
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DSMENTOR: ENHANCING DATA SCIENCE AGENTS
WITH CURRICULUM LEARNING AND ONLINE KNOWL-
EDGE ACCUMULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language model (LLM) agents have shown promising performance in gen-
erating code for solving complex data science problems. Recent studies primarily
focus on enhancing in-context learning through improved search, sampling, and
planning techniques, while overlooking the importance of the order in which prob-
lems are tackled during inference. In this work, we develop a novel inference-time
optimization framework, referred to as DSMentor, which leverages curriculum
learning—a strategy that introduces simpler task first and progressively moves to
more complex ones as the learner improves—to enhance LLM agent performance
in challenging data science tasks. Our mentor-guided framework organizes data
science tasks in order of increasing difficulty and incorporates a growing long-
term memory to retain prior experiences, guiding the agent’s learning progression
and enabling more effective utilization of accumulated knowledge. We evaluate
DSMentor through extensive experiments on DSEval and QRData benchmarks.
Experiments show that DSMentor using Claude-3.5-Sonnet improves the pass
rate by up to 5.2% on DSEval and QRData compared to baseline agents. Further-
more, DSMentor demonstrates stronger causal reasoning ability, improving the
pass rate by 8.8% on the causality problems compared to GPT-4 using Program-of-
Thoughts prompts. Our work underscores the importance of developing effective
strategies for accumulating and utilizing knowledge during inference, mirroring
the human learning process and opening new avenues for improving LLM perfor-
mance through curriculum-based inference optimization.

1 INTRODUCTION

Data-centric tasks, ranging from statistical analysis to model prediction, are integral to various real-
world applications, including healthcare (Miotto et al., 2018), finance (Heaton et al., 2017), and
engineering (Chien & Wagstaff, 2017). The ever-evolving demands of data-driven fields call for
efficient and robust solutions that can effectively process, interpret, and learn from data.

As large language models (LLMs) demonstrate exceptional capabilities in understanding human-
like languages, recent works have leveraged LLMs to solve a wide range of tasks, including text
generation (Dathathri et al., 2019), reasoning (Wei et al., 2022), and code generation (Chen et al.,
2021b). This has motivated the development of Data Science agents (DS agents)—employing LLMs
to generate code for data-centric tasks. Thanks to the extensive knowledge built during the training
of LLMs, existing DS agents (Cheng et al., 2023; Zhang et al., 2023; 2024a; Hong et al., 2024a)
have shown strong capabilities in addressing various data science problems.

However, many data science problems are inherently challenging, often involving vague task de-
scriptions, complex data interpretation, and strict output formats, which results in DS agents failing
to solve these problems effectively (Zhang et al., 2024b; Lai et al., 2023; Liu et al., 2024a). Ad-
ditionally, the knowledge embedded within LLMs is static, confined to the data available during
their training, posing significant challenges in rapidly evolving fields where up-to-date information
is essential for generating accurate and relevant outputs.

To extend the knowledge of LLMs to specific data-centric tasks, recent works (Zhang et al., 2024a;
Guo et al., 2024) primarily focus on retrieving external knowledge for solving data science problems,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Question: Find the largest single number
Write a function `def biggest_single_number(my_numbers: pd.DataFrame) -> pd.DataFrame`.

`my_numbers` is a DataFrame with the following columns:

- num: int

Each row of this table contains an integer. This table may contain duplicates.

A single number is a number that appeared only once in the `my_numbers` table.

The function should find the largest single number. If there is no single number, report `null`.

Answer: Incorrect

Long-term memory with easier questions and generated codes

Answer: Correct

The most similar problem

Question: Find big countries

Write a function `def big_countries(world: pd.DataFrame) -> pd.DataFrame`.

A country is **big** if:

- it has an area of at least three million (i.e., `3000000 km2`), or

- it has a population of at least twenty-five million (i.e., `25000000`).

The function should return the name, population, and area of the **big countries**. Return the result table in **any order**.

The following answer is an example solved successfully.

Learned lesson: Output the largest single number instead of the index

Figure 1: A motivating example illustrating how the agent can learn from previously solved easier
problems. Without retrieving information from long-term memory, the agent incorrectly outputs the
index of the largest single number, while by leveraging knowledge from previously solved easier
questions, the agent can provide the correct answer.

often starting with identifying or collecting relevant knowledge sources. However, these approaches
typically do not accumulate knowledge in a dynamic, online fashion, nor do they explore the im-
portance of task order or curriculum in problem-solving. This oversight is particularly critical in
data science, where problems are often interrelated, and complex solutions can frequently be con-
structed by integrating simpler ones (Hong et al., 2024a). For instance, a sophisticated time series
forecasting task might build upon foundational concepts of data preprocessing, feature engineering,
and basic regression techniques. The challenge becomes even more pronounced in online learning
or serving scenarios, where the timeliness and quality of the knowledge base directly impact model
inference performance. Unfortunately, current methods often result in sub-optimal performance due
to inadequate strategies for how to best prepare, structure, and organize the knowledge base.

To address these challenges and leverage the interrelated nature of data science problems, we ex-
plore the sequence in which knowledge is populated into and retrieved from a growing memory
buffer, helping DS agents better understand and utilize accumulated knowledge. Inspired by the hu-
man learning process, where foundational knowledge forms the basis for tackling more complicated
problems, we posit that the order in which information is introduced to the model can significantly
influence its effectiveness. For instance, understanding basic concepts is often necessary before
addressing more advanced challenges, as illustrated in Figure 1.

In this work, we propose a new framework, referred to as DSMentor, which incrementally enhances
the capabilities of DS agents through a mentor-guided approach. The Mentor agent evaluates the
difficulty of all the tasks and provides a sequence order. Specifically, we employ curriculum learn-
ing to carefully structure the learning process for DS agents and accumulate knowledge from the
solutions to previous tasks. This approach mirrors the hierarchical nature of data science problem-
solving, where complex solutions often build upon simpler concepts. By systematically increasing
the difficulty of tasks, our framework enables the agent to develop the skills necessary to tackle
more complicated challenges within the data science domain. We evaluate our framework using
Claude-3.5-Sonnet and Llama-3.1-70b on two popular data science benchmarks: DSEval (Zhang
et al., 2024b) and QRData (Liu et al., 2024a).

Our main contributions can be summarized as follows:

• Curriculum-based performance improvement: We demonstrate the superior perfor-
mance of DSMentor, which leverages an easy-to-hard curriculum, across established

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

benchmarks in data analysis and causal reasoning tasks. Our framework surpasses other
data science agents by systematically guiding the learning process, enabling more effective
problem-solving, even for complex tasks that require synthesizing advanced knowledge
from multiple simpler problems.

• Enhanced knowledge utilization: We show that retrieving easier and relevant examples
from memory and structuring the knowledge in an increasing-similarity order, significantly
improves DS agents’ understanding and allows them to more efficiently leverage prior ex-
periences for solving new tasks.

• Progressive learning for solving advanced causal problems: We demonstrate how
DSMentor incrementally introduces tasks with increasing complexity, facilitating the
agent’s progressive learning of causal relationships. This gradual exposure strengthens its
causal reasoning abilities and enables it to effectively address complex data relationships.

