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Abstract

Vision–Language Models (VLMs) enable image classification, captioning, and
visual question answering, but remain vulnerable to adversarial perturbations es-
pecially when both visual and textual inputs can be manipulated. Cross-prompt
attacks, which present a novel paradigm of adversarial attacks on VLMs, show
that image perturbations can retain adversarial impact under diverse prompts, yet
practical reliability is limited by sensitivity to initialization, poor cross-image gener-
alization, and high compute cost relative to yield. We present three complementary
enhancements: (1) Noise Initialization via semantically informed alignment, (2)
Value-Vector Doubly-UAP Guidance that targets attention value vectors in the
vision encoder, and (3) Cross-Image Universal Training using SCMix and Cut-
Mix. Evaluations on BLIP-2, InstructBLIP, LLaVA, and OpenFlamingo across
VQA, captioning, and classification indicate consistent gains over prior methods in
Attack Success Rate (ASR), stability, and transferability. Our code is available at
https://anonymous.4open.science/r/CroPA-CD38.

1 Introduction

The advent of large Vision–Language Models (VLMs) has significantly transformed the field of
computer vision by enabling a wide range of tasks, including image classification, captioning, and
visual question answering. This versatility has fostered deeper exploration into visual-linguistic
interactions. However, recent studies Zhao et al. [2023], Qi et al. [2023], Zhang et al. [2022a], Carlini
et al. [2024] have demonstrated that VLMs remain highly vulnerable to adversarial attacks. These
attacks involve subtle perturbations to input images, leading VLMs to produce incorrect or even
harmful outputs. Furthermore, the inclusion of textual modalities introduces additional attack vectors,
expanding the range of threats beyond those faced by traditional vision models.
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Recent work has begun to probe these weaknesses. In particular, CroPA [Luo et al., 2024] introduced
the notion of cross-prompt transferability, showing that adversarial examples crafted on an image
can remain effective across diverse textual prompts. While an important step toward understanding
adversarial risks in multimodal systems, CroPA suffers from notable limitations. It is highly sensitive
to random initialization, overfits to individual images, incurs substantial computational overhead
with limited efficiency, and exhibits poor transferability across images and models. These drawbacks
constrain both its practical reliability and its generalization across tasks and architectures.

Our contributions. In this work, we propose CroPA++, a framework that addresses these shortcom-
ings through three complementary enhancements:

• Semantically guided Noise Initialization for stabilized optimization and accelerated convergence.

• A Value-Vector Doubly-UAP Guidance loss that exploits encoder-level attention mechanisms to
improve adversarial transferability across tasks and models.

• Cross-Image Universal Training using SCMix and CutMix augmentations to prevent overfitting
and enable perturbations to generalize beyond individual samples.

CroPA++ advances adversarial transferability beyond the prompt level, extending to image and model
dimensions while offering improved efficiency relative to computational cost.

2 Background and Related Work

Adversarial robustness in Vision–Language Models. While adversarial attacks on deep neural
networks have been extensively studied since their introduction by [Szegedy et al., 2013, Goodfellow
et al., 2014], their application to Vision–Language Models (VLMs) presents unique challenges and
opportunities. For image captioning, Xu et al. [2019], Zhang et al. [2020], Aafaq et al. [2021],
Chen et al. [2017] proposed methods to alter captions through subtle perturbations. Visual Question
Answering (VQA) systems have also been shown to be vulnerable, with adversarial examples
misleading attention mechanisms and model predictions Xu et al. [2018], Kaushik et al. [2021],
Kovatchev et al. [2022], Li et al. [2021], Sheng et al. [2021], Zhang et al. [2022b].

Adversarial transferability. Adversarial transferability refers to the ability of crafted perturbations to
deceive models beyond their original target. Liu et al. [2017], Tramèr et al. [2017] first demonstrated
transfer across architectures, while universal perturbations showed generalization across inputs
Moosavi-Dezfooli et al. [2017], Mopuri et al. [2017]. Beyond models and data, transferability also
spans tasks: adversaries designed for classification can disrupt detection and related visual pipelines
Naseer et al. [2019b,a], Lu et al. [2020], Salzmann et al. [2021]. These dimensions of transferability
emphasize fundamental vulnerabilities in modern ML systems. Recent studies [Zhao et al., 2023, Qi
et al., 2023] demonstrate that perturbations can exploit both visual and textual channels, undermining
tasks such as VQA and captioning.

Cross-prompt transferability. The rise of large VLMs capable of prompt-driven task adaptation
Li et al. [2023], Awadalla et al. [2023], Zhu et al. [2023], Liu et al. [2023] introduces a new attack
surface: robustness under varying textual instructions. Unlike single-task models, VLMs must handle
diverse prompts, requiring perturbations to remain effective across them. CroPA Luo et al. [2024]
introduced the idea of cross-prompt transferability by jointly optimizing image perturbations and
learnable prompts, showing that perturbations crafted against one prompt can remain adversarial
under alternative phrasings. This work opened a new dimension for evaluating multimodal robustness,
highlighting vulnerabilities not just to specific prompts but also to prompt variations more broadly.
However, CroPA also shows reduced effectiveness in tasks such as classification and captioning, and
incurs substantial computational overhead due to its bi-level optimization.

Beyond CroPA. A subsequent approach, Context Injection Attacks (CIA) [Yang et al., 2024], sought
to improve adversarial transferability by injecting target tokens into both modalities via gradient-based
optimization. These existing methods remain narrow in scope: they often target either prompts or
images in isolation and provide limited generalization, with relatively high computational cost.

In this work, we propose CroPA++, which integrates complementary strategies to extend cross-
prompt attacks into more transferable and efficient adversarial frameworks, thereby broadening the
attack surface of VLMs and providing a challenging vulnerabilities for VLM reliablity.
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3 Methodology

3.1 Problem Formulation

Initialization Sensitivity. CroPA’s bi-level optimization framework presents three key factors: (1)
the min–max formulation creates a saddle-point problem where initialization significantly affects
convergence stability, (2) the asymmetric update schedule between image and prompt perturbations
amplifies sensitivity to starting conditions, and (3) semantic priors in initialization provide more
stable optimization compared to random starting points. A detailed theoretical analysis of these
factors and their causes is discussed in Appendix B.

Gradient-based adversarial attacks often inherit semantic properties of their targets, which in principle
should reduce the need for semantically aligned initialization. However, due to the complexities of
min–max optimization, these gradients can weaken during training. Injecting target semantics at
initialization helps preserve this alignment and improves stability of the optimization trajectory.

