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Abstract

Contrastive learning demonstrates great promise for representation learning. Data augmen-
tations play a critical role in contrastive learning by providing informative views of the
data without necessitating explicit labels. Nonetheless, the efficacy of current methodolo-
gies heavily hinges on the quality of employed data augmentation (DA) functions, often
chosen manually from a limited set of options. While exploiting diverse data augmentations
is appealing, the complexities inherent in both DAs and representation learning can lead
to performance deterioration. Addressing this challenge and facilitating the systematic in-
corporation of diverse data augmentations, this paper proposes Contrastive Learning with
Consistent Representations (CoCor). At the heart of CoCor is a novel consistency metric
termed DA consistency. This metric governs the mapping of augmented input data to the
representation space. Moreover, we propose to learn the optimal mapping locations as a
function of DA. Experimental results demonstrate that CoCor notably enhances the gener-
alizability and transferability of learned representations in comparison to baseline methods.
The implementation of CoCor can be found at https://github.com/zihuwang97/CoCor.

1 Introduction

Data augmentation (DA) is widely used in supervised learning in computer vision Ho et al. (2019); Lim et al.
(2019); Cubuk et al. (2019; 2020); Li & Li (2023), achieving excellent results on popular datasets Ciregan
et al. (2012); Sato et al. (2015); Wan et al. (2013); Krizhevsky et al. (2017). DA is also a key component in
recent contrastive learning techniques Chen et al. (2020a); Tian et al. (2020b); He et al. (2020); Chen & He
(2021); Xiao et al. (2020); Lee & Shin (2023). An encoder that learns good visual representations of the input
data is trained with a contrastive loss. The contrastive loss is characterized by the following principle: in the
feature space, two views of a given data example, transformed by distinct DA functions, exhibit correlation
(similarity), whereas transformed views of different input examples manifest dissimilarity. The effectiveness
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Figure 1: (a) Left: An encoder trained with the standard contrastive loss can exhibit inconsistency, as
different views of an instance are encouraged to be represented similarly in the feature space, irrespective
of the actual difference between them. Right: A consistent encoder positions the vector of more strongly
augmented data further away from that of the raw data. Here the rings represent points with varying
similarities to the central representation vector. (b) Nearest-neighbor retrieval in the feature space on CUB-
200 Wah et al. (2011) and Flowers102 Nilsback & Zisserman (2008) using pre-trained encoders. Existing
contrastive methods He et al. (2020); Chen & He (2021), which enforce invariance to all data augmentations,
may inadvertently cluster dissimilar data closely in the feature space. However, by applying consistency,
CoCor ensures that only data sharing similar latent semantics are distributed closely in the latent space.

of the encoder, trained on unlabeled data, is pivotal to the overall performance of contrastive learning and
is contingent upon the choice of employed DAs.

To learn effective and transferable representations, numerous studies have focused on enhancing contrastive
learning by selecting suitable DAs. Chen et al. (2020a); Tian et al. (2020b); He et al. (2020); Li et al.
(2023); Wang et al. (2023); Van der Sluijs et al. (2024) have shown that combining different augmentations
with appropriate intensities can improve performance. However, these works confine augmentations to a
random composition of specific types within a limited intensity range. Contrastingly, research has indicated
that employing diverse DAs effectively enhances the model’s ability to capture the invariance of the training
data, thereby boosting the model’s performance Cubuk et al. (2020), transferability Lee et al. (2021), and ro-
bustness Lopes et al. (2019). Consequently, the exploration of diverse DAs has garnered increased attention
recently. PIRL Misra & Maaten (2020) adopts additional augmentations, SwAV Caron et al. (2020) intro-
duces multiple random resized-crops to provide the encoder with a broader range of data reviews. Moreover,
some recent works adopt combinations of stronger DAs in contrastive learning Tian et al. (2020b); Wang &
Qi (2021); Lee & Shin (2023).

While the idea of leveraging diverse data augmentations is appealing, to date, there lacks a systematic
approach for integrating a substantial number of augmentations into contrastive learning. It is crucial
to note that the intricacies of data augmentation and representation learning may lead to a performance
degradation if augmentation functions are not judiciously chosen Tian et al. (2020b); Chen et al. (2020a);
Wang & Qi (2021).

To tackle the aforementioned challenges, this paper introduces Contrastive Learning with Consistent Repre-
sentations (CoCor). First, we define a set of composite augmentations, denoted as Ωc, formed by combining
multiple basic augmentations. Each composite augmentation is represented using a composition vector that
encodes the types and frequencies of the basic augmentations employed. This composite set Ωc facilitates
the incorporation of diverse DAs, encompassing a wide range of transformation types and overall intensity.
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Crucially, we introduce the concept of consistency for data augmentations, termed DA consistency, which
imposes a desired property on the representations of views generated by various composite data augmenta-
tions. Specifically, for a given input example, a stronger data augmentation should move its feature space
view farther from the representation of the original example. In other words, the similarity in feature space
between the transformed view and the original input decreases with the strength of the data augmentation,
as depicted in Figure 1(a). An encoder failing to satisfy this property is considered inconsistent from a data
augmentation perspective.

We propose the integration of a novel consistency loss to enforce DA consistency within the representation
space of the encoder. Unlike contrastive loss, which does not account for the type or strength of the data
augmentations used Chen et al. (2020a); Tian et al. (2020b); He et al. (2020), our consistency loss strategically
guides encoder training to ensure alignment of the resultant feature space with the strength of the applied
data augmentations. As demonstrated in nearest-neighbor retrieval tasks shown in Figure 1(b), existing
contrastive learning approaches like He et al. (2020); Chen et al. (2020b); Chen & He (2021) may cluster
dissimilar views due to their agnostic to augmentation-induced data variance. However, the consistency
enforced by CoCor ensures proximity in the feature space only for data with similar latent features, while
distinctly separating variants of the data. Furthermore, our experimental studies affirm that maintaining
DA consistency is crucial for mitigating discrepancies among diverse data augmentations, thereby preventing
potential performance degradation or even dimensional collapse in the feature space Jing et al. (2021); Li
et al. (2022a).

The proposed consistency loss hinges on determining the optimal similarity between the representations of
an input example and its transformed view, a value contingent on the strength of the composite data aug-
mentation. However, this optimal similarity is not known a priori. To address this challenge, we adopt a
data-driven approach, training a neural network to map from the composition vector of each data augmenta-
tion to the desired similarity. Recognizing the monotonic relationship between similarity and augmentation
strength, we introduce and enforce a monotonicity constraint on the neural network. This constraint ensures
that stronger composite data augmentations correspond to a strictly smaller valued similarity.

The proposed Contrastive Learning with Consistent Representations (CoCor) has the following contributions:

• Systematically explore a large set of diverse composite data augmentations to improve the encoder’s
performance on various downstream tasks.

• Propose a novel concept, DA consistency, which quantifies the monotonic dependency of latent-space
similarity between an input example and its transformed view on the strength of the augmentation.

• Introduce a new consistency loss designed to train the encoder to satisfy DA consistency and to
utilize diverse augmentations without suffering inconsistency-induced performance loss.