2 RELATED WORKS

Curriculum learning. Inspired by the human learning process, curriculum learning, first intro-
duced by (Bengio et al., 2009), has become a widely-used approach in many applications, including
computer vision, natural language processing, and reinforcement learning (Wei et al., 2016; Zhang
et al., 2019; Wang et al., 2021; Portelas et al., 2021). This approach involves organizing training
examples in a sequence from easier to harder tasks, which facilitates convergence of the training
process and improves the quality of the learned models (Hacohen & Weinshall, 2019). Determining
task difficulty is a critical factor in enhancing training efficiency (Wang et al., 2021) and can be
categorized into pre-defined difficulty (Platanios et al., 2019; Shi et al., 2023; Lu et al., 2024; Liu
et al., 2024b) and automatic difficulty measurement (Portelas et al., 2021; Wang et al., 2024; Sun
et al., 2024). For instance, the Cross-Episodic Curriculum (CEC) method (Shi et al., 2023) struc-
tures learning experiences based on factors such as the pre-defined task difficulty or demonstrator
expertise, leveraging cross-episodic attention in Transformers. Recent works (Wang et al., 2024;
Sun et al., 2024) employ large language models to automatically generate tasks with a diverse range
of difficulties. In this paper, we leverage the LLM-based Mentor agent to automatically assess task
difficulty and systematically construct a curriculum-based dataset that progresses from simpler to
more complex tasks. Instead of focusing on the training stage, this paper incorporates curriculum
learning with LLM agents during inference, emphasizing the impact of curriculum on the growth of
long-term memory and the examples retrieved from online memory.

Data science LLM agents. LLMs have become increasingly valuable in data science, including
OpenAI’s Codex (Chen et al., 2021a) and Anthropic’s Claude (Anthropic, 2023) assisting in data
preprocessing, analysis, and code generation through natural language interfaces (Biswas et al.,
2023). However, their static nature, where knowledge is fixed at the time of training, limits their
ability to handle real-time data. To address this, recently proposed agents such as the Data In-
terpreter (Hong et al., 2024a), MLCopilot (Zhang et al., 2024a), and AIDE (Schmidt et al., 2024)
extend LLM capabilities by incorporating dynamic planning, human-like reasoning, and iterative re-
finement, significantly enhancing performance in data science problem-solving. Our work builds on
these advancements by incorporating curriculum learning and retrieval-based techniques to further
enhance LLM agents’ adaptability in data science tasks.

Multi-agent LLM frameworks. LLMs have seen growing application in multi-agent systems,
where multiple agents collaborate to solve complex tasks through communication and coopera-
tion. Frameworks like CAMEL (Li et al., 2023) and MetaGPT (Hong et al., 2024b) demonstrate
how multi-agent LLM systems can decompose large projects into modular sub-tasks, allowing spe-
cialized agents to handle distinct components of the problem. Moreover, curriculum learning and
retrieval-augmented techniques are increasingly integrated into these systems to enhance adaptabil-
ity and efficiency, as shown in recent work focused on game-play agents (Wang et al., 2024). Addi-
tionally, studies on multi-agent debate systems reveal that agent interaction can significantly improve
reasoning abilities (Wang et al., 2023; Khan et al., 2024). In this work, we propose a framework
where a Mentor agent assists a Student agent, which enhances the student agent’s problem-solving
skills in data science tasks.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Dataset

Step 2: Generate curriculum
from easy to hard

Mentor agent
(curriculum designer)

Step 1: Determine
problem difficulty

Difficulty = 4

Difficulty = 2.5

Difficulty = 8

Difficulty = 5

Student agent
(code generator) 

Curriculum-based dataset

Environment
(evaluate codes)

Step 4: Answer DS problems by generating codes

Pass / Fail

Step 3: Retrieve
related examplesQuestion: find big countries Tag: Correct

Long-term memory

Generated code:

Stage 1: Curriculum Generation

Stage 2: Problem-solving

Step 5: Accumulate
knowledge

Figure 2: Our framework DSMentor. Here, the Mentor agent assesses the difficulty of each
problem and generates a curriculum accordingly. Once the curriculum are determined, the Student
agent—responsible for answering questions through code generation—retrieves relevant examples
from an accumulated online long-term memory. After the environment evaluates the generated code,
the Student agent will append the question, its output and evaluation tag (i.e., incorrect or correct
answer), to the long-term memory.

3 DSMENTOR: A MENTOR-GUIDED APPROACH

In this section, we present DSMentor, a novel mentor-guided approach that leverages curriculum
learning and a growing online memory to enhance the capabilities of DS agents for solving data sci-
ence tasks. As illustrated in Figure 2, DSMentor operates in two stages: the curriculum-generation
stage and the problem-solving stage. In the following subsections, we will discuss the details about
these two stages and explain the main components of DSMentor as well as how they work together
to facilitate effective learning.

3.1 CURRICULUM-GENERATION STAGE

Given any data science task dataset D, we first employ a Mentor agent to construct a curriculum-
based counterpart Dc. This curriculum establishes the sequence of the tasks that will be undertaken
during the problem-solving stage. In this paper, we focus on a difficulty-based curriculum and the
preparation of a curriculum-based dataset comprises two key steps.

Step 1: Determine difficulty. First, the Mentor agent assesses and assigns a difficulty level to
each problem. In our setting, we rely only on problem descriptions to gauge the difficulty of each
problem, since the ground-truth code or evaluation results are generally not available to the Mentor
agent during this stage in many real world scenarios. To ensure consistency and scalability across a
diverse set of DS tasks, we provide difficulty scale guidelines for the Mentor agent to analyze and
assign difficulty levels. As the examples illustrated in Figure 3, the Mentor agent can tell that the
task of finding the largest single number is more difficult than identifying big counties based on
specific conditions. The Mentor agent also provides reasons that the former requires counting oc-
currences within the data, while the latter only involves filtering a DataFrame satisfying the required
conditions.

Step 2: Generate curriculum. Once the difficulty level for each task is determined, we structure
the curriculum by arranging the tasks in a sequence that progresses from easier to more challenging

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Mentor agent

 

Question: Find the largest single number

Write a function `def biggest_single_number(my_numbers: pd.DataFrame) ->
pd.DataFrame`.

`my_numbers` is a DataFrame with the following columns:

- num: int

Each row of this table contains an integer. This table may contain duplicates.

A single number is a number that appeared only once in the `my_numbers`
table.

The function should find the largest single number. If there is no single

Question: Find big countries
Write a function `def big_countries(world: pd.DataFrame) ->
pd.DataFrame`.

A country is **big** if:

- it has an area of at least three million (i.e., `3000000 km2`), or

- it has a population of at least twenty-five million (i.e., `25000000`).

The function should return the name, population, and area of the **big
countries**. Return the result table in **any order**. Mentor agent

 

"difficulty": 4.0

“reasoning": This problem involves basic data manipulation
and simple statistical concepts, making it relatively easy.
The task requires finding the largest single number in a
DataFrame, which can be achieved by counting the occurrences
of each number and then selecting the maximum value that
appears only once. The implementation is straightforward, and
the algorithmic complexity is O(n), where n is the number of
rows in the DataFrame. The main challenge might be handling
the case where there is no single number, but this can be
easily addressed by checking if the resulting DataFrame is
empty. Overall, this problem is suitable for beginners with
basic programming knowledge and data science skills.

