
Flash Invariant Point Attention

Andrew Liu, Axel Elaldi, Nicholas T Franklin, Nathan Russell
Gurinder S Atwal, Yih-En Andrew Ban, Olivia Viessmann

Flagship Pioneering
Cambridge, MA, United States

[anliu,aelaldi,nfranklin,nrussell,matwal,aban,oviessmann]@flagshippioneering.com

Abstract

Invariant Point Attention (IPA) is a key algorithm for geometry-aware modeling
in structural biology, central to many protein and RNA models. However, its
quadratic complexity limits the input sequence length. We introduce FlashIPA, a
factorized reformulation of IPA that leverages hardware-efficient FlashAttention
to achieve linear scaling in GPU memory and wall-clock time with sequence
length. FlashIPA matches or exceeds standard IPA performance while substantially
reducing computational costs. FlashIPA extends training to previously unattainable
lengths, and we demonstrate this by re-training generative models without length
restrictions and generating structures of thousands of residues. FlashIPA is available
at https://github.com/flagshippioneering/flash_ipa.

1 Introduction

Invariant Point Attention, IPA, is a geometry-aware attention operation that has been the workhorse
of generative structural design models for proteins and RNA, initially popularized by Alphafold2 [1]
and AlphaFold-Multimer [2], and subsequently widely adopted across structural biology modeling.
Amongst them are structure prediction models like OpenFold and ESMFold for proteins [3, 4],
RhoFold for RNA [5], generative protein backbone models such as FrameDiff[6], FrameFlow [7, 8],
the FoldFlow family [9, 10], FrameDiPT [11], Proteus [12], FADiff [13], Genie [14], IgDiff [15],
GAFL [16], P2DFlow [17], RNA generative models such as RNA-FrameFlow [18], and scoring
models like lociPARSE [19]. A list of models that rely on IPA for their structure modeling is provided
in Appendix A.1. The advantage of IPA is its roto-translational (SE(3)) invariant representation of
the molecular structure, enforcing the idea that rotations and translations of a molecule results in
an equivalent structure prediction. This inductive geometric bias accelerates training and improves
performance in limited data settings, as is the case for structurally resolved biomolecules. IPA’s
quadratic scaling (O(L2)) limits its scalability, rapidly exhausting GPU memory when modeling
longer biomolecules. As of May 2025, 42% of structures within the PDB have more than 512 residues,
and 33% with more than 756 and 23% with more than 1024 (see Appendix A.2). Most trainings
across the literature reduce their data to chains and cropped structures below 512 residues. Despite
this, they still commonly run on costly multi-GPU setups with trainings that span from days up to a
month [5, 6].

Such engineering compromises, namely truncating biologically relevant lengths, limiting dataset
sizes, and relying on expensive computational infrastructure, restrict the progress of the field. In this
work, we propose a recasting of the original IPA algorithm to a simple attention form to leverage
off-the shelf I/O reduction methods like FlashAttention, which replace the quadratic O(L2) with an
effective linear O(L) scaling behavior. We show empirically that FlashIPA exceeds the validation
performance of IPA in benchmarking models and datasets. We then demonstrate the memory and

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/flagshippioneering/flash_ipa

compute time efficiency by retraining benchmarking models more efficiently and without length
restrictions on the data.

We provide FlashIPA as an importable uv package at https://anonymous.4open.science/r/
flash_ipa-07CE/ with an API similar to existing repositories using IPA to facilitate drop-in usage.

2 Preliminaries

Introduced by AlphaFold2 [1], IPA is a specialized attention mechanism designed to preserve 3D
geometric relationships directly in transformer-based models for structural biology applications. IPA
enforces invariance under 3D rotations and translations by utilizing a learnable local coordinate frame
representation for each residue (point) within proteins and RNAs.

Formally, a function f : X → Y is invariant to transformations in the abstract group G if f(g · x) =
f(x) for all g ∈ G. This differs from equivariance to G, where the transformations of the group
commute with f , or f(g ·x) = g ·f(x) for all g ∈ G. Here, we are concerned with the transformations
T (referred to as "frames") in the special Euclidean group SE(3), a continuous group of rigid
transformations that includes rotations and translations, but not reflections. Intuitively, the output of
an SE(3)-invariant function does not change under rotations and translations, which is desirable for
biomolecular structures, that do not change function under those transformations.

2.1 Frame representations for proteins and RNA

Meaningful frames for biomolecules are commonly defined on the backbone structures. In proteins,
each residue frame is typically determined by three of the four atoms from the backbone, namely the
alpha carbon (Cα), nitrogen (N), and carbon (C), with Cα at the origin. The frame transformation T
maps the standard positions of these backbone atoms into their actual positions in global coordinates:
[N,C,Cα, O] = T · [N ′, C ′, C ′

α, O
′]. The frame has a rotation and translation component T =

(R, t). The rotation component of the transformation, R, is computed using Gram–Schmidt ortho-
normalization on vectors formed by Cα −N and Cα − C bonds, while the position of the oxygen
(O) is captured by the torsion angle around the Cα − C bond.

For RNA, the backbone structure involves 13 atoms per nucleotide, leading to more complex flexibility.
RNA-FrameFlow [18], define RNA frames using the atoms C3′, C4′, and O4′, identified as the least
variable backbone positions. The rest of the RNA backbone geometry can then be parameterized
efficiently through a set of eight torsion angles.