Image-Specific Overfitting. By design, CroPA generates perturbations on a single image–prompt
pair, inducing a localized optimization objective. This encourages perturbations to exploit low-level,
image-specific artifacts rather than semantic features that generalize across inputs. As a result,
perturbations often exhibit poor cross-image transferability and degrade when applied to unseen
samples. From a theoretical perspective, this arises because the optimization lacks distributional
regularization, effectively solving a point-specific adversarial problem in pixel space.

In contrast, prior work on universal adversarial perturbations [Moosavi-Dezfooli et al., 2017, Fang
et al., 2024] shows that consistency across multiple images encourages perturbations to align with
broader distribution-level vulnerabilities. Without such mechanisms, perturbations remain narrowly
tuned to individual training instances and remain impractical to train at scale.

Encoder-Level Vulnerabilities. Recent studies Cui et al. [2023], Wang et al. [2024] empirically
show value vectors have a disproportionate influence on output image embeddings, and that perturbing
the output embeddings of vision encoders can significantly impair the visual perception stage of
VLMs, misleading downstream responses. Since many VLMs share similar encoders for tokenizing
images into semantic features, this stage represents a natural target for adversarial intervention.

Building on insights from Doubly-UAP [Kim et al., 2024], which showed that perturbing value vectors
within encoder attention layers can transfer across models with similar architectures, we augment
CroPA with a D-UAP-based loss that aligns perturbations to encoder value vectors. This design
leverages modality-specific vulnerabilities while aiming to improve cross-model transferability.

Computational Inefficiency. CroPA requires optimizing perturbations separately for each im-
age–prompt pair, often exceeding six GPU-hours per instance. This per-sample cost makes the
approach computationally expensive and limits scalability and practicality

In the following subsections we introduce three enhancements to address these challenges: semantic
noise initialization, D-UAP-based encoder guidance, and cross-image training that directly target the
sources of instability, limited transferability, and high computational burden.

3.2 Noise Initialization via Vision Encoder Alignment

The CroPA method [Luo et al., 2024] initializes perturbation optimization with random noise,
which introduces instability and often leads to perturbations lacking semantic grounding. In Vision–
Language Models (VLMs), where semantic alignment between the vision encoder and textual prompts
plays a critical role, randomly initialized perturbations provide no directional guidance in feature
space, and is adversely affected by the bi-level optimization as highlighted in Subsection 3.1.

To address this, we introduce a semantically guided initialization strategy that aligns the perturbation
with the vision encoder’s representation of a diffusion-generated target image. Given an input image
x, we first generate a target image xtgt using a frozen diffusion model conditioned on the adversarial
target text T . This ensures that the generated image captures the semantic essence of the target
concept. We then initialize the perturbation δinit by minimizing the distance between the vision
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encoder features of the perturbed input and those of xtgt:

δinit = arg min
∥δ∥∞≤ϵ

∥∥fv(x+ δ)− fv(xtgt)
∥∥2
2
. (1)

This places the optimization process closer to adversarially relevant regions of the loss landscape, re-
ducing sensitivity to initialization randomness. With the CroPA objective, starting from a semantically
meaningful position rather than a random perturbation.

Figure 1: Overview of the proposed noise initialization strategy. A diffusion model conditioned
on text T generates a target-consistent image. The perturbation is initialized by aligning the vision
encoder features of the perturbed input with those of the target image, before subsequent optimization.

3.3 Value-Vector Doubly-UAP Guidance

To address the limitations in cross-model transferability and computational efficiency outlined in Sub-
section 3.1, we draw inspiration from the Doubly-Universal Adversarial Perturbation (Doubly-UAP)
framework [Kim et al., 2024], which demonstrated that manipulating internal encoder representa-
tions can improve transferability. Building on this idea, we focus on the value vectors within the
vision encoder’s attention mechanism, which encode essential visual information within patches.
Our approach introduces an auxiliary loss that aligns the value vectors of perturbed inputs with
those of a reference image associated with the target text. By integrating this loss with CroPA’s
original optimization, perturbations are encouraged to follow encoder-level structures while retaining
prompt-level transferability.

Formally, let V (l,h)(x + δ) denote the value vectors at layer l and head h for a perturbed input,
and V

(l,h)
tgt denote those derived from a target image aligned to the adversarial text. We define the

following alignment loss:

LD-UAP =
∑
l∈L

H∑
h=1

(
1−

⟨V (l,h)(x+ δ), V
(l,h)

tgt ⟩
∥V (l,h)(x+ δ)∥2 ∥V (l,h)

tgt ∥2

)
. (2)

We then combine this loss with the CroPA objective:
LCroPA++ = LCroPA(x+ δv, xt + δt, T )− λLD-UAP, (3)

where λ balances the CroPA loss and the D-UAP alignment term. During optimization, gradients from
both terms jointly update the perturbation. Algorithm 2 in Appendix A summarizes the procedure.

It is important to note that the effectiveness of this approach may depend on similarity between vision
encoders, since alignment is defined with respect to encoder-specific value vectors. Transferability
across models with different encoder architectures is discussed further in Section 6.
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Figure 2: Value-Vector D-UAP Guidance. Perturbations are optimized to align the value vectors of
the perturbed input with those of a target image associated with adversarial text. This introduces an
encoder-aware auxiliary loss integrated with the CroPA objective.

3.4 Cross-Image Training via SCMix and CutMix

A key limitation of CroPA is that perturbations are optimized for single image–prompt pairs, which
encourages overfitting to local structures and limits generalization to unseen images. This reduces
reliability in real-world scenarios, where transferable perturbations must remain effective across
diverse inputs. To mitigate this, we adopt a cross-image training strategy that leverages augmentation
techniques such as SCMix [Zhang et al., 2024] and CutMix [Yun et al., 2019].

SCMix extends universal adversarial perturbation frameworks [Moosavi-Dezfooli et al., 2017, Fang
et al., 2024] by combining self-mixing and cross-mixing operations, encouraging perturbations to
capture invariant features across spatial scales and image contexts. CutMix, in contrast, synthesizes
hybrid samples by replacing rectangular patches of one image with patches from another, requiring
perturbations to remain effective under discrete spatial rearrangements.

In our setting, pairs of images (xi, xj) are sampled per optimization step. SCMix performs a some-
what continuous blending of patches across the two inputs, while CutMix generates hybrid composites
with discrete regions. The same perturbation δ is optimized across these augmented variants, regular-
izing against overfitting and encouraging perturbations to generalize beyond individual samples. In
each iteration, we also retain a small probability that no augmentation occurs and the base image xi

passes through directly (when xi = xj).

