.[(2022). Given time series slice 1, x2, ..., x4, the target is
to determine whether the last time point z; is an anomaly. The anomaly score is computed as the L
distance between representations with masked and unmasked input. We evaluate PLanTS under two
experiment setting: normal setting and cold-start setting, and compare results against 11 baseline
methods. For normal setting, we consider SPOT, DSPOT ,DONUT and SR. For cold-start setting,
we compare wtih FFT, Twitter-AD, Luminol and SR. We also use SSL methods:TS2Vec, T-Rep and
SoftCLT as baseline methods for both settings. The results are reported in Table[§] From the results,
PLanTS outperforms all the baseline methods in terms of F1 score. Remarkably, PLanTS improves
F1 score approximately 2% with respect to SoftCLT and TS2Vec.
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Table 8: Time series anomaly detection results.

Yahoo Normal Yahoo Cold Start
Method F1 Prec Rec Method F1 Prec Rec
SPOT 33.8 269 454 FFT 29.1 202 51.7

DSPOT 31.6 24.1 45.8 TwitterrAD 245 16.6 462
DONUT 2.6 1.3 825 Luminol 38.8 254 818

SR 563 451 747 SR 529 404 765
TS2Vec 745 729 762 TS2Vec 726 692 763
TRep 757 810 745 TRep 763 794 734

SoftCLT 742 722 76.5 SoftCLT 762 753 773
PLanTS 77.3 84.1 715 PLanTS 774 837 720

Table 9: Full classification results on 30 UEA datasets.

Dataset PLanTS softclt T-Rep TS2vec T-Loss TNC TS-TCC TST DTW
ArticularyWordRecognition ~ 0.973  0.990 0.968 0987  0.943 0973 0953 0977 0.987
AtrialFibrillation 0.267 0200 0354 0200 0.133 0.133 0267 0.067 0.200
BasicMotions 1.000 0975 1.000 0.975 1.000  0.975 1.000 0975 0.975
CharacterTrajectories 0.983 0992 0989  0.995 0993 0967 0985 0975 0.989
Cricket 1.000 0972 0958 0972 0972 0958 0917  1.000 1.000
DuckDuckGeese 0.560  0.360 0457 0.680  0.650 0460 0380 0.620 0.600
EigenWorms 0.809 - 0.884 0.847 0.840 0.840 0.779  0.748 0.618
Epilepsy 0971 0942 0970 0964 0971 0957 0957 0.949 0.964
ERing 0.852 0941 0943 0.874 0.133 0852 0904 0.874 0.133
EthanolConcentration 0274 0278 0333 0308 0205 0297 0.285 0262 0.323
FaceDetection 0.550 0493 0581 0501 0513 0.536 0544 0534 0.529
FingerMovements 0.580  0.580 0495 0480 0580 0470 0460  0.560 0.530
HandMovementDirection 0446 0392 0536 0338 0351 0324 0243 0.243 0.231
Handwriting 0439 0467 0414 0515 0451 0249 0498 0.225 0.286
Heartbeat 0.746  0.722 0.725 0.683  0.741 0.746  0.751  0.746 0.717
JapaneseVowels 0976 0978 0962 0984 0989 0978 0930 0978 0.949
Libras 0.861 0.889 0.829 0.867 0.883 0.817 0.822  0.656 0.870
LSST 0.598  0.534 0526 0537 0509 0595 0474 0408 0.551
MotorImagery 0.570 - 0.495 0510 0580 0.500 0.610  0.500 0.500
NATOPS 0917 0944 0804 0928 0917 0911 0.822 0.850 0.883
PEMS-SF 0.803  0.723 0.800 0.682  0.675 0.699 0.734 0.740 0.711
PenDigits 0.986  0.987 0971 0.989 0981 0979 0974 0560 0.977
PhonemeSpectra 0.247 0223 0232 0.233 0222 0207 0252 0.085 0.151
RacketSports 0.842 0.855 0883 0.855 0855 0776 0.816 0.809 0.803
SelfRegulationSCP1 0.901 0799 0819 0.812 0843 0.799 0.823 0.754 0.775
SelfRegulationSCP2 0.544  0.500 0591 0578 0539 0550 0.533 0550 0.539
SpokenArabicDigits 0951 0949 0994 0988 0905 0934 0970 0923 0.963
StandWalkJump 0.667  0.533 0441 0467 0332 0400 0333 0.267 0.200
UWaveGestureLibrary 0.850 0925 0885 0.906 0875 0.759 0.753 0.575 0.903
InsectWingbeat 0.423 - 0328 0466  0.156 0469 0264  0.105 -
Avg.Acc. 0.720  0.709 0.706  0.704  0.670 0.658  0.668  0.617 0.650
Avg. Rank 34 42 4.1 3.5 5.5 4.6 5.3 6.3 5.5
Ranks 1% 8 5 10 4 1 4 4 1 1