2.2 IPA algorithm

The IPA algorithm is a 1D sequence-to-sequence transformation. It transforms an input sequence
representation si, local frames Ti, and pair representations zij (with sequence indices i, j ∈ 1, ..., L)
into an output sequence s̃i. Each attention head, indexed by h ∈ 1, ...,H , involves linear transforma-
tions of the input sequence to produce scalar queries, keys, values (qh

i ,k
h
i ,v

h
i ∈ Rc) and Euclidean

(geometric) counterparts (q⃗hp
i , k⃗hp

i , v⃗hp
i ∈ R3). Additionally, the pair representation zij ∈ RL×L×dz

contributes to a bias term bhij through a linear projection:

Single rep: qh
i , q⃗

hp
i ,kh

i , k⃗
hp
i ,vh

i , v⃗
hp
i ← Linear (si) (1)

Pair rep. (bias term): bhij ← Linear (zij) (2)

IPA update: ahij = softmaxj

(
wL

(
1√
c
qh
i

⊺
kh
j + bhij −

γhwC

2

∑
p

∥∥∥Ti ◦ q⃗hp
i − Tj ◦ k⃗hp

j

∥∥∥2
2

))
︸ ︷︷ ︸

O(L2)

(3)
Attention aggregation: õh

i =
∑
j

ahijzij , oh
i =

∑
j

ahijv
h
j , o⃗hp

i = T−1
i ◦

∑
j

ahij

(
Tj ◦ v⃗hp

j

)
(4)

Concat, project, return: s̃i = Linear
(

concath,p
(
õh
i ,o

h
i , o⃗

hp
i ,
∥∥∥o⃗hp

i

∥∥∥
2

))
(5)

2

https://anonymous.4open.science/r/flash_ipa-07CE/
https://anonymous.4open.science/r/flash_ipa-07CE/

The proof of SE(3) invariance of the IPA transformation can be found in the appendix of AlphaFold2
[1]. This form of IPA incurs O(L2) I/O and memory complexity due to the explicit materialization of
the quadratic attention matrix in equation 3.

2.3 FlashAttention and I/O reduction

The quadratic scaling of the attention operation is a well-known challenge in deep learning. Operations
are generally I/O-bound on the GPU, with performance primarily limited by data transfers between
the GPU’s high-bandwidth memory (HBM) and its static random access memory (SRAM). I/O
reduction is typically achieved through kernel fusion, which reduces memory traffic by combining
multiple operations into a single CUDA kernel. FlashAttention [20, 21] achieves kernel fusion via an
online and tiled computation of the softmax, which, instead of materializing the full quadratic M =
softmax (qk⊺) matrix, performs an equivalent computation by accumulating partial contributions to
the output Y = MV one tile at a time. This technique improves scalability and performance for
transformer-based models. We provide the Flash-Attention pseudo-code in appendix A.3. Building
on FlashAttention-1, FlashAttention-2 further reduced the number of non-matmul FLOPs, increased
parallelism across thread blocks, and distributed work between warps to reduce communication
through shared memory [21].

2.4 FlashIPA: combining geometry-awareness and efficiency

Our efficiency gains come from expressing the entire IPA update in a form that is amenable to
FlashAttention (i.e. a factorized version of form q⊺k), which then computes the attention update
without materializing any quadratic attention matrix. To do so, we rewrite the softmax argument
in the IPA update (eq. (3)) as a single inner product. We also need to parameterize the pair
representation (bias term eq. (2)) zij ∈ RL×L×dz in a factorized form zij = z1 ⊺

i z2j , where
z1i , z

2
j ∈ RL×r×dz . Here, r can be interpreted as the "rank" of the factorization, and is the dimension

on which we perform the contraction. We then expand the sum of squared norms in the third
term of eq. (3) and collect terms, resulting in an equivalent update rule, given in Algorithm 1.
Note that factorizing zij allows not only for combining the softmax terms, but also allows us to

compute the pair representation part of the attention as õh
i =

∑
j aijzij = z1 ⊺

i

(∑
j aijz

2
j

)
, avoiding

materializing any quadratic object. As a result, the attention components from eq. (1) are lifted to
q̂h
i , k̂

h
j ∈ Rc+5Nquery+rdz , v̂h

i ∈ Rc+3Nvalue+rdz . Regular attention is then computed on the lifted
components.

With the new update in the form of regular attention, we then leverage FlashAttention to perform the
computation. This leads to significant speedups in wall-clock time and since the online computation
of FlashAttention avoids materializing the quadratic attention matrix, we only need to store the
queries, keys, and values in the GPU’s HBM, incurring only O(L) memory.

2.5 Factorizing the pair representation

General forms of pair representations zij typically involve quadratic memory complexity and are not
inherently decomposable. However, common implementations of IPA often compute these quadratic
representations from components that intrinsically scale linearly, implying redundancy in the resulting
quadratic tensor zij (eq. (2)). This suggests that pair representations can be efficiently approximated
through low-rank factorization in latent space. In particular, common pairwise tensors in structural
biology modeling, such as distance matrices and contact maps, are either low-rank or sparse due
to the smooth, local nature of physical interactions like electrostatics and steric constraints. This
motivates a simplified factorization strategy for initializing and updating zij . Instead of explicitly
constructing and storing a full quadratic tensor of shape (B,L,L, d), we represent each feature (e.g.,
positional encodings, distograms, diffusion time embeddings in generative models, a.s.o.) using two
lower-dimensional tensors (pseudo-factors) each of shape (B,L, r, d), obtained via linear projections.
We show empirically that this parametrization, despite relaxing certain inductive biases, recovers
downstream performance with substantially lower memory consumption.