Formally, CutMix generates the augmented image using a mask M as follows:

x̃ = M ⊙ xi + (1−M)⊙ xj , (4)

where ⊙ denotes element-wise multiplication. SCMix, on the other hand, uses a two-step augmenta-
tion, with the first step being self-mixing followed by cross-mixing as follows:

x′
i = ηxi1 + (1− η)xi2 where xik = Resize(RandomCrop(xi)), η = 0.5 (5)

x̃ = βix
′
i + βjxj with βi ≫ βj ∈ [0, 1). (6)

The CroPA objective is then evaluated on x̃+δ with the target prompt set, and gradients are propagated
back to update δ. By iterating over diverse pairings, the perturbation is trained to remain valid under
both intra-image variability and inter-image diversity. Algorithmic formalization of this method is
provided in Algorithm 3 in Appendix A.
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Figure 3: Cross-Image Training with SCMix and CutMix. The same perturbation is applied across
augmented image pairs, encouraging the optimization process to capture invariant features instead of
overfitting to single-image structures.

4 Experimental Setup

We evaluate our proposed enhancements on a representative set of Vision–Language Models (VLMs):
BLIP-2, InstructBLIP, LLaVA, and OpenFlamingo.

Tasks. Experiments are conducted on three core multimodal tasks: Visual Question Answering
(VQA), Image Captioning, and Image Classification. For VQA, we consider both general prompts
and prompts tailored to the input image. Captioning and classification tasks employ standardized
prompt templates to ensure consistency across models and methods.

Threat Model. Perturbations are constrained under an ℓ∞ norm with a maximum budget of ϵ =
16/255. Attacks are run for a fixed number of PGD steps with step size α = 1/255, unless otherwise
specified. For cross-image training, the same perturbation δ is shared across mixed and patched
samples to enforce universality. Detailed descriptions of threat models for transferability experiments
are provided in Appendix C.4.

Metrics. We report both targeted and untargeted Attack Success Rate (ASR). Targeted ASR measures
the frequency with which the model outputs the adversarially intended target text, while untargeted
ASR measures deviation from the ground-truth label. Results are averaged across prompts and
models, with additional task-specific breakdowns provided in the appendix.

Implementation details. Images are resized to 224× 224 and normalized using standard ImageNet
statistics. For SCMix, spatially consistent crops are linearly blended across pairs of images, while for
CutMix, rectangular patches are replaced across images.

An expanded rationale for the experimental setup is provided in Appendix C.2.

5 Results

5.1 Noise Initialization

We hypothesized in Sec. 3.2 that replacing CroPA’s random initialization with a semantically guided
start would stabilize optimization, improve convergence, and yield stronger adversarial perturbations,
stemming from the shortcomings for initialization sensitivity mentioned in subsection 3.1. The
results confirm this hypothesis. Our proposed Noise Initialization via Vision Encoding Optimization
(detailed in subsection 3.2) demonstrates significant improvements across various tasks compared to
baseline methods. By using semantically informed perturbation initialization, we achieve superior
performance in adversarial robustness and cross-prompt transferability. As shown in Table 1, the
integration of our method (CroPA+Init) consistently outperforms both CroPA and Multi-P across all
metrics, achieving 6-15% gains in overall accuracy.

To summarize these gains more concisely, Table 2 presents averaged results across prompts.
CroPA+Init consistently achieves the best ASR on all tasks, outperforming CroPA by a large margin
and substantially surpassing other baselines. These improvements highlight that semantically guided

6



Target Prompt Method VQAgeneral VQAspecific Classification Captioning Overall

unknown
Multi-P 0.7240 0.8740 0.5550 0.2850 0.6095
CroPA 0.9680 0.9880 0.7070 0.4200 0.7708

CroPA+Init 0.8824 0.8920 0.8858 0.9306 0.8977

bomb
Multi-P 0.6840 0.8260 0.9050 0.6090 0.7560
CroPA 0.8176 0.9100 0.9498 0.6960 0.8433

CroPA+Init 0.9140 0.9468 0.9020 0.9412 0.9260

I am sorry
Multi-P 0.7020 0.9020 0.7090 0.6140 0.7318
CroPA 0.8620 0.9260 0.7170 0.6890 0.7985

CroPA+Init 0.9320 0.9524 0.9270 0.9716 0.9458

very good
Multi-P 0.7900 0.8860 0.6700 0.6700 0.7540
CroPA 0.8540 0.8990 0.7680 0.7550 0.8190

CroPA+Init 0.8745 0.8894 0.8362 0.9043 0.8761

too late
Multi-P 0.6960 0.8540 0.6780 0.6060 0.7585
CroPA 0.8990 0.9060 0.7940 0.8150 0.8535

CroPA+Init 0.9340 0.9220 0.9110 0.9660 0.9333
Table 1: Targeted ASRs on Blip2 with different target texts using CroPA Vision Encoder noise
initialization. The detailed hyperparameters used are discussed under Appendix subsection D.2.

initialization is not only more effective than random starting points but also complementary to CroPA’s
cross-prompt optimization.

Method VQAgeneral VQAspecific Classification Captioning Overall
Multi-P 0.7053 0.8807 0.7001 0.5553 0.7104
CroPA 0.8723 0.9457 0.7518 0.6138 0.7958
CIA 0.2985 0.2281 0.4857 0.4687 0.370
CroPA+Init 0.9145 0.9342 0.8982 0.9464 0.9209

Table 2: Average Targeted ASRs on BLIP-2 for different methods. Results show the impact on
different vision-language tasks: Visual Question Answering (general and specific), Classification,
and Captioning. The best performance values for each task are highlighted in bold. Apart from the
previously mentioned baselines, we also compare our results with the Contextual Injection Attack
(CIA) Yang et al. [2024] as an additional baseline.

To further aid our claims we provide experimental results Figure 4 (a) shows that CroPA+Init
converges faster than CroPA, requiring fewer iterations to reach high ASR. In addition, Figure 4
(b) quantifies the semantic alignment between perturbations and target concepts using CLIP score,
confirming that initialization steers optimization toward more meaningful adversarial directions.
These results demonstrate that addressing CroPA’s initialization sensitivity yields stronger, more
semantically consistent, and more transferable adversarial perturbations.