“category": "Data Preprocessing, Exploratory Data Analysis,
Statistical Analysis, Data Manipulation"

"difficulty": 2.5

"reasoning": This problem involves filtering a pandas
DataFrame based on specific conditions. The conditions are
straightforward, and the required operations are basic data
manipulation. The problem does not require any advanced
algorithms, complex data processing, or machine learning
concepts. The main challenge is understanding the problem
statement and applying the correct filtering conditions. The
problem is well-defined, and the required output is clearly
specified. Overall, the problem is relatively simple and can
be solved with basic programming knowledge and familiarity
with pandas DataFrames.

"category": "Data Preprocessing, Data Filtering, Data
Manipulation"

 1: Trivial, can be solved by a complete beginner instantly 2: Very easy, requires minimal programming knowledge
 4: Easy, involves basic data manipulation and simple statistical concepts 6: Moderate, requires intermediate programming and data science skills
 8: Challenging, involves advanced algorithms or complex data processing 10: Extremely difficult, at the cutting edge of data science research

 Difficulty Scale Guidelines:

Figure 3: Examples of determining difficulties during the curriculum-generation stage.

problems. Together with the long-term memory described later, this ordering allows the agent to
build foundational skills on basic tasks before advancing to more complex ones. For example, as
shown in Figure 3, the Student agent will first tackle the task of finding big countries, followed by
the task of identifying the largest single number, based on their respective difficulty levels.

We also explore the effectiveness of other difficulty metrics and alternative curricula, which will be
detailed in 4.4 for comprehensive ablation studies.

3.2 PROBLEM-SOLVING STAGE

With the curriculum-based dataset Dc, we utilize a Student agent that iteratively solves data science
problems, progressing from easier to more complex ones. Inspired by verbal reinforcement learning
(Shinn et al., 2024), we introduce a growing online long-term memory module that enables the
Student agent to retain and retrieve knowledge from previously tackled, less complex problems,
without necessitating updates to the model weights.

Online long-term memory: Assume that there are N problems in the dataset Dc. For each prob-
lem i ∈ {1, . . . , N}, we denote its description as pi, where i is the index of pi in the sequence of
problems. The long-term memory can be formally defined as

Mi = {(pk, ck, tk)}i−1
k=1,

where pk and ck are the problem description and the corresponding generated code of some previous
problem k < i, and tk ∈ {Correct, Incorrect} is the evaluation tag for problem k.

Step 3: Retrieve from online long-term memory. While solving the i-th problem in the
curriculum-based dataset Dc, the Student agent can retrieve examples from long-term memory
Mi based on the similarity between the current problem description pi and previous description
pk ∈ Mi, according to their cosine similarity: sim(pi, pk) = cos(E(pi), E(pk)), where E is the
embedding model. We finally retrieve examples with the top-K similarities from the long-term
memory, where K is the number of the retrieved examples. The examples include both correctly
and incorrectly solved problems along with their corresponding generated code.

Step 4: Answer DS problem by generating codes. Using the retrieved examples, the Student
agent follows the order of increasing similarity. By learning from prior experiences, the Student
agent attempts to solve the current data science problem by generating code, which is then evaluated
by the environment based on its execution output.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Step 5: Accumulate knowledge to long-term memory. After obtaining the evaluation results,
the Student agent appends the question, the generated code, and the evaluation tag (i.e., correct or
incorrect) to the long-term memory for future use. As the inference process continues, the long-term
memory will keep expanding.

4 EXPERIMENTS

In this section, we evaluate the proposed DSMentor on two different data-science benchmarks to
address the following research questions: (Q1) How does DSMentor compare with other popular
data science agents? (Q2) Can DSMentor enhance the ability to solve more difficult problems, like
causal reasoning? (Q3) What is most suitable curriculum design that yields the best performance?

In the sequel, we first attempt to answer (Q1) and (Q2) in Section 4.3 and conduct a series of ablation
studies to explore different curriculum designs in Section 4.4 for (Q3).

4.1 EXPERIMENT SETUP

Benchmarks and datasets. To answer the aforementioned questions, we conducted experiments
on DSEval (Zhang et al., 2024b) and QRData (Liu et al., 2024a), which contains 705 problem-sets
with 1236 questions in total. More specifically, DSEval consists of four datasets: LeetCode (with
40 single-turn problem-sets), StackOverflow (with 202 single-turn problem-sets), Exercise (with
21 multiple-turn problem-sets), and Kaggle (with 31 multiple-turn problem-sets), while QRData
are composed of 411 statistical and causal reasoning problems. More details are summarized in
Appendix A.2 of the supplementary material, where we address certain DSEval evaluation issues
that lead to an underestimation of agent capabilities.

Implementation details. We equip DSMentorwith anthropic.claude-3-5-sonnet-20240620-v1:0
and meta.llama3-1-70b-instruct-v1:0 as the base LLMs, referred to as DSMentor-Claude-3.5-Sonnet
and DSMentor-Llama-3.1-70b, respectively. Both the Mentor and Student agents use the same base
model. Moreover, the Mentor agent follows the problem-based difficulty and the Student agent re-
trieves similar examples from a long-term memory storing previously answered questions and gen-
erated codes (both correct and incorrect). We employ cohere.embed-english-v3 as the embedding
to retrieve relevant examples from the memory. We set the number of retrieved examples as listed in
Appendix A.1 of the supplementary material, which will be discussed with in detail in Section 4.4.3.
During inference, we run DSMentor with easy-to-hard or hard-to-easy curriculum for three times
and DSMentor with random curriculum for five times to mitigate randomness, reporting average
results. The temperature is set to zero for more deterministic behavior.

Evaluation metrics. For DSEval, we adopt the Pass Rate metric from Zhang et al. (2024b), which
is the ratio of correctly answered questions to the total number of questions, without considering
any variable violation issues and error propagation for multiple-turn problem-sets. For QRData, we
directly evaluate by comparing the execution output of the generated code against the ground-truth
results, which can be either numerical or multiple-choice.

4.2 BASELINES

We compare DSMentor to the following baseline agents on DSEval (Zhang et al., 2024b) and
QRData (Liu et al., 2024a). These agents are selected for their leading performance on the corre-
sponding benchmarks.

Jupyter-AI (JupyterLab, 2023) is an open-source tool that enhances Jupyter Notebooks with genera-
tive AI capabilities. It demonstrates strong performance on DSEval-LeetCode, outperforming other
data science agent frameworks such as Chapyter (chapyter, 2023), Code Interpreter (shroominic.,
2023), and CoML (Zhang et al., 2024a).