• Train a monotonically constrained neural network for learning the optimal latent-space similarities.

With consistent representations, CoCor achieves state-of-the-art results for various downstream tasks. More-
over, it can be readily integrated into existing contrastive learning frameworks, effectively imposing DA
consistency on the encoder.

2 Related Work

Contrastive Learning demonstrates significant potential in computer vision tasks and other domains
in recent years Chen et al. (2020a); He et al. (2020); Wang et al. (2023); Caron et al. (2020); Wang et al.
(2024). It is a common practice to utilize data augmentations in forming both positive and negative pairs
of data for defining the contrastive loss Chen et al. (2020a); Oord et al. (2018). Some methods highlight
the significance of negative pairs in learning distinguishable features from the data Robinson et al. (2020);
Awasthi et al. (2022). MoCo introduces a moving-averaged encoder paired with a large negative memory
queue He et al. (2020); Misra & Maaten (2020). In contrast, Chen & He (2021); Grill et al. (2020) exclusively
learn features from positive pairs, achieving state-of-the-art performance without incorporating negative
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pairs. Furthermore, supervised contrastive methods introduce annotation-related information to learn better
representations Khosla et al. (2020); Li et al. (2022b). Recent research endeavors aim to comprehend the
effectiveness and limitations of contrastive learning via the lens of representation distribution Wang & Isola
(2020) and delve into issues such as dimensional collapse Li et al. (2022a); Jing et al. (2021).

Data Augmentation Data augmentations applied to natural images have demonstrated efficacy in en-
hancing the generalizability and robustness of models trained in supervised learning Cubuk et al. (2019;
2020); Lopes et al. (2019); Krizhevsky et al. (2017). However, in self-supervised learning Chen et al. (2020a);
He et al. (2020), careful selection of data augmentations from a limited set becomes crucial for ensuring
optimal performance. Instead of treating both views in positive pairs equally, recent proposals by Zhang &
Ma (2022); Lee et al. (2021); Zhang et al. (2022); Devillers & Lefort (2023) suggest capturing the variance
between two views caused by the application of different random augmentations, termed augmentation-aware
information. AugSelf Lee et al. (2021) achieves this by training an auxiliary network to predict the difference
between augmentations applied to generate positive pairs. LoGo Zhang et al. (2022) proposes learning the
differences between variously sized crops of each image. Zhang & Ma (2022) encodes an augmented image
along with the DA parameters using two networks, and combines the two embeddings to form a feature
vector for contrastive loss. EquiMod Devillers & Lefort (2023) trains a network to predict the representation
of an augmented view from the original data and the applied DA. While methods like InfoMin Tian et al.
(2020b) and JOAO You et al. (2021) propose searching for optimal data augmentation policies for forming
pairs in contrastive loss, their empirical studies reveal that stronger and more diverse augmentations can,
in fact, degrade encoder performance. Conversely, some recent works aim to explore the benefits of strong
augmentations Wang & Qi (2021); Caron et al. (2020); Lee & Shin (2023). However, as of now, there is
a lack of a systematic approach to leveraging diverse data augmentations while considering the impact of
augmentation strength.

3 Preliminaries

The goal of contrastive representation learning is to learn an encoder parameterized by θe that maps an
input data x ∈ Rn to an ℓ2 normalized feature vector z of dimension m in the feature space Z, i.e.,
fθe(·) : Rn → Sm−1. The encoder is trained by minimizing a contrastive loss. Specifically, it defines two
different augmented versions of the same input example as a positive pair, which are expected to have
similar representations in the feature space. Meanwhile, the encoder shall be trained to discriminate any two
instances augmented from different input examples, i.e., a negative pair, in the feature space. Minimizing
the contrastive loss pulls together positive pairs and pushes apart negative pairs Oord et al. (2018); Chen
et al. (2020a); Li et al. (2020).

4 Method

4.1 Diverse Composite Augmentations

The proposed Contrastive Learning with Consistent Representations (CoCor) improves contrastive learning
performance by exploring diverse data augmentations composed from a set of basic augmentations.
Definition 1 (Composite Data Augmentations). A composite augmentation with a length of l,
namely, A<l>

i , is defined as the composition of l randomly sampled augmentations from a given set of
Na basic augmentation functions Ωa = {a1(·), a2(·), · · · , aNa

(·)}: A<l>
i = ai(1) ◦ ai(2) ◦ · · · ai(l), where

i(k) ∈ [1, Na], k = 1, 2 · · · l.

We denote the set of all composite augmentations with a length of l by Ω<l>
c , and denote the set of all

composite augmentations with different lengths by Ωc = Ω<1>
c ∪ Ω<2>

c · · · . Our studies show that the
ordering of the basic augmentations in a composite augmentation does not have a significant impact on
performance. To simplify the discussion, we assume that composite augmentations are order invariant, e.g.,
ai ◦ aj = aj ◦ ai. We represent a composite augmentation with an unique composition vector as shown in
Figure 2(b).
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Figure 2: Overview of the Proposed Method. (a) The proposed property, DA consistency, ensures that
data augmented with stronger augmentation is positioned farther from the original data compared to a
weakly augmented view in the representation space. (b) The Monotonic Mapping Neural Network (MMNN)
predicts the optimal latent similarity between an augmented view and the original data, using augmentation
composition vectors as input. Stronger augmentation results in a smaller predicted latent similarity by the
MMNN.

Definition 2 (Composition Vector). The composition vector of a length-l composite augmentation A<l>
i

is defined as a Na-dimensional vector vi = v(A<l>
i ) ∈ NNa

0 (N0 is the set of all natural numbers), where the
jth entry vi[j] is the number of times that the basic augmentation aj is applied in A<l>

i , and
∑Na

j=1 vi[j] = l.

4.2 Data Augmentation Consistency

Data augmentation plays a crucial role in contrastive learning, requiring careful design to expose the latent
structure of the original data. However, our key observation is that the standard contrastive learning frame-
work Chen et al. (2020a); He et al. (2020); Chen & He (2021) does not inherently imply data augmentation
(DA) consistency, a fundamental property proposed by this work. In the absence of this consistency, the
encoder might simply bring views in positive pairs together in the feature space Z ⊆ Sm−1, irrespective of
the actual difference between them. However, a weakly augmented view and a strongly augmented view of an
input example may not necessarily share the same latent structure, and it could be advantageous to encode
them into different regions in the feature space, as illustrated in Figure 1 (a). In such cases, an encoder
attempting to pull positively paired views together would learn an incorrect representation distribution.

To this end, we introduce the concept of DA consistency. With the DA consistency imposed, the encoder is
trained not only to cluster positive pairs together but also to map them to their respective optimal locations
in the latent feature space Z based on the strength and types of applied augmentations. Consequently,
the encoder preserves critical information introduced by data augmentations, such as variances related to
brightness, sharpness, and rotation, as shown in Figure 2(a). This characteristic of the pre-trained encoder
enhances its performance on various downstream tasks, where such information is crucial for recognition.