G FULL RESULTS

The full results of MTS classification task on 30 UEA datasets are shown in Table[0l The full results
for the forecasting task on the 4 ETT datasets are presented in Table Figure |/| and Figure
shows the per-class AUROC for 10 selected form categories and 10 selected rhythm categories,
respectively. For trajectory tracking task, Figure[0]shows another example of comparison among top
3 principal components (PCA) of the learned embeddings of PLanTS, TS2Vec and SoftCLT.
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Figure 7: Per-class AUROC comparison on 10 selected form classes from PTB-XL.
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Figure 8: Per-class AUROC comparison on 10 selected rhythm classes from PTB-XL.

LLM USAGE

This paper used a Large Language Model (OpenAl ChatGPT) as a general-purpose writing assis-
tant. The LLM was employed for: (i) polishing grammar, and (ii) suggesting LaTeX formatting for
equations and tables.

The LLM was not involved in research ideation, algorithm design, experiment implementation, or
result analysis. All technical contributions, models, experiments, and conclusions were conceived,
implemented, and validated solely by the authors.
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Table 10: Forecasting results on ETT datasets across multiple horizons.

PLanTS SoftClt T-rep TS2Vec Informer TCN
Dataset H MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0518 0.508 0.630 0.550 0.511 0.496 0.575 0.529 0.577 0.549 0.767 0.612
480 0.547 0529 0.670 0.579 0.546 0.524 0.608 0.553 0.685 0.625 0.713 0.617
ETTh1 168 0.676 0.607 0.814 0.664 0.759 0.649 0.782 0.659 0931 0.752 0.995 0.738
336 0.827 0.687 0976 0.749 0.936 0.742 0956 0.753 1.128 0.873 1.175 0.800
720 0971 0.773 1.088 0.807 1.061 0.813 1.092 0.831 1.215 0.896 1453 1311

24 0364 0.443 0384 0458 0.560 0.565 0.448 0.506 0.720 0.665 1.365 0.888
48 0.630 0.603 0.55 0.564 0.847 0.711 0.685 0.642 1457 1.001 1395 0.960
ETTh2 168 2.167 1.137 1.722 1.026 2327 1206 2227 1.164 3489 1515 3.166 1.407
336 2.641 1303 2174 1.193 2665 1324 2803 1360 2.723 1.340 3.256 1.481
720 2.623 1.349 2642 1383 2690 1365 2.849 1436 3467 1473 3.690 1.588

24 0370 0398 0453 0445 0417 0420 0438 0435 0323 0369 0324 0.374
48 0485 0472 0.604 0.523 0.526 0.484 0.582 0.555 0.494 0505 0.477 0.450
ETTml 96 0526 0.501 0.622 0537 0573 0516 0.602 0.537 0.678 0.614 0.636 0.602
288 0.590 0.551 0.686 0.586 0.648 0.577 0.709 0.610 1.056 0.786 1270 1.351
672 0.684 0.612 0.774 0.644 0.758 0.649 0.826 0.687 1.192 0926 1.381 1.467

24 0129 0.244 0.173 0293 0.172 0.293 0.189 0.310 0.147 0.277 1.452 1938
48 0189 0304 0253 0362 0.263 0377 0256 0369 0.267 0389 2.181 0.839
ETTm2 9 0270 0375 0371 0446 0397 0470 0402 0471 0317 0411 3921 1.714

Avg. Rank 1.6 1.55 3.0 2.8 2.85 29 3.7 386 445 4.65 5.4 5.25
Ranks 1st 11 12 5 4 2 2 0 0 1 1 1 1

0 50 100 150 200 250

Figure 9: Trajectory of another HAR signal encoding.
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