CoML (Zhang et al., 2024a) leverages offline data containing pre-existing tasks and distills the
related knowledge to enhance performance during the online stage. It achieves the best performance
on DSEval benchmarks, except DSEval-LeetCode compared to other agents (JupyterLab, 2023;
chapyter, 2023; shroominic., 2023), which makes it an important baseline for comparison.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Model (with Llama-3.1-70b) DSEval-LeetCode DSEval-SO DSEval-Exercise DSEval-Kaggle

Jupyter-AI (JupyterLab, 2023) 0.733 0.427 0.679 0.465
CoML (Zhang et al., 2024a) 0.683 0.794 0.783 0.577
Llama-3.1-70b (PoT) 0.725 0.739 0.747 0.539
DSMentor-Llama-3.1-70b 0.792 0.837 0.752 0.577

Model (with Claude-3.5-Sonnet) DSEval-LeetCode DSEval-SO DSEval-Exercise DSEval-Kaggle

Jupyter-AI (JupyterLab, 2023) 0.850 0.477 0.693 0.595
CoML (Zhang et al., 2024a) 0.875 0.809 0.643 0.535
Claude-3.5-Sonnet (PoT) 0.800 0.804 0.745 0.641
DSMentor-Claude-3.5-Sonnet 0.892 0.837 0.781 0.678

Table 1: Performance comparison of our DSMentor and existing data science models across
DSEval-LeetCode, DSEval-SO, DSEval-Kaggle, and DSEval-Exercise.

Model Pass Rate Multiple Choice/Numerical Statistical/Causal

GPT-4 (PoT) 0.491 0.460/0.540 0.725/0.368
Llama-3.1-70b (PoT) 0.442 0.480/0.384 0.615/0.351
Claude-3.5-Sonnet (PoT) 0.471 0.495/0.436 0.646/0.379

DSMentor-Llama-3.1-70b 0.508 0.566/0.419 0.676/0.419
DSMentor-Claude-3.5-Sonnet 0.543 0.602/0.452 0.707/0.456

Table 2: Performance comparison of our DSMentor and existing data science models on QRData,
which includes the overall pass rate, along with breakdowns for multiple choice/numerical and sta-
tistical/causal questions.

Vanilla agents with Program-of-Thoughts (PoT) (Chen et al., 2023) solve tasks by generating
Python code, with the executed output serving as the solution. For each benchmark, Llama-3.1-70b
and Claude-3.5-Sonnet act as vanilla agents, using the same system instructions as DSMentor to
generate code (see Appendix A.3.1 in the supplementary material). Additionally for QRData, we
include GPT-4 (Cheng et al., 2023) with PoT as one of the baseline agents, as it performs best among
PoT-style agents reported in Liu et al. (2024a). To ensure a fair and consistent comparison, we focus
on single-turn code generation alternatives rather than ReAct-style (Yao et al., 2022) or other agents
that involve multi-turn reasoning and error feedback.

4.3 RESULTS AND DISCUSSION

Baselines vs DSMentor. As shown in Table 1 and 2, DSMentor-Claude-3.5-Sonnet consistently
outperforms baseline agents across multiple datasets. Compared to prior art Jupyter-AI and CoML, it
achieves significant improvements, including an 8.8% increase on DSEval-Exercise and and 8.3%
boost on DSEval-Kaggle. DSMentor-Llama-3.1-70b also shows notable gains, with an 5.9% im-
provement on DSEval-LeetCode and a 4.3% improvement on DSEval-SO. Despite performing
slightly worse on DSEval-Exercise compared to CoML with Llama-3.1-70b, DSMentor demon-
strates strong performance on QRData as shwon in Table 2, which contains larger and more difficulty
problem sets.

Online long-term memory. Compared to the vanilla Llama-3.1-70b and Claude-3.5-Sonnet using
PoT prompts, DSMentor, equipped with the same LLM, significantly improves the pass rate on
both DSEval and QRData. Such improvements are driven by the presence of online long-term
memory and curriculum learning. Furthermore, they are especially noticeable on more difficult
datasets, such as DSEval-Kaggle and QRData, where leveraging previous examples plays a crucial
role in enhancing performance.

Causal reasoning tasks. Causal reasoning is considered more challenging than other statistical
problems in QRData (Liu et al., 2024a). From Table 2, DSMentor-Claude-3.5-Sonnet achieves
45.6%, which improves GPT-4 (PoT) as the best baseline model by 8.8% on the causal problems.
Such an improvement indicates that accumulating knowledge from easier questions is particularly
effective for complex reasoning, especially in cases where understanding causal relationships is
crucial.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Difficulty Measurement DSEval-LeetCode DSEval-SO

Manual 0.742 –
Reference-code-based 0.750 0.812
Pass-rate (Llama-3.1-8b) 0.800 0.825
Pass-rate (Claude-3-Haiku) 0.775 0.812

Problem-based only 0.792 0.837

baseline w/o curriculum: Llama-3.1-70b (PoT) 0.725 0.739

Table 3: Comparison among different difficulty designs for DSMentor-Llama-3.1-70b, where the
numbers of retrieved examples are 5 and 15 for DSEval-LeetCode and DSEval-SO respectively. We
also report baseline numbers without curriculum in the last row.

Difficulty Measurement DSEval-LeetCode DSEval-SO

Manual 0.892 –
Reference-code-based 0.825 0.832
Pass-rate (Llama-3.1-8b) 0.883 0.827
Pass-rate (Claude-3-Haiku) 0.867 0.815

Problem-based only 0.892 0.837

baseline w/o curriculum: Claude-Sonnet-3.5 (PoT) 0.800 0.804

Table 4: Comparison among different difficulty designs for DSMentor-Claude-3.5-Sonnet, where
the number of retrieved examples is 5 for both DSEval-LeetCode and DSEval-SO.

In summary, DSMentor, incorporating with curriculum learning and long-term memory, shows
a noticeable advantage over baseline models, particularly on complex datasets like DSEval and
QRData. Our results underscore the importance of scalable curriculum strategies and long-term
memory in improving AI-assisted data science performance.

4.4 ABLATIONS

Next, we conduct a series of ablation studies to examine the impacts of each components of
DSMentor, regarding curriculum and long-term memory designs.

4.4.1 DIFFICULTY DEFINITION

Figuring out an appropriate difficulty measurement plays a critical role in our framework. In addition
to the problem-based difficulty used in Section 4, where the LLM-based Mentor agent assesses
difficulty based solely on each question, we evaluate three additional difficulty metrics and analyze
their performance on DSEval-LeetCode and DSEval-SO. Below, we summarize the key concepts of
these difficulty metrics, where more details are postponed to Appendix B.

Manual difficulty (for DSEval-LeetCode only): referring to the difficulty level (easy/medi-
um/hard) as defined on LeetCode. Problems are first sorted by their original difficulty level, and
in case of a tie, human pass rate is used to further rank them (i.e., a higher pass rate indicates an
easier problem).

Reference-code-based difficulty: following the difficulty in DSEval (Zhang et al., 2024b), based
on the number of functions, variables, conditions, and loops in the reference code.

Pass-rate difficulty: employing the pass rate of weaker models, such as Llama-3.1-8b and Claude-
3-Haiku, where a higher pass rate indicates an easier question.