We quantify a mapped feature space location using latent similarity with respect to the raw input data.
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Definition 3 (Latent Similarity). The latent similarity ld(x; f, A) of an input x, given an encoder f and
a composite augmentation A, is defined as the cosine similarity between the normalized representations of
x and A(x) in the feature space Z ⊆ Sm−1: ld(x; f, A) = f(x)T · f(A(x)).

To be DA consistent, latent-space similarities of different augmented views of the same data shall be mono-
tonically decreasing with the augmentation strength. We learn a mapping, i.e., a parameterized neural
network gθd

(·) that takes a composition vector v(A) of a composite augmentation A as input and map it
to the optimal latent similarity l∗

d(v(A)), as detailed in Section 4.3. An optimal encoder is considered to be
fully DA consistent, if its latent similarity for any given composite augmentation is considered optimal. For
encoders that are not fully DA consistent, we further define DA consistency level, as the degree at which the
learned representations are consistent in terms of data augmentation.

Definition 4 (Consistency Level). Given an encoder f , a set of composite augmentations Ωc, and a raw
input x, the DA consistency level (DACL) is define as the encoder’s deviation from optimal latent similarity:

DACL(x; f, Ωc) = EA∼Ωc [|ld(x; f, A) − l∗
d(v(A))|] (1)

DACL measures the level of consistency of a given encoder f by comparing the latent similarity of the
augmented view of x with the corresponding optimal latent similarity l∗

d(v(A)) over all possible composite
augmentations.

With DACL, an encoder fθe(·) parameterized by θe that is not fully DA consistent can be trained to be
more DA consistent by minimizing the consistency loss defined below:

Lconsistent(θe) = Ex∼X ,A∼Ωc
[|DACL(x; fθe , Ωc)|]

= Ex∼X ,A∼Ωc
[|ld(x; fθe , A) − l∗

d(v(A))|]
= Ex∼X ,A∼Ωc

[|ld(x; fθe , A) − gθd
(v(A))|]

(2)

Our empirical study shows that an alternative consistency loss provides better performance, details of this
alternative is included in Appendices.

4.3 Learning Optimal Latent Similarities

4.3.1 Learnable Model for Optimal Latent Similarities

To train the encoder on the proposed consistency loss in equation 2, we need to provide the optimal latent
similarity l∗

d(v(A)) for a given composite augmentation A, which is contingent on the strength of A. Nev-
ertheless, defining augmentation strength poses a challenge, as two composite augmentations may comprise
different basic augmentation types, making it unclear how to define and compare their strength.

To tackle this problem, we learn a mapping, i.e., a parameterized neural network gθd
(·) that takes a compo-

sition vector as input and map it to the optimal latent similarity l∗
d(v(A)). This approach relaxes the need

for directly modeling the strength of different augmentations.

4.3.2 Imposing Monotonicity to the Learnable Model

Taking it a step further, we not only approximate the optimal latent similarity l∗
d with a neural network but

also enforce an important monotonic property to better learn the desired optimal latent similarities.

As the overall strength of a composite augmentation increases, e.g., by incorporating additional basic augmen-
tations, the similarity between the augmented data and the raw data is expected to decrease. For instance,
although directly comparing the effects of two different augmentations GaussianBlur and Sharpness (which
blurs the image by a Gaussian kernel and adjusts edge contrast, respectively.) may be challenging, applying
Sharpness twice in a composite DA would certainly distort the raw input more than applying it once.
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Figure 3: A composite augmentation is considered
stronger than another if and only if it includes all com-
ponents of the latter, along with additional basic aug-
mentations.

[DA Strength Comparison Operator]Thus, as
illustrated in Figure 3, formally, we define an op-
erator >̊ for comparing the strength of compo-
sition data augmentations in set Ωc: Ai>̊Aj iff
v(Ai)>̊v(Aj), where >̊ operates element wise on
the composition vectors: v(Ai)>̊v(Aj) implies that
v(Ai)[k] ≥ v(Aj)[k], ∀k ∈ [1, Na], and ∃k ∈ [1, Na]
such that v(Ai)[k] > v(Aj)[k].

In other words, composite augmentation Ai is con-
sidered to be stronger than Aj (i.e., Ai>̊Aj) if and
only if the number of times any basic augmentation
is applied in Ai is at least that of the same basic
augmentation is applied in Aj , and there is at least
one basic augmentation used in Ai more times than
in Aj .

Our learnable neural network model gθd
(·) takes the

composition vector of an augmentation Ai as the input, and map it to the optimal latent similarity of
l∗
d(v(Ai)) in the feature space: l∗

d(v(Ai)) = gθd
(v(Ai)). We enforce monotonicity w.r.t. input v(Ai) on gθd

(·):
gθd

(v(Ai)) > gθd
(v(Aj)) if v(Ai)>̊v(Aj), ∀Ai, ∀Aj ∈ Ωc. In other words, stronger data augmentations

result in a smaller latent similarity. The monotonicity is enforced by incorporating monotonic linear
embedding layers You et al. (2017) in gθd

(·), as shown in Figure 2(b). We refer to gθd
(·) as a monotonic

mapping neural network (MMNN).

4.4 Encoder Training with Consistency

The proposed CoCor approach incorporates the consistency loss in equation 2 to form the overall loss function
Lu for optimizing the encoder parameter θe given the MMNN’s parameter θd on unlabeled data:

Lu(θe|θd) = Lcontrast(θe) + Lconsistent(θe|θd) (3)

In equation 3, the optimization of the encoder parameters, θe, is contingent upon the MMNN parameters,
θd. Consequently, we denote the dependency of θe on θd as θe(θd) and solve a bi-level optimization problem
to optimize θd:

minθd
CE(θ∗

e(θd)) (4)
s.t. θ∗

e(θd) = arg minθe
Lu(θe|θd) (5)

The top-level problem in equation 4 optimizes the MMNN and a linear classifier (not explicitly shown in
equation 4 based on a cross entropy loss CE on a small amount of labeled data. During each iteration, the
bottom-level problem in equation 5 is solved to update the encoder parameter θe on the unlabeled data. We
defer the derivation of θe’s dependency on θd and update rule for θd to Appendices.

We conclude the algorithm flow of the proposed approach in Algorithm 1.

The design of CoCor makes it compatible with various state-of-the-art self-supervised learning frameworks.
CoCor can be integrated into an existing method by replacing Lcontrast in equation 3 with the method’s
specific loss function. The added consistency loss imposes DA consistency and improves the generalizability
and transferability of the pre-trained encoder within these frameworks.
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Algorithm 1: Algorithm flow of CoCor

Input: initial encoder, MMNN, and classifier parameters θ
(0)
e , θ

(0)
d , and θ

(0)
c , number of training

epochs N , unlabeled dataloader Du, labeled dataloader Dl.
for i=1 to N do

1.Sample unlabeled xu and labeled data (xl, yl) from Du and Dl, respectively.
2.Call equation 5 to update the encoder’s parameter θ

(i)
e on xu with MMNN parameters θ

(i−1)
d

fixed.
3.Call equation 4 to update MMNN θ

(i)
d and classifier θ

(i)
c on (xl, yl) with the encoder parameters

θ
(i)
e fixed.

