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Abstract

Domain generalization (DG) aims to transfer the learning task from a single or
multiple source domains to unseen target domains. To extract and leverage the
information which exhibits sufficient generalization ability, we propose a simple
yet effective approach of Adversarial Teacher-Student Representation Learning,
with the goal of deriving the domain generalizable representations via generating
and exploring out-of-source data distributions. Our proposed framework advances
Teacher-Student learning in an adversarial learning manner, which alternates be-
tween knowledge-distillation based representation learning and novel-domain data
augmentation. The former progressively updates the teacher network for deriving
domain-generalizable representations, while the latter synthesizes data out-of-
source yet plausible distributions. Extensive image classification experiments on
benchmark datasets in multiple and single source DG settings confirm that, our
model exhibits sufficient generalization ability and performs favorably against
state-of-the-art DG methods.

1 Introduction

Deep neural networks have achieved promising performance on a wide variety of tasks. However,
these networks assume the training and testing samples fall in the same data distribution. Such a
strong assumption would limit the applicability of the learned models in real-world scenarios (e.g.,
cross-city autonomous driving or multi-cite medical imaging task), in which training and testing
data are typically observed under different conditions. In other words, the generalizability of the
model at unseen target domains might be poor due to unexpected domain shifts. To tackle the domain
discrepancy, domain generalization (DG) has been proposed and drawn increasing attention recently.

The aim of DG is to train models using data observed from single or multiple source domains,
while expecting that the model would be generalized to unseen target domains. Most existing
DG approaches focus on deriving domain-invariant features [1] among multiple source domains
or adopting meta-learning techniques [2, 3, 4, 5], which would simulate domain shifts during the
meta-training stage. However, the features derived by the above methods are generally guaranteed
to be invariant to the seen source domains, not the generalizability of the learned representation to
describe unseen domain data. To overcome the limitation, [6, 7, 8, 9] turn to leverage data generation
techniques for diversifying the source distributions, and thus avoid overfitting on source domains
yet improve the generalization ability of models. Specifically, several works [6, 7, 8] choose to
generate novel-domain images by either perturbing the style of source data to confuse the domain
classifier [6, 7], or transporting the source data to novel styles via optimal transport based objective [8].
[9] adopts Mixup [10] to interpolate the feature statistics between samples from different domains.
While the above methods perform well, designing an objective for generating samples with DG
guarantees remains a challenging and open problem.
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Recently, self-supervised pre-training manifests the potential to derive generalizable representa-
tion, which serves as a promising start point for downstream tasks (e.g., image segmentation or
object detection). In domain generalization, a number of self-supervision techniques have been
introduced [11, 12, 13] to improve network transferability by discovering the intrinsic properties
within images. For instance, [11, 12, 13] adopt jigsaw puzzles as the pretext task, which predicts
the relative positions of image patches to constrain the semantic feature learning in a multi-task
training fashion. Recently, contrastive learning approaches [14, 15, 16, 17, 18] have been proposed
and widely applied, which establish the representation learning from multiple views of an image
to extract the task-relevant information and discard task-irrelevant noise. However, the concept of
such multiview learning [19, 18] is simply realized by hand-crafted image transformations (e.g.,
RandomResizedCrop, Color Jittering, or Gaussian Blur). The effectiveness of these hand-crafted
image transformations for benefiting the generalization to unseen distributions is still not guaranteed.

In this paper, we propose a unique Adversarial Teacher-Student Representation Learning framework
for tackling domain generalized visual classification. Based on the recent success of contrastive
learning, we advance the concept of multi-view learning into DG regime for augmenting source
instances to out-of-source styles and diversifying training distributions. To be more precise, with
the goal of learning representations which are robust to unseen domain shift, we propose to jointly
perform Domain Generalized Representation Learning and Novel Domain Augmentation in an
adversarial learning manner. Based on Teacher-Student learning schemes [20, 16, 21], our framework
utilizes original images as inputs to the teacher network and takes stylized augmentations as input to
the student network. To ensure both learning stages produce domain generalized representation, we
adopt the Teacher-Student co-training scheme, which progressively refines Teacher by the distilled
knowledge learned from Student by observing augmented novel-domain data, enabling Teacher to be
generalizable to data with out-of-source distributions. On the other hand, Adversarial Novel Domain
Augmentation aims at augmenting unseen domain data using source-domain training instances. The
objective is to maximize the discrepancy between the input and augmented data, derived from the
teacher and student modules, respectively. In order to have such augmented data exhibit sufficient
domain differences, the above discrepancy will be calculated using features derived from data across
different source domains. By iteratively training the above two stages in an adversarial learning
fashion, the resulting model (Teacher) would be able to derive domain generalizable representations.