To explore the impact of different difficulty definitions, we follow the same experiment setup de-
scribed in Section 4.1 except the curriculum generation process that utilizes different difficulty met-
rics. We run each experiment for three times and present the average result in Table 3 and 4 to
mitigate the randomness. As shown in Table 3 and 4, we first observe that incorporating with
the curriculum designs significantly improves the overall pass rate for both DSMentor-Llama-3.1-
70b and DSMentor-Claude-3.5-Sonnet on DSEval-LeetCode and SO, comparing to the baseline
vanilla agent without memory and curriculum. Moreover, the problem-based difficulty generally

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Curriculum Design DSEval-LeetCode DSEval-SO DSEval-Exercise DSEval-Kaggle

Easy-to-Hard (Inc. Similarity) 0.792 0.837 0.752 0.577
Easy-to-Hard (Inc. Difficulty) 0.775 0.837 0.729 0.566

Hard-to-Easy (Inc. Similarity) 0.792 0.807 0.740 0.583

Random (Inc. Similarity) 0.770 0.803 0.750 0.571

Table 5: Performance comparison of DSMentor-Llama-3.1-70b with different curriculum designs
across DSEval. Here, Inc. Similarity and Inc. Difficulty represent that the retrieved examples are in
the order of increasing similarity or increasing difficulty, respectively.

Curriculum Design DSEval-LeetCode DSEval-SO DSEval-Exercise DSEval-Kaggle

Easy-to-Hard (Inc. Similarity) 0.892 0.837 0.781 0.678
Easy-to-Hard (Inc. Difficulty) 0.850 0.835 0.774 0.684

Hard-to-Easy (Inc. Similarity) 0.833 0.797 0.742 0.680

Random (Inc. Similarity) 0.850 0.800 0.775 0.678

Table 6: Performance comparison of DSMentor-Claude-3.5-Sonnet with different curriculum de-
signs across DSEval.

outperforms the other difficulty metrics, although DSMentor-Llama-3.1-70b using the problem-
based difficulty performs slightly worse than when using the pass-rate generated by Llama-3.1-8B
on DSEval-LeetCode. We further examine the correlation between problem-based difficulty and
pass-rate difficulty that exclusively reflects each model’s problem-solving abilities for each tasks.
Due to page limits, we postpone the detailed discussion and results to Appendix D.

4.4.2 ORDER OF TASKS AND EXAMPLES

In addition to difficulty metrics, we further explore the impact of different task orders and retrieved
examples, both of which are key components of curriculum design.

First, we compare the easy-to-hard curriculum with the random and hard-to-easy curriculum, where
the retrieved examples are ordered by increasing similarity (denoted as Inc. Similarity). As shown
in Table 5 and 6, both DSMentor-Llama-3.1-70b and DSMentor-Claude-3.5-Sonnet perform better
with the easy-to-hard or hard-to-easy curricula compared to the random curriculum, demonstrating
the efficacy of curriculum learning. Additionally, the easy-to-hard curriculum often shows better
performance than the hard-to-easy curriculum, except for DSEval-Kaggle, where the hard-to-easy
curriculum performs slightly better by 0.4%.

Given that curriculum design influences performance through retrieved examples, we also investi-
gate different ranking approaches for these examples. In addition to increasing similarity, we use
increasing difficulty (denoted as Inc. Difficulty) for easy-to-hard curriculum. As seen in Table 5
and 6, our experimental results show that the easy-to-hard curriculum with examples ordered by
increasing similarity often outperforms alternative approaches, except on DSEval-Kaggle.

4.4.3 LONG-TERM MEMORY

As the Student agent utilizes examples retrieved from long-term memory, we then examine the
impact of long-term memory, specifically focusing on the number of retrieved examples and the
inclusion of incorrectly answered question with failed attempts.

The impact of the number of retrieved examples. We first vary the number of retrieved exam-
ples and examine its impact for both DSMentor-Llama-3.1-70b and DSMentor-Claude-3.5-Sonnet
over all the five datasets. Except the number of examples, all setups follow Section 4.1. From Figure
4, DSMentor with retrieved examples (i.e. # examples > 0) consistently improves performance
across all datasets. However, we observe that DSMentor-Llama-3.1-70b often experiences a per-
formance drop as the number of retrieved examples increases, particularly on multi-turn datasets
such as DSEval-Exercise and DSEval-Kaggle. In contrast, DSMentor-Claude-3.5-Sonnet generally

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: Performance of DSMentor models across different datasets on DSEval and QRData, with
varying number of retrieved examples. The subfigures show the results for each dataset, demonstrat-
ing performance trends for Llama-3.1-70b and Claude-3.5-Sonnet models.

Dataset Incorrect Examples Pass Rate

DSEval-LeetCode ✗ 0.733
✓ 0.792

DSEval-SO ✗ 0.830
✓ 0.837

DSEval-Exercise ✗ 0.725
✓ 0.752

DSEval-Kaggle ✗ 0.562
✓ 0.577

QRData ✗ 0.475
✓ 0.508

Table 7: DSMentor-Llama-3.1-70b with and without incorrectly answered examples.

benefits from additional retrieved examples, often demonstrating improved performance with more
retrieved examples.

The impact of adding incorrect examples. Next, we further explore whether the Student agent
could benefit from incorrect examples (i.e., previously answered questions that are incorrect). We
evaluate DSMentor-Llama-3.1-70b on DSEval and QRData, both with and without incorrect ex-
amples retrieved from the long-term memory. Apart from incorporating incorrect examples, all
experimental setups follows Section 4.1. Table 7 shows that enabling access to incorrect examples
can enhance the pass rate, especially for datasets with fewer problem-sets (e.g., DSEval-LeetCode
and DSEval-Exercise), though the datasets with a larger number of problem-sets (e.g., DSEval-SO,
DSEval-Kaggle and QRData), the improvement from adding incorrect examples is marginal. This
observation aligns with the principle that larger datasets generally possess a more extensive memory
pool for retrieval, thereby increasing the likelihood of selecting sufficient correct examples without
necessitating additional learning signals from incorrect instances.

5 CONCLUSION

In this work, we develop DSMentor, a framework that enhances data science agents through a
mentor-guided curriculum learning approach, effectively improving their ability to tackle complex
data science tasks. Extensive experiments demonstrate that organizing tasks from easy to hard sig-
nificantly boosts the agent’s problem-solving and causal reasoning capabilities by building a strong
knowledge foundation during inference. Future directions include exploring adaptive curriculum
that adjust task difficulty based on agent performance, incorporating advanced memory mechanisms
for better knowledge retention, and extending DSMentor to support multi-agent collaboration in
complex, interdisciplinary domains.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anthropic. Claude: A next-generation chatbot. Anthropic Blog, 2023. URL https://www.
anthropic.com/index/claude.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Soham Biswas, Sukanta Bose, and Bhaskar Mukherjee. Is ChatGPT a good data scientist? a pre-
liminary study. arXiv preprint arXiv:2301.10327, 2023.

chapyter. chapyter, 2023. URL https://github.com/chapyter/chapyter.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language
models trained on code. arXiv preprint arXiv:2107.03374, 2021a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code. 2021b.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. Transactions on
Machine Learning Research, 2023. ISSN 2835-8856.

Liying Cheng, Xingxuan Li, and Lidong Bing. Is GPT-4 a good data analyst? In Findings of the
Association for Computational Linguistics: EMNLP 2023, pp. 9496–9514, 2023.