3

Algorithm 1 FlashIPA with factorized pair representations

Given input sequence s ∈ RL×din , factorized pair representation zij = z1 ⊺
i z2j (where z1, z2 ∈

RL×r×dz and z ∈ RL×L×dz), frames Ti = (Ri, ti) ,∀i, j ∈ {1, ..., L}
1: qh

i , q⃗
hp
i ,kh

i , k⃗
hp
i ,vh

i , v⃗
hp
i ← Linear (si)

2: bh1
i ← Linear

(
z1i
)

3: bh2
i ← Linear

(
z2i
)

4: q̂h
i ← concat

(
qh
i ,
{
Ti ◦ q⃗hp

i

}NQuery

p=1
,

{∥∥∥Ti ◦ q⃗hp
i

∥∥∥2
2

}NQuery

p=1

,1NQuery ,b
h1
i

)

5: k̂h
i ← concat

(
wL√

c
kh
i ,
{
γhwLwCTi ◦ k⃗hp

i

}NQuery

p=1
, −γhwLwC

2 1NQuery ,

{
−γhwLwC

2

∥∥∥Ti ◦ k⃗hp
i

∥∥∥2
2

}NQuery

p=1

,bh2
i

)
6: v̂h

i ← concat
(
vh
i ,
{
Ti ◦ v⃗hp

i

}NValues

p=1
, z2i

)
7: ôh

i ← FlashAttention(Q̂h, K̂h, V̂h)i
8: oh

i , o⃗
hp
i , õh

i ← split(ôh
i)

9: õh
i ← z1 ⊺

i õh
i

10: s̃i ← Linear
(

concath,p
(
õh
i ,o

h
i , o⃗

hp
i ,
∥∥∥o⃗hp

i

∥∥∥
2

))
11: Return s̃

In many structure models zij is updated multiple times by a non-linear EdgeTransition module that
is not part of IPA. Because of that each factor is usually highly non-linear with respect to the input,
despite the low-dimensional contraction. Thus, we still retain substantial representation power with
this factorization. The benefits of highly nonlinear low-dimensional factors is well motivated in
the literature: Instead of large head dimensions and linear factors, i.e. q, k = Linear (X), as is
the case for transformers, many state space models, such as Mamba [22] use factors that are non-
linear transformations of the input (e.g. q, k = Swish (Conv1d (X)), and much smaller contraction
dimensions (often r = 16).

We also note that most implementations of IPA rely on pair representations zij that depend on
distograms computed from pairwise distances. To simultaneously ensure invariance and avoid
computing activations on the full distogram, we only keep the distances of the k nearest neighbors
(B,L, k, nbins) instead of (B,L,L, nbins). In practice, we compute these using a full L×L distance
matrix during pre-processing, which does not impact the runtime complexity of FlashIPA. We keep
track of neighbor identities by applying positional encodings on their indices. Emphasizing nearest
neighbor distances is also motivated by the fact that local geometry (e.g. chemical bonds) is more
important than global geometry when it comes to validity of biomolecular structures. We surmise that
in future work it may be beneficial to compress all L(L−1)

2 distances into factors without materializing
the pairwise matrix, in a manner similar to FlashAttention.

3 Experiments

3.1 FlashIPA is SE(3) invariant and scales linearly in memory and wall-clock time

We tested the SE(3)-invariance by applying random roto-translations to input Gaussian point clouds
and measuring the output deviation after applying a single layer of the original IPA and FlashIPA.
Original IPA output deviation was < 10−6 and FlashIPA < 10−3. We evaluate the scaling behavior in
GPU memory and wall-clock time by passing single-sample batches of increasing lengths L through
original and FlashIPA, see Fig. 1. We use a polynomial fit (green and red dotted lines), and find an
approximate GPU memory scaling for FlashIPA of y [MB] = −7 · 10−12 ·L2 +7.5 · 10−2 ·L versus
original IPA y [MB] = 2.4× 10−3 · L2 + 1.4 · 10−2 · L. The computational complexity of attention
still remains O(L2) due to the softmax operation. FlashAttention reduces the memory complexity to
O(L). Practically I/O, rather than computation, often dominates runtime on GPU hardware, and this
is reflected in the observed linear wall-clock scaling in Fig. 2A.

4

Sequence length [L] Sequence length [L]

G
PU

 M
em

or
y

[G
B]

G
PU

 ru
n

tim
e

[s
]

[A] Flash IPA memory usage [B] Flash IPA runtime

Figure 1: Scaling as a function of input sequence length on a single-sample batch forward pass.
[A] GPU memory usage in GB. Original IPA scaled approximately quadratically with sequence
length (y [MB] = 2.4 × 10−3 · L2 + 1.4 · 10−2 · L), FlashIPA follows a linear trend (y [MB] =
−7 · 10−12 · L2 + 7.5 · 10−2 · L). [B] Wall-clock time in seconds.

3.2 Integration test with external repositories

We selected two recent model approaches where code and data were available for retraining of the
original model and allowed for FlashIPA insertion. We chose FoldFlow [10] for proteins and RNA-
FrameFlow [18] for RNAs, both are flow-matching generative backbone models. All experiments
were run on L40S GPU instances with 48 GB HBM memory. FlashIPA hyperparameters were
matched to the IPA parameters chosen by the original authors (embedding sizes, hidden dimensions,
number of heads, etc.). For the factorization of the pair representation we tested rank ∈ {1, 2},
and found rank 2 and pair-wise distograms with k = 20 to match and partially surpass the loss
convergence of original IPA.