Output: Trained encoder with parameters θN
e

5 Experimental Studies

We demonstrate the performance and generality of CoCor by integrating it into several state-of-the-art
contrastive learning methods: MoCo Chen et al. (2020b); He et al. (2020), a dual-encoder approach with a
large negative memory queue, SimSiam Chen & He (2021), which exclusively leverages positive pairs, and
SupCon Khosla et al. (2020), a supervised contrastive learning method that uses labeled data to enhance
representation learning. We refer to each of the three methods as a baseline. We compare the performance
of encoders pre-trained using these baselines against those pre-trained using a combination of CoCor with
the baselines across a variety of datasets for linear evaluation and object detection. CoCor is also compared
with recent works which take augmentation-aware information into consideration Zhang & Ma (2022); Lee
et al. (2021); Devillers & Lefort (2023) and works which use stronger data augmentations than conventional
contrastive learning Lee & Shin (2023); Wang & Qi (2021). To shed more light on the working mechanism of
CoCor, we perform post-hoc analysis on latent similarity and potential dimensional collapse, and a number
of ablation studies.

Unless otherwise noted, all experimental results presented in this paper are reproduced by us.

5.1 Experimental settings for encoder pre-training

The encoders of the baseline methods are pre-trained on the large ImageNet-1K Russakovsky et al. (2015)
dataset and its subset ImageNet-100 Tian et al. (2020a), under two different backbone encoder architectures
ResNet-50 and ResNet-34 He et al. (2016). The encoders of MoCo and SimSiam based methods are pre-
trained for 200 epochs, while SupCon’s encoder undergoes 100 epochs of pre-training. Batch size of all
pre-training experiments is set to 256. We follow Khosla et al. (2020); Chen et al. (2020b); Chen & He
(2021) for other settings of these baseline methods.

For the sake of fair comparison, pre-training with CoCor incorporated follows the same experiment settings
as their corresponding baselines. The MMNN in CoCor is a 3-layer MLP with monotonic linear embedding
layers You et al. (2017) and ReLU units. While most of the results are demonstrated when using only 1% of
the pre-training dataset labels for tuning the MMNN, we also demonstrate the good performance of CoCor
in an ablation study where the labeled data usage is significantly further reduced in Table 5.4. CoCor utilizes
a basic data augmentation set Ωa, consisting of 14 commonly used augmentation functions as detailed in
Appendices. We impose the DA consistency constraint to several composite DA sets Ω<l>

c of specific lengths.
For most pre-training experiments, we take l = 1, 2, 3, i.e., for each example, we sample three composite
DAs of length 1, 2, and 3, and apply them to get three views of data to calculate the consistency loss. More
details of data augmentations and pre-training setup are provided in Appendices.

5.2 Main Results

Linear evaluation Each pre-trained encoder is parameter-frozen and paired with a linear classifier, which
is fine-tuned, following the linear evaluation protocol of Krizhevsky et al. (2017), as detailed in Appendices.
Linear evaluation is conducted on the following datasets: Cifar-10/100 Krizhevsky et al. (2009), CUB-
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Table 1: Top-1 accuracies (%) of linear evaluation. All ResNet-50 backbone encoders are pre-trained on
ImageNet-100.

Method Epochs IN-100 Cifar10 Cifar100 CUB200 Caltech101 SUN397 Food101 Flowers102 Pets

MoCo Chen et al. (2020b) 200 67.04 82.15 59.17 21.52 79.23 39.43 52.97 71.77 56.94
MoCo + CoCor (Ours) 200 71.66 83.87 59.64 22.57 81.51 41.95 54.81 75.65 60.23
SimSiam Chen & He (2021) 200 73.92 84.66 61.82 26.13 85.11 45.96 58.73 82.40 65.60
SimSiam + CoCor (Ours) 200 83.70 86.89 66.36 34.50 87.85 49.92 62.48 87.95 76.04
SupCon Khosla et al. (2020) 100 80.16 84.30 61.33 26.46 85.04 41.95 52.45 76.99 73.75
SupCon + CoCor (Ours) 100 82.14 85.49 62.18 27.40 87.12 42.87 53.93 79.04 75.95

Table 2: Top-1 accuracies (%) of linear evaluation. All ResNet-50 backbone encoders are pre-trained on
ImageNet-1K.

Method Epochs IN-1K Cifar10 Cifar100 CUB200 Caltech101 SUN397 Food101 Flowers102 Pets

MoCo Chen et al. (2020b) 200 67.56 92.24 74.33 41.54 92.00 58.28 69.84 88.86 81.74
MoCo + CoCor (Ours) 200 72.83 93.28 76.19 44.11 93.10 60.15 71.10 90.39 83.08
SimSiam Chen & He (2021) 200 70.93 93.08 76.24 51.05 93.13 60.81 71.18 92.11 85.01
SimSiam + CoCor (Ours) 200 73.25 94.04 78.12 54.50 94.51 63.09 73.31 92.84 87.24
SupCon Khosla et al. (2020) 100 74.18 93.17 76.55 52.30 93.28 61.03 71.54 91.34 85.35
SupCon + CoCor (Ours) 100 76.24 94.61 77.91 55.73 94.66 63.80 74.09 92.17 87.21

200 Wah et al. (2011), Caltech-101 Fei-Fei et al. (2004), SUN397 Xiao et al. (2010), Food101 Bossard et al.
(2014), Flowers102 Nilsback & Zisserman (2008), Oxford-IIIT Pet (Pets) Parkhi et al. (2012), Aircraft Maji
et al. (2013), and StanfordCars Krause et al. (2013).

The classification accuracies for ImageNet-100 and ImageNet-1K pre-trained encoders are presented in Ta-
ble 1 and Table 2. Notably, CoCor demonstrates a substantial enhancement in the performance of the
pre-trained encoder across diverse classification tasks. This improvement suggests that CoCor contributes to
an enhanced generalizability of the encoder, achieved by incorporating a wider range of augmentations and
by complementing the semantics within the feature space.

Object detection We fine-tune the pre-trained encoders on VOC2007+2012 Everingham et al. (2009)
and COCO2017 Lin et al. (2014) datasets for object detection downstream tasks. The pre-trained encoders
are converted to generalized R-CNN Girshick et al. (2014) detectors with a ResNet50-C4 backbone by using
Detectron2 Wu et al. (2019). The models trained on VOC2007 and COCO2007 are subsequently evaluated
on the corresponding dataset’s test set.

In comparison with the baselines, Table 3 shows that CoCor substantially improves accuracy under standard
metrics such as AP , AP50, and AP75, suggesting that CoCor is effective in achieving the pre-trained encoders’
transferability. Notably, CoCor shows substantial improvements in detecting challenging small and medium
object detection, as evidenced by the increased APs and APm scores.