Method CLIP Score
CroPA 21.80
CroPA+Init 23.09

Target Text: “Bomb”

(a) (b)

Figure 4: (a) Convergence comparison of CroPA and CroPA+Init. (b) CLIP score measuring feature
similarity of perturbations to target semantics.
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5.2 Value-Vector Doubly-UAP Guidance

We hypothesized in Sec. 3.3 that explicitly guiding perturbations through value vectors in the vision
encoder would enhance semantic control and improve cross-task transferability limitations detailed
in Subsection 3.1. The results in Table 3 confirm this hypothesis: CroPA+D-UAP achieves an overall
ASR of 96.9% on BLIP-2, representing a +12.5% improvement over base CroPA. The gains are
especially pronounced in VQAgeneral (+13%) and Captioning (+28%), underscoring the effectiveness
of encoder-guided perturbations in tasks where semantic grounding of image features is critical.
These findings validate our hypothesis that targeting value vectors provides a more effective and
transferable mechanism for adversarial influence.

Method VQAgeneral VQAspecific Classification Captioning Overall
Multi-P 0.68 0.82 0.90 0.60 0.75
CroPA 0.8176 0.9100 0.9498 0.6960 0.8433
CIA 0.3431 0.3102 0.4732 0.5534 0.4199
CroPA+D-UAP 0.9420 0.9720 0.9790 0.9810 0.9685

Table 3: Targeted ASRs on Blip2 using D-UAP function and target text being "Bomb", outperforming
PGD baselines and CIA, as well as the base CroPA method.

Method VQAgeneral VQAspecific Classification Captioning Overall
Multi-P 0.6960 0.8540 0.8990 0.6060 0.7638
CroPA 0.7900 0.8860 0.9470 0.6700 0.8233
CIA 0.3027 0.4302 0.5112 0.5080 0.4380
CroPA+D-UAP 0.9000 0.9520 0.9500 0.9060 0.9270

Table 4: Targeted ASRs on Open Flamingo using D-UAP Loss function and target text being "Bomb".

5.3 Cross-Image Training with SCMix and CutMix

Our proposed method in Sec. 3.4 for augmenting optimization with cross-image mixing to mitigate
CroPA’s image-specific overfitting outlined in Subsection 3.1 and yield more universal perturbations
is supported by the following empirical results: SCMix improves overall untargeted ASR by +27%,
while CutMix yields a +12% gain over CroPA. These gains demonstrate that spatially consistent and
semantically mixed augmentations force perturbations to capture invariant features, enabling transfer
across unseen images.

Method VQA VQAspecific Classification Captioning Overall
CroPA (Base) 0.3500 0.4920 0.4000 0.5000 0.4355
CroPA with SCMix 0.6560 0.7160 0.5000 0.9500 0.7055
CroPA with CutMix 0.4520 0.7240 0.5000 0.5500 0.5565

Table 5: Untargeted ASR of CroPA in cross-image settings with and without SCMix and CutMix. The
results represent the best ASRs achieved across all iterations. CroPA without input mixing attained its
highest ASRs at 1700 iterations, while CroPA with SCMix and CutMix outperformed it significantly
earlier, at just 1500 iterations and 1600 iterations, respectively. Additional details on experimental
parameters are reported in Appendix D.3.

6 Discussion

Our results validate the hypotheses posed in Sec. 3: CroPA’s limitations outlined in 3.1 are comple-
mented each in turn by the proposed three-fold enhancements, which achieve consistent improvements
across tasks:

For Noise Initialization, CroPA+Init demonstrated up to 15% gains in Targeted ASR across VQA,
captioning, and classification (Tables 1, 2), while requiring fewer PGD steps and achieving higher
CLIP similarity (Fig. 4). These results confirm that semantically guided initialization stabilizes
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optimization and orients perturbations toward more meaningful adversarial directions [Fang et al.,
2024, Moosavi-Dezfooli et al., 2017].

For Cross-Model Transferability, D-UAP-guided perturbations yielded an overall ASR of 96.9%
on BLIP-2, a +12.5% improvement over CroPA, with especially large gains in VQA (+13%) and
captioning (+28%) (Table 3). Further, cross-model evaluation on OpenFlamingo (Table 4) confirmed
stronger transfer when models share similar encoders. These results validate prior findings that
value-vector targeting exposes structural encoder vulnerabilities [Kim et al., 2024, Cui et al., 2023].

For Cross-Image Transferability, SCMix improved untargeted ASR by +27% and CutMix by +12%
(Table 5), with the strongest gains in VQA and captioning. SCMix’s spatial and semantic mixing
forces perturbations to capture invariant features, mitigating CroPA’s image-specific coupling and
enabling better generalization [Zhang et al., 2024].

Trade-offs. Our analysis identifies inherent tensions between transferability dimensions. Cross-
prompt optimization strengthens semantic alignment but anchors perturbations to model-specific
embeddings, weakening cross-model transfer. D-UAP mitigates this by targeting encoder-level
features, but gains remain modest across divergent architectures. Similarly, strong cross-prompt
transfer often couples perturbations to image-specific artifacts, limiting cross-image generalization.
Augmentations such as SCMix and CutMix improve robustness but do not fully resolve this trade-
off. Finally, initialization plays a unique role: semantically informed starts improve transferability
across prompts and tasks and stabilizing optimization, suggesting initialization is a critical lever for
balancing these competing objectives.

Limitations and Future Work. The improvements on the cross-model front remain partly dependent
on the target model having a similarly structured vision encoder: D-UAP is most effective when
encoders are similar, and on the cross-image front, SCMix/CutMix reduce, but do not eliminate,
CroPA’s per-instance computational overhead. Our evaluation is restricted to digital ℓ∞ perturbations,
leaving other examples of threat models unexplored. Future work should investigate encoder-agnostic
perturbations and develop multi-objective formulations that can simultaneously balance cross-prompt,
cross-image, and cross-model transferability.

Taken together, these findings show that adversarial vulnerabilities in VLMs are not confined to prompt
sensitivity but also rooted in encoder representations and data distribution shifts. Our enhancements
establish stronger attack baselines and offer a diagnostic tool for probing VLM robustness, while
pointing toward encoder-regularization and adversarial training as promising defense strategies.
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A Additional Method Details

In this section we present the algorithm formally depicted for our enhancement methodologies to
CroPA as discussed in subsection 3.2 and 3.3 in Algorithms 1 and 2 respectively :

The algorithm to apply SCMix image augmentation with CroPA is presented in Algorithm 3.