3.3 FlashIPA improves performance and extends to larger proteins

We retrained the FoldFlow Base model in its original form with IPA and with FlashIPA. We reran
the PDB data pre-processing pipeline by the authors, which yielded a total of 40,492 single-chain
protein monomers for training. The original training used a maximum length cut-off of 512 residues,
which results in a 10% reduction of the training data to 36,600 structures. We match the training
strategy of the original authors and train on this reduced dataset on 4 GPUs with DDP. We kept
model and train parameters identical to the published values of the authors, however for the FlashIPA
version we had to make two adjustments: The original repository runs 4 blocks of IPA with a
hidden dimension of 256. FlashAttention becomes incompatible with DDP at that dimension, so
we reduced FlashIPA hidden dimension to 128 and used 5 blocks (instead of 4) to match model
parameter sizes (17.4M versus 17.1M, theirs versus ours). To keep memory consumption at an
efficient constant level, the original implementation heuristically chose an effective batch size
according to the quadratic rule effbs = max

[
round

(
500.000×nGPUs

N2

)
, 1
]
, which kept GPU memory

at approximately 90% throughout training. For FlashIPA we were able to achieve a linear effective
batch size effbs = max

[
round

(
20.000×nGPUs

N

)
, 1
]

that resulted in similar memory consumption.
For example IPA only has a batch size of 1 for a protein of length 512, whereas FlashIPA can batch
together 39 samples. We found that FlashIPA converged slightly faster than IPA as expected with
larger batch size, but we also compared partial loss terms, and found that particularly the number of
steric clashes reduced faster for FlashIPA (we provide loss curves in the Appendix A.4). This suggests
that our local k-nearest neighbour distogram emphasis is more efficient at capturing local geometry.
To demonstrate the immediate enablement of linear scaling we ran one additional training with
FlashIPA on the entire monomer dataset without length restrictions. The largest chain in the dataset
is 8.8k residues. We follow the original authors’ validation test that generates structures at varying
lengths, subsequently inverse folds with Protein-MPNN [23] and forward-folds with ESMFold [4].
Generated and forward-folded structures are then aligned via the Kabsch algorithm and the resulting
self-consistency RMSD (sc-RMDS) is a proxy for generation fidelity. We perform this test for all
three models: original IPA and FlashIPA trained up to length 512, and FlashIPA on all data. Similar
to the original paper we sampled 50 structures per length from 100 to 500, and sample 8 inverse
folded sequences to forward fold per strucutre. All models are evaluated on checkpoint number
200,000. Fig. 2 A) shows that the sc-RMSD is lower for FlashIPA compared to the original IPA

5

Figure 2: FoldFlow self-consistency validation after 200k optimization steps. A) The sc-RMSD of
the FlashIPA (red, green) models is consistent or better than the original IPA model (blue). Extending
training to larger structures with FlashIPA further improves sc-RMSD. B) Three exemplar generated
backbone structures with FoldFlow FlashIPA. *ESMFold gets out of memory for lengths beyond
500+ residues and sc-RMSD could not be assessed.

trained on the same length-restricted data. Sc-RMSD is further improved when FlashIPA training is
extended to the full dataset, as expected. We emphasize that FlashIPA is not designed to improve
generation quality per se, but to enable training on larger and more complex structures. We suspect
that the observed sc-RMSD values reflect accumulated model errors across three stages of validation:
FoldFlow generation, Protein-MPNN inverse folding, and ESMFold forward folding. We could not
assess sc-RMSF for larger structures, as the ESMFold also depends on IPA and ran out of memory.
Overall we conclude that FlashIPA is more performant and more efficient than IPA. Fig. 2 B) shows
example structures generated with the full data trained FlashIPA version.

3.4 FlashIPA trains more efficiently and extends to larger RNAs

We retrained the RNA-FrameFlow model using the code provided by the original authors. We
ingested the same BGSU version 3.382 of the RNASolo2 dataset [24], comprising a total of 14,995
structures (see Appendix A.5). First we re-trained RNA-FrameFlow with original and FlashIPA on
all structures within 40 to 150 residue (6,030 structures total), as proposed by the authors. We kept
all hyperparameters consistent with the original model. We matched the authors’ training setup and
models were trained on 4 GPUs with DDP and an effective batch size of 4×28. 4 GPUs are necessary
for effective training with IPA, but with FlashIPA it becomes feasible to run a comparable training on
a single GPU instance. To demonstrate the cost efficiency we also performed an additional FlashIPA
training run on the same data with a batch size of 512 on single GPU. All models were trained for a
fixed compute time of 20 hours, which resulted in approximately 156k iterations with original IPA,
roughly 230k with FlashIPA on 4GPUs and 194k with FlashIPA on a single GPU. During training
we found models to converge comparably with overlapping loss curves, see Appendix A.6. For an
apples-to-apples comparison we validated the models using identical validity, novelty, and diversity
metrics as defined in the original paper, which uses gRNAde [25] for inverse-folding of the generated
structure and RhoFold [26] for forward-folding. For validity, we report the average self-consistency
template modeling score (sc-TM). To do so, we generated 50 structures per length ranging from 40
to 150 residues, in increments of 10. The results are presented in Table 1 and Fig. 4. We observe
comparable scores between all models. In particular, the single-GPU training matches performance
at a quarter of the compute cost than the original.

To highlight the advantages of using FlashIPA in the RNA-FrameFlow model, we analyzed the
GPU runtime required to generate RNA backbones based on RNA sequence length and batch size.
The results are in Fig. 3. We observed improvements with FlashIPA compared to the original IPA
model, especially for longer sequences and larger batch sizes. For example it takes 30 times longer to
generate an RNA sequence of length 2048 with the original IPA than with FlashIPA.