The contributions of this paper are highlighted as below:

• Different from existing meta-learning based approaches, we propose a teacher-student
adversarial learning scheme for addressing domain generalization classification problems.

• In the stage of Domain Generalized Representation Learning, the student network observes
augmented novel-domain data and distills the information to update the teacher network,
allowing derivation of domain generalizable representation.

• In the stage of Novel Domain Augmentation, the generator aims at producing unseen yet
plausible domain data, which maximizes the discrepancy between augmented and existing
domains while the semantic information is preserved.

• Evaluations on several benchmark datasets in multiple and single source domain settings
verify that our method performs favorably against existing DG approaches and exhibits
sufficient domain generalization capability.

2 Related Works

Domain Generalization (DG) Different from domain adaptation (DA), which observes both source
and target-domain training data for performing learning tasks across domains [22, 23, 24, 25, 26],
DG deals with a more realistic yet challenging setting. More precisely, DG aims at generalizing the
model trained only on single or multiple source domains to recognize the test instance in unseen
but similar target domain. With only source-domain data observed during training, a number of
works [3, 2, 27] apply meta-learning for learning domain-invariant features. These methods typically
partition source domains into meta-train and meta-test splits to simulate the domain shifts during
training. Feature-Critic [27] meta-learns a critic network to evaluate the generalized degree of
extracted features for encouraging robust feature derivation. [4] introduces an episodic training that
cross-trains domain-specific feature extractors and classifiers to let the learned model invariant to
the domain shift. MLDG [2] and MASF [5] both adopt gradient based meta-learning to simulate

2



the domain shift, while [5] additionally enforces local and global constraints in meta-training. In
addition to meta-learning approaches, [11] jointly solves jigsaw puzzle as an auxiliary task with
standard classification in a multi-task fashion. RSC [28] iteratively discards the dominant features on
the training data to improve generalization. Nevertheless, these approaches employ solely limited
source domains to derive generalizable features, which still draws a concern about over-fitting on
source domains [8, 29] and restricts the generalization ability to unseen domains.

Recent research works consider data generation as an alternative technique for domain generalization,
which increase the diversity of training data distribution. To achieve this goal, [6, 7] are inspired
by adversarial attack [30]. CrossGrad [6] perturbs source data by adding adversarial gradients;
DDAIG [7] learns a transformation network that outputs perturbations to confuse the domain classifier.
However, such perturbed images do not necessarily exhibit sufficient data domain diversity. In contrast
of adding perturbation to images, L2A-OT [8] learns a conditional generator that transforms images
from a source distribution to a pseudo-novel distribution by an optimal transport based objective.
MixStyle [9] produces image features with mixed feature statistics across source domains. Very
recently, PDEN [31] utilizes a progressive learning strategy for single-source domain generalization,
which iteratively expands the training data set by adding augmented data. Note that although they
adopt contrastive and adversarial learning objectives which are similar to ours, our proposed approach
is able to tackle both multi-source and single-source DG problems, and also comes with superior
memory efficient performance and comparably stable training process.

Self-Supervised Learning (SSL) Self-supervision is a recent paradigm for unsupervised learning.
The idea is to design pretext tasks for feature learning to facilitate the downstream task learning. Such
auxiliary pretext tasks can be predictions of the image colors [32], relative locations of patches from
the same image [11, 12], and image rotation [33]. Very recently, contrastive learning [14, 15, 16,
17, 18] has achieved promising results on network pre-training to learn generalized image features.
[19, 18] reveal that the success of contrastive learning is typically built on the multi-view perspective,
and prove theoretically and experimentally that the compact and robust representations can be learned
by deriving the invariance among multiple views of an image. We adapt the above concept of
multi-view learning into DG regime. We focus on learning novel-domain data augmentations across
source-domain instances in an adversarial training fashion. As detailed and verified later, our proposed
learning scheme would produce domain generalizable representation for unseen target-domain data,
and performs favorably against state-of-the-art DG approaches.