Steve Chien and Kiri L Wagstaff. Robotic space exploration agents. Science robotics, 2(7):eaan4831,
2017.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosin-
ski, and Rosanne Liu. Plug and play language models: A simple approach to controlled text
generation. arXiv preprint arXiv:1912.02164, 2019.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. DS-agent: Auto-
mated data science by empowering large language models with case-based reasoning. In Forty-
first International Conference on Machine Learning, 2024.

Guy Hacohen and Daphna Weinshall. On the power of curriculum learning in training deep net-
works. In International conference on machine learning, pp. 2535–2544. PMLR, 2019.

James B Heaton, Nick G Polson, and Jan Hendrik Witte. Deep learning for finance: deep portfolios.
Applied Stochastic Models in Business and Industry, 33(1):3–12, 2017.

Sirui Hong, Yizhang Lin, Bangbang Liu, Binhao Wu, Danyang Li, Jiaqi Chen, Jiayi Zhang, Jinlin
Wang, Lingyao Zhang, Mingchen Zhuge, et al. Data interpreter: An LLM agent for data science.
arXiv preprint arXiv:2402.18679, 2024a.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao,
Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent collabo-
rative framework. In The Twelfth International Conference on Learning Representations, 2024b.

JupyterLab. Jupyter-ai, 2023. URL https://github.com/jupyterlab/jupyter-ai.

11

https://www.anthropic.com/index/claude
https://www.anthropic.com/index/claude
https://github.com/chapyter/chapyter
https://github.com/jupyterlab/jupyter-ai

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Akbir Khan, John Hughes, Dan Valentine, Laura Ruis, Kshitij Sachan, Ansh Radhakrishnan, Ed-
ward Grefenstette, Samuel R. Bowman, Tim Rocktäschel, and Ethan Perez. Debating with more
persuasive LLMs leads to more truthful answers. In Forty-first International Conference on Ma-
chine Learning, 2024.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau
Yih, Daniel Fried, Sida Wang, and Tao Yu. DS-1000: A natural and reliable benchmark for data
science code generation. In International Conference on Machine Learning, pp. 18319–18345.
PMLR, 2023.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-
municative agents for” mind” exploration of large language model society. Advances in Neural
Information Processing Systems, 36:51991–52008, 2023.

Xiao Liu, Zirui Wu, Xueqing Wu, Pan Lu, Kai-Wei Chang, and Yansong Feng. Are llms capable of
data-based statistical and causal reasoning? benchmarking advanced quantitative reasoning with
data. arXiv preprint arXiv:2402.17644, 2024a.

Yinpeng Liu, Jiawei Liu, Xiang Shi, Qikai Cheng, and Wei Lu. Let’s learn step by step: Enhancing
in-context learning ability with curriculum learning. arXiv preprint arXiv:2402.10738, 2024b.

Jianqiao Lu, Wanjun Zhong, Yufei Wang, Zhijiang Guo, Qi Zhu, Wenyong Huang, Yanlin Wang, Fei
Mi, Baojun Wang, Yasheng Wang, et al. Yoda: Teacher-student progressive learning for language
models. arXiv preprint arXiv:2401.15670, 2024.

Riccardo Miotto, Fei Wang, Shuang Wang, Xiaoqian Jiang, and Joel T Dudley. Deep learning for
healthcare: review, opportunities and challenges. Briefings in bioinformatics, 19(6):1236–1246,
2018.

Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barnabás Poczós, and Tom
Mitchell. Competence-based curriculum learning for neural machine translation. In Proceed-
ings of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1162–1172,
2019.

Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hofmann, and Pierre-Yves Oudeyer. Automatic
curriculum learning for deep rl: A short survey. In IJCAI 2020-International Joint Conference on
Artificial Intelligence, 2021.

D. Schmidt, Z. Jiang, and Y. Wu. Aide: Human-level performance in data science competitions.
weco.ai, 2024. https://www.weco.ai/blog/technical-report.

Lucy Xiaoyang Shi, Yunfan Jiang, Jake Grigsby, Linxi ”Jim” Fan, and Yuke Zhu. Cross-episodic
curriculum for transformer agents. In Thirty-seventh Conference on Neural Information Process-
ing Systems, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

shroominic. codeinterpreter-api, 2023. URL https://github.com/shroominic/
codeinterpreter-api.

Haoran Sun, Lixin Liu, Junjie Li, Fengyu Wang, Baohua Dong, Ran Lin, and Ruohui Huang.
Conifer: Improving complex constrained instruction-following ability of large language models.
arXiv preprint arXiv:2404.02823, 2024.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
Transactions on Machine Learning Research, 2024. ISSN 2835-8856.

Haotian Wang, Xiyuan Du, Weijiang Yu, Qianglong Chen, Kun Zhu, Zheng Chu, Lian Yan, and
Yi Guan. Apollo’s oracle: Retrieval-augmented reasoning in multi-agent debates. arXiv preprint
arXiv:2312.04854, 2023.

12

https://www.weco.ai/blog/technical-report
https://github.com/shroominic/codeinterpreter-api
https://github.com/shroominic/codeinterpreter-api

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning. IEEE transactions on
pattern analysis and machine intelligence, 44(9):4555–4576, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yunchao Wei, Xiaodan Liang, Yimin Chen, Xiaohui Shen, Ming-Ming Cheng, Jiashi Feng, and
Shuicheng Yan. Stc: A simple to complex framework for weakly-supervised semantic segmenta-
tion. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2022.

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and Yuqing Yang. Mlcopilot: Unleashing the
power of large language models in solving machine learning tasks. In Proceedings of the 18th
Conference of the European Chapter of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 2931–2959, 2024a.

Wenqi Zhang, Yongliang Shen, Weiming Lu, and Yueting Zhuang. Data-copilot: Bridging billions
of data and humans with autonomous workflow. arXiv preprint arXiv:2306.07209, 2023.

Yuanjun Zhang, Ting Yao, and Tao Mei. Leveraging deep learning with dynamic curriculum learn-
ing. In Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

Yuge Zhang, Qiyang Jiang, Xingyu Han, Nan Chen, Yuqing Yang, and Kan Ren. Benchmarking
data science agents. arXiv preprint arXiv:2402.17168, 2024b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ADDITIONAL EXPERIMENTAL DETAILS

A.1 THE NUMBER OF RETRIEVED EXAMPLES

In Table 8, we summarize the number of retrieved examples used in our main experiments.

Dataset DSMentor-Claude-Sonnet-3.5 DSMentor-Llama-3.1-70b
DSEval-LeetCode 5 5

DSEval-SO 5 15

DSEval-Exercise 2 4

DSEval-Kaggle 2 4

QRData 10 10

QRData-Causal 10 10

QRData-Stats 10 10

Table 8: The number of retrieved examples used in Section 4 for each dataset.