We also re-trained RNA-FrameFlow with FlashIPA on the full RNASolo dataset without maximum
length restrictions (the longest structures being 4,417 nucleotides) and filtering out structures shorter
than 40 nucleotides. We trained the model on 4 GPUs for 48 hours, with batch size of 4×28, resulting
in approximately 310k iterations. In Fig. 4, we present samples of large generated RNA structures
with lengths of 2000 and 4000 nucleotides. In comparison, the original RNA-FrameFlow can not be

6

Model Validity (↑) Diversity (↑) Novelty (↓) Checkpoint Cost

(scTM ± std) (qTM cluster) (pdbTM ± std) (#steps) (# GPU hours)

RNA-FrameFlow 0.42± 0.21 0.15 0.81± 0.10 156k 80

. + FlashIPA (ours) 0.38± 0.20 0.14 0.82± 0.10 230k 80

. + FlashIPA single GPU ** (ours) 0.41± 0.21 0.08 0.77± 0.09 194k 20

. + FlashIPA ** + All data (ours) 0.36± 0.14 0.14 0.74± 0.08 310k 192

Table 1: Average validity, diversity, and novelty scores for 600 generated RNAs of length ≤ 150 with
RNA-FrameFlow, with and without FlashIPA. FlashIPA provides competitive results at a fraction
of the cost of an original IPA layer. ** indicates that batch size has been increased to match GPU
memory capacities.

Sequence length Batch size

G
PU

 ru
n

tim
e

[s
]

G
PU

 ru
n

tim
e

[s
]

[A] RNA generation
Sequence length effect on runtime

[B] RNA generation
Batch size effect on runtime

Figure 3: Scaling of FlashIPA versus IPA for RNA generation using RNA-FrameFlow model, with a
number of diffusion timestep NT = 50. [A] Impact of the generated sequence length on the generation
runtime, using a batch size of 1. [B] Impact of the generated batch size on the generation runtime, for
generated sequence of length 128.

trained or generate such long sequences. The inverse-forward-folding consistency test cannot be run
for structures of thousands of residues as the validation models (gRNAde [25] for inverse-folding and
RhoFold [26] for forward-folding) run out of memory at such lengths. However, we qualitatively
observe that the generated structures resemble RNA, we don’t necessary suspect those to be valid,
as the amount of training data at such length is still comparably small. We note that sc-TM scores
vary across sequence lengths, with some fluctuations (e.g., at 120 residues). This pattern is consistent
with the original RNA-FrameFlow paper, which attributes it to a length imbalance in the training
distribution and biases introduced by the RhoFold structure predictor used during evaluation (see
[18] Appendix A.3).

4 Discussion

FlashIPA provides memory and wall-clock efficient SE(3) invariant training on biomolecules and
allows for training on structures of thousands of residues. This approach opens up the possibility of
multi-chain complex modeling in situations constrained by the original IPA module. Our work permit
usage of IPA in contexts where it may have been ruled out due to its scaling limitations, including
representations beyond polymeric backbone that include more atomic detail.

Efficiency and scalability to long contexts has often been a neglected aspect of geometric deep
learning research and many modules have quadratic to cubic complexity. An example is triangular
attention used in popular models like AF-3[27], Chai-1[28] and Boltz-1 [29]. Recently, TriFast [30]
was released, which uses fused triangular attention kernels to reduce I/O complexity from cubic to
quadratic. We assume that a factorized version might even achieve a linear scaling. Most efficient,
sub-quadratic models tend not to incorporate geometric inductive biases. Our work can be seen as a
first step at bridging this divide, enabling models that respect invariances, are cost-effective, and can
scale to larger or more fine-grained biomolecular systems.

7

Sequence length [L]

se
lf-

co
ns

is
te

nc
y

TM

[A] Self-consistency TM of generated RNA
function of sequence length

RNA-FrameFlow

- + FlashIPA single GPU ** (ours)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

40 50 60 70 80 90 100 110 120 130 140 150

[B] Example of small generated RNA

Length = 80
scTM = 0.77

Length = 140
scTM = 0.61

Length = 120
scTM = 0.95

Length = 70
scTM = 0.83

[C] Example of large generated RNA

Length = 1000 Length = 4000

- + FlashIPA ** + All data (ours)

Figure 4: RNA-FrameFlow generated RNAs results. [A] Comparison of the scTM score depending
on the generated RNA sequence length and the IPA module used. The RNA-FrameFlow and RNA-
FrameFlow + FlashIPA models are both trained on only short sequences ≤ 150, while the All data
model has been trained without maximum sequence lenghth limit. We don’t observe a significant
difference between the different trained RNA-FrameFlow models. [B] Example of short generated
RNA structures with our FlashIPA RNA-FrameFlow model trained on short sequences. [C] Example
of long generated RNA structured with our FlashIPA RNA-FrameFlow model trained on the full
dataset.

4.1 Limitations

FlashIPA relies on factorization of the pair representation, which ultimately is an approximation. Here
we did not find a decrease in performance, but this may not be guaranteed for more general applications
to other forms of more dense pair representations. Exploring alternative schemes specialized for
certain pair representations (e.g. cross-concatenations, distograms, pair index differences) may further
improve downstream performance.