3 Proposed Method

3.1 Problem Formulation and Model Overview

For the sake of completeness, we first define the problem setting and notations used in this paper. We
assume that training data are observed from N source domains Dtr = {D1,D2, ...,DN}, each of
which contains a set of image and label pairsDi = {Xi, Yi}. Our goal is to learn a model which would
exhibit sufficient generalization capability, so that classification of test data in unseen target domains
can be performed. In order to derive domain-generalized feature representations, we present a novel
Adversarial Teacher-Student Representation Learning framework, which is a min-max deep learning
framework alternating between the following two stages: domain generalized representation learning
(Sec. 3.2) and novel domain augmentation (Sec. 3.3), as depicted in Fig. 1. For domain generalized
representation learning, we learn a domain-generalized teacher network (Teacher) FT with the help
from a student network (Student) FS , which observes synthesized novel-domain augmentation and
distills knowledge to Teacher. As for novel-domain augmentation, the novel-domain augmenter G
is learned to observe the discrepancy of Teacher-Student encoders, which progressively generates
strong novel stylized augmentations to diversify training distributions. Once the learning of the above
framework is complete, the teacher network would extract domain-generalized features for the task
network (e.g., classifier), and thus classification of unseen target-domain data can be performed
accordingly. We now detail our proposed learning schemes in the following subsections.

3.2 Teacher-Student Domain Generalized Representation Learning

While techniques based on learning across multiple source domains for DG exist (e.g., using meta-
learning techniques like [3, 4, 5]), it is not clear how the learned model and feature representations
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Figure 1: Overview of our Adversarial Teacher-Student Representation Learning scheme, which
includes the teacher network FT , the student network FS , classifier C, and novel-domain augmenter
G. Note that we alternate between the stages of domain generalized representation learning and
novel-domain augmentation in a mutually beneficial manner, resulting in discriminative yet domain
generalized representations.

would be generalized to unseen target domains. Instead of directly fitting models across source
domains, we propose Domain Generalized Representation Learning based on the Teacher-Student
learning scheme, with the goal of extracting domain generalizable feature representations. To ensure
our teacher encoder to gain generalizability by observing out-of-source domain information, we
deploy a Student FS for exploring novel-domain augmentation synthesized from the novel-domain
augmenter G, while distilling the associated knowledge to update FT .

To address this representation learning task, we first train the teacher module together with a single-
layer classifier C using multiple source-domain data. The standard cross-entropy loss Lce is utilized
to initialize FT as warm-up. As illustrated in Fig. 1, we then input training images x sampled from the
source domains into the novel-domain augmenterG (detailed in the following sub-section), producing
the style (or domain) perturbed augmentation x̃ yet preserving its semantic information. While such
a domain augmented x̃ would be fed into the student module resulting in feature z̃ = FS(x̃), we also
feed the original input x into Teacher to derive z = FT (x). To ensure that z̃ would contain the same
semantic information as z does, we particularly propose an objective to minimize the discrepancy
between z̃ and z. To be more specific, we define the discrepancy loss LF

dis to minimize the distance
between the normalized features z̃ and z:

min
FS

LF
dis(z, z̃) =

∥∥∥∥ z

‖z‖2
− z̃

‖z̃‖2

∥∥∥∥2
2

=

∥∥∥∥ FT (x)

‖FT (x))‖2
− FS(x̃)

‖FS(x̃)‖2

∥∥∥∥2
2

. (1)

In addition, we calculate the cross-entropy loss on the domain-augmented feature z̃, i.e., Lce(C(z̃), y),
which further enforces the classification capability of the student module (note that C indicates the
single-layer classifier, and y denotes the corresponding class label). We note that, in this representation
learning stage, only the student network FS is updated by the above two objectives LF

dis(z, z̃) and
Lce(C(z̃, y), and we apply a stop-gradient strategy to forbid FT and G from being updated by
gradients. Thus, optimization of FS with learning rate γ can be expressed as follows:

θS ← θS − γ
∂(LF

dis(z, z̃) + Lce(C(z̃), y))

∂θS
. (2)

As for the teacher network FT , we adopt exponential moving average (EMA) [20, 16, 21] to
progressively refine the associated model parameter θT . That is, the learned knowledge from
Student’s parameter θS is distilled to update θT as follows,

θT ← τθT + (1− τ)θS , where τ ∈ [0, 1), (3)

Note that τ controls the updates on the teacher network. Finally, it is also worth pointing out that,
such a refinement strategy would avoid the teacher module from directly observing unrealistic domain
augmentations, which might degrade its domain generalization capability.
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3.3 Adversarial Novel Domain Augmentation