Post-hoc study We visualize the effect of the proposed consistency loss of equation 2 during pre-training
by comparing the latent similarity of encoders pre-trained with and without the consistency loss in Table 4 (a),
showing the averaged latent similarity of each specific length of composite augmentations on the ImageNet-
100 dataset. Clearly, the use of CoCor results in larger latent similarity values across a wide range of DA
lengths, demonstrating a tighter clustering of image views with the same identify. This aligns with the
analysis presented in Wang & Isola (2020), which, even without taking into account the dependency on
augmentation strength, suggests that a stronger clustering of views generated by weaker augmentations is
correlated with improved encoder performance. Additionally, the image retrieval task results in Figure 1(b)
suggest that CoCor learns a more semantically consistent feature space compared to the baseline methods.

9



Published in Transactions on Machine Learning Research (09/2024)

Table 3: Transfer learning results on VOC and COCO object detection tasks.

Pre-train VOC07+12 COCO
Method Epochs AP AP50 AP75 AP AP50 AP75 APs APm APl

MoCo He et al. (2020) 200 50.23 76.52 54.42 34.23 55.08 36.60 16.67 37.27 50.97
MoCo + CoCor (Ours) 200 51.11 77.41 54.88 39.13 58.30 42.19 23.19 43.45 52.13
SimSiam Chen & He (2021) 200 52.04 77.86 57.11 34.15 55.21 36.50 15.30 37.37 50.49
SimSiam + CoCor (Ours) 200 54.31 80.60 59.58 34.80 56.29 37.05 17.53 39.88 51.74
SupCon Khosla et al. (2020) 100 47.41 75.83 53.17 34.26 55.11 36.35 14.34 37.40 50.56
SupCon + CoCor (Ours) 100 49.03 77.22 54.19 35.67 56.10 37.98 16.63 38.71 51.29

Figure 4: (a): Latent similarities under different composite augmentation lengths of encoders pre-trained
with and without consistency loss, and (b) singular values of the learned latent presentations, both evaluated
on ImageNet-100.

This introduced consistency ensures that data sharing similar latent semantics is positioned close, while
dissimilar instances are kept distant in the feature space.

Dimensional collapse evaluation We illustrate the singular values of the latent representations of pre-
trained encoders on ImageNet-100 by conducting principal component analysis (PCA) on the feature vectors.
The occurrence of dimensional collapse is typically associated with observed small singular values. However,
as depicted in Figure 4 (b), this is less likely to be the case for the encoders pre-trained by CoCor compared
with the two baselines. While stronger data augmentations Jing et al. (2021) and larger datasets Li et al.
(2022a) have been suggested to contribute to dimensional collapse, this issue is not observed in the CoCor
encoders. In conventional contrastive learning methods, the encoder is forced to be invariant to feature
variance introduced by augmentations, potentially leading to constant values in some feature space dimen-
sions. The dimensional collapse problem is mitigated in CoCor, possibly due to the imposed consistency that
captures this variance.

Table 4: Comparison of top-1 accuracies (%) in linear evaluation of SimSiam, existing augmentation-aware
methods, and CoCor. Encoders (ResNet-34) are trained on ImageNet-100 for 200 epochs.

Method ImageNet100 CUB200 Flowers102 StanfordCars

SimSiam Chen & He (2021) 63.90 29.10 76.10 19.60
Augself Lee et al. (2021) 75.96 29.96 82.96 29.41
Hierarchical Zhang & Ma (2022) 67.10 33.90 83.60 20.70
EquiMod Devillers & Lefort (2023) 65.45 30.09 77.91 19.06
SimSiam+CoCor (Ours) 77.76 34.07 83.88 29.93
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Table 5: Comparison of top-1 accuracies (%) in linear evaluation of methods that leverage stronger data
augmentations. Encoders (ResNet-50) are trained on ImageNet-1K for 200 epochs.

Method ImageNet1K CUB200 Flowers102 Aircraft

CLSA Wang & Qi (2021) 69.4 40.20 89.97 61.24
RényiCL Lee & Shin (2023) 72.6 45.05 90.17 61.80
MoCo+CoCor (Ours) 72.8 44.11 90.39 63.18

5.3 Comparison with the state-of-the-art

Comparison with augmentation-aware methods Recently, several works Devillers & Lefort (2023);
Lee et al. (2021); Zhang & Ma (2022) have taken into account augmentation-aware information in contrastive
learning. AugSelf Lee et al. (2021) achieves this by training an auxiliary network to predict the difference
between augmentations applied to generate positive pairs. Zhang & Ma (2022) encodes an augmented image
along with the DA parameters using two networks, and combines the two embeddings to form a feature
vector for contrastive loss. EquiMod Devillers & Lefort (2023) trains a network to predict the representation
of an augmented view from the original data and the applied DA. A performance comparison between
these methods and CoCor on linear evaluation is presented in Table 4. All the encoders have a ResNet-34
architecture and are pre-trained on ImageNet-100 for 200 epochs. Compared to Lee et al. (2021); Zhang &
Ma (2022); Devillers & Lefort (2023), CoCor introduces much stronger DA and more diverse DA types. CoCor
consistently outperforms them, which may be attributed to its effective utilization of a significantly broader
set of augmentations while maintaining the well-specified monotonic property in augmentation strength.

Comparison with methods using stronger data augmentations Several recent contrastive learning
approaches incorporate the use of stronger data augmentations. CLSA Wang & Qi (2021) employs the
distribution divergence between weakly augmented views as supervision for the divergence between a weakly
and a strongly augmented view. RényiCL Lee & Shin (2023) proposes a new contrastive objective using Rényi
divergence to address strongly augmented data. Table 5 shows the comparison between these methods and
ours. Here all encoders are ResNet-50 trained for 200 epochs on ImageNet-1K. Unlike RényiCL and CLSA,
which do not explicitly distinguish between different types of data augmentations (DAs), CoCor addresses
this by using the MMNN to differentiate various DA types. Furthermore, CoCor introduces DAs that are not
only stronger but also more diverse, implementing consistency across different lengths of DAs, in contrast to
RényiCL and CLSA, which apply a single length of DA per pre-training process.

5.4 Ablation Studies

Basic Data Augmentations define the augmentation-aware information to be learned by the encoder.
To better understand the role of these data augmentations during pre-training, we separate them into
two groups: Ωcolor and Ωaffine. Ωcolor includes augmentations that change the color of each pixel while
maintaining its position, such as Brightness and Contrast. Ωaffine comprises affine transformations, such
as Rotate and Shear. Composition of Ωcolor and Ωaffine is provided in the Appendices. Using CoCor, we pre-
trained three encoders for 500 epochs on ImageNet-100 with Ωcolor, Ωaffine, and Ωcolor

⋃
Ωaffine, respectively.

Table 6 presents the linear evaluation results on ImageNet-100 and two fine-grained datasets, CUB-200 and
Flowers102. The results indicate that CoCor achieves better overall performance than LooC Xiao et al. (2020)
and AugSelf Lee et al. (2021), which have improved transferability to various downstream recognition tasks.
Notably, while Ωcolor

⋃
Ωaffine delivers the best overall results across the tested datasets, refining the basic

data augmentations can enhance CoCor’s performance on specific downstream tasks. For example, color-
aware information is crucial for discriminating flower images in the Flower102 dataset Nilsback & Zisserman
(2008), whereas position-related information introduced by affine transformations is less relevant. Thus,
applying only color-related augmentations while maintaining invariance to affine transformations improves
performance on Flower102.
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Table 6: Comparison between LooC, AugSelf, and CoCor. CoCor is pre-trained using basic data augmentation
pools, which include color-related augmentations, affine transformations, and their combination. Top-1
Linear evaluation accuracy is reported. Encoders (ResNet-50) are trained on ImageNet-100 for 500 epochs.