Despite substantial memory and I/O savings, current FlashAttention implementations (e.g., FlashAt-
tention2) impose a maximum head dimension of 256, due to the kernel’s internal design, which
expects stacked query/key/value vectors. Since our method relies on augmenting the attention
components, this means that we must have max(c + 5Nquery + rdz, c + 3Nvalue + rdz) ≤ 256.
Here, we achieved competitive results using head dimensions around 200, so this was not a practical
limitation. However, the Triton implementation of FlashAttention2 based on AMD CDNA (MI200,
MI300) and RDNA GPUs allows for extending the head dimension to arbitrary size. We expect these
improvements to apply more broadly to a wider class of GPU architectures in the months to come.
Unlocking larger head dimension would allow us to increase our factorization rank, thereby better
approximating dense pair representations and closing potential gaps against quadratic IPA.

Furthermore, we note that despite achieving O(L) in I/O and memory, the underlying compute cost
is still O(L2) due to the softmax. Removing the softmax and using linear attention variants such as
Mamba would allow us to achieve O(L) cost in both compute and memory, and is thus a promising
avenue of future work.

8

References
[1] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-

neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.

[2] Richard Evans, Michael O’Neill, Alexander Pritzel, Natasha Antropova, Andrew Senior, Tim
Green, Augustin Žídek, Russ Bates, Sam Blackwell, Jason Yim, et al. Protein complex
prediction with alphafold-multimer. biorxiv, pages 2021–10, 2021.

[3] Gustaf Ahdritz, Nazim Bouatta, Christina Floristean, Sachin Kadyan, Qinghui Xia, William
Gerecke, Timothy J O’Donnell, Daniel Berenberg, Ian Fisk, Niccolò Zanichelli, et al. Open-
fold: Retraining alphafold2 yields new insights into its learning mechanisms and capacity for
generalization. Nature Methods, 21(8):1514–1524, 2024.

[4] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos
Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of
protein sequences at the scale of evolution enable accurate structure prediction. BioRxiv,
2022:500902, 2022.

[5] Tao Shen, Zhihang Hu, Siqi Sun, Di Liu, Felix Wong, Jiuming Wang, Jiayang Chen, Yixuan
Wang, Liang Hong, Jin Xiao, et al. Accurate rna 3d structure prediction using a language
model-based deep learning approach. Nature Methods, pages 1–12, 2024.

[6] Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina
Barzilay, and Tommi Jaakkola. Se (3) diffusion model with application to protein backbone
generation. arXiv preprint arXiv:2302.02277, 2023.

[7] Jason Yim, Andrew Campbell, Emile Mathieu, Andrew Y. K. Foong, Michael Gastegger,
Jose Jimenez-Luna, Sarah Lewis, Victor Garcia Satorras, Bastiaan S. Veeling, Frank Noe,
Regina Barzilay, and Tommi Jaakkola. Improved motif-scaffolding with SE(3) flow matching.
Transactions on Machine Learning Research, 2024.

[8] Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna,
Sarah Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al.
Fast protein backbone generation with se (3) flow matching. arXiv preprint arXiv:2310.05297,
2023.

[9] Guillaume Huguet, James Vuckovic, Kilian Fatras, Eric Thibodeau-Laufer, Pablo Lemos,
Riashat Islam, Cheng-Hao Liu, Jarrid Rector-Brooks, Tara Akhound-Sadegh, Michael Bronstein,
et al. Sequence-augmented se (3)-flow matching for conditional protein backbone generation.
Advances in neural information processing systems, 2024.

[10] Joey Bose, Tara Akhound-Sadegh, Guillaume Huguet, Kilian FATRAS, Jarrid Rector-Brooks,
Cheng-Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael M Bronstein, and Alexander
Tong. Se (3)-stochastic flow matching for protein backbone generation. In The Twelfth
International Conference on Learning Representations, 2024.

[11] Cheng Zhang, Adam Leach, Thomas Makkink, Miguel Arbesú, Ibtissem Kadri, Daniel Luo,
Liron Mizrahi, Sabrine Krichen, Maren Lang, Andrey Tovchigrechko, Nicolas Lopez Carranza,
Uğur Şahin, Karim Beguir, Michael Rooney, and Yunguan Fu. Framedipt: Se(3) diffusion
model for protein structure inpainting. bioRxiv, 2023.

[12] Chentong Wang, Yannan Qu, Zhangzhi Peng, Yukai Wang, Hongli Zhu, Dachuan Chen, and
Longxing Cao. Proteus: exploring protein structure generation for enhanced designability and
efficiency. bioRxiv, pages 2024–02, 2024.

[13] Ke Liu, Weian Mao, Shuaike Shen, Xiaoran Jiao, Zheng Sun, Hao Chen, and Chunhua Shen.
Floating anchor diffusion model for multi-motif scaffolding. 2024.

[14] Yeqing Lin and Mohammed AlQuraishi. Generating novel, designable, and diverse protein
structures by equivariantly diffusing oriented residue clouds. arXiv preprint arXiv:2301.12485,
2023.

9

[15] Daniel Cutting, Frédéric A Dreyer, David Errington, Constantin Schneider, and Charlotte M
Deane. De novo antibody design with se (3) diffusion. Journal of Computational Biology, 2024.

[16] Simon Wagner, Leif Seute, Vsevolod Viliuga, Nicolas Wolf, Frauke Gräter, and Jan Stühmer.
Generating highly designable proteins with geometric algebra flow matching. In Thirty-eighth
Conference on Neural Information Processing Systems, 2024.

[17] Yaowei Jin, Qi Huang, Ziyang Song, Mingyue Zheng, Dan Teng, and Qian Shi. P2dflow: A
protein ensemble generative model with se(3) flow matching. Journal of Chemical Theory and
Computation, 2025.

