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ABSTRACT

Large language model (LLM) agents have shown promising performance in gen-
erating code for solving complex data science problems. Recent studies primarily
focus on enhancing in-context learning through improved search, sampling, and
planning techniques, while overlooking the importance of the order in which prob-
lems are tackled during inference. In this work, we develop a novel inference-time
optimization framework, referred to as DSMentor, which leverages curriculum
learning—a strategy that introduces simpler task first and progressively moves to
more complex ones as the learner improves—to enhance LLM agent performance
in challenging data science tasks. Our mentor-guided framework organizes data
science tasks in order of increasing difficulty and incorporates a growing long-
term memory to retain prior experiences, guiding the agent’s learning progression
and enabling more effective utilization of accumulated knowledge. We evaluate
DSMentor through extensive experiments on DSEval and QRData benchmarks.
Experiments show that DSMentor using Claude-3.5-Sonnet improves the pass
rate by up to 5.2% on DSEval and QRData compared to baseline agents. Further-
more, DSMentor demonstrates stronger causal reasoning ability, improving the
pass rate by 8.8% on the causality problems compared to GPT-4 using Program-of-
Thoughts prompts. Our work underscores the importance of developing effective
strategies for accumulating and utilizing knowledge during inference, mirroring
the human learning process and opening new avenues for improving LLM perfor-
mance through curriculum-based inference optimization.

1 INTRODUCTION

Data-centric tasks, ranging from statistical analysis to model prediction, are integral to various real-
world applications, including healthcare (Miotto et al., 2018), finance (Heaton et al., 2017), and
engineering (Chien & Wagstaff, 2017). The ever-evolving demands of data-driven fields call for
efficient and robust solutions that can effectively process, interpret, and learn from data.

As large language models (LLMs) demonstrate exceptional capabilities in understanding human-
like languages, recent works have leveraged LLMs to solve a wide range of tasks, including text
generation (Dathathri et al., 2019), reasoning (Wei et al., 2022), and code generation (Chen et al.,
2021b). This has motivated the development of Data Science agents (DS agents)—employing LLMs
to generate code for data-centric tasks. Thanks to the extensive knowledge built during the training
of LLMs, existing DS agents (Cheng et al., 2023; Zhang et al., 2023; 2024a; Hong et al., 2024a)
have shown strong capabilities in addressing various data science problems.

However, many data science problems are inherently challenging, often involving vague task de-
scriptions, complex data interpretation, and strict output formats, which results in DS agents failing
to solve these problems effectively (Zhang et al., 2024b; Lai et al., 2023; Liu et al., 2024a). Ad-
ditionally, the knowledge embedded within LLMs is static, confined to the data available during
their training, posing significant challenges in rapidly evolving fields where up-to-date information
is essential for generating accurate and relevant outputs.

To extend the knowledge of LLMs to specific data-centric tasks, recent works (Zhang et al., 2024a;
Guo et al., 2024) primarily focus on retrieving external knowledge for solving data science problems,
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Question: Find the largest single number
Write a function `def biggest_single_number(my_numbers: pd.DataFrame) -> pd.DataFrame`.


`my_numbers` is a DataFrame with the following columns:

- num: int


Each row of this table contains an integer. This table may contain duplicates.

A single number is a number that appeared only once in the `my_numbers` table.

The function should find the largest single number. If there is no single number, report `null`.


Answer: Incorrect

Long-term memory with easier questions and generated codes

Answer: Correct

The most similar problem

Question: Find big countries

Write a function `def big_countries(world: pd.DataFrame) -> pd.DataFrame`.


A country is **big** if:

- it has an area of at least three million (i.e., `3000000 km2`), or

- it has a population of at least twenty-five million (i.e., `25000000`).


The function should return the name, population, and area of the **big countries**. Return the result table in **any order**.

The following answer is an example solved successfully.

Learned lesson: Output the largest single number instead of the index

Figure 1: A motivating example illustrating how the agent can learn from previously solved easier
problems. Without retrieving information from long-term memory, the agent incorrectly outputs the
index of the largest single number, while by leveraging knowledge from previously solved easier
questions, the agent can provide the correct answer.

often starting with identifying or collecting relevant knowledge sources. However, these approaches
typically do not accumulate knowledge in a dynamic, online fashion, nor do they explore the im-
portance of task order or curriculum in problem-solving. This oversight is particularly critical in
data science, where problems are often interrelated, and complex solutions can frequently be con-
structed by integrating simpler ones (Hong et al., 2024a). For instance, a sophisticated time series
forecasting task might build upon foundational concepts of data preprocessing, feature engineering,
and basic regression techniques. The challenge becomes even more pronounced in online learning
or serving scenarios, where the timeliness and quality of the knowledge base directly impact model
inference performance. Unfortunately, current methods often result in sub-optimal performance due
to inadequate strategies for how to best prepare, structure, and organize the knowledge base.

To address these challenges and leverage the interrelated nature of data science problems, we ex-
plore the sequence in which knowledge is populated into and retrieved from a growing memory
buffer, helping DS agents better understand and utilize accumulated knowledge. Inspired by the hu-
man learning process, where foundational knowledge forms the basis for tackling more complicated
problems, we posit that the order in which information is introduced to the model can significantly
influence its effectiveness. For instance, understanding basic concepts is often necessary before
addressing more advanced challenges, as illustrated in Figure 1.

In this work, we propose a new framework, referred to as DSMentor, which incrementally enhances
the capabilities of DS agents through a mentor-guided approach. The Mentor agent evaluates the
difficulty of all the tasks and provides a sequence order. Specifically, we employ curriculum learn-
ing to carefully structure the learning process for DS agents and accumulate knowledge from the
solutions to previous tasks. This approach mirrors the hierarchical nature of data science problem-
solving, where complex solutions often build upon simpler concepts. By systematically increasing
the difficulty of tasks, our framework enables the agent to develop the skills necessary to tackle
more complicated challenges within the data science domain. We evaluate our framework using
Claude-3.5-Sonnet and Llama-3.1-70b on two popular data science benchmarks: DSEval (Zhang
et al., 2024b) and QRData (Liu et al., 2024a).