To motivate the student network to explore sufficient diversity of domain augmentation, we present an
adversarial learning scheme, which would progressively perform novel-domain data augmentation in
our proposed framework. Inspired by both adversarial learning strategy [34] and multiview learning
from SSL [19, 18], we formulate our novel-domain augmentation stage together with representation
learning (Sec. 3.2) into an adversarial learning framework. As depicted in the right hand side of Fig. 1,
we aim at training the novel-domain augmenterG and freezing both FT and FS , while the discrepancy
between z and z̃ serves as the adversarial guidance. That is, when the above discrepancy is small
(i.e., the outputs of Teacher and Student are similar), it implies that such domain augmentations have
been seen by existing source-domain data. To encourage more the augmented data to be sufficiently
distinct in terms of domain information, we train our novel-domain augmenter by maximizing the
discrepancy as follows,

max
G
LG
dis(z, z̃) = [

∥∥∥∥ z

‖z‖2
− z̃

‖z̃‖2

∥∥∥∥2
2

−m]− = [

∥∥∥∥ FT (x)

‖FT (x))‖2
− FS(G(x))

‖FS(G(x))‖2

∥∥∥∥2
2

−m]−, (4)

where [·]− = min(·, 0), and the margin m can either be calculated by the means/centroids of data
from each source domain in a mini-match, followed by averaging the L2 distances between the above
centroid pairs, or simply viewed as a hyperparameter. It is worth pointing out that, this margin serves
as a regularization observed from the separation between existing source domains. Thus, it reflects
the desirable domain gap between the augmented and existing domain data.

To guarantee the produced domain augmentations preserve the original categorical content, we still
observe the cross-entropy loss Lce(C(z̃), y) with regard to C(z̃) and the corresponding label y. Thus,
optimization of G can be performed as follows,

θg ← θg − γ
∂(−LG

dis(z, z̃) + Lce(C(z̃), y))

∂θg
. (5)

Note that, we only pretrain the classifier using source domain data available, and keep it fixed during
the learning of our teacher-student augmentation framework. If we allow the update of this classifier
during the training process, it might observe undesirable outputs and affect the learning of both
augmenter and teacher/student modules in the early training stage, where either the augmented data
or its extracted features is not yet quality.

Once the learning of the proposed framework is complete (i.e., alternative optimization between
the two stages), we deploy the derived domain generalized Teacher to extract discriminative and
transferable features, so that classification of unseen target domain can be performed accordingly.
The pseudo code of our Adversarial Teacher-Student Representation Learning is summarized in
Algorithm 1 in supplementary material.

4 Experiments

4.1 Datasets and Evaluation Protocol

Datasets We evaluate our method on several public benchmark datasets. PACS [35] is composed
of four data domains, Photo, Art painting, Cartoon and Sketch, with diverse image colors and
styles. Each domain contains 7 categories, with 9991 images in total. Following the experimental
protocol proposed by [35], images from source domains are divided into the training split and the
validation split, at a ratio of about 9:1. Office-Home [36] is comprised of four domains, Art, Clipart,
Product and Real world, and exists larger label sets of 65 categories, with about 15500 images in
total. The dataset contains images of everyday objects with various styles, backgrounds and camera
viewpoints. Images are divided into the training split and the validation split at a ratio of about 9:1.
DomainNet [37] is a recently proposed large-scale dataset which consists of 0.6 million images of
345 classes distributed across 6 domains, Real, Clipart, Infograph, Painting, Quickdraw and Sketch.
We follow the training and testing splits for all the 6 domains released by [37]. Also, for the single
source DG experiments, we follow [38] and partition the training split from [37] into the training
and validation splits at a ratio of 9:1. Due to page limitation, we additionally provide quantitative
comparisons on VLCS [39] and Digit-DG [7] datasets in the supplementary material.
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Table 1: Comparisons to non-data-generation based methods on PACS using ResNet-18 in leave-one-
domain-out settings. Bold denotes the best result.