A.2 DATASET AND BENCHMARK CORRECTION

In DSEval (Zhang et al., 2024b), the TableTestValidator is used to evaluate questions about
function implementation using multiple test-cases, which may also include the checker of the func-
tion input. This validator is mostly used for DSEval-LeetCode. If there is no requirement for input
checker, DSEval by default will initialize as

Initialization Issue of input checker

Initialization for TableTestValidator
def __init__(

self,
...,
input_checker: str | CompareFunction | dict | bool | None = None):

if input_checker is False: # <- This condition is problematic
self.input_checker = None

else:
if input_checker in (True, None):

input_checker = None # Default handling
self.input_checker = (

_compare_fn_from_config(input_checker),
_compare_fn_from_config(input_checker, loose=True),

)
Other initialization
...

The above code always follows the branch and sets a input checker. To address this issue,
we initialize as input checker = False.

In addition, we observed that most agents failed on the trips-and-users problem due to an
unclear format requirement in the problem description. Specifically, the string-based problem de-
scription does not explicitly specify the expected format of the date output.

Format Issue with output checker

Original version
def compare_fn(expected, output):

if not np.issubdtype(output['Cancellation Rate'], np.number):

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

output['Cancellation Rate'] =
pd.to_numeric(output['Cancellation Rate'])↪→

return {
'match': expected.sort_values(by=['Day', 'Cancellation

Rate']).reset_index(drop=True).equals(output.sort_values(
by = ['Day', 'Cancellation
Rate']).reset_index(drop=True)),

↪→
↪→
↪→
'reason': ''

}
Modified version
def compare_fn(expected, output):

if not np.issubdtype(output['Cancellation Rate'], np.number):
output['Cancellation Rate'] =

pd.to_numeric(output['Cancellation
Rate']).astype(float)

↪→
↪→

if not np.issubdtype(output['Day'], np.datetime64):
output['Day'] = output['Day'].astype(np.datetime64)

return {
'match': expected.sort_values(by=['Day', 'Cancellation

Rate']).reset_index(drop=True).equals(output.sort_values(
by = ['Day', 'Cancellation
Rate']).reset_index(drop=True)),

↪→
↪→
↪→
'reason': ''

}

In the modified version, we ensure that the output is consistently formatted, allowing it to be accu-
rately compared with the ground truth, which mitigates the unclear format description for datetime
output.

A.3 PROMPT DESIGNS

In this section, we provide detailed explanations of our prompt designs for the purpose of reproduc-
tion. For system message, it consists of system instructions and guidelines (described in Appendix
A.3.1), as well as long-term memory prompts, if applicable (described in Appendix A.3.2).

A.3.1 SYSTEM INSTRUCTIONS AND GUIDELINES

We first presents the system message of DSMentor-Claude-3.5-Sonnet as a follow.

System Instructions and Guidelines

You are a data scientist assistant skilled in writing Python code for data analysis, visualiza-
tion, and machine learning tasks. You can leverage Python libraries like pandas, scikit-learn,
matplotlib, seaborn, etc. to fulfill the user’s requests.

The user will present a question and may optionally provide variables (e.g., pandas
DataFrame). Your task is to write a cell in an iPython notebook that addresses the user’s
request. The cell’s output should be exactly what the user has asked for.

Instruction and guidelines
- Wrap the generated code with ‘‘‘ before and with ‘‘‘ after it.
- Import necessary libraries at the beginning.
- Ensure that the executing code only calls functions and uses the variables that are

defined properly or imported within the available scope.
- Ensure that executing the code generates the desired output. Do not use # print

or return statements to generate the result outside the function if any. For non-
function-completion questions, ‘‘‘var a = xxx; var awill generate the de-
sired output of var a and the output of a cell is the last statement of the code.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

- Important: Do not overwrite or modify the variables provided by the user, unless
explicitly asked to do so. For example, if the user provides a DataFrame df, do not
reassign df unless the user requests modifying it in-place.

- Write runnable code directly, without providing examples.
- [For DSEVal-LeetCode only] If the question explicitly asks to write a function,

you need to use ‘‘‘return xxx‘‘‘ only within the function scope to ensure
the output. Outside the function, do not include any example or ‘‘‘print‘‘‘
statements to generate the output.

- [For QRData only] For multiple choice questions, store the gener-
ated results in ‘‘‘selected choice‘‘‘ and the last cell will be
‘‘‘selected choice‘‘‘ to ensure an output.

- [For multiple-turn datasets only] Use only the provided variables from the current
environment (listed after ‘‘‘Variables:‘‘‘) to solve the given question.

- [For multiple-turn datasets only] Do not any unnecessary operations and content,
such as sorting data, including examples or usage instructions, unless explicitly
required by the question.

- [For multiple-turn datasets only] Outside the function, do not include any example
or ‘‘‘print‘‘‘ statements to generate the output.

As for DSMentor-Llama-3.1-70b, the system message is slightly different, listed as follows:

• The 1st guideline: Wrap the generated code with ‘‘‘python before and ‘‘‘ after the
code.

• The 3rd guideline: Ensure that the executing code only calls functions that are defined or
imported within the available scope or use the defined variables or the existing keys of
imported data properly.

• The 4th guideline: The output of a cell is the last statement of the code. Ensure that
executing the code generates the desired output. If it is not within a function, do not use
print or return statements to output the result. For example, ‘‘‘var a = xxx;
var a will generate the desired output of var a.

• For DSEval-LeetCode only, add one instruction:

- Your solution should follow the format in provided examples and use the schemas
provided in the variable/table description.

A.3.2 LONG-TERM MEMORY PROMPTS

After retrieving examples, we add them to system message in the following ways.

Long-term Memory Prompts with K Examples

<long-term memory>

These are the top-K most similar problems, ordered from least similar to most similar/easy
to hard problems. Please utilize the experience you have gained here to help you with the
current problem. More specifically, summarize what you can learn from the correct answers
(within <correct answer> ... </correct answer>) and how to avoid the mistakes
seen in the incorrect examples (within <wrong answer> ... </wrong answer>) before
generating your code.

<examples>
<example>
<type>
{correct/wrong answer}
</type>

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

<question>
{Here is the problem description.}
<variable context>
{Here is the variable description if any.}
</variable context>
</question>
The following answer is an example that you have successfully solved/answered incorrectly.
<correct/wrong answer>
‘‘‘python
{Here is the generated codes.}
‘‘‘
</correct/wrong answer>
</example>
. . .
</examples>
</long-term memory>

B DIFFICULTY DESIGNS

In this section, we provide details on various approaches to generating difficulty.

B.1 PROBLEM-BASED DIFFICULTY

To begin, we present the system message and problem-prompt template that the Mentor agent fol-
lows in main experiments.

System Message (Guidelines)

You’re an experienced data scientist with expertise in assessing the difficulty. Your goal is
to provide accurate and diverse assessments across different problems. Use the full range of
the difficulty scale to differentiate between problems effectively.

Difficulty Scale Guidelines:
1: Trivial, can be solved by a complete beginner instantly
2: Very easy, requires minimal programming knowledge
4: Easy, involves basic data manipulation and simple statistical concepts
6: Moderate, requires intermediate programming and data science skills
8: Challenging, involves advanced algorithms or complex data processing
10: Extremely difficult, at the cutting edge of data science research

Feel free to use any float value between 1 and 10 for precise assessments. Don’t hesitate to
use the full range when appropriate.