Our main contributions can be summarized as follows:

• Curriculum-based performance improvement: We demonstrate the superior perfor-
mance of DSMentor, which leverages an easy-to-hard curriculum, across established
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benchmarks in data analysis and causal reasoning tasks. Our framework surpasses other
data science agents by systematically guiding the learning process, enabling more effective
problem-solving, even for complex tasks that require synthesizing advanced knowledge
from multiple simpler problems.

• Enhanced knowledge utilization: We show that retrieving easier and relevant examples
from memory and structuring the knowledge in an increasing-similarity order, significantly
improves DS agents’ understanding and allows them to more efficiently leverage prior ex-
periences for solving new tasks.

• Progressive learning for solving advanced causal problems: We demonstrate how
DSMentor incrementally introduces tasks with increasing complexity, facilitating the
agent’s progressive learning of causal relationships. This gradual exposure strengthens its
causal reasoning abilities and enables it to effectively address complex data relationships.

2 RELATED WORKS

Curriculum learning. Inspired by the human learning process, curriculum learning, first intro-
duced by (Bengio et al., 2009), has become a widely-used approach in many applications, including
computer vision, natural language processing, and reinforcement learning (Wei et al., 2016; Zhang
et al., 2019; Wang et al., 2021; Portelas et al., 2021). This approach involves organizing training
examples in a sequence from easier to harder tasks, which facilitates convergence of the training
process and improves the quality of the learned models (Hacohen & Weinshall, 2019). Determining
task difficulty is a critical factor in enhancing training efficiency (Wang et al., 2021) and can be
categorized into pre-defined difficulty (Platanios et al., 2019; Shi et al., 2023; Lu et al., 2024; Liu
et al., 2024b) and automatic difficulty measurement (Portelas et al., 2021; Wang et al., 2024; Sun
et al., 2024). For instance, the Cross-Episodic Curriculum (CEC) method (Shi et al., 2023) struc-
tures learning experiences based on factors such as the pre-defined task difficulty or demonstrator
expertise, leveraging cross-episodic attention in Transformers. Recent works (Wang et al., 2024;
Sun et al., 2024) employ large language models to automatically generate tasks with a diverse range
of difficulties. In this paper, we leverage the LLM-based Mentor agent to automatically assess task
difficulty and systematically construct a curriculum-based dataset that progresses from simpler to
more complex tasks. Instead of focusing on the training stage, this paper incorporates curriculum
learning with LLM agents during inference, emphasizing the impact of curriculum on the growth of
long-term memory and the examples retrieved from online memory.

Data science LLM agents. LLMs have become increasingly valuable in data science, including
OpenAI’s Codex (Chen et al., 2021a) and Anthropic’s Claude (Anthropic, 2023) assisting in data
preprocessing, analysis, and code generation through natural language interfaces (Biswas et al.,
2023). However, their static nature, where knowledge is fixed at the time of training, limits their
ability to handle real-time data. To address this, recently proposed agents such as the Data In-
terpreter (Hong et al., 2024a), MLCopilot (Zhang et al., 2024a), and AIDE (Schmidt et al., 2024)
extend LLM capabilities by incorporating dynamic planning, human-like reasoning, and iterative re-
finement, significantly enhancing performance in data science problem-solving. Our work builds on
these advancements by incorporating curriculum learning and retrieval-based techniques to further
enhance LLM agents’ adaptability in data science tasks.

Multi-agent LLM frameworks. LLMs have seen growing application in multi-agent systems,
where multiple agents collaborate to solve complex tasks through communication and coopera-
tion. Frameworks like CAMEL (Li et al., 2023) and MetaGPT (Hong et al., 2024b) demonstrate
how multi-agent LLM systems can decompose large projects into modular sub-tasks, allowing spe-
cialized agents to handle distinct components of the problem. Moreover, curriculum learning and
retrieval-augmented techniques are increasingly integrated into these systems to enhance adaptabil-
ity and efficiency, as shown in recent work focused on game-play agents (Wang et al., 2024). Addi-
tionally, studies on multi-agent debate systems reveal that agent interaction can significantly improve
reasoning abilities (Wang et al., 2023; Khan et al., 2024). In this work, we propose a framework
where a Mentor agent assists a Student agent, which enhances the student agent’s problem-solving
skills in data science tasks.
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Dataset

Step 2: Generate curriculum 
from easy to hard

Mentor agent  
(curriculum designer) 

Step 1: Determine 
problem difficulty

Difficulty = 4

Difficulty = 2.5

Difficulty = 8

Difficulty = 5

Student agent 
(code generator) 

Curriculum-based dataset

Environment 
(evaluate codes)

Step 4: Answer DS problems by generating codes

Pass / Fail

Step 3: Retrieve  
related examplesQuestion: find big countries Tag: Correct 

Long-term memory

Generated code:

Stage 1: Curriculum Generation

Stage 2: Problem-solving

Step 5: Accumulate 
knowledge

Figure 2: Our framework DSMentor. Here, the Mentor agent assesses the difficulty of each
problem and generates a curriculum accordingly. Once the curriculum are determined, the Student
agent—responsible for answering questions through code generation—retrieves relevant examples
from an accumulated online long-term memory. After the environment evaluates the generated code,
the Student agent will append the question, its output and evaluation tag (i.e., incorrect or correct
answer), to the long-term memory.

3 DSMENTOR: A MENTOR-GUIDED APPROACH

In this section, we present DSMentor, a novel mentor-guided approach that leverages curriculum
learning and a growing online memory to enhance the capabilities of DS agents for solving data sci-
ence tasks. As illustrated in Figure 2, DSMentor operates in two stages: the curriculum-generation
stage and the problem-solving stage. In the following subsections, we will discuss the details about
these two stages and explain the main components of DSMentor as well as how they work together
to facilitate effective learning.

3.1 CURRICULUM-GENERATION STAGE

Given any data science task dataset D, we first employ a Mentor agent to construct a curriculum-
based counterpart Dc. This curriculum establishes the sequence of the tasks that will be undertaken
during the problem-solving stage. In this paper, we focus on a difficulty-based curriculum and the
preparation of a curriculum-based dataset comprises two key steps.

