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ABSTRACT

No-Free-Lunch Theorems state that the performance of all algorithms is the same
when averaged over all possible tasks. It has been argued that the necessary con-
ditions for NFL are too restrictive to be found in practice. There must be some
information for a set of tasks that ensures some algorithms perform better than
others. In this paper we propose a novel idea, “There are free lunches” (TAFL)
Theorem, which states that some algorithms can achieve the best performance in
all possible tasks, in the condition that tasks are given in a specific order. Further-
more, we point out that with the number of solved tasks increasing, the difficulty
of solving a new task decreases. We also present an example to explain how to
combine the proposed theorem and the existing supervised learning algorithms.

1 INTRODUCTION

No-Free-Lunch (NFL) Theorems Wolpert & Macready (1997) Wolpert (2002) state that “all opti-
mization algorithms perform equally well when their performance is averaged across all possible
problems”. Some researchers Alabert et al. (2015) argued that the necessary conditions for NFL are
too restrictive. In practice, there must be some algorithms that perform better than others. However,
no one doubt that no algorithm can optimally solve all tasks.

The implications of the NFL Theorems are very disappointing, as an universal algorithm is a dream
in the field of Artificial Intelligence (AI). This paper proposes the “There are free lunches” (TAFL)
Theorem. The TAFL Theorem states that some algorithms are optimal for all tasks, in the condition
that tasks are given in a specific order. We also conclude that the difficulty of solving a new task can
decrease when the number of solved tasks increases.

The TAFL Theorem implies a very different way of solving AI problems compared to the NFL
Theorems. It is not a matter that algorithms at our hands are not powerful or suitable enough for a
specific task. One can use an algorithm of limited intelligence to solve a complex problems step by
step.

We introduce the necessary notation in Section 2 and provide the TAFL Theorem in Section 3. We
analyse the task order mentioned in the TAFL Theorem and point out we can reduce calls of learning
algorithms in Section 4. An application of the TAFL Theorem is provided in Section 5. Finally, we
discuss the implications of the TAFL Theorem in Section 6 and conclude the paper in 7.

2 PRELIMINARIES

We restrict attention to supervised learning. But the discussion is also applicable for optimization
and search fields.

The entire sample space is denoted as D. The distribution space is denoted as F . A distribution
from F is a mapping f : x → y. A sampling strategy S samples a set of training samples from f ,
denoted as d = {(x0,y0), ..., (xm,ym)},d ∈ D. We consider the sampling strategy is unique for
all tasks.

A supervised learning algorithm generates a mapping (or called a hypothesis) h : x→ y to approx-
imate the distribution f , in terms of off-training-set error. The training samples d are provided to an
algorithm La to generate a set of h. The possibility of the algorithm La generating a specific h on d
is denoted as P (h|d,La).
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No-Free-Lunch Theorems state the total off-training-set error across all possible f is always the
same for arbitrary algorithms La and Lb.∑

f

Eote(La|d, f) =
∑
f

Eote(Lb|d, f) (1)

The off-training-set error Eote(La|d, f) is given in Eq.2, where I(·) is 1 when · is ture, otherwise 0.

Eote(La|d, f) =
∑
h

∑
di∈f,di /∈d

P (di)I(h(di) 6= f(di))P (h|d,La) (2)

3 THE TAFL THEOREM

We consider that a distribution can be parametrized as f(: θ). For a specific algorithm La, there is a
set of distribution {fa(: θa)|θa ∈ R} which can be optimally solved by La. The TAFL Theorem is
described as below.

La and Lb are the optimal algorithms, in terms of off-training-set error, for distribution
sets {fa(: θa)|θa ∈ R} and {fb(: θb)|θb ∈ R} respectively. fa(: θa) has the form of
y = ga(

∑
i x

iθia + θba). ga can be any continuous nonconstant function.
Given a specific fb(: θ∗b ) and its samples d∗b , we can find a serial of tasks, representing by a
serial of sets of samples {d0

a, ...,d
n
a}. La is the optimal algorithm for each of dia and if we

solve each dia in the provided order, then Eote(La|dna , fb(: θ∗b )) = Eote(Lb|d∗b , fb(: θ∗b )).

The proof is given as below.