[18] Rishabh Anand, Chaitanya K. Joshi, Alex Morehead, Arian R. Jamasb, Charles Harris, Simon
Mathis, Kieran Didi, Bryan Hooi, and Pietro Liò. Rna-frameflow: Flow matching for de novo
3d rna backbone design. arXiv preprint arXiv:2406.13839, 2024.

[19] Sumit Tarafder and Debswapna Bhattacharya. lociparse: a locality-aware invariant point
attention model for scoring rna 3d structures. Journal of Chemical Information and Modeling,
64(22):8655–8664, 2024.

[20] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in neural information processing
systems, 35:16344–16359, 2022.

[21] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning.
International Conference on Learning Representations, 2024.

[22] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

[23] Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F
Milles, Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep
learning–based protein sequence design using proteinmpnn. Science, 378(6615):49–56, 2022.

[24] Bartosz Adamczyk, Maciej Antczak, and Marta Szachniuk. Rnasolo: a repository of cleaned
pdb-derived rna 3d structures. Bioinformatics, 38(14):3668–3670, 2022.

[25] Chaitanya K Joshi, Arian R Jamasb, Ramon Viñas, Charles Harris, Simon V Mathis, Alex
Morehead, Rishabh Anand, and Pietro Liò. gRNAde: Geometric deep learning for 3d rna
inverse design. In International Conference on Learning Representations (ICLR), 2025.

[26] Tao Shen, Zhihang Hu, Zhangzhi Peng, Jiayang Chen, Peng Xiong, Liang Hong, Liangzhen
Zheng, Yixuan Wang, Irwin King, Sheng Wang, et al. E2efold-3d: End-to-end deep learning
method for accurate de novo rna 3d structure prediction. arXiv preprint arXiv:2207.01586,
2022.

[27] Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, 630(8016):493–500, 2024.

[28] Chai Discovery team, Jacques Boitreaud, Jack Dent, Matthew McPartlon, Joshua Meier, Vinicius
Reis, Alex Rogozhonikov, and Kevin Wu. Chai-1: Decoding the molecular interactions of life.
BioRxiv, pages 2024–10, 2024.

[29] Jeremy Wohlwend, Gabriele Corso, Saro Passaro, Mateo Reveiz, Ken Leidal, Wojtek Swiderski,
Tally Portnoi, Itamar Chinn, Jacob Silterra, Tommi Jaakkola, et al. Boltz-1: Democratizing
biomolecular interaction modeling. bioRxiv, pages 2024–11, 2024.

[30] Liam Atkinson. Trifast. https://github.com/latkins/trifast, 2025.

[31] Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Gener-
ative flows on discrete state-spaces: Enabling multimodal flows with applications to protein
co-design. arXiv preprint arXiv:2402.04997, 2024.

[32] Aleksa Gordic. Eli5: Flashattention. https://gordicaleksa.medium.com/eli5-flash-attention-
5c44017022ad, 2023.

10

A Appendix

A.1 List of biomolecular design models with IPA structure modules

Table 2: A list of models that are based on IPA structure modeling. Models were identified via
GitHub advanced search, searching for commonalities in code implementations.

Model name Modeling approach Training data Train length cut-offs

Protein

OpenFold [3] protein structure prediction 130k single protein chains
(PDB)

<256, fine-tuning
<384,<512,<5120

FrameDiff [6] diffusion for backbone generation 20k monomers (PDB) 60-512
FrameDiPT [11] diffusion for backbone inpainting 32k monomers (PDB) 60-512
Proteus [12] diffusion for backbone generation 51k single chains from oligo-

and monomers (PDB)
60-512

FADiff [13] diffusion for multi-motif backbone
generation

Identical to FrameDiff 60-512

Genie [14] diffusion for backbone generation 26k monomers (PDB) 60-512
IgDiff [15] FrameDiff finetuning for antibody

backbone generation
Synthetic antibody structures
from folding

Not reported

FrameFlow [8, 7] flow-matching for backbone generation
and motif scaffolding

Identical to FrameDiff 60-512

FoldFlow [10, 9] Stochastic flow matching for backbone
generation

22.2k monomers (PDB) 60-512

GAFL [16] Geometric algebra flow matching for
backbone generation

Identical to FrameDiff 60-512

Multiflow [31] Discrete and continuous flow matching
for joint sequence-backbone generation

18.7k monomers (PDB) 60-384

P2DFlow [17] flow matching for backbone ensemble
generation

100 MD simulation
trajectories from ATLAS

Not reported

RNA

Rho-Fold [5] RNA structure prediction 5.5k chains (PDB) <1024
RNA-FrameFlow
[18]

flow matching for backbone generation 5.3k original structures + 1.1k
cropped structures (PDB)

40-150

lociPARSE [19] Locality-aware IPA for structure
scoring

52k synthetic structures from
1.4k sequence targets

<200

A.2 Residue counts of macromolecules in the PDB

N
um

be
r o

f e
nt

ri
es

Residue count

Distribution of macromoleculare residue counts in the PDB

42.2%

32.7%

23.4%

Figure 5: Distribution of protein residue counts of the proteins resolved in the PDB (Figure
reproduced and adapted from the data at RCSB PDB Statistics: Sequence length distribution;
https://www.rcsb.org/stats/distribution-residue-count; accessed 6 May 2025).

A.3 FlashAttention Algorithm

Pseudo-code for the FlashAttention kernel, an online tiled computation of the softmax, which, instead
of materializing the full quadratic M = softmax (qk⊺) matrix, performs an equivalent computation
by accumulating partial contributions to the output Y = MV one tile at a time [20, 21]. A good
introduction with line-by-line explanations can also be found here [32].