Step 1: Determine difficulty. First, the Mentor agent assesses and assigns a difficulty level to
each problem. In our setting, we rely only on problem descriptions to gauge the difficulty of each
problem, since the ground-truth code or evaluation results are generally not available to the Mentor
agent during this stage in many real world scenarios. To ensure consistency and scalability across a
diverse set of DS tasks, we provide difficulty scale guidelines for the Mentor agent to analyze and
assign difficulty levels. As the examples illustrated in Figure 3, the Mentor agent can tell that the
task of finding the largest single number is more difficult than identifying big counties based on
specific conditions. The Mentor agent also provides reasons that the former requires counting oc-
currences within the data, while the latter only involves filtering a DataFrame satisfying the required
conditions.

Step 2: Generate curriculum. Once the difficulty level for each task is determined, we structure
the curriculum by arranging the tasks in a sequence that progresses from easier to more challenging
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Mentor agent 

 

Question: Find the largest single number

Write a function `def biggest_single_number(my_numbers: pd.DataFrame) -> 
pd.DataFrame`.


`my_numbers` is a DataFrame with the following columns:

- num: int


Each row of this table contains an integer. This table may contain duplicates.

A single number is a number that appeared only once in the `my_numbers` 
table.

The function should find the largest single number. If there is no single 

Question: Find big countries
Write a function `def big_countries(world: pd.DataFrame) -> 
pd.DataFrame`.


A country is **big** if:

- it has an area of at least three million (i.e., `3000000 km2`), or

- it has a population of at least twenty-five million (i.e., `25000000`).


The function should return the name, population, and area of the **big 
countries**. Return the result table in **any order**. Mentor agent 

 

"difficulty": 4.0 

“reasoning": This problem involves basic data manipulation 
and simple statistical concepts, making it relatively easy. 
The task requires finding the largest single number in a 
DataFrame, which can be achieved by counting the occurrences 
of each number and then selecting the maximum value that 
appears only once. The implementation is straightforward, and 
the algorithmic complexity is O(n), where n is the number of 
rows in the DataFrame. The main challenge might be handling 
the case where there is no single number, but this can be 
easily addressed by checking if the resulting DataFrame is 
empty. Overall, this problem is suitable for beginners with 
basic programming knowledge and data science skills. 

“category": "Data Preprocessing, Exploratory Data Analysis, 
Statistical Analysis, Data Manipulation" 

"difficulty": 2.5 

"reasoning": This problem involves filtering a pandas 
DataFrame based on specific conditions. The conditions are 
straightforward, and the required operations are basic data 
manipulation. The problem does not require any advanced 
algorithms, complex data processing, or machine learning 
concepts. The main challenge is understanding the problem 
statement and applying the correct filtering conditions. The 
problem is well-defined, and the required output is clearly 
specified. Overall, the problem is relatively simple and can 
be solved with basic programming knowledge and familiarity 
with pandas DataFrames. 

"category": "Data Preprocessing, Data Filtering, Data 
Manipulation" 

    1: Trivial, can be solved by a complete beginner instantly                                                2: Very easy, requires minimal programming knowledge 
    4: Easy, involves basic data manipulation and simple statistical concepts                    6: Moderate, requires intermediate programming and data science skills 
    8: Challenging, involves advanced algorithms or complex data processing                 10: Extremely difficult, at the cutting edge of data science research 

 Difficulty Scale Guidelines: 

Figure 3: Examples of determining difficulties during the curriculum-generation stage.

problems. Together with the long-term memory described later, this ordering allows the agent to
build foundational skills on basic tasks before advancing to more complex ones. For example, as
shown in Figure 3, the Student agent will first tackle the task of finding big countries, followed by
the task of identifying the largest single number, based on their respective difficulty levels.

We also explore the effectiveness of other difficulty metrics and alternative curricula, which will be
detailed in 4.4 for comprehensive ablation studies.

3.2 PROBLEM-SOLVING STAGE

With the curriculum-based dataset Dc, we utilize a Student agent that iteratively solves data science
problems, progressing from easier to more complex ones. Inspired by verbal reinforcement learning
(Shinn et al., 2024), we introduce a growing online long-term memory module that enables the
Student agent to retain and retrieve knowledge from previously tackled, less complex problems,
without necessitating updates to the model weights.

Online long-term memory: Assume that there are N problems in the dataset Dc. For each prob-
lem i ∈ {1, . . . , N}, we denote its description as pi, where i is the index of pi in the sequence of
problems. The long-term memory can be formally defined as

Mi = {(pk, ck, tk)}i−1
k=1,

where pk and ck are the problem description and the corresponding generated code of some previous
problem k < i, and tk ∈ {Correct, Incorrect} is the evaluation tag for problem k.

Step 3: Retrieve from online long-term memory. While solving the i-th problem in the
curriculum-based dataset Dc, the Student agent can retrieve examples from long-term memory
Mi based on the similarity between the current problem description pi and previous description
pk ∈ Mi, according to their cosine similarity: sim(pi, pk) = cos(E(pi), E(pk)), where E is the
embedding model. We finally retrieve examples with the top-K similarities from the long-term
memory, where K is the number of the retrieved examples. The examples include both correctly
and incorrectly solved problems along with their corresponding generated code.

Step 4: Answer DS problem by generating codes. Using the retrieved examples, the Student
agent follows the order of increasing similarity. By learning from prior experiences, the Student
agent attempts to solve the current data science problem by generating code, which is then evaluated
by the environment based on its execution output.
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Step 5: Accumulate knowledge to long-term memory. After obtaining the evaluation results,
the Student agent appends the question, the generated code, and the evaluation tag (i.e., correct or
incorrect) to the long-term memory for future use. As the inference process continues, the long-term
memory will keep expanding.

4 EXPERIMENTS

In this section, we evaluate the proposed DSMentor on two different data-science benchmarks to
address the following research questions: (Q1) How does DSMentor compare with other popular
data science agents? (Q2) Can DSMentor enhance the ability to solve more difficult problems, like
causal reasoning? (Q3) What is most suitable curriculum design that yields the best performance?

In the sequel, we first attempt to answer (Q1) and (Q2) in Section 4.3 and conduct a series of ablation
studies to explore different curriculum designs in Section 4.4 for (Q3).