According to the universal approximation theorem Hornik et al. (1989), fb(: θ∗b ) can be
arbitrarily accurate approximated by a continuous nonconstant function. As fa(x : θa) has
the form y = ga(

∑
i x

iθia + θba), the approximation has the form:

y0 = x

y1 = {yi1|yi1 = fa(y0 : θ1,ia ), i = 0, ...,m}
. . .

yn = {yin|yin = fa(yn−1 : θn,ia ), i = 0, ..., k}
fb(x : θ∗b ) = yn

(3)

Each mapping f : ym−1 → ym has the form of fa(x : θa), therefore they can be optimally
solved by La. But for each f : fm−τ → fm, τ ≥ 2, there is no guarantee that they have
the form of fa(x : θa), therefore they may not be optimally solved by La.
As each f : ym−1 → ym has the form of fa(x : θa), they are also tasks generated by the
distribution fa(: θa).
Hence, if a serial of tasks is provided in a order {f : ym−1 → ym|m = 1, ..., n}, La can
solve fb(: θ∗b ) just as good as Lb.

The above proof does not conflict with the universal approximation theorem. The universal ap-
proximation theorem is not about the off-training-set error. Therefore, there is no guarantee that a
feedforward network is optimal in terms of off-training-set error for any function.

One may misunderstand the serial of tasks is similar to hidden layers of a neural network. They are
totally different concepts. Each task in the serial is sampled from the task distribution space. Hence,
they can be considered as real applications. For example, one task is a OCR task, and another task
is a translation task. But the hidden layers of a neural network are not related to real applications,
only the outputs of the whole network are related to real applications.

4 ANALYSIS OF THE TASK ORDER

Next, we analyse the task order mentioned in the TAFL Theorem. We first describe our conclusion
as below.
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La is the optimal algorithm in terms of off-training-set error for a set of distribution {fa(:
θa)|θa ∈ R}. fa(: θa) has the form of y = ga(

∑
i x

iθia + θba).

Given a task of distribution fb(: θ∗b ), TO∗ = {d0∗
a , ...,d

n∗
a } is the correct task order for

algorithm La to optimally solve fb(: θ∗b ). The task order TO∗ is a sample among all
possible task order samples. For a new given task, we sample a set of task orders TOi
randomly or following some distribution until the TO∗ is sampled. For each sampled TOi,
we call La to solve each of dia in it.
We declare that the number of calls of La to solve each sampled dia until dn∗a is solved can
decrease when the number of previously solved tasks increases.

Roughly speaking, we can learn how to combine models generated in previous tasks to solve new
tasks to reduce the calls of L. The detailed reasons are listed below.

1 We can use a set M to store models of all solved di. Therefore, if a new task needs to solve
a di which model is already in M , we can skip running La on it.

2 We can construct a new kind of task based on M . This kind of task, denoted as abstract
tasks, learns a mapping from di to a sub-set of models in M : fA : di → m,m ⊂ M ,
where m should contain models of the correct task order for solving di. The loss of this
mapping is shown in Eq.4.

L(fA|La, fa,M) =
∑
di

∑
m

Eote(La|di, fa(m(x) : θa))P (m|di, fA) (4)

For a given d∗b , generated by fb(: θ∗b ), if the model of a mapping fA can recognize it and
give a set of models m∗ which guarantees that fb(: θ∗b ) = fa(m∗(x) : θa), then La can
optimally solve this task directly. According to the TAFL Theorem, we know there must
be an algorithm LA which is capable to optimally solve all possible Fabs = {fA, fB , ...}.
Each training sample of fA is a task in the distribution space F , and the model of fA is
optimized to minimize off-training-set error. Therefore, the model of a single fA can be
used to generate m for a set of tasks in F . It means after learning a single task fA, we can
decrease the number of running La on a set of tasks in F .
Following this idea, we can also construct fA2 : (di,m) → mA2 ,mA2 ⊂ MA2 , where
MA2 stores models generated in solving tasks in the distribution space Fabs. All possible
fA2 form a new distribution space Fabs2 . The model of a single fA2 can be used to generate
mA2 for a set of tasks fA ∈ Fabs which decreases the number of running algorithm LA on
those tasks.
Generally speaking, for the model of a task in distribution Fabsi , it can be used to decrease
the number of running algorithms LAi−1 on a set of tasks in Fabsi−1 . Please note, according
to the TAFL Theorem, we can use the same algorithm for all LAi .

3 We consider situations that fAi ∈ Fabsj or fa ∈ Fabsj for some i, a and j. It means
models of a distribution space can be used in another distribution space. We consider two
situations.
In the first situation, fAi , from the distribution space Fabsi , is a part of a task order TOA

j

.
TOA

j

is sampled for solving a task fAj that comes from the distribution space Fabsj . In
this situation, the model of fAi can be used directly to avoid running an algorithm for
solving fAi again.
In the second situation, fAi is equal to fAj . Therefore, we can avoid learning fAj and use
the model of fAi to solve tasks that fAj are required to solve. In those two situations, the
calls of learning algorithms are decreased.
The elements m of inputs and outputs of fAi and fAj are from different model sets. One
may argue that how fAi ∈ Fabsj is possible. Here we suggest some simple ways. For
example, we can put all models in the same set, or we can use an encoding function to map
any m to a real-valued embeddingE : m→ r. An example is given in the section.5 which
shows a way to allow fAi ∈ Fabsj .