Target DeepAll MMD- MLDG JiGen MetaReg Epi- MASF EISNet DMG Borlino DSON RSC Ours
(baseline) AAE [1] [2] [11] [3] FCR [4] [5] [12] [38] et al. [44] [45] [28]

Photo 95.6 96.0 96.1 96.0 95.5 93.9 95.0 95.9 93.4 95.0 95.9 96.0 97.3 ± 0.3
Art painting 75.1 75.2 81.3 79.4 83.7 82.1 80.3 81.9 76.9 82.7 84.7 83.4 85.8 ± 0.6
Cartoon 74.2 72.7 77.2 75.3 77.2 77.0 77.2 76.4 80.4 78.0 77.7 80.3 80.7 ± 0.5
Sketch 68.4 64.2 72.3 71.4 70.3 73.0 71.7 74.3 75.2 81.6 82.2 80.9 77.3 ± 0.5
Average 78.3 77.0 81.8 80.5 81.7 81.5 81.1 82.2 81.5 84.3 85.1 85.2 85.3

Table 2: Comparisons to non-data-generation based methods on Office-Home using ResNet-18 in
leave-one-domain-out settings. Bold denotes the best result.

Target DeepAll CCSA MMD- MLDG D-SAM JiGen Borlino DSON RSC Ours
(baseline) [46] AAE [1] [2] [47] [11] et al. [44] [45] [28]

Art 59.0 59.9 56.5 58.1 58.0 53.0 58.7 59.4 58.4 60.7 ± 0.5
Clipart 48.4 49.9 47.3 49.3 44.4 47.5 52.3 45.7 47.9 52.9 ± 0.3
Product 72.5 74.1 72.1 72.9 69.2 71.5 73.0 71.8 71.6 75.8 ± 0.1
Real world 75.5 75.7 74.8 74.7 71.5 72.8 75.0 74.7 74.5 77.2 ± 0.2
Average 63.9 64.9 62.7 63.8 60.8 61.2 64.8 62.9 63.1 66.7

Evaluation Protocol For fair comparison purposes, we follow the leave-one-domain-out protocol
as considered in [7, 8, 12, 9] for our experiments. That is, one data domain from a dataset is selected
as the target unseen domain to be recognized, and the remaining ones as the source domains for
training. And, we report the top-1 classification accuracy (%) for quantitative evaluation.

4.2 Implementation Details

For PACS, Office-Home, and DomainNet, input images are resized to 224 × 224 pixels, and we use
ResNet-18 and ResNet-50 [40] pre-trained on ImageNet [41] as the backbones of our teacher and
student networks. FS is trained with the SGD optimizer, with an initial learning rate of 0.0005, and a
batch size of 32 for 60 epochs. The learning rate is decayed by 0.1 after 30 epochs. FT is updated
via EMA with the momentum coefficient τ of 0.999 by default. Our novel-domain augmenter G is
realized by a fully convolutional network similar to the generator’s architecture in [7] and trained
with the SGD optimizer. In the warm-up phase, we train FT together with the classifier C using
only source data with the SGD optimizer, and then the parameters of C are fixed in the following
training process. Note that we also use the official implementation from [11, 6, 7, 42, 8, 9] for our
comparisons. In all our experiments, we implement our model using PyTorch and Dassl.pytorch [43]
toolbox, and conduct training on a single NVIDIA TESLA V100 GPU with 32 GB memory.

4.3 Quantitative Evaluation

We first perform domain-generalized visual classification tasks and compare our results with existing
non-data-generation [1, 46, 2, 11, 3, 4, 5, 12, 38, 44, 45, 28] and data-generation based [6, 7, 8, 9]
methods on two commonly-used public benchmarks, PACS and Office-Home. In our experiments,
DeepAll is viewed as a baseline, in which both feature extractor and classifier are trained on data
aggregated from all source domains.

Tables 1 and 2 summarize the quantitative comparisons with existing non-data-generation based
methods [1, 46, 2, 11, 3, 4, 5, 12, 38, 44, 45, 28] on PACS and Office-Home (ResNet-18 as the
backbone), respectively. Particularly, Epi-FCR [4] and MASF [5] are meta-learning approaches which
either adopt episodic training scheme that cross-train encoders and classifiers from different domains,
or employ a gradient-based optimization strategy with global and local losses for regularizing the
model training. JiGen [11] and EISNet [12] both consider solving jigsaw puzzles as the auxiliary task
for better capturing spatial information. Recent start-of-the-art method RSC [28] iteratively dropouts
the most contributing features to force models to explore the remaining features that correlate with
semantic information. As we can observe from Table 1, our approach achieved the best performance
on Photo, Art paining and Cartoon. It is worth noting that, a significant gap in visual appearance can
be seen between Sketch and other image domains, which makes the associated domain generalization
more difficult. Nevertheless, our approach still achieved satisfactory results over the state-of-the-art
methods on Sketch, and reported the highest average accuracy of 85.3%. On the other hand, Table 2
demonstrates that our method performed favorably on all the domains (i.e., 60.7% on Art, 52.9%
on Clipart, 75.8% on Product, and 77.2% on Real world), and thus achieves the highest average
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Table 3: Comparisons to data-generation based methods on PACS using ResNet in leave-one-domain-
out settings. Bold denotes the best result.