B Theoretical Analysis of CroPA’s Bi-level Optimization

This section provides a detailed theoretical analysis of the shortcomings in the joint=optimization
framework of CroPA mentioned in Subsection 3.1. The significant performance gains achieved
through our diffusion-guided initialization can be attributed to the unique optimization challenges in
CroPA’s min-max framework. Our analysis reveals three key factors:

First, CroPA’s adversarial formulation resembles a saddle-point problem where optimization stability
is heavily influenced by initialization. Zhang et al. [2025] demonstrated that min-max optimization
problems exhibit significantly higher sensitivity to initialization conditions than standard minimization
problems, often requiring carefully designed initialization strategies to achieve stable convergence.
This sensitivity becomes particularly pronounced in CroPA’s architecture, where prompt perturbations
continuously alter the optimization landscape throughout training.

Second, the alternating update schedule in CroPA—which updates image perturbations more fre-
quently than prompt perturbations—creates optimization asymmetry that further amplifies initial-
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Algorithm 1 Diffusion-Based Noise Initializa-
tion and PGD
Require: x, T , fv , ϵ, α, θSDXL

— Noise Initialization —
Sample noise: z ∼ N (0, I)
Generate target image: xtarget ←
D(T, z; θSDXL)
Compute initial perturbation:
δinit ← argmin∥δ∥∞≤ϵ ∥fv(x + δ) −
fv(xtarget)∥22
— Adversarial Optimization via PGD —
Initialize adversarial example: xadv ← x +
δinit
for t = 1 to Niterations do

Compute MSE loss:
LMSE ← ∥fv(xadv)− fv(xtarget)∥22
Compute gradient: g ← ∇xadv

LMSE

Update adversarial example: xadv ←
xadv − α · g
Project back onto L∞ ball: xadv ←
ΠBϵ(x)(xadv)

end for
return xadv

D: Diffusion model (SDXL) for image generation.
fv: Vision encoder that extracts features.
ΠBϵ(x): Projection function to ϵ-ball.

Algorithm 2 CroPA-D-UAP
Require: Model f , Target Text T , input image

xv, input prompt xt, perturbation size ϵ, step
sizes α1, α2, regularization weight λ, itera-
tions K

Ensure: Adversarial perturbations δv , δt
Initialize δv = 0, δt = 0
Generate target image Ti = SDXL(T )
for step = 1 to K do
LCroPA = CroPALoss(xv + δv, xt + δt, T )
Extract value vectors
Vt = ExtractValueVectors(Ti)
Ld-UAP = 0
for each attention head i in layer l do

Extract value vectors
Vi = ExtractValueVectors(xv + δv)
Ld-UAP = Ld-UAP + cossim(Vi, Vt)

end for
Total loss: Lre-CroPA = LCroPA − λLd-UAP
gv = ∇δvLre-CroPA, gt = ∇δtLre-CroPA
Update perturbations:
δv = δv − α1 · sign(gv)
δt = δt − α2 · sign(gt)
Project δv to ϵ-ball around 0

end for
return δv , δt

Figure 5: Left: Our algorithm for initializing adversarial perturbations using diffusion models. Right:
Our proposed CroPA-D-UAP method that guides perturbations via target value vectors.

ization importance. Chen et al. [2019] identified that such alternating gradient-based methods in
min-max problems frequently suffer from local cycling behaviors, with convergence properties
strongly dependent on the initial point’s proximity to adversarially robust regions. Our semantic
initialization leverages this insight by deliberately placing the starting point closer to meaningful
adversarial directions.

Third, empirical evidence from our experiments aligns with findings from Wu et al. [2020], who
demonstrated that perturbations initialized with semantic priors consistently transfer better across
models than randomly initialized ones, producing substantial improvements in attack success rates.
This effect becomes particularly pronounced in bi-level optimization contexts like CroPA, where
optimization pathways are more complex.

Our diffusion-based approach addresses these challenges by initializing perturbations in the direction
of semantic targets rather than using standard random noise. This principled initialization strategy
enables faster convergence during optimization while simultaneously enhancing the transferability of
the resulting adversarial examples.

C Implementational Details

C.1 Datasets

Our evaluation utilized images from the MS-COCO validation dataset Lin et al. [2014].For the textual
component, we employed two categories of Visual Question Answering (VQA) prompts. The first
category, VQAgeneral, consists of general questions applicable to any image, focusing on common
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Algorithm 3 Cross Image Cross Prompt Attack
Require: Model f , Target Text T , input images Xv = {x1

v, x
2
v, . . . , x

n
v},

prompt set St = {X1
t , X

2
t , . . . , X

n
t }, perturbation size ϵ,

step sizes α1, α2, iterations K, update interval N (controls text update frequency),
SCMix augmentation boolean SCMixAugment,
SCMix hyperparameters η (self-mixing ratio), β1, β2 (cross-mixing coefficients) if Augment is
true CutMix augmentation boolean CutMixAugment

Ensure: Adversarial perturbation δv
1: Initialize perturbation δv ∼ N (0, ϵ)
2: for step = 1 to K do
3: for i = 1 to n (iterate through all images) do
4: Sample prompt xi,j

t from Xi
t // Select random prompt for current image

5: if SCMixAugment is true (enable SCMix augmentation) then
6: Sample cross-image xcross

v ∼ Xv // Randomly select image for mixing
7: if xcross

v is xv then
8: x′

v = xi
v // No augmentation if same image selected

9: else
10: Self-mixing: x′

v1
= Resize(RandomCrop(xi

v)) // Create two patches
11: x′

v2 = Resize(RandomCrop(xi
v)) // Create second patch

12: xself
v = ηx′

v1 + (1− η)x′
v2

13: Cross-mixing: x′
v = β1x

self
v + β2x

cross
v

14: end if
15: else if CutMixAugment is true (enable CutMix augmentation) then
16: Sample cross-image xcross

v ∼ Xv // Randomly select image for mixing
17: Initialize rectangular binary mask M // Filled with 1s where the rectangle is

x′
v = (1−M)⊙ xi

v +M ⊙ xcross
v

18: else
19: x′

v = xi
v

20: end if
21: if x′i,j

t not initialized then
22: Initialize text perturbation x′i,j

t = xi,j
t // Starting point for text perturbation

23: end if
24: Compute image gradient: gv = ∇xv

L(f(x′
v + δv, x

′i,j
t ), T )

25: Update perturbation: δv = δv − α1 · sign(gv)
26: if mod(step, N ) = 0 (update text every N steps) then
27: Compute text gradient: gt = ∇xt

L(f(x′
v + δv, x

′i,j
t ), T )

28: Update text perturbation: x′i,j
t = x′i,j

t + α2 · sign(gt) // Ascent direction
29: end if
30: Project δv to ϵ-ball: δv = Clip0,ϵ(δv)
31: end for
32: end for
33: return δv // Return universal perturbation applicable across images

visual attributes and objects. The second category, VQAspecific, derives from the VQA-v2 dataset
Goyal et al. [2017a] and contains questions specifically tailored to individual image content.