11

Algorithm 2 Flash Attention-2 via online softmax (Dao 2024)
Given Q,K,V ∈ RL×d, Tc, Tr row blocks of size Br, Tc column blocks of size Bc.

1: for i = 1 to Tr do
2: Load Qi from HBM to SRAM
3: O0 = 0Br×d, l0 = 0Br ,m0 = −∞Br

4: for j = 1 to Tc do
5: Load Kj , Vj from HBM to SRAM.
6: On chip, compute S

(j)
i = QiK

T
j

7: On chip, compute m
(j)
i = max

(
m

(j−1)
i , rowmax

(
S
(j)
i

))
, P̃(j)

i = exp
(
S
(j)
i −m

(j)
i

)
,

l
(j)
i = em

(j−1)
i −m

(j)
i l

(j−1)
i + rowsum

(
P̃

(j)
i

)
8: On chip, compute O

(j)
i = diag

(
em

(j−1)
i −m

(j)
i

)−1

O
(j−1)
i + P̃

(j)
i Vj

9: end for
10: On chip, compute Oi = diag

(
l
(Tc)
i

)−1

O
(Tc)
i

11: Write Oi to HBM as ith block of O
12: end for
13: Return O

A.4 FoldFlow training convergence

We provide loss curves for the training of the FoldFlow base model with original and FlashIPA below.
FlashIPA converged slightly faster for the same number of optimization steps, which is expected
from the bigger effective batch size, but we also found in particular local loss terms, such as the steric
clash loss to decrease noticably more efficient.

Figure 6: Loss behaviour for FoldFlow model training.

A.5 Nucleotide residue counts of RNA structures in the RNASolo2 dataset.

RNA Flow training
cut-off L<150

N
um

be
r o

f e
nt

ri
es

Nucleotide count

Distribution of RNA nucleotides counts in the RNASolo2 dataset
Only for sequence with more than 40 nucleotides

30%

Figure 7: Distribution of nucleotide residue counts of the RNA in the RNASolo2 dataset, filtering
out the short structures of length < 40 nucleotides. The training cut-off of RNA Flow discards all
sequences of length > 150, accounting for 30% of the dataset.

12

A.6 RNA-FrameFlow training convergence

We provide loss curves for the training of the RNA-FrameFlow base model with original and FlashIPA
below. At similar hyperparameters and hardware, RNA-FrameFLow with and without FlashIPA
behaves similarly.

Tr
ai

ni
ng

 lo
ss

RNA-FrameFlow Training loss

RNA-FrameFlow

Relative time step

RNA-FrameFlow + FlashIPA (ours)

Figure 8: Loss behaviour for RNA-FrameFlow model training.

13

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction summarize the scaling laws and downstream
performance that we demonstrate in the main text. We provide experiments and benchmarks
to validate the claims. We perform invariance tests and run a scaling study to demonstrate
our claim of linear scaling with FlashIPA. We apply the proposed method to popular models
in generative biomoelcular design, namely a protein and an RNA backbone generative
model, to demonstrate the impact.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We clearly state any assumptions, for example we clearly state that the
factorization is approximate, we provide experiments on the downstream performance to
assess if there are any effects of the approximations made. We include a comprehensive
Limitations section where we address limitations of FlashIPA, including restrictions from
FlashAttention and opportunities for improvement.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide a thorough walk-through our proposed algorithm and state all
assumptions. The proof of invariance is referred to from the AlphaFold2 paper, which
provides a full proof in their appendix.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe our experiments, including hyperparameters and hardware, as
well as the data used for training. We provide the FlashIPA code via an anonymized github
link. The repository provides a test script as well.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide an anonymised link to a github repository with the FlashIPA code
and a test script. The data and code we used for re-training is reverenced, as it is adopted
from other author’s repositories. The data we used for training is provided by other sources,
which we referene as well.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Training hyperparameters and hardware are described in the experiments
section. In many cases we adopted hyperparameter choices from external authors’ models,
and reference their publication.

14

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We compare invariance errors between IPA and FlashIPA. For all other results,
there are no statistical error bars as it does not apply to the nature of the measure.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We state the instance type and GPU specifications and not how many GPUs
were used for how many hours/days.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No human subjects were used in the study. Training was performed on publicly
available academic datasets. The entire manuscript is anonymised, with no link or reference
to the authors. The github link is anonymised too.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

There are no anticipated negative or positive societal impacts.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

There is no risk of misuse to our knowledge.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All references are cited throughout the text. We did not use any work with
restricted licenses.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

No new assest are introduced.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

15

https://neurips.cc/public/EthicsGuidelines

No crowdsourcing with human subjects was used.
15. Institutional review board (IRB) approvals or equivalent for research with human

subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer:[NA] .
No human subjects are involved in this research.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs only used for editing.

16

	Introduction
	Preliminaries
	Frame representations for proteins and RNA
	IPA algorithm
	FlashAttention and I/O reduction
	FlashIPA: combining geometry-awareness and efficiency
	Factorizing the pair representation

	Experiments
	FlashIPA is SE(3) invariant and scales linearly in memory and wall-clock time
	Integration test with external repositories
	FlashIPA improves performance and extends to larger proteins
	FlashIPA trains more efficiently and extends to larger RNAs

	Discussion
	Limitations

	Appendix
	List of biomolecular design models with IPA structure modules
	Residue counts of macromolecules in the PDB
	FlashAttention Algorithm
	FoldFlow training convergence
	Nucleotide residue counts of RNA structures in the RNASolo2 dataset.
	RNA-FrameFlow training convergence