4.1 EXPERIMENT SETUP

Benchmarks and datasets. To answer the aforementioned questions, we conducted experiments
on DSEval (Zhang et al., 2024b) and QRData (Liu et al., 2024a), which contains 705 problem-sets
with 1236 questions in total. More specifically, DSEval consists of four datasets: LeetCode (with
40 single-turn problem-sets), StackOverflow (with 202 single-turn problem-sets), Exercise (with
21 multiple-turn problem-sets), and Kaggle (with 31 multiple-turn problem-sets), while QRData
are composed of 411 statistical and causal reasoning problems. More details are summarized in
Appendix A.2 of the supplementary material, where we address certain DSEval evaluation issues
that lead to an underestimation of agent capabilities.

Implementation details. We equip DSMentorwith anthropic.claude-3-5-sonnet-20240620-v1:0
and meta.llama3-1-70b-instruct-v1:0 as the base LLMs, referred to as DSMentor-Claude-3.5-Sonnet
and DSMentor-Llama-3.1-70b, respectively. Both the Mentor and Student agents use the same base
model. Moreover, the Mentor agent follows the problem-based difficulty and the Student agent re-
trieves similar examples from a long-term memory storing previously answered questions and gen-
erated codes (both correct and incorrect). We employ cohere.embed-english-v3 as the embedding
to retrieve relevant examples from the memory. We set the number of retrieved examples as listed in
Appendix A.1 of the supplementary material, which will be discussed with in detail in Section 4.4.3.
During inference, we run DSMentor with easy-to-hard or hard-to-easy curriculum for three times
and DSMentor with random curriculum for five times to mitigate randomness, reporting average
results. The temperature is set to zero for more deterministic behavior.

Evaluation metrics. For DSEval, we adopt the Pass Rate metric from Zhang et al. (2024b), which
is the ratio of correctly answered questions to the total number of questions, without considering
any variable violation issues and error propagation for multiple-turn problem-sets. For QRData, we
directly evaluate by comparing the execution output of the generated code against the ground-truth
results, which can be either numerical or multiple-choice.

4.2 BASELINES

We compare DSMentor to the following baseline agents on DSEval (Zhang et al., 2024b) and
QRData (Liu et al., 2024a). These agents are selected for their leading performance on the corre-
sponding benchmarks.

Jupyter-AI (JupyterLab, 2023) is an open-source tool that enhances Jupyter Notebooks with genera-
tive AI capabilities. It demonstrates strong performance on DSEval-LeetCode, outperforming other
data science agent frameworks such as Chapyter (chapyter, 2023), Code Interpreter (shroominic.,
2023), and CoML (Zhang et al., 2024a).

CoML (Zhang et al., 2024a) leverages offline data containing pre-existing tasks and distills the
related knowledge to enhance performance during the online stage. It achieves the best performance
on DSEval benchmarks, except DSEval-LeetCode compared to other agents (JupyterLab, 2023;
chapyter, 2023; shroominic., 2023), which makes it an important baseline for comparison.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Model (with Llama-3.1-70b) DSEval-LeetCode DSEval-SO DSEval-Exercise DSEval-Kaggle

Jupyter-AI (JupyterLab, 2023) 0.733 0.427 0.679 0.465
CoML (Zhang et al., 2024a) 0.683 0.794 0.783 0.577
Llama-3.1-70b (PoT) 0.725 0.739 0.747 0.539
DSMentor-Llama-3.1-70b 0.792 0.837 0.752 0.577

Model (with Claude-3.5-Sonnet) DSEval-LeetCode DSEval-SO DSEval-Exercise DSEval-Kaggle

Jupyter-AI (JupyterLab, 2023) 0.850 0.477 0.693 0.595
CoML (Zhang et al., 2024a) 0.875 0.809 0.643 0.535
Claude-3.5-Sonnet (PoT) 0.800 0.804 0.745 0.641
DSMentor-Claude-3.5-Sonnet 0.892 0.837 0.781 0.678

Table 1: Performance comparison of our DSMentor and existing data science models across
DSEval-LeetCode, DSEval-SO, DSEval-Kaggle, and DSEval-Exercise.

Model Pass Rate Multiple Choice/Numerical Statistical/Causal

GPT-4 (PoT) 0.491 0.460/0.540 0.725/0.368
Llama-3.1-70b (PoT) 0.442 0.480/0.384 0.615/0.351
Claude-3.5-Sonnet (PoT) 0.471 0.495/0.436 0.646/0.379

DSMentor-Llama-3.1-70b 0.508 0.566/0.419 0.676/0.419
DSMentor-Claude-3.5-Sonnet 0.543 0.602/0.452 0.707/0.456

Table 2: Performance comparison of our DSMentor and existing data science models on QRData,
which includes the overall pass rate, along with breakdowns for multiple choice/numerical and sta-
tistical/causal questions.

Vanilla agents with Program-of-Thoughts (PoT) (Chen et al., 2023) solve tasks by generating
Python code, with the executed output serving as the solution. For each benchmark, Llama-3.1-70b
and Claude-3.5-Sonnet act as vanilla agents, using the same system instructions as DSMentor to
generate code (see Appendix A.3.1 in the supplementary material). Additionally for QRData, we
include GPT-4 (Cheng et al., 2023) with PoT as one of the baseline agents, as it performs best among
PoT-style agents reported in Liu et al. (2024a). To ensure a fair and consistent comparison, we focus
on single-turn code generation alternatives rather than ReAct-style (Yao et al., 2022) or other agents
that involve multi-turn reasoning and error feedback.

4.3 RESULTS AND DISCUSSION

Baselines vs DSMentor. As shown in Table 1 and 2, DSMentor-Claude-3.5-Sonnet consistently
outperforms baseline agents across multiple datasets. Compared to prior art Jupyter-AI and CoML, it
achieves significant improvements, including an 8.8% increase on DSEval-Exercise and and 8.3%
boost on DSEval-Kaggle. DSMentor-Llama-3.1-70b also shows notable gains, with an 5.9% im-
provement on DSEval-LeetCode and a 4.3% improvement on DSEval-SO. Despite performing
slightly worse on DSEval-Exercise compared to CoML with Llama-3.1-70b, DSMentor demon-
strates strong performance on QRData as shwon in Table 2, which contains larger and more difficulty
problem sets.