This combination of a standard vision dataset with both general and specific VQA prompts enables
comprehensive evaluation of cross-prompt transferability across different types of queries and visual
contexts. The prompts were designed to test both broad visual understanding and specific detail
recognition capabilities of the models.

C.2 Experimental Setup

The experimental setup followed specific parameters for attack configuration and evaluation.For the
attack implementation, we maintained consistency with the original setup by utilizing the same seeds.
By default, the experiments were conducted as targeted attacks, with "unknown" chosen as the target
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text to avoid high-frequency responses typical in vision-language tasks. The perturbation size was
fixed at 16/255, and all adversarial examples were optimized and tested under zero-shot settings.

For multi-prompt experiments, both Multi-P and CroPA implementations used ten prompts. We
maintained three evaluation runs for each experiment, averaging the Attack Success Rate (ASR)
scores to ensure reliable results. The prompts spanned multiple task types including general visual
questions, image-specific queries, classification tasks, and image captioning, with varying lengths
and semantic structures.

Models Used:

We evaluated five state-of-the-art Vision-Language Models (VLMs): OpenFlamingo, BLIP-2, Instruct-
BLIP and LLaVA. For Flamingo, we utilized the open-source OpenFlamingo-9B implementation
Awadalla et al. [2023], which provides comparable performance to the original model while being
publicly accessible.

BLIP-2 introduces a two-stage fusion-based approach that first extracts visual features using a frozen
CLIP image encoder, then processes these features through a Querying Transformer Li et al. [2023].
This architecture enables efficient adaptation to diverse vision-language tasks. The model employs
OPT-2.7b as its language model component, facilitating flexible text generation capabilities.

InstructBLIP builds upon BLIP-2’s fusion-based architecture while incorporating instruction tuning
Dai et al. [2023]. A key distinction is its use of the Vicuna-7b language model, which enhances the
model’s ability to follow task-specific instructions. This modification enables more precise control
over the model’s outputs through carefully crafted prompts.

LLaVA Liu et al. [2023] employs a decoder-only generation approach, where a pretrained CLIP ViT-L
vision encoder connects to Vicuna-13B through a lightweight projection layer. Unlike fusion-based
models, LLaVA passes visual features directly into the language model’s context, treating images as
special tokens in the prompt sequence.

Evaluation Rationale for Transferability experiments

In our experiments, we present all cross-prompt and cross-model transferability results under the
untargeted attack setting. This decision is motivated by two primary factors. First, different Vision-
Language Models (VLMs) incorporate visual information using distinct embedding mechanisms,
making it difficult to pinpoint how input perturbations influence final output token embeddings.
As observed, targeted transferability is notably higher between models sharing similar vision en-
coder architectures (e.g., BLIP-2 to InstructBLIP) but varies drastically otherwise, rendering direct
comparison of targeted ASRs across heterogeneous architectures imprudent.

Second, the method of visual-textual fusion substantially impacts adversarial control. Decoder-only
VLMs such as LLaVA and OpenFlamingo incorporate visual features late via cross-attention or token
concatenation, treating them as auxiliary memory during causal language generation. Consequently,
visual influence fades as decoding progresses (Awadalla et al. [2023], Liu et al. [2023].

In contrast, fusion-based models like BLIP-2 Li et al. [2023] and InstructBLIP Dai et al. [2023]
integrate visual features early and deeply into the input embeddings, ensuring persistent visual
grounding throughout generation. Thus, targeted attacks are inherently more feasible in fusion-based
models compared to decoder-only models (Dai et al. [2023]).

Given these architectural disparities, the evaluation of the transferability between models and between
images through non-targeted ASR provides a more robust, fair, and comparable assessment across
diverse VLM architectures.

Furthermore, we excluded CIA when comparing transferability as upon experimentation CIA yielded
negligible transferability, and presented the following limitations for transferability fundamentally in
the method itself:

• Image-Specific Semantic Embedding: CIA’s perturbation strategy relies on per-image visual
token manipulation to embed target concepts. This creates adversarial patterns that lack
cross-image consistency and are dependent on the image since the gradient direction and
token space for different images and concepts are vastly different and the token-space
transformations between input/target image pairs are non-transferable.
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• Model-Specific Embedding Architectures : CIA is highly dependent on the structure of
visual and textual encoders, which fails to demonstrate cross-model transferability due to
structural variations across LVLMs (BLIP2, LLaVA, Flamingo etc).

C.3 Computational Requirements

The computational demands of experiments were substantial, reflecting the resource-intensive nature
of modern Vision-Language Models. Our primary experiments were conducted on a PyTorch
Lightning platform using an L40S GPU with 48GB VRAM and a 4-core CPU with 16GB RAM.

Working within the constraints of the free-tier platform credits posed significant challenges. Our
experiments were limited by a pooled allocation of 120 credits shared across four accounts. This
necessitated careful resource management, particularly given the computational intensity of large-
scale VLMs. To overcome these limitations, we implemented several memory optimization strategies
to enable partial execution on local machines with 16GB VRAM, though this required significant
code modifications.

The total computational cost of our study amounted to approximately 140 GPU hours and 90 CPU
hours. This includes time spent on model training, attack generation, and evaluation across multiple
experimental configurations. The substantial computational requirements underscore the importance
of efficient resource allocation in modern machine learning studies.

C.4 Attack Setup and Threat Models for Transferability Experiments

We establish comprehensive threat models for evaluating both cross-model and cross-image trans-
ferability, focusing on the specific adversarial capabilities, knowledge assumptions, and evaluation
protocols for each scenario.

C.4.1 Using D-UAP to explore Cross-Model Transferability for CroPA

To systematically evaluate how well adversarial perturbations generated with our D-UAP enhancement
transfer across different models, we establish a principled threat model for cross-model attacks:

Adversary’s Goal: The attacker aims to generate a single adversarial perturbation for an image that,
when applied, causes multiple vision-language models to output a specific target text regardless of
the input prompt. This represents a practical black-box transfer scenario where an attacker optimizes
on an accessible model but deploys against unknown models.

Knowledge and Capabilities: The attacker has white-box access to a surrogate model (either
BLIP-2 or Flamingo in our experiments), including gradients and internal representations. For target
models, the attacker only knows their general architecture family (e.g., CLIP-based) without access
to parameters. The attacker is constrained to a maximum perturbation budget of ϵ = 16/255 under
L∞ norm to ensure visual imperceptibility.