Target
ResNet-18 ResNet-50

DeepAll CrossGrad DDAIG L2A-OT MixStyle Ours DeepAll CrossGrad DDAIG MixStyle Ours
(baseline) [6] [7] [8] [9] (baseline) [6] [7] [9]

Photo 95.6 96.0 95.3 96.2 96.1 97.3 ± 0.3 94.8 97.8 95.7 98.0 98.9 ± 0.3
Art painting 75.1 79.8 84.2 83.3 84.1 85.8 ± 0.6 81.5 87.5 85.4 87.4 90.0 ± 0.3
Cartoon 74.2 76.8 78.1 78.2 78.8 80.7 ± 0.5 78.6 80.7 78.5 83.3 83.5 ± 0.5
Sketch 68.4 70.2 74.7 73.6 75.9 77.3 ± 0.5 69.7 73.9 80.0 78.5 80.0 ± 0.6
Average 78.3 80.7 83.1 82.8 83.7 85.3 81.2 85.7 84.9 86.8 88.1

Table 4: Comparisons to data-generation based methods on Office-Home using ResNet in leave-one-
domain-out settings. Bold denotes the best result.

Target
ResNet-18 ResNet-50

DeepAll CrossGrad DDAIG L2A-OT MixStyle Ours DeepAll CrossGrad DDAIG MixStyle Ours
(baseline) [6] [7] [8] [9] (baseline) [6] [7] [9]

Art 59.0 58.4 59.2 60.6 58.7 60.7 ± 0.5 64.7 67.7 65.2 64.9 69.3 ± 0.2
Clipart 48.4 49.4 52.3 50.1 53.4 52.9 ± 0.3 58.8 57.7 59.2 58.8 60.1 ± 0.6
Product 72.5 73.9 74.6 74.8 74.2 75.8 ± 0.1 77.9 79.1 77.7 78.3 81.5 ± 0.4
Real world 75.5 75.8 76.0 73.0 75.9 77.2 ± 0.2 79.0 80.4 76.7 78.7 82.1 ± 0.2
Average 63.9 64.4 65.5 65.6 65.5 66.7 70.1 71.2 69.7 70.2 73.3

accuracy 66.7%. The above quantitative comparisons verify that, comparing to directly (meta-)learn
from existing source domain data, our approach for augmenting diverse, novel, yet semantically
practical source-domain training data would be preferable in domain generalization tasks.

With the above observation, we further compare our method with the state-of-the-art data-generation
based models [6, 7, 8, 9] using ResNet-18 and ResNet-50 as backbones. As shown in Table 3, our
approach consistently performed superiorly against the method of [9] by 1.6% and 1.3% on PACS
with ResNet-18 and ResNet-50 backbones, respectively. Table 4 presents the results on Office-
Home, which shows that our method would be preferable among the DG methods considered. Also,
the above results demonstrate that our proposed framework is able to achieve general preferable
performances regardless of the backbone choice. It is worth noting that, CrossGrad [6] and DDAIG [7]
add perturbation to input images, which might not represent the domain variations, and the data
generation processes of L2A-OT [8] do not jointly take the representation learning into consideration.
Also, MixStyle [9] can only produce image features with interpolated domain styles. Different from
these methods, our approach learns to synthesize out-of-source distribution augmentations and derive
domain generalized representations in a mutually beneficial manner, hence exhibiting more robust
generalization capability.

4.4 Analysis of Our Method

4.4.1 Ablation Study

We now conduct the ablation study to verify our network design on PACS with ResNet-50 backbone,
and we list the results in Table 5. Also, we evaluate the effectiveness of Jigsaw puzzle. Such spatial
transformation has been applied in several DG works [11, 12]. In the bottom part of Table 5, we
consider different network designs, including Siamese architecture, Student without EMA, and Student
with EMA, to be derived for performing on unseen target domains.