3



Under review as a conference paper at ICLR 2022

5 EXAMPLE OF THE TAFL THEOREM

We present a simple example to help readers to understand the TAFL Theorem. Please note, we are
not going to prove this example is better than any existing algorithm.

We generate a serial of 2-dimensional binary classification tasks using several task distribution listed
in Eq.5. The fs of those distribution is a 2-dimensional affine transformation followed by a sigmoid
function, as shown in Eq.6. The distribution in {fi|i = 0, ..., n} can be arbitrarily accurate approxi-
mated by fs directly, but {fi|i = n+ 1, ...,m} can not. With strategies mentioned in the section.4,
we are going to use fs to approximate all {fi|i = 0, ...,m}.

f0 : fs(x : θ0 + τ)

...

fn : fs(x : θn + τ)

fn+1 : fs((fi, fj) : θn+1 + τ), i, j ∈ 0, ..., n

...

fm : fs((fk, fq) : θm + τ), k, q ∈ 0, ..., n

(5)

fs(x) =
1

1 + e−
∑

i xiθi+θb
(6)

Each task randomly chooses a task distribution fi and randomly samples τ . The {θi|i = 0, ...,m}
are fixed across all tasks. The inputs of a task i are uniformly sampled from [0, 1], denoted by Xi =
{(x0i (k), x1i (k))|k = 0, ...,m}. The targets are given by Yi = {I(fi(xi(k)) > 0.5)|k = 0, ...,m}.
We show some tasks in Fig.1, where different colors represent different classes. The subfigures a to
e are from distribution {fi|i = 0, ..., n}, and f to h are from distribution {fi|i = n+ 1, ...,m}.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: 2-dimensional binary classification tasks

Given a task Ti, we first try to use fs as the model to solve this task. If the resulting accuracy is
above a threshold θacc, we store the model of this task, denoted as mi, in a set M . If the accuracy
is below the threshold θacc, we use random search to choose two models mk,mq in M to form a
new model fs((mk(x),mq(x)) : θ) to replace fs and run from the first step again. We terminate
this task when we get a qualified model or the number of runs exceeds a threshold δ. This process is
marked as L.
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Besides tasks generated from fi, we also generate abstract tasks to learn how to choose models for
new tasks. For two random given mk,mq in M , we randomly generate two new models m0 =
fs((mk,mq) : θ0) and m1 = fs((mk,mq) : θ1). Next, we generate some classification tasks using
fs((mk,mq) : θ0 + ∆τ) and fs((mk,mq) : θ1 + ∆τ) as task distribution. We also generate some
classification tasks using arbitrary fi. We calculate the test accuracy of generated tasks on both m0

and m1. The test accuracy of those tasks forms a set of training inputs X = {(e0(z), e1(z))|z =
0, ...,m}. We use whether a task is generated by fs((mk,mq) : θ0+∆τ) or fs((mk,mq) : θ1+∆τ)
as training targets. Those samples form a new abstract task Tj . We use the above process L to solve
this task.

After solving some abstract tasks, the step of selecting mk,mq in L can be improved. We first
check whether the given task can be recognized by models of abstract tasks in M . If so, we use
the corresponding mk,mq directly. In addition, if a model in M can achieve a relatively higher
accuracy on Ti, we use this model to initialize θ of fs(: θ).

The whole process in shown in Algorithm.1 and Algorithm.2.

Algorithm 1 Solving a task
Require: task distribution space F and model fs(x : θ)

Set M = {}
while not end do

generate a task Ti
if fs can solve Ti then

add new model mi into M .
else if M can recognize Ti → mk,mq and fs((mk,mq) : θ) can solve Ti then

add new model mi into M .
else if here is a mk ∈M and fs(: θk + ∆) can solve Ti then

add new model mi into M .
else

while runs < δ do
if randomly choose mk,mq and fs((mk,mq) : θ) can solve Ti then

add new model mi into M .
end if

end while
end if

end while

Algorithm 2 Generating a task
Require: M and task distribution space F .

if sample a task from F then
return a task randomly generated from F .