Cross-Model Settings: We examine two transferability scenarios reflecting practical real-world
deployment conditions:

• Intra-family transfer: Perturbations optimized on BLIP-2 (with OPT-2.7b language model)
are evaluated on InstructBLIP (with Vicuna-7b language model). Both share similar CLIP
ViT-L/14 vision encoders but differ in language models and fine-tuning objectives.

• Cross-architecture transfer: Perturbations are tested across fundamentally different model
architectures: from BLIP-2 to Flamingo and vice versa. These models employ different
vision encoders, language models, and architectural designs.

Evaluation: We measure Attack Success Rate (ASR) for each vision-language task independently
(VQAgeneral, VQAspecific, Classification, and Captioning). Success is measured by the target model
failing to generate the correct output when given the perturbed image, regardless of input prompt.

C.4.2 Investigating Cross-Image Transferability via Augmentation Techniques

For evaluating universal adversarial perturbations that work across different images, we establish the
following threat model:
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Adversary’s Goal: The attacker aims to generate a single perturbation pattern that, when applied
to any image, causes a VLM to output a predetermined target text regardless of the input prompt or
image content. This represents a higher level of attack efficiency compared to per-image optimization.

Knowledge and Capabilities: The attacker has access to a limited set of training images and their
corresponding SCMix-augmented variants. The attacker has white-box access to the target model
during perturbation optimization but must create a perturbation that generalizes to unseen images.
The perturbation is restricted to an L∞ budget of ϵ = 16/255.

Evaluation Setup: To evaluate universal perturbations, success is measured by the ASR across
different task types. A successful attack causes the model to fail to generate the correct output text,
regardless of its content or the associated prompt.

Our augmentation-enhanced approach (SCMix and CutMix) specifically aims to overcome the
inherent limitations of gradient-based methods which tend to overfit to specific image features.
By introducing controlled variations through self-mixing and cross-mixing during training, we
hypothesize that the resulting perturbations will better capture model vulnerabilities independent of
specific image characteristics.

D Experiment Hyperparameters

D.1 Targeted ASRs tested on Flamingo with different target texts using CroPA

The following are the detailed hyper-parameters used to obtain the results under Section 5

CroPA utilizes the following hyperparameters for optimizing adversarial perturbations in vision-
language models. These parameters are designed to balance attack effectiveness while preserving
task-specific functionality.

D.1.1 Optimization Parameters

• Total Iterations: 1,701

• Step Size:

– Image Perturbations (α1): 1
255 ≈ 0.0039

– Text Embedding Perturbations (α2, CROPA method): 0.01

• Perturbation Budget (ϵ): 16
255 ≈ 0.0627 under L∞ constraint

• Loss Function: Mean Squared Error (MSE) on ViT embeddings

• Batch Size: Dynamically allocated based on available GPU memory

D.1.2 Multi-Prompt Strategy

• Simultaneous Prompts per Image: 10 (default)

• Prompt Rotation: Randomized cyclic permutation per full cycle

• Context Token Masking: Preserve first N context tokens during updates

D.1.3 Base Models Supported

• OpenFlamingo

• BLIP-2

• InstructBLIP

D.1.4 Generation Parameters

• Beam Search Width: 3

• Length Penalty: -2.0 (encourages concise outputs)

• Maximum Generation Length: 5 tokens
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D.1.5 Text Embedding Perturbation

• Update Intervals: Every 30 iterations (for 10 prompts)

• Constraint: ±0.27 deviation from original embeddings

D.1.6 Reproducibility

• Random Seed: 42

• Image Preprocessing: 224×224 center crop

This configuration enables simultaneous optimization of vision-language perturbations while main-
taining task functionality through constrained gradient updates.

D.2 Noise Initialization via Vision Encoding Optimization

This section details the key hyperparameters used in our CroPA with Noise Initialisation via Vision
Encoding optimisation attack detailed in Subsection 3.2, to obtain the results in Table 1 and provides
a rationale for their selection. We aim to provide sufficient information for reproducibility and to
justify our experimental choices. Projected Gradient Descent(PGD) was used to align the original
image xi with the target image Ti by adding perturbations iteratively.

D.2.1 PGD via Vision Encoder Image Perturbation Hyperparameters

• Epsilon (ε): We set the maximum allowed pixel perturbation (L∞ norm) to 16/255. This
value represents a trade-off between attack strength and perceptibility. Smaller epsilon values
might be less effective at fooling the model but also less noticeable to human observers.

• Alpha1 (α1): The step size for each PGD iteration was set to 1/255. This relatively small
step size allows for finer-grained exploration of the perturbation space and helps to avoid
overshooting optimal perturbation directions.

• PGD Iterations: The number of PGD iterations for image perturbation was set to 1701.
This was determined empirically; we observed that increasing iterations beyond this point
yielded diminishing returns in terms of attack success rate while significantly increasing
computation time. Save perturbation iterations are 900, 1100, 1300,1500 and 1700.

• Budget: 0.05. This hyperparameter defines the maximum allowed change to each pixel
value in the image during the PGD optimization process for aligning ViT embeddings. It
constrains the perturbation magnitude to ensure the modified image remains visually similar
to the original.

• Timesteps: 150. Specifies the number of optimization steps taken during the PGD process
to align ViT embeddings between the generated and target images. A larger number of
timesteps allows for finer adjustments and potentially better alignment but also increases
computational cost.

D.2.2 Text Perturbation Hyperparameters (CroPA Specific)

• Alpha2 (α2): This hyperparameter controls the step size for updating the text embedding
perturbations. The value is dynamically assigned based on the number of prompts used.

• Number of Prompts: The number of prompts utilized during the optimization phase was
10. We use multiple prompts to make a more robust and transferable perturbation. Using
different prompts that all target the same wrong answer forces the attack to find a perturbation
that works across variations in the input question.

• CroPA Update Iterations: Text perturbations are updated at specific iterations (defined
by cropa_iter). The text perturbation will be updated till 300 iterations. We empirically
found that the text perturbation can guide the optimization better with some iterations.

cropa_end = 300
step = max((cropa_end//prompt_num),1)
cropa_iter = [i for i in range(step,cropa_end+1, step)]

19



D.2.3 Evaluation and Dataset Hyperparameters

• Test Dataset Fraction: We evaluated our attack on a 5% (fraction = 0.05) subset of the test
dataset. This allowed us to perform a thorough evaluation while keeping the computational
cost manageable. We selected the subset randomly to ensure a representative sample of the
overall test distribution.