Online long-term memory. Compared to the vanilla Llama-3.1-70b and Claude-3.5-Sonnet using
PoT prompts, DSMentor, equipped with the same LLM, significantly improves the pass rate on
both DSEval and QRData. Such improvements are driven by the presence of online long-term
memory and curriculum learning. Furthermore, they are especially noticeable on more difficult
datasets, such as DSEval-Kaggle and QRData, where leveraging previous examples plays a crucial
role in enhancing performance.

Causal reasoning tasks. Causal reasoning is considered more challenging than other statistical
problems in QRData (Liu et al., 2024a). From Table 2, DSMentor-Claude-3.5-Sonnet achieves
45.6%, which improves GPT-4 (PoT) as the best baseline model by 8.8% on the causal problems.
Such an improvement indicates that accumulating knowledge from easier questions is particularly
effective for complex reasoning, especially in cases where understanding causal relationships is
crucial.
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Difficulty Measurement DSEval-LeetCode DSEval-SO

Manual 0.742 –
Reference-code-based 0.750 0.812
Pass-rate (Llama-3.1-8b) 0.800 0.825
Pass-rate (Claude-3-Haiku) 0.775 0.812

Problem-based only 0.792 0.837

baseline w/o curriculum: Llama-3.1-70b (PoT) 0.725 0.739

Table 3: Comparison among different difficulty designs for DSMentor-Llama-3.1-70b, where the
numbers of retrieved examples are 5 and 15 for DSEval-LeetCode and DSEval-SO respectively. We
also report baseline numbers without curriculum in the last row.

Difficulty Measurement DSEval-LeetCode DSEval-SO

Manual 0.892 –
Reference-code-based 0.825 0.832
Pass-rate (Llama-3.1-8b) 0.883 0.827
Pass-rate (Claude-3-Haiku) 0.867 0.815

Problem-based only 0.892 0.837

baseline w/o curriculum: Claude-Sonnet-3.5 (PoT) 0.800 0.804

Table 4: Comparison among different difficulty designs for DSMentor-Claude-3.5-Sonnet, where
the number of retrieved examples is 5 for both DSEval-LeetCode and DSEval-SO.

In summary, DSMentor, incorporating with curriculum learning and long-term memory, shows
a noticeable advantage over baseline models, particularly on complex datasets like DSEval and
QRData. Our results underscore the importance of scalable curriculum strategies and long-term
memory in improving AI-assisted data science performance.

4.4 ABLATIONS

Next, we conduct a series of ablation studies to examine the impacts of each components of
DSMentor, regarding curriculum and long-term memory designs.

4.4.1 DIFFICULTY DEFINITION

Figuring out an appropriate difficulty measurement plays a critical role in our framework. In addition
to the problem-based difficulty used in Section 4, where the LLM-based Mentor agent assesses
difficulty based solely on each question, we evaluate three additional difficulty metrics and analyze
their performance on DSEval-LeetCode and DSEval-SO. Below, we summarize the key concepts of
these difficulty metrics, where more details are postponed to Appendix B.

Manual difficulty (for DSEval-LeetCode only): referring to the difficulty level (easy/medi-
um/hard) as defined on LeetCode. Problems are first sorted by their original difficulty level, and
in case of a tie, human pass rate is used to further rank them (i.e., a higher pass rate indicates an
easier problem).

Reference-code-based difficulty: following the difficulty in DSEval (Zhang et al., 2024b), based
on the number of functions, variables, conditions, and loops in the reference code.

Pass-rate difficulty: employing the pass rate of weaker models, such as Llama-3.1-8b and Claude-
3-Haiku, where a higher pass rate indicates an easier question.

To explore the impact of different difficulty definitions, we follow the same experiment setup de-
scribed in Section 4.1 except the curriculum generation process that utilizes different difficulty met-
rics. We run each experiment for three times and present the average result in Table 3 and 4 to
mitigate the randomness. As shown in Table 3 and 4, we first observe that incorporating with
the curriculum designs significantly improves the overall pass rate for both DSMentor-Llama-3.1-
70b and DSMentor-Claude-3.5-Sonnet on DSEval-LeetCode and SO, comparing to the baseline
vanilla agent without memory and curriculum. Moreover, the problem-based difficulty generally

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Curriculum Design DSEval-LeetCode DSEval-SO DSEval-Exercise DSEval-Kaggle

Easy-to-Hard (Inc. Similarity) 0.792 0.837 0.752 0.577
Easy-to-Hard (Inc. Difficulty) 0.775 0.837 0.729 0.566

Hard-to-Easy (Inc. Similarity) 0.792 0.807 0.740 0.583

Random (Inc. Similarity) 0.770 0.803 0.750 0.571

Table 5: Performance comparison of DSMentor-Llama-3.1-70b with different curriculum designs
across DSEval. Here, Inc. Similarity and Inc. Difficulty represent that the retrieved examples are in
the order of increasing similarity or increasing difficulty, respectively.

Curriculum Design DSEval-LeetCode DSEval-SO DSEval-Exercise DSEval-Kaggle

Easy-to-Hard (Inc. Similarity) 0.892 0.837 0.781 0.678
Easy-to-Hard (Inc. Difficulty) 0.850 0.835 0.774 0.684

Hard-to-Easy (Inc. Similarity) 0.833 0.797 0.742 0.680

Random (Inc. Similarity) 0.850 0.800 0.775 0.678

Table 6: Performance comparison of DSMentor-Claude-3.5-Sonnet with different curriculum de-
signs across DSEval.

outperforms the other difficulty metrics, although DSMentor-Llama-3.1-70b using the problem-
based difficulty performs slightly worse than when using the pass-rate generated by Llama-3.1-8B
on DSEval-LeetCode. We further examine the correlation between problem-based difficulty and
pass-rate difficulty that exclusively reflects each model’s problem-solving abilities for each tasks.
Due to page limits, we postpone the detailed discussion and results to Appendix D.

4.4.2 ORDER OF TASKS AND EXAMPLES

In addition to difficulty metrics, we further explore the impact of different task orders and retrieved
examples, both of which are key components of curriculum design.