Method ImageNet100 CUB200 Flowers(5-shot) Flowers(10-shot)
MoCo* Chen et al. (2020b) 81.0 36.7 67.9 77.3
LooC(color)* Xiao et al. (2020) 81.1 40.1 68.2 77.6
LooC(rotation)* Xiao et al. (2020) 80.2 38.8 70.1 79.3
LooC(color, rotation)* Xiao et al. (2020) 79.2 39.6 70.9 80.8
MoCo + AugSelf* Lee et al. (2021) 82.4 37.0 81.7 84.5
SimSiam + AugSelf* Lee et al. (2021) 82.6 45.3 86.4 88.3
SimSiam + CoCor (color) 83.5 46.5 89.1 90.2
SimSiam + CoCor (affine) 81.8 45.2 83.5 86.1
SimSiam + CoCor (color+affine) 83.7 47.9 88.9 89.6

*Since the official implementation of LooC has not been released, we adopt the results from Lee et al. (2021); Xiao
et al. (2020). To ensure a fair comparison, we maintain the same experimental settings for all methods in this table.

Table 7: Linear evaluation of CoCor models trained with and without MMNN. Encoders (ResNet-50) are
trained on ImageNet-100 for 200 epochs.

baseline w/o MMNN w/ MMNN
MoCo + CoCor 67.04 69.51 71.66

SimSiam + CoCor 73.92 82.18 83.70

Effectiveness of the MMNN CoCor utilizes an MMNN model to learn the optimal latent similarities
l∗
d of various composite augmentations. To see the benefits of this learnable MMNN model, we replace it

by a manually optimized model: we manually search for the best l∗
d value for each composite augmentation

length, determined by extensive trial-and-error, to achieve optimal linear evaluation performance. More
detailed experimental settings and results on l∗

d selection are included in Appendices.

We pre-train ResNet-50 encoders built upon SimSiam and MoCo with the MMNN and the manual model
based on composite augmentation lengths l = 1, 2, 3, on ImageNet-100 for 200 epochs. The resulting perfor-
mances are reported in Table 7, which also includes the performances of the MoCo and SimSiam baselines.
There is the clear advantages of the encoders trained with the MMNN over the ones without, i.e. with the
manual model.

Effect of the amount of labeled data in MMNN training We further study the impact of the amount
of supervision used to train the MMNN on the encoder performance. We pre-train ResNet-50 CoCor encoders
built upon SimSiam on ImageNet-100 for 100 epochs while training the MMNN using 100%, 10%, 1%, and
0.1% of the labeled data in the dataset. The pre-trained backbones are evaluated by linear evaluation on
ImageNet-100. Table 8 shows that drastically reducing the amount of labeled MMNN training data from
100% to 0.1% only results in a 0.94% performance drop, and all four CoCor models outperform the baseline
SimSiam by more than 15%.

Composite augmentation length in pre-training The composite augmentations introduced in our
work produce diverse informative views. We test the effect of the strength of composite augmentations by
running experiments where only one length of composite augmentation is adopted per pre-training experi-
ment. We run CoCor on SimSiam and MoCo with single augmentation length 1, 2, 3, 4, and a combination
of lengths 1, 2, and 3. All encoders are ResNet-50 pre-trained on ImageNet-100 for 50 epochs, and are then
evaluated on ImageNet-100.

As seen in Table 5, CoCor is able to leverage augmentations of varying lengths, and combining DAs at all
these lengths further improves performance. Different from the results presented in Chen et al. (2020a);
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(a) (b)

Figure 5: Linear evaluation of encoders trained by CoCor on (a) MoCo and (b) SimSiam with single length
l of composite augmentations and a combination of length 1, 2, and 3.

Table 8: Performance of CoCor models trained with different amounts of labeled data. Encoders (ResNet-50)
are trained on ImageNet-100 for 50 epochs.

Percentage of labels 100% 10% 1% 0.1% SimSiam
Top-1 Acc 75.97 75.82 75.79 75.46 59.20

Tian et al. (2020b), which show that strong augmentations can degrade performance, we have conducted
additional experiments with much stronger composite augmentations to demonstrate CoCor’s ability in lever-
aging such augmentations. These results, presented in the Appendices, demonstrate CoCor’s capability to
benefit from even stronger augmentations compared to recent works that introduce strong augmentations in
their methodsLee & Shin (2023); Wang & Qi (2021).

6 Discussion

In this paper, we introduce CoCor, a systematic approach to exploring diverse data augmentations in con-
trastive learning. Our contribution includes the introduction of DA consistency to quantify the dependency
of the desired latent similarity on the applied data augmentation. We propose a consistency loss to guide the
encoder training towards improved DA consistency. To enforce the DA consistency, we employ a data-driven
method to learn the optimal dependency and apply it to the encoder training. The effectiveness of CoCor is
substantiated through extensive experimental results on various tasks and datasets. Further details on the
MMNN update rule, additional experimental settings, and extended results are provided in the Appendices.

As a potential future direction, we suggest exploring the learning of optimal latent similarity with respect to
data examples. Specifically, extending the MMNN to take data instances as input could allow for considering
the variance of latent similarity caused by data variance. This approach has the potential to learn a more
accurate mapping from data augmentation to latent similarity.
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A Improving CoCor with an Alternative Consistency Loss

The original consistency loss is defined as:

Lconsistent(θe|θd) = Ex∼X ,ac∼Ωc [|ld(x; fθe , ac) − gθd
(vc(ac))|] (6)

However, in our preliminary experiments, we find the following consistency loss leads to better downstream
tasks performance than equation 6.

Lconsistent(θe|θd) = EΩ<l>
c ∼Ωc

[softplus[Ex∼X ,a<l>
c,i

∼Ω<l>
c

[ld(x; f, a<l>
c,i ) − gθd

(vc(a<l>
c,i ))]]] (7)

Figure 6: Images from a same category of a dataset. Target items may be of different sizes and colors, and
may be located at different places in images. Thus same augmentation can have different effects on different
images. ImageNet is used for illustration.

The motivation is to reduce the high variance among images in visual datasets. The exactly same composite
augmentation hence can lead to different latent similarity in the feature space. For instance, as illustrated in
Figure 6, target items of images may be of different size and shape, and may be located at different places.
Therefore, enforcing all augmented views to share the same optimal similarity may not lead to the best
performance. To this end, equation 7 calculates the averaged latent similarity in a minibatch of each length
of augmentation composition. Therefore, equation 7 imposes DA consistency constraint on the averaged
latent similarity in a batch instead of on each image, which help better handle the variance.

Additionally, data augmentation that can greatly distort an images may not be able to largely distort the
identity of another one. However, the absolute value loss pushes apart those less distorted views from the
representations of the original data. Thus, softplus is used to replace the absolute value calculation because
softplus produce small gradient for negative numbers.