Effectiveness of Adversarial Augmenter In the upper part of this table, we first verify the effec-
tiveness of our designed novel-domain augmenter G by replacing G with different types of data
augmentation strategies Random Augmentation and Jigsaw puzzle. Random Augmentation denotes
directly performing hand-crafted image transformations, including RandomResizedCrop, Color Jit-
tering, Gaussian Blur, RandAugment, and Color Dropping. From Table 5, it can be observed that
our model surpassed other controlled versions and the baseline on all four domains. We notice that
replacing our learnable novel-domain augmenter with hand-crafted random augmentations results
in significant performance drops, and the performance was just marginally better than that of the
baseline (i.e., DeepAll). This verifies that such random image transformations can merely achieve
limited improvement on generalization capability. Although the average accuracy of Jigsaw Puzzle
was better than that of Random Augmentation by about 2.7%, it was still worse than that of our full
version by about 2.6%. This is possibly because that, while Jigsaw Puzzle provides more visual clues
about spatial information as stated in [11, 12], there is no guarantee that such image transformation

7



Table 5: Ablation studies on PACS using ResNet-50 as the backbone.
Module Method Photo Art painting Cartoon Sketch Average

Augmentation
DeepAll 94.8 81.5 78.6 69.7 81.2
Random Aug. 96.4 83.2 75.9 75.5 82.8
Jigsaw puzzle 97.1 85.3 79.0 80.5 85.5

Representation
Siamese archi. 98.3 87.5 82.7 74.5 85.8
FS w/o EMA 98.2 86.4 80.1 74.7 84.9
FS w/ EMA 97.9 88.9 82.0 75.1 86.0
Ours (G+ FT ) 98.9 90.0 83.5 80.0 88.1

(a) DeepAll (b) Our method
Figure 2: t-SNE visualization on PACS with Photo as the unseen target domain. (a) Representations
extracted by the baseline approach of DeepAll. (b) Representations derived by our approach.

would contribute to domain invariance. With the above experiments, our learnable novel-domain
augmenter exhibits sufficient ability to generate novel-domain augmentations for facilitating the
model robustness to unseen domains.

Effectiveness of Domain Generalized Teacher From the results shown in the lower half of Table 5,
we see that the performance dropped when we replace the Teacher-Student scheme by a Siamese
Architecture, where the parameters are shared between the teacher and student networks. This is
due to the fact that the Siamese architecture is prone to output collapsing solutions, hampering
the derivation of domain generalized representations. In addition, we examine the performance of
applying the trained student network to unseen domains instead of applying Teacher. Student without
EMA denotes that Teacher is fixed during training, while Student with EMA denotes that Teacher
is still updated with EMA which benefits the learning of Student. We observe that adopting EMA
achieved the better results, but the performance of the above two versions (which apply Student)
were still inferior to ours (which applies Teacher). From the above results, we confirm that Teacher
updated with EMA would be less likely to be affected by possibly unrealistic domain augmentations
during training, avoiding the degradation of its domain generalization capability. As verified by the
above experiments, all components presented in our learning scheme would contribute to the domain
generalization capability.

4.4.2 Visualization

We now qualitatively assess the ability of our approach in deriving domain generalizable features. As
shown in Fig. 2, we apply t-SNE to compare the features z derived by our teacher network FT with
the features extracted by DeepAll network on PACS. In this figure, while the source image features
extracted by DeepAll can be grouped according to their semantic categories, the target-domain features
still cannot be properly separated. It can be observed that both source and target-domain features
derived by our Teacher are sufficiently aligned, and the distances between different class clusters are
more evident, indicating that equipped with our proposed adversarial teacher-student representation
learning, our model is capable of learning more discriminative yet domain generalizable features.

Moreover, in Fig. 3, we visually compare the synthesized images by our method and those by
the state-of-the-art data-generation method of DDAIG [7] using PACS as the training dataset. As
described in Sec. 2, [7] learns to perturb the input images for confusing the domain classifier, with the
goal of producing output images to be domain-agnostic. However, from Fig. 3, we see that images
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Figure 3: Visual comparisons of augmented novel-domain images produced by DDAIG [7] and ours
on PACS dataset.

Table 6: Impact of momentum coefficient τ on Office-Home using ResNet-50 as the backbone.