First, we compare the easy-to-hard curriculum with the random and hard-to-easy curriculum, where
the retrieved examples are ordered by increasing similarity (denoted as Inc. Similarity). As shown
in Table 5 and 6, both DSMentor-Llama-3.1-70b and DSMentor-Claude-3.5-Sonnet perform better
with the easy-to-hard or hard-to-easy curricula compared to the random curriculum, demonstrating
the efficacy of curriculum learning. Additionally, the easy-to-hard curriculum often shows better
performance than the hard-to-easy curriculum, except for DSEval-Kaggle, where the hard-to-easy
curriculum performs slightly better by 0.4%.

Given that curriculum design influences performance through retrieved examples, we also investi-
gate different ranking approaches for these examples. In addition to increasing similarity, we use
increasing difficulty (denoted as Inc. Difficulty) for easy-to-hard curriculum. As seen in Table 5
and 6, our experimental results show that the easy-to-hard curriculum with examples ordered by
increasing similarity often outperforms alternative approaches, except on DSEval-Kaggle.

4.4.3 LONG-TERM MEMORY

As the Student agent utilizes examples retrieved from long-term memory, we then examine the
impact of long-term memory, specifically focusing on the number of retrieved examples and the
inclusion of incorrectly answered question with failed attempts.

The impact of the number of retrieved examples. We first vary the number of retrieved exam-
ples and examine its impact for both DSMentor-Llama-3.1-70b and DSMentor-Claude-3.5-Sonnet
over all the five datasets. Except the number of examples, all setups follow Section 4.1. From Figure
4, DSMentor with retrieved examples (i.e. # examples > 0) consistently improves performance
across all datasets. However, we observe that DSMentor-Llama-3.1-70b often experiences a per-
formance drop as the number of retrieved examples increases, particularly on multi-turn datasets
such as DSEval-Exercise and DSEval-Kaggle. In contrast, DSMentor-Claude-3.5-Sonnet generally

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: Performance of DSMentor models across different datasets on DSEval and QRData, with
varying number of retrieved examples. The subfigures show the results for each dataset, demonstrat-
ing performance trends for Llama-3.1-70b and Claude-3.5-Sonnet models.

Dataset Incorrect Examples Pass Rate

DSEval-LeetCode ✗ 0.733
✓ 0.792

DSEval-SO ✗ 0.830
✓ 0.837

DSEval-Exercise ✗ 0.725
✓ 0.752

DSEval-Kaggle ✗ 0.562
✓ 0.577

QRData ✗ 0.475
✓ 0.508

Table 7: DSMentor-Llama-3.1-70b with and without incorrectly answered examples.

benefits from additional retrieved examples, often demonstrating improved performance with more
retrieved examples.

The impact of adding incorrect examples. Next, we further explore whether the Student agent
could benefit from incorrect examples (i.e., previously answered questions that are incorrect). We
evaluate DSMentor-Llama-3.1-70b on DSEval and QRData, both with and without incorrect ex-
amples retrieved from the long-term memory. Apart from incorporating incorrect examples, all
experimental setups follows Section 4.1. Table 7 shows that enabling access to incorrect examples
can enhance the pass rate, especially for datasets with fewer problem-sets (e.g., DSEval-LeetCode
and DSEval-Exercise), though the datasets with a larger number of problem-sets (e.g., DSEval-SO,
DSEval-Kaggle and QRData), the improvement from adding incorrect examples is marginal. This
observation aligns with the principle that larger datasets generally possess a more extensive memory
pool for retrieval, thereby increasing the likelihood of selecting sufficient correct examples without
necessitating additional learning signals from incorrect instances.

5 CONCLUSION

In this work, we develop DSMentor, a framework that enhances data science agents through a
mentor-guided curriculum learning approach, effectively improving their ability to tackle complex
data science tasks. Extensive experiments demonstrate that organizing tasks from easy to hard sig-
nificantly boosts the agent’s problem-solving and causal reasoning capabilities by building a strong
knowledge foundation during inference. Future directions include exploring adaptive curriculum
that adjust task difficulty based on agent performance, incorporating advanced memory mechanisms
for better knowledge retention, and extending DSMentor to support multi-agent collaboration in
complex, interdisciplinary domains.
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A ADDITIONAL EXPERIMENTAL DETAILS

A.1 THE NUMBER OF RETRIEVED EXAMPLES

In Table 8, we summarize the number of retrieved examples used in our main experiments.

Dataset DSMentor-Claude-Sonnet-3.5 DSMentor-Llama-3.1-70b
DSEval-LeetCode 5 5

DSEval-SO 5 15

DSEval-Exercise 2 4

DSEval-Kaggle 2 4

QRData 10 10

QRData-Causal 10 10

QRData-Stats 10 10

Table 8: The number of retrieved examples used in Section 4 for each dataset.

A.2 DATASET AND BENCHMARK CORRECTION

In DSEval (Zhang et al., 2024b), the TableTestValidator is used to evaluate questions about
function implementation using multiple test-cases, which may also include the checker of the func-
tion input. This validator is mostly used for DSEval-LeetCode. If there is no requirement for input
checker, DSEval by default will initialize as

Initialization Issue of input checker

# Initialization for TableTestValidator
def __init__(

self,
...,
input_checker: str | CompareFunction | dict | bool | None = None):

if input_checker is False: # <- This condition is problematic
self.input_checker = None

else:
if input_checker in (True, None):

input_checker = None # Default handling
self.input_checker = (

_compare_fn_from_config(input_checker),
_compare_fn_from_config(input_checker, loose=True),

)
# Other initialization
...

The above code always follows the branch and sets a input checker. To address this issue,
we initialize as input checker = False.

In addition, we observed that most agents failed on the trips-and-users problem due to an
unclear format requirement in the problem description. Specifically, the string-based problem de-
scription does not explicitly specify the expected format of the date output.