B Derivation of the Update Rule of the MMNN

In our implementation, the parameter of the encoder (θe) and the parameter of MMNN (θd) is updated
in an alternate manner, as in equation 8.

θ′
e = θe − ηe · ∇θeLu(θe|θd)

θ′
d = θd − ηd · ∇θd

CE(θ
′

e(θd))
(8)

With the overall loss function to optimize the encoder, the update of θe with learning rate ηe can be written
as:

θ′
e = θe − ηe · (∇θeLcontrast + ∇θeLconsistent) (9)
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By applying chain rule, the update of θd with learning rate ηd can be rewritten as:

θ′
d = θd − ηd · (∇θd

CE(θ
′

e(θd)),

where : ∇θd
CE(θ

′

e(θd)) = ∂

∂θ
′
e

CE(θ
′

e) · ∂θ
′

e

∂θd

(10)

In equation 10, ∂

∂θ
′
e

CE(θ′

e) can be computed via back-propagation. Thus, we focus on the computation of
∂θ

′
e

∂θd
.

First, we substitute θ
′

e in equation 10 with the one-step updated θ
′

e in equation 9, following the approach
used in Pham et al. (2021); Yin et al. (2023). We also neglect the higher order dependency of θe on θd as
adopted in Pham et al. (2021). ∂θ

′
e

∂θd
can thus be expanded as below:

∂θ
′

e

∂θd
= ∂

∂θd
(θe − ηe · (∇θeLcontrast + ∇θeLconsistent))

= −ηe · ∂

∂θd

∂

∂θe
Lconsistent

= −ηe · ∂

∂θd

∂

∂θe
El∈ℓ[softplus[Ei∈B [(fθe(xl

i)T · fθe(xi)) − gθd
(vc(a<l>

c,i ))]]

(11)

where xl
i = a<l>

c,i (xi) denotes the augmented data, ℓ denotes the set of lengths of composite augmentations
that are used, and B denotes the set of data indices in a minibatch.

For simplification in later section, we define:

kl =Ei∈B[(fθe
(xl

i)T · fθe(xi)) − gθd
(vc(a<l>

c,i )]
siml = Ei∈B[(fθe(xl

i)T · fθe(xi))]
(12)

We then combine equation 11 with equation 12:

∂θ
′

e

∂θd
= −ηe · El∈ℓ[

∂

∂θd
( −ekl

1 + ekl · ∂

∂θe
siml)]

= −ηe · El∈ℓ[
ekl

(1 + ekl)2 · ∂

∂θe
siml · ∂

∂θd
Ei∈B[gθd

(vc(a<l>
c,i ))]]

(13)

By incorporating equation 13 with equation 10, we have:

∇θd
CE(θ

′

e(θd)) = ∂

∂θ
′
e

CE(θ
′

e) · (−ηe · El∈ℓ[
ekl

(1 + ekl)2 · ∂

∂θe
siml · ∂

∂θd
Ei∈B[gθd

(vc(a<l>
c,i ))]]) (14)

Additionally, in equation 14, ∂

∂θ
′
e

CE(θ′

e) can be approximated with first order Taylor expansion:

CE(θ′
e) − CE(θe) ≈ (θ′

e − θe) · ∂

∂θ
′
e

CE(θ
′

e) (15)

Thus, we have:

∂

∂θ
′
e

CE(θ
′

e) ≈ CE(θ′
e) − CE(θe)
θ′

e − θe
= CE(θ′

e) − CE(θe)
−ηe · (∇θeLcontrast + ∇θeLconsistent)

(16)
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We can now rewrite equation 14 as:

∇θd
CE(θ

′

e(θd)) ≈ CE(θ′
e) − CE(θe)

(∇θeLcontrast + ∇θeLconsistent)
· El∈ℓ[

ekl

(1 + ekl)2 · ∂

∂θe
siml · ∂

∂θd
Ei∈B[gθd

(vc(a<l>
c,i ))]]

(17)

Further more, equation 17 can be further simplified. Note that ∇θeLcontrast + ∇θeLconsistent can be approx-
imated by:

∇θeLcontrast + ∇θeLconsistent := ∇θeLu(θe) ≈ Lu(θ′
e) − Lu(θe)
θ′

e − θe
(18)

Similarly, the approximation of ∂
∂θe

siml can be written as:

∂

∂θe
siml ≈ siml(θ′

e) − siml(θe)
θ′

e − θe

where: siml(θ′
e) = Ei∈B[(fθ′

e
(xl

i)T · fθ′
e
(xi))]

(19)

Finally, by combining equation 18 and equation 19 with equation 17, ∇θd
CE(θ′

e(θd)) can be rewritten as
follows:

∇θd
CE(θ

′

e(θd)) ≈ (CE(θ′
e) − CE(θe)) · El∈ℓ[

ekl

(1 + ekl)2 · siml(θ′
e) − siml(θe)

Lu(θ′
e) − Lu(θe) · ∂

∂θd
Ei∈B[gθd

(V (A))]] (20)

Note that in equation 20, all the derivative terms can be calculated directly via back propagation, resulting
in a scalable algorithm.

C Candidate Augmentations in CoCor

The set of basic augmentations Ωa used to form composite augmentation consists of 14 different types data
augmentations, i.e., Ωa = {AutoContrast, Brightness, Color, Contrast, Rotate, Equalize, Identity,
Posterize, Sharpness, ShearX, ShearY, Solarize, TranslateX, TranslateY}.

In Section 5.4, we conduct ablation studies on the composition of basic data augmentations, as illustrated in
Table 6. In these experiments, Ωa is divided into two sets: Ωcolor and Ωaffine. The compositions of the two sets
are as follows: Ωcolor = {AutoContrast, Brightness, Color, Contrast, Equalize, Identity, Posterize,
Sharpness, Solarize,} and Ωaffine = {Rotate, Identity, ShearX, ShearY, TranslateX, TranslateY}.

D Experimental Setup for Pre-training

All pre-training experiment are conducted using stochastic gradient descent (SGD) as the optimizer. A
cosine decay scheduler is adopted for scheduling the learning rate. All pre-training adopt a training data
batch size of 256. Detailed setups used for each method are as follows.

• MoCo He et al. (2020); Chen et al. (2020b): We use a starting learning rate of 3 × 10−2, a weight
decay of 1×10−4, and a momentum of 0.9 for the optimizer. For the dual encoders of MoCo, feature
space dimension is 128, memory queue size is 65536, and the momentum of updating the key encoder
is 0.999. For the consistency loss, the query encoder takes both the original data and its augmented
view as input. However, the query encoder is stop-gradient when encoding the original input. The
encoder receives gradient while encoding the augmented views.
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• SimSiam Chen & He (2021): A starting learning rate of 5×10−2, a weight decay of 1×10−4, and a
momentum of 0.9 are used for the SGD optimizer. Predictor and projector and output dimension are
both 2048. For the consistency loss, representations of the original data are obtained by letting the
data go through the stop-gradient backbone and the projector. The augmented views go through
backbone, projector, and predictor for the representations of them. All the three models receive
gradient while calculating the representations of augmented views.