τ Art Clipart Product Real world Average
0.9 66.5 56.2 78.9 80.9 70.6
0.99 68.1 56.9 80.1 81.4 71.6
0.999 69.3 60.1 81.5 82.1 73.3

generated by DDAIG [7] tended to exhibit visual perturbation, which might not correspond to domain
variations. On the contrary, our approach was capable of producing images in the data domains which
are visually realistic yet distinct from source domains. We also note that, our model is trained in
a deterministic manner, and the two augmented outputs are generated from our augmenter learned
at different time steps with distinct mini-batch data sampled. This supports that our novel-domain
augmentation mechanism is able to expand the training distributions.

4.4.3 Impact of the Momentum Coefficient τ

In exponential moving average (EMA), τ is a momentum coefficient to control the update degree
of our teacher network FT . As shown in Table 6, we conducted ablation studies on Office-Home
with ResNet-50 as backbone and observed that a large momentum coefficient τ by smoothly refining
θT could achieve better performance than by rapid updating. These results indicate that a smooth
refinement of Teacher avoids the degradation of generalization capability.

4.5 Generalization from A Single Source Domain

We evaluate our method on a more challenging DG task, single source domain generalization, to
further verify the effectiveness of our method. In the single source DG setting, we only observe
training data from a single source domain during training with the aim of generalizing to multiple
unseen domains. To confirm that our approach can be extended to the single source DG setting, we
conduct experiments on PACS and the large-scale benchmark dataset DomainNet with the ResNet-50
backbone. For PACS, we select Photo as the source domain and the remaining ones (i.e., Art painting,
Cartoon, and Sketch) as the target domains. On the other hand, Real domain in DomainNet is chosen
as the source domain, while Clipart, Infograph, Painting, Quickdraw, and Sketch domains serve as
the target domains. We note that, since only a single source domain is observed during training, the
margin m in (4) is viewed as a hyperparameter instead of calculating from source domain data. Due
to page limitation, additional experiments on PACS using Art painting, Cartoon, and Sketch as the
single source domains are presented in the supplementary material.

We provide quantitative comparisons with the baseline (DeepAll), JiGen [11], and other three data-
generation based methods [6, 7, 42] to evaluate the generalization capability on this challenging
setting. As shown in Table 7, our approach performed favorably against the baseline (DeepAll)
and the above DG methods on both benchmark datasets. It is worth noting that, compared with
data-generation based methods of [6, 7, 42], our approach was able to achieve superior accuracy
on all the target domains of interest. This confirms that, while our method can also be viewed as
a data-generation based approach, we are able to better augment novel-domain data based on the
observation of single source domain data. From the above experiments, the use of our approach for
single source domain generalization tasks can be successfully verified.
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Table 7: Single-source domain generalization on PACS and DomainNet using ResNet-50 as the
backbone. Note that Photo of PACS and Real of DomainNet are selected as the single source domain
for training.

Method PACS DomainNet
Art painting Cartoon Sketch Average Clipart Infograph Painting Quickdraw Sketch Average

DeepAll 60.7 23.5 29.0 37.7 34.5 15.7 40.7 3.6 25.9 24.1
JiGen [11] 63.6 28.5 30.2 40.8 50.0 19.0 46.3 7.2 35.5 31.6
CrossGrad [6] 64.2 29.4 32.1 41.9 49.4 19.3 47.3 5.8 35.6 31.5
DDAIG [7] 64.1 32.5 29.6 42.1 41.4 16.5 40.9 3.2 26.7 25.7
M-ADA [42] 64.6 34.6 26.6 41.9 50.3 19.5 48.1 7.1 36.0 32.2
Ours 68.2 ± 0.9 36.3 ± 0.9 33.5 ± 0.3 46.0 52.2 ± 0.3 21.6 ± 0.2 50.1 ± 0.2 8.1 ± 0.3 38.3 ± 0.4 34.1

5 Conclusion

In this paper, we proposed Adversarial Teacher-Student Representation Learning for addressing
domain generalization classification tasks. By alternating between the training stages of Teacher-
Student representation learning and novel-domain augmentation in an adversarial manner, our
learning scheme allows derivation of domain generalizable representations while semantic information
properly preserved. We conduct extensive experiments, including comparisons to state-of-the-art
meta-learning and data-generation based DG methods and ablation studies, which quantitatively
and qualitatively confirm the effectiveness and robustness of our proposed approach in solving DG
classification by training on single or multiple source-domain data.
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