else
randomly choose mk,mq form M .
randomly generate two models: m0 = fs((mk,mq) : θ0) and m1 = fs((mk,mq) : θ1)
generate N classification tasks using fs((mk,mq) : θ0 + ∆τ) and fs((mk,mq) : θ1 + ∆τ)
generate M classification tasks from F
calculate test accuracy of those tasks on m0 and m1.
return X = {(e0(i), e0(i))|i = 0, ..., N +M}, Y = {I(i < N)|i = 0, ..., N +M}

end if

We use SGD as a learning algorithm to solve each task. We measure task failure rate and the runs of
SGD of a single task in a sliding window manner and show them with the number of tasks in Fig.2.
We also measure how a task is solved and show it in Fig.3. The “fail” and “fs” of the Fig.3 are the
percentage of failed, directly solved tasks respectively. The “random” and “recognize” mean a task
solved by randomly selecting mk,mq , and recognizing mk,mq respectively. The two figures show
that the failure rate and the number of runs both decrease with the number of solved tasks increasing.
The reason of this phenomenon is more and more tasks are solved in the recognizing way as shown
in Fig.3.
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In conclusion, this example shows a possible implementation of the TAFL Theorem, and demon-
strates our main ideas: it is possible to use an algorithm to learn that it can not directly learn. The
more we learn, the faster we solve new tasks.

Figure 2: Failure rate and runs of SGD in a single task.

Figure 3: Percentages of how a task is solved.

6 IMPLICATIONS OF THE TAFL THEOREM

The idea behind the TAFL Theorem is very simple. One only has limited ability to directly solve
unknown tasks. For a task one cannot directly solve, the prior skills of this task may be directly
learnable. One should learn those prior skills first and then learn how to use those skills. After
that, the unsolvable task becomes directly solvable. Maybe even human intelligence is not powerful
enough to solve complex tasks directly. On the contrary, maybe, human intelligence can only solve
relatively simple tasks directly. But with some simple strategies that ensure sharing knowledge
across tasks, all complex tasks can be converted into simple tasks that human intelligence can solve
directly.

The main methodology of the current AI community is to design different algorithms for different
AI problems to ensure the problems can be solved directly. This methodology can converge on all
possible problems only if all possible problems can be solved by finite algorithms. We are very
doubtful about this assumption. The alternative way is to keep algorithms fixed, but to use solved
tasks to improve the ability of solving new tasks. The disadvantage is some tasks can not be solved
at the first time. We need to wait until the whole system has the ability to solve this task. We believe
this methodology is more likely to converge on all possible problems.
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The TAFL Theorem implies two kinds of applications. The first kind of application uses models
generated earlier to improve performance of current tasks. We have already seen many methods that
utilized this idea. Some methods directly use outputs of another model to improve the performance
of current tasks. In 3D detection, FusionPainting Xu et al. (2021) feeds outputs of a fixed 2D
segmentation model to a 3D detection network to largely improve the accuracy of 3D detection. In
image captioning Wang et al. (2020), it is very common to use a fixed classification or detection
model to provide information of the image. The information is fed into another network to generate
image captions.

Transfer learning can be considered as a variant of this idea. For example, it is very popular to use
pre-trained models in downstream tasks, e.g. ImageNet pre-trained models Neyshabur et al. (2020)
in computer vision and BERT Devlin et al. (2018) in natural language processing (NLP).

Task adaptation is also related to this idea. MAML Finn et al. (2017) proposes a framework to train
a meta-model on source tasks and fine-tuning it on target tasks. The meta-model should be capable
of adaptation easily to target tasks. It is done by simulating the adaptation process many times, and
optimize the meta-model to maximize the adaptation ability across those simulations.

The second kind of application learns a model to generate a combination of old models for a given
task. The combination is used in the same way as the first kind of application to improve perfor-
mance of the given task. To our knowledge, there are few works about this idea. Maybe, this is
because solved tasks at our hands are not enough or properly organized.

Some ensemble methods can be considered related to this idea. For example, CollaborationofExperts
Zhang et al. (2021) archives 80% Top-1 Accuracy on ImageNet with 100M FLOPs by generating
multiple models in training and selecting the most appropriate one for predicting.

7 CONCLUSION

This paper proposes the TAFL Theorem which indicates that with some simple strategies, some
algorithms are capable to optimally solve all tasks. Base on the TAFL Theorem, we also conclude
that with the number of solved tasks increasing, the algorithm can solve new tasks faster.

The TAFL Theorem also implies that maybe it is not a matter that algorithms at our hands are not
powerful enough. An alternative way is to accumulate models of solved tasks and learn how to use
those models to solve new tasks.

This paper presents an example to demonstrate the TAFL Theorem. The initial inductive bias is
defined as a 2-dimensional affine transformation followed by a sigmoid function. The tasks to solve
are a serial of 2-dimensional binary classification tasks. Some of them can be directly solved by the
initial inductive bias, but some can not. With a learning strategy implied by the TAFL Theorem,
the example shows both the failure rate and the runs of a learning algorithm decrease with the task
number increasing.
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