• N-Shot Examples: The number of in-context learning examples was set to 0. This means
we did not provide any demonstration examples to the model during evaluation.

• Number of Test Images: 50.

• Max Generation Length: 5.

• Num Beams: 3.

• Length Penalty: -2.0.

D.2.4 Noise Initialization via Vision Encoding Optimization

• ViT Model: ViTModel.from_pretrained("openai/clip-vit-large-patch14")
• Learning Rate: 0.1

• Optimizer: Adam

D.2.5 Additional Notes

• Random Seed: We used a fixed random seed (seed_everything(42)) to ensure repro-
ducibility of our results.

• Device: All experiments were conducted on a GPU (cuda:{ config_args.device}).

• Batch Size: The evaluation batch size (args.eval_batch_size) was chosen to maximize
GPU utilization without exceeding memory constraints.

D.2.6 Justification of Choices

The hyperparameter values were selected based on a combination of prior work, pilot experiments,
and computational constraints. We prioritized settings that balanced attack effectiveness, stealthiness,
and computational efficiency.

D.3 Investigating Cross Image Transferability and Image Augmentation

The following are the detailed hyper-parameters used to obtain the results in Table 5, under Subsection
5

For SCMix, the only hyperparameters are the choice of η (or α if η ∼ Beta(α, α)), β1 and β2.

• Eta (η) and Alpha (α): We chose η = 0.5 as a constant value for η to ensure that the degree
of self-mixing during augmentation is constant (and equal). In terms of α, this is equivalent
to setting α =∞. We do not experiment with this, as our main goal with SCMix is to ensure
cross-image diversity.

• Beta1 (β1) and Beta2 (β2): We took several values of β1 from 0.5 to 1, fixing β2 =
1− β1 to ensure that the base image, used for self-mixing, dominates the final augmented
image in terms of visual characteristics, while still ensuring diversification by adding some
characteristics of the cross-mixing image. Our results were reported for the best value we
got, which was with β1 = 0.7 and β2 = 0.3. The justification behind fixing β2 relative to
β1 is so as to avoid clipping and ensure cross-mixing is treated like a true weighted average.

For CutMix, there are no specific hyperparameters to consider.

The other hyperparemeters pertaining to the base CroPA framework can be found in SubsectionD.1.
Apart from this, in terms of implementation, the only variation with base CroPA is that of the
perturbation learned for an image and its set of text prompts, the one learned for the image is common
across all the images used.
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D.4 D-UAP Enhancements

Our implementation of CroPA (Cross-modal Prompt Attack) and the baseline UAP (Universal
Adversarial Perturbation) approach utilized the following hyperparameters:

D.4.1 Attack Configuration

• Maximum Perturbation (ε): 16/255, constraining the L∞-norm of the adversarial pertur-
bation.

• Step Size (α1): 1/255, controlling the gradient update magnitude for image perturbations.

• Text Embedding Perturbation Range: [−0.23, 0.27], limiting the word embedding pertur-
bation magnitude.

• Text Perturbation Step Size (α2): Varies based on prompt number, determining the
magnitude of updates to text embeddings.

• Total Iterations: 1701, with evaluation checkpoints at intervals of 200, starting from
iteration 900.

• Target Response: “bomb,” forcing the model to generate this specific output.

• Loss Weight (λ): 5

D.4.2 CroPA-Specific Parameters

• Text Perturbation Schedule: Updates occur during the first 300 iterations at intervals
determined by step = max((300/prompt_num), 1).

• Prompt Access Strategy: Random shuffling with rotation to ensure diverse prompt cover-
age.

• Semantic Alignment: Cosine similarity loss with weight factor 5 to align perturbed images
with the target concept.

D.4.3 Evaluation Configuration

• Sampling Fraction: 0.05 of the total dataset, balancing computational resources with
statistical significance.

• In-Context Learning Examples: 0 shots (default configuration).

• Generation Parameters:

– Maximum generation length: 5 tokens.
– Number of beams: 3.
– Length penalty: −2.0.

D.4.4 Model-Specific Settings

We conducted the same experiment for both BLIP-2 and OpenFlamingo. Hyperparameters for both
the models are given
Experiment 1:

• Primary Model: OpenFlamingo-9B

• Image Generation Model: stable-diffusion-xl-base-1.0 was used.

• Vision Feature Extraction: Middle transformer blocks (layers 10-19) for semantic repre-
sentation.

• Image Preprocessing: Normalization with mean = [0.485, 0.456, 0.406] and standard
deviation = [0.229, 0.224, 0.225].

• Image Dimensions: 224× 224 pixels.

Experiment 2:

• Primary Model: BLIP-2 (blip2-opt-2.7b).
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• Image Generation Model: stable-diffusion-xl-base-1.0 was used.
• Vision Feature Extraction: Middle transformer blocks (layers 14-29) for semantic repre-

sentation.
• Image Preprocessing: Normalization with mean = [0.485, 0.456, 0.406] and standard

deviation = [0.229, 0.224, 0.225].
• Image Dimensions: 224× 224 pixels.

The hyperparameters were carefully selected to balance attack effectiveness and computational
efficiency. Our implementation used a random seed of 42 to ensure reproducibility.

D.4.5 Cross Model test with OpenFlamingo as the primary model

Settings Method VQAgeneral VQAspecific Classification Captioning Overall

Flamingo to InstructBLIP Multi-P 0.00 0.00 0.00 0.00 0.00
CroPA 0.00 0.00 0.00 0.00 0.00

CroPA + D-UAP 0.00 0.00 0.00 0.00 0.00

Flamingo to BLIP2 Multi-P 0.00 0.00 0.00 0.00 0.00
CroPA 0.00 0.00 0.00 0.00 0.00

CroPA+D-UAP 0.00 0.00 0.00 0.00 0.00

Table D.4.5 reports results for the cross-model transferability test as mentioned in Subsection C.4.1
with the D-UAP enhanced CroPA method described in Subsection 3.3.

E Prompts for Different Tasks

This section presents a short description of prompts used for various vision-language tasks in our
experiments. Detailed list of prompts is provided in our supplementary material.

Prompts for Visual Question Answering (VQA) are categorized into two types: VQAgeneral and
VQAspecific. VQAgeneral prompts are image-agnostic while VQAspecific prompts are tailored to specific
image content. We use the prompt categories established by Luo et al. [2024], prompts for VQAspecific
are derived from the Goyal et al. [2017b].
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