Format Issue with output checker

# Original version
def compare_fn(expected, output):

if not np.issubdtype(output['Cancellation Rate'], np.number):

14
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output['Cancellation Rate'] =
pd.to_numeric(output['Cancellation Rate'])↪→

return {
'match': expected.sort_values(by=['Day', 'Cancellation

Rate']).reset_index(drop=True).equals(output.sort_values(
by = ['Day', 'Cancellation
Rate']).reset_index(drop=True)),

↪→
↪→
↪→
'reason': ''

}
# Modified version
def compare_fn(expected, output):

if not np.issubdtype(output['Cancellation Rate'], np.number):
output['Cancellation Rate'] =

pd.to_numeric(output['Cancellation
Rate']).astype(float)

↪→
↪→

if not np.issubdtype(output['Day'], np.datetime64):
output['Day'] = output['Day'].astype(np.datetime64)

return {
'match': expected.sort_values(by=['Day', 'Cancellation

Rate']).reset_index(drop=True).equals(output.sort_values(
by = ['Day', 'Cancellation
Rate']).reset_index(drop=True)),

↪→
↪→
↪→
'reason': ''

}

In the modified version, we ensure that the output is consistently formatted, allowing it to be accu-
rately compared with the ground truth, which mitigates the unclear format description for datetime
output.

A.3 PROMPT DESIGNS

In this section, we provide detailed explanations of our prompt designs for the purpose of reproduc-
tion. For system message, it consists of system instructions and guidelines (described in Appendix
A.3.1), as well as long-term memory prompts, if applicable (described in Appendix A.3.2).

A.3.1 SYSTEM INSTRUCTIONS AND GUIDELINES

We first presents the system message of DSMentor-Claude-3.5-Sonnet as a follow.

System Instructions and Guidelines

You are a data scientist assistant skilled in writing Python code for data analysis, visualiza-
tion, and machine learning tasks. You can leverage Python libraries like pandas, scikit-learn,
matplotlib, seaborn, etc. to fulfill the user’s requests.

The user will present a question and may optionally provide variables (e.g., pandas
DataFrame). Your task is to write a cell in an iPython notebook that addresses the user’s
request. The cell’s output should be exactly what the user has asked for.

## Instruction and guidelines
- Wrap the generated code with ‘‘‘ before and with ‘‘‘ after it.
- Import necessary libraries at the beginning.
- Ensure that the executing code only calls functions and uses the variables that are

defined properly or imported within the available scope.
- Ensure that executing the code generates the desired output. Do not use # print

or return statements to generate the result outside the function if any. For non-
function-completion questions, ‘‘‘var a = xxx; var awill generate the de-
sired output of var a and the output of a cell is the last statement of the code.
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- Important: Do not overwrite or modify the variables provided by the user, unless
explicitly asked to do so. For example, if the user provides a DataFrame df, do not
reassign df unless the user requests modifying it in-place.

- Write runnable code directly, without providing examples.
- [For DSEVal-LeetCode only] If the question explicitly asks to write a function,

you need to use ‘‘‘return xxx‘‘‘ only within the function scope to ensure
the output. Outside the function, do not include any example or ‘‘‘print‘‘‘
statements to generate the output.

- [For QRData only] For multiple choice questions, store the gener-
ated results in ‘‘‘selected choice‘‘‘ and the last cell will be
‘‘‘selected choice‘‘‘ to ensure an output.

- [For multiple-turn datasets only] Use only the provided variables from the current
environment (listed after ‘‘‘Variables:‘‘‘) to solve the given question.

- [For multiple-turn datasets only] Do not any unnecessary operations and content,
such as sorting data, including examples or usage instructions, unless explicitly
required by the question.

- [For multiple-turn datasets only] Outside the function, do not include any example
or ‘‘‘print‘‘‘ statements to generate the output.

As for DSMentor-Llama-3.1-70b, the system message is slightly different, listed as follows:

• The 1st guideline: Wrap the generated code with ‘‘‘python before and ‘‘‘ after the
code.

• The 3rd guideline: Ensure that the executing code only calls functions that are defined or
imported within the available scope or use the defined variables or the existing keys of
imported data properly.

• The 4th guideline: The output of a cell is the last statement of the code. Ensure that
executing the code generates the desired output. If it is not within a function, do not use
# print or return statements to output the result. For example, ‘‘‘var a = xxx;
var a will generate the desired output of var a.

• For DSEval-LeetCode only, add one instruction:

- Your solution should follow the format in provided examples and use the schemas
provided in the variable/table description.

A.3.2 LONG-TERM MEMORY PROMPTS

After retrieving examples, we add them to system message in the following ways.

Long-term Memory Prompts with K Examples

<long-term memory>

These are the top-K most similar problems, ordered from least similar to most similar/easy
to hard problems. Please utilize the experience you have gained here to help you with the
current problem. More specifically, summarize what you can learn from the correct answers
(within <correct answer> ... </correct answer>) and how to avoid the mistakes
seen in the incorrect examples (within <wrong answer> ... </wrong answer>) before
generating your code.

<examples>
<example>
<type>
{correct/wrong answer}
</type>
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<question>
{Here is the problem description.}
<variable context>
{Here is the variable description if any.}
</variable context>
</question>
The following answer is an example that you have successfully solved/answered incorrectly.
<correct/wrong answer>
‘‘‘python
{Here is the generated codes.}
‘‘‘
</correct/wrong answer>
</example>
. . .
</examples>
</long-term memory>

B DIFFICULTY DESIGNS

In this section, we provide details on various approaches to generating difficulty.

B.1 PROBLEM-BASED DIFFICULTY

To begin, we present the system message and problem-prompt template that the Mentor agent fol-
lows in main experiments.

System Message (Guidelines)

You’re an experienced data scientist with expertise in assessing the difficulty. Your goal is
to provide accurate and diverse assessments across different problems. Use the full range of
the difficulty scale to differentiate between problems effectively.

Difficulty Scale Guidelines:
1: Trivial, can be solved by a complete beginner instantly
2: Very easy, requires minimal programming knowledge
4: Easy, involves basic data manipulation and simple statistical concepts
6: Moderate, requires intermediate programming and data science skills
8: Challenging, involves advanced algorithms or complex data processing
10: Extremely difficult, at the cutting edge of data science research

Feel free to use any float value between 1 and 10 for precise assessments. Don’t hesitate to
use the full range when appropriate.