User Message (Problem Prompts)

Analyze the following coding problem:

Problem:
{Here is the problem description.}

Please provide:
1. A detailed reasoning about the difficulty of this problem (consider concepts involved,
algorithmic complexity, implementation challenges, etc.)
2. A difficulty score from 1 to 10, where 1 is very easy and 10 is extremely difficult.
3. Category tags for this problem:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

- Generate at least 3 and up to 5 relevant tags for this problem.
- Include both general and specific tags as appropriate.
- You may use tags from the following list, but also feel free to create your own:

“Data Preprocessing”, “Exploratory Data Analysis”, “Machine Learning”, “‘Deep
Learning”, “Natural Language Processing”, “Computer Vision”, “Time Series
Analysis”, “Statistical Analysis”

- Rank the tags by their correlation to the problem, with the most relevant tag first.
Please output your response following this format:
<reason>
[Your detailed reasoning here]
</reason>
<difficulty score>
[Your score as any float between 1 and 10]
</difficulty score>
<category>
[Tag1], [Tag2], [Tag3], [Tag4 (if applicable)], [Tag5 (if applicable)]
</category>

Ensure that the tags are listed in order of relevance, separated by commas.

We further extract the difficulty score as the reference for curriculum generation. In our
experiments, we generate difficulty scores three times and take the average as the difficulty level.

B.2 MANUAL DIFFICULTY

For DSEval-LeetCode, we collect the official difficulty levels from LeetCode1, which are Easy,
Medium, and Hard. Within each difficulty level, we further differentiate tasks based on their pass
rates as of July 22, 2024.

B.3 REFERENCE-CODE-BASED DIFFICULTY

As provided by DSEval (Zhang et al., 2024b), reference-code-based difficulty refers to code com-
plexity quantified by factors such as the number of functions, variables, conditions, and loops. We
have extracted the relevant code for readers’ reference as follows.

Reference-code-based Difficulty (Zhang et al., 2024b)

def get_code_complexity(code: str) -> float:
import ast

module = ast.parse(code)

complexity = 0.0
for node in ast.walk(module):

Conditions
if isinstance(node, (ast.For, ast.While, ast.If,

ast.With)):↪→
complexity += 3

Other statements
elif isinstance(node, ast.stmt):

complexity += 1
Constant, variable
elif isinstance(node, (ast.Constant, ast.Name)):

complexity += 0
Call other methods

1LeetCode: https://leetcode.com

18

https://leetcode.com

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

elif isinstance(node, ast.Call):
complexity += 3

Calling an attribute or a subscript
elif isinstance(node, (ast.Attribute, ast.Subscript)):

complexity += 4
Other expressions
elif isinstance(node, ast.expr):

complexity += 1
Function arguments
elif isinstance(node, ast.arg):

complexity += 1

return complexity

B.4 PASS-RATE DIFFICULTY

In this approach, we select vanilla Llama-3.1-8B and Claude-3-Haiku as the weaker agents, using the
same system instructions as outlined in Appendix A.3.1 , but without utilizing long-term memory.
For each problem, the agent is given up to five attempts to provide a correct answer. We set the
temperature to 0.5, which encourages the generation of a diverse range of responses. To assess the
difficulty of the tasks, we employ a discounted pass-rate approach: for each problem k, the pass-rate
difficulty is defined by

pass-rate difficulty(k) = 1− γtk−1,

where the discount factor γ is set to 0.9, and tk represents the number of trials until a correct answer
is given or the maximum number of attempts is reached for problem k. This formulation implies that
a higher pass-rate difficulty score signifies a more challenging problem, as it takes more attempts for
the agent to provide a correct answer. Conversely, if the agent solves the problem in fewer attempts,
resulting in a lower pass-rate difficulty, it indicates that the question is easier.

C PERFORMANCE ON QRDATA-CAUSAL

To demonstrate the causal reasoning abilities of DSMentor, we evaluate the performance of differ-
ent curriculum designs in solving causal reasoning problems from QRData, referred to as QRData-
Causal. The results are summarized in the following figure.

Easy-to-Hard
(Inc. Similarity)

Easy-to-Hard
(Inc. Difficulty)

Hard-to-Easy
(Inc. Similarity)

Hard-to-Easy
(Inc. Difficulty)

Random
(Inc. Similarity)

0.24

0.26

0.28

0.30

0.32

0.34

0.36

Pa
ss

 R
at

e

0.342

0.332

0.287

0.248

0.268

Best Performance

Figure 5: Performance of DSMentor-Llama-3.1-70b on QRData-Causal.

The results suggest that an easy-to-hard curriculum, with increasing similarity as the ranking ap-
proach, may be better suited for causal reasoning tasks.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D CORRELATION BETWEEN PROBLEM-BASED AND PASS-RATE DIFFICULTY

To better understand the relationship between the problem-based and pass-rate difficulty metrics, we
analyze their correlation using both linear (Pearson) and non-linear (Spearman) correlation coeffi-
cients, on DSEval-LeetCode. Figure 6 presents the correlation analysis between problem-based and
pass-rate difficulty scores across different problems.

(a) Linear and non-linear correlation analysis between problem-based difficulty and pass rate for
Llama-3.1-70b (Pearson correlation: 0.364, p < 0.05; Spearman correlation: 0.480, p < 0.01).

(b) Linear and non-linear correlation analysis between problem-based difficulty and pass rate for
Claude-3.5-Sonnet (Pearson correlation: 0.365, p < 0.05; Spearman correlation: 0.395, p < 0.05).

Figure 6: Correlation between pass-rate and problem-based difficulty on DSEval-LeetCode. For
each model, the left plots show Pearson correlation (linear relationship), while the right plots show
Spearman correlation (non-linear relationship).

The results show a moderate positive correlation between the two difficulty metrics. For example, for
Llama-3.1-70b, the Pearson correlation coefficient of 0.364 (p < 0.05) indicates a weak to moderate
linear relationship. Meanwhile, the Spearman correlation coefficient of 0.480 (p < 0.01) points to
a slightly stronger monotonic relationship, implying that non-linear analysis may better capture the
relationship between these difficulty metrics.

Notably, there is significant scatter in the data points, particularly for problems with higher difficulty
scores (4.0-6.5), where pass rates vary widely from 0% to 100%. This dispersion in the data, despite
the statistically significant correlations, suggests that while these difficulty metrics are related, they
likely capture different aspects of problem complexity. The moderate correlation also helps explain
why different difficulty metrics showed varying performance in our earlier experiments (Tables 3 and
4), highlighting the value of considering multiple approaches to difficulty assessment in curriculum
design in the future.

20

	Introduction
	Related works
	DSMentor: a mentor-guided approach
	Curriculum-generation stage
	Problem-solving stage

	Experiments
	Experiment setup
	Baselines
	Results and Discussion
	Ablations
	Difficulty definition
	Order of tasks and examples
	Long-term memory

	Conclusion
	Additional Experimental Details
	The number of retrieved examples
	Dataset and benchmark correction
	Prompt designs
	System instructions and guidelines
	Long-term memory prompts

	Difficulty designs
	Problem-based difficulty
	Manual difficulty
	Reference-code-based difficulty
	Pass-rate difficulty

	Performance on QRData-Causal
	Correlation between Problem-based and Pass-rate difficulty