• SupCon Khosla et al. (2020): We use a starting learning rate of 3×10−2, a weight decay of 1×10−4,
and a momentum of 0.9 for the optimizer. Feature space dimension of the projection head output
is 128. In the consistency loss, the encoder takes both the original data and its augmented view as
input. The encoder is stop-gradient when encoding the original input. The encoder receives gradient
while calculating representations of the augmented views.

E Experimental Setup for Linear evaluation

We follow the linear evaluation protocol of Chen et al. (2020a); Lee et al. (2021); Kornblith et al. (2019).
A one-layer linear classifier is trained upon the frozen pre-trained backbone. Resize, CentorCrop, and
Normalization are used as the training transformations. An L-BFGS optimizer is adopted for minimizing
the ℓ2-regularized cross-entropy loss. The optimal regularization parameter is selected on the validation set
of each dataset. Finally, models are trained with the optimal regularization parameter, and the obtained
test accuracies are reported.

Figure 7: Linear performance accuracies of CoCor models trained with only one length of composite aug-
mentation. CoCor with each length of composite augmentation is run with multiple different constant l∗

d

values.

F Ablation Study on CoCor without the MMNN

To evaluate the effect of MMNN, we run CoCor where l∗
d is replaced by fixed constants. In practice,

a constant is used for each length of composite augmentation in calculating the consistency loss. We run
multiple experiments to select the constant for each length of composite augmentation. All models are
ResNet-50 pre-trained on ImageNet-100 for 50 epochs. Figure 7 shows the linear evaluation results of CoCor
running with one length of composite DA and with different constant l∗

d. For each length of composite
augmentation, there exists an optimal constant which leads to the best result in linear evaluation. These
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optimal constants are then used for the comparison with the MMNN. The best constants of MoCo and
SimSiam are listed in Table 9.

ℓ 1 2 3
MoCo 0.80 0.75 0.65
SimSiam 0.75 0.70 0.60

Table 9: Constant l∗
d used for the comparison with the MMNN.

G CoCor with much stronger data augmentations

CoCor is a systematic approach of leveraging the information provided by diverse augmentations. In order
to further test the effect of composite augmentations of different strength, we run CoCor on MoCo and
SimSiam with single augmentation length of 1, 2, 3, 5, and 10. We train ResNet-50 on ImageNet-100 for 50
epochs. Pre-trained backbones are evaluated on ImageNet-100 for linear classification. Table 10 shows the
accuracies of evaluation.

ℓ 1 2 3 5 10 baseline
MoCo 47.90 47.70 48.08 45.16 43.07 42.66
SimSiam 54.01 54.20 55.16 53.50 52.70 44.60

Table 10: Linear evaluation of encoders trained by applying consistency loss on only one length l of composite
augmentations.

As it is shown in Table 10, introducing relatively weaker (shorter) data augmentation in pre-training leads to
better performance on downstream tasks. When evaluating the pre-trained models on various downstream
tasks, the test data for testing model performance are natural and realistic images. Thus, providing the
encoder with less distorted views in pre-training can help the encoder better recognize natural images during
inference.

It is also noteworthy that CoCor can leverage very strong augmentations of a length of 10 to improve the
encoder’s performance over baseline, which is even stronger than the data augmentations used in recent
works that include strong augmentations such as CLSA Wang & Qi (2021) and RényiCL Lee & Shin (2023).
Although it has been shown that very strong augmentations which can distort the identity of data too much
may bring too much noise to the training process. The noise may result in performance degradation Chen
et al. (2020a); Tian et al. (2020b), partial dimensional collapse, or even complete dimensional collapse Li
et al. (2022a); Jing et al. (2021). However, CoCor is able to capture essential information from the highly
distorted views and enrich the semantics of the feature space using these strong augmentations.

H CoCor’s compatibility with more baseline contrastive learning methods.

To demonstrate CoCor’s compatibility with additional baseline methods, e.g. BYOL Grill et al. (2020) and
INTL Weng et al. (2023), we implement CoCor on these additional baseline methods. Linear evaluation results
of these encoders across various datasets are presented in Table 11. These results indicate that CoCor not
only enhances the generalizability of learned representations from contrastive methods like MoCo, SimSiam,
and SupCon but also extends these benefits to other existing contrastive learning approaches.

I Training Time Comparison

CoCor applies the proposed consistency loss to views produced by various data augmentations. To address
the concern of extra training time consumed by CoCor over its corresponding baseline methods, we compare
the pre-training time and model performance in Table 12. Although CoCor requires more time per epoch,
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Table 11: Top-1 accuracies (%) of linear evaluation. All ResNet-50 backbone encoders are pre-trained on
ImageNet-100.

Method IN-100 Cifar100 CUB200 Caltech101 SUN397 Food101

BYOL Grill et al. (2020) 68.05 60.13 20.27 78.90 39.03 53.01
BYOL + CoCor (Ours) 72.30 62.42 22.75 80.51 42.64 55.32
INTL Weng et al. (2023) 74.58 62.73 29.05 87.45 47.06 60.38
INTL + CoCor (Ours) 76.98 63.06 31.40 88.81 48.27 64.27

CoCor achieves better performance than its corresponding baselines with shorter training time. Additionally,
CoCor takes similar amount of time to train as CLSA Wang & Qi (2021), which uses strong multi-view
augmentations. However, CoCor achieves significantly better performance than CLSA with similar training
time.

Table 12: Training Time Comparison on a machine with 4 A100 GPUs. Training time (in hour)/Top-1 linear
evaluation results (in %) on ImageNet-1K is provided for comparison.

Methods
Epochs 50 100 200

MoCo He et al. (2020) 13.4h/64.78 26.8h/66.81 53.6h/67.22
SimSiam Chen & He (2021) 13.2h/66.89 26.4h/68.12 52.8h/70.93
CLSA Wang & Qi (2021) 18.1h/67.95 36.2h/69.15 72.4h/71.19
MoCo + CoCor 18.5h/69.26 37.0h/70.76 74.0h/72.83
SimSiam + CoCor 18.1h/70.90 36.2h/72.03 72.4h/73.25

J Impact of the Data Augmentation Ordering in CoCor.

To evaluate the impact of the ordering of DAs in CoCor, we conducted experiments with various fixed DA
orderings. We trained encoders using MoCo + CoCor with specific DA orderings. Results are shown in
Table 13. For instance, in configurations CoCor-fixed 1/2, the order of DAs is predetermined. In a fixed
order scenario, such as in CoCor-fixed 1, rotation is consistently applied before brightness whenever both
augmentations are selected for an image. Results in Table 13 indicate that in CoCor, the ordering of DAs
does not significantly affect the encoder’s performance in downstream tasks. Thus, in final experiments, we
use random DA ordering to explore a wider range of DA variation.

Table 13: Linear evaluation results on ImageNet-100 of CoCor models trained with different fixed DA
orderings. Encoders are trained on ImageNet-100 for 200 epochs.

MoCo CoCor - fixed 1 CoCor - fixed 2
Top-1 Acc 67.04 71.32 71.47
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