User Message (Problem Prompts)

Analyze the following coding problem:

Problem:
{Here is the problem description.}

Please provide:
1. A detailed reasoning about the difficulty of this problem (consider concepts involved,
algorithmic complexity, implementation challenges, etc.)
2. A difficulty score from 1 to 10, where 1 is very easy and 10 is extremely difficult.
3. Category tags for this problem:
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- Generate at least 3 and up to 5 relevant tags for this problem.
- Include both general and specific tags as appropriate.
- You may use tags from the following list, but also feel free to create your own:

“Data Preprocessing”, “Exploratory Data Analysis”, “Machine Learning”, “‘Deep
Learning”, “Natural Language Processing”, “Computer Vision”, “Time Series
Analysis”, “Statistical Analysis”

- Rank the tags by their correlation to the problem, with the most relevant tag first.
Please output your response following this format:
<reason>
[Your detailed reasoning here]
</reason>
<difficulty score>
[Your score as any float between 1 and 10]
</difficulty score>
<category>
[Tag1], [Tag2], [Tag3], [Tag4 (if applicable)], [Tag5 (if applicable)]
</category>

Ensure that the tags are listed in order of relevance, separated by commas.

We further extract the difficulty score as the reference for curriculum generation. In our
experiments, we generate difficulty scores three times and take the average as the difficulty level.

B.2 MANUAL DIFFICULTY

For DSEval-LeetCode, we collect the official difficulty levels from LeetCode1, which are Easy,
Medium, and Hard. Within each difficulty level, we further differentiate tasks based on their pass
rates as of July 22, 2024.

B.3 REFERENCE-CODE-BASED DIFFICULTY

As provided by DSEval (Zhang et al., 2024b), reference-code-based difficulty refers to code com-
plexity quantified by factors such as the number of functions, variables, conditions, and loops. We
have extracted the relevant code for readers’ reference as follows.

Reference-code-based Difficulty (Zhang et al., 2024b)

def get_code_complexity(code: str) -> float:
import ast

module = ast.parse(code)

complexity = 0.0
for node in ast.walk(module):

# Conditions
if isinstance(node, (ast.For, ast.While, ast.If,

ast.With)):↪→
complexity += 3

# Other statements
elif isinstance(node, ast.stmt):

complexity += 1
# Constant, variable
elif isinstance(node, (ast.Constant, ast.Name)):

complexity += 0
# Call other methods

1LeetCode: https://leetcode.com

18

https://leetcode.com


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

elif isinstance(node, ast.Call):
complexity += 3

# Calling an attribute or a subscript
elif isinstance(node, (ast.Attribute, ast.Subscript)):

complexity += 4
# Other expressions
elif isinstance(node, ast.expr):

complexity += 1
# Function arguments
elif isinstance(node, ast.arg):

complexity += 1

return complexity

B.4 PASS-RATE DIFFICULTY

In this approach, we select vanilla Llama-3.1-8B and Claude-3-Haiku as the weaker agents, using the
same system instructions as outlined in Appendix A.3.1 , but without utilizing long-term memory.
For each problem, the agent is given up to five attempts to provide a correct answer. We set the
temperature to 0.5, which encourages the generation of a diverse range of responses. To assess the
difficulty of the tasks, we employ a discounted pass-rate approach: for each problem k, the pass-rate
difficulty is defined by

pass-rate difficulty(k) = 1− γtk−1,

where the discount factor γ is set to 0.9, and tk represents the number of trials until a correct answer
is given or the maximum number of attempts is reached for problem k. This formulation implies that
a higher pass-rate difficulty score signifies a more challenging problem, as it takes more attempts for
the agent to provide a correct answer. Conversely, if the agent solves the problem in fewer attempts,
resulting in a lower pass-rate difficulty, it indicates that the question is easier.

C PERFORMANCE ON QRDATA-CAUSAL

To demonstrate the causal reasoning abilities of DSMentor, we evaluate the performance of differ-
ent curriculum designs in solving causal reasoning problems from QRData, referred to as QRData-
Causal. The results are summarized in the following figure.

Easy-to-Hard
(Inc. Similarity)
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(Inc. Difficulty)
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Hard-to-Easy
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Figure 5: Performance of DSMentor-Llama-3.1-70b on QRData-Causal.

The results suggest that an easy-to-hard curriculum, with increasing similarity as the ranking ap-
proach, may be better suited for causal reasoning tasks.
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D CORRELATION BETWEEN PROBLEM-BASED AND PASS-RATE DIFFICULTY

To better understand the relationship between the problem-based and pass-rate difficulty metrics, we
analyze their correlation using both linear (Pearson) and non-linear (Spearman) correlation coeffi-
cients, on DSEval-LeetCode. Figure 6 presents the correlation analysis between problem-based and
pass-rate difficulty scores across different problems.

(a) Linear and non-linear correlation analysis between problem-based difficulty and pass rate for
Llama-3.1-70b (Pearson correlation: 0.364, p < 0.05; Spearman correlation: 0.480, p < 0.01).

(b) Linear and non-linear correlation analysis between problem-based difficulty and pass rate for
Claude-3.5-Sonnet (Pearson correlation: 0.365, p < 0.05; Spearman correlation: 0.395, p < 0.05).

Figure 6: Correlation between pass-rate and problem-based difficulty on DSEval-LeetCode. For
each model, the left plots show Pearson correlation (linear relationship), while the right plots show
Spearman correlation (non-linear relationship).

The results show a moderate positive correlation between the two difficulty metrics. For example, for
Llama-3.1-70b, the Pearson correlation coefficient of 0.364 (p < 0.05) indicates a weak to moderate
linear relationship. Meanwhile, the Spearman correlation coefficient of 0.480 (p < 0.01) points to
a slightly stronger monotonic relationship, implying that non-linear analysis may better capture the
relationship between these difficulty metrics.

Notably, there is significant scatter in the data points, particularly for problems with higher difficulty
scores (4.0-6.5), where pass rates vary widely from 0% to 100%. This dispersion in the data, despite
the statistically significant correlations, suggests that while these difficulty metrics are related, they
likely capture different aspects of problem complexity. The moderate correlation also helps explain
why different difficulty metrics showed varying performance in our earlier experiments (Tables 3 and
4), highlighting the value of considering multiple approaches to difficulty assessment in curriculum
design in the future.
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