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Abstract

Language model pre-training (LMPT) has been incredibly impactful in natural
language processing; however, LMPT methods have not been as successful when
generalized to other domains, such as biomedical domains. To understand this
disparity, we first ask what properties of natural language make language modeling
so successful and whether or not these hold in other domains. Next, we ask
to what extent existing pre-training methods are explicitly designed to account
for these discrepancies. We find that the question of how existing pre-training
methods impose relational structure in their induced, per-sample latent spaces—i.e.,
what constraints do pre-training methods impose on the distance between the pre-
trained embeddings of xi and xj—is both significantly understudied and important
for LMPT performance in non-NLP domains. To address this, we introduce a
descriptive framework for pre-training that illustrates how relational structure can
be induced. We demonstrate the utility of this framework through theoretical and
empirical analyses showing that this approach can offer meaningful improvements
over existing methods across various domains and tasks.

1 Introduction

Pre-trained language models such as BERT [17] or GPT-III [5] have revolutionized the way we
approach natural language processing (NLP) due to their ability to rapidly produce models for novel
downstream tasks in a highly effective and data-efficient manner. Such pre-training (PT)/fine-tuning
(FT) approaches are also of great interest in machine learning for the sciences (in particular, the
biomedical sciences) due to the prevalence of few-shot learning problems over these modalities.
However, designing effective PT/FT methods for these domains remains a major challenge. In
this work, we attempt to help solve this challenge by introducing a new, descriptive framework for
PT methods that offers concrete, theoretically motivated guidance on designing PT objectives to
maximize suitability to a given class of FT tasks.

Motivating this framework is the ongoing phenomenon of researchers attempting to adapt language
model pre-training methods from NLP to biomedical domains. Researchers have developed nu-
merous methods which employ generative, intra-sample, imputation-based objectives to pre-train
models—e.g., autoregressive or mask-based sequence models for protein sequences or other biologi-
cal sequences [84, 88, 97], biomedical graphs [37] or medical timeseries [70, 125]—despite the fact
that such objectives alone typically offer no guidance at the per-sample level (e.g., masked-imputation
language modelling for BERT alone does not directly constrain the output of the [CLS] whole-
sample embedding). While this disparity is fine for NLP, where many downstream tasks of interest
can be re-framed as per-token, language modeling tasks (e.g., through prompting [91]), there is little
to no reason that such pre-training methods will capture the appropriate per-sample structure in other
domains to generalize effectively to per-sample fine-tuning tasks—e.g., protein remote homology
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prediction in structural biology, drug side effect prediction for molecular graphs, or patient medical
outcomes for medical time series.

Our framework, structure-inducing pre-training (SIPT), addresses this problem by introducing a novel
pre-training loss that induces the relational structure of a target, pre-training similarity graph GPT into
the per-sample latent space. In this way, users can explicitly design different pre-training methods (by
changing the graph GPT) to capture the structure of the domain in different ways. Our framework is
simultaneously general enough to capture many existing pre-training methods (including methods like
BERT [17], supervised multi-task pre-training methods like MT-DNN [63], or contrastive pre-training
methods like DeCLUTR [26]), specific enough to permit concrete theoretical analyses relating the
structure of graph GPT to downstream FT performance, and flexible enough for us to define new
pre-training methods with richer guarantees than existing approaches.

Empirically, we find that building methods using rich graphs GPT via our framework can offer
consistent performance improvements over existing pre-training methods across diverse datasets,
modalities, and fine-tuning tasks. Our method can also be used successfully on NLP datasets, showing
that although the language modeling objective is quite powerful in that setting, we can still find
further improvements by injecting rich, per-sample structure through our method.

In the remainder of this work, we do the following. First, in Section 2, we expand on the central
argument outlined here: that existing pre-training methods lack a sufficient objective to induce
structure in the per-sample latent space. We support this argument through both analysis and a
quantitative review of over 90 existing studies on NLP and NLP-derived PT methods. Next, in
Section 3, we introduce our new pre-training framework, SIPT. We provide a formal definition of
our framework, as well as a theoretical guarantee of how the structure of the graph GPT relates to
downstream task performance. Finally, in Section 4, we demonstrate the practical utility of this
framework via real-world experiments across three biomedical domains and 10 different fine-tuning
tasks. In all cases, we compare both against baseline methods that only leverage intra-sample
objectives (e.g., language modelling alone) and against existing methods that additionally leverage a
weaker form of per-sample structure (e.g., a supervised per-sample PT objective), finding in all cases
that SIPT methods match or outperform these baselines.

2 Motivation

2.1 The importance of per-sample PT tasks in non-NLP domains

Language models, such as BERT [17], and their derived methods, operate over domains that consist
of whole samples (e.g., entire text passages), which themselves consist of individual sub-units or
tokens (e.g., tokens). These models are commonly trained through some variant of a generative
imputation method over these internal sub-units, possibly in concert with auxiliary losses leveraging
embeddings of entire samples. For example, BERT is pre-trained using both a masked language
modeling objective, which leverages per-token embeddings to predict the identities of artificially
masked tokens and a next-sentence prediction (NSP) objective, which classifies if the overall text
passage consists of sub-passages that occurred in the presented order in the raw data.

These models typically produce both embeddings of whole samples and of individual tokens, thus
generating both a “per-sample” and a “per-token” latent space (See Appendix Definitions 1-2),
and can be fine-tuned for both per-sample and per-token tasks. In general, generative, intra-sample
imputation objectives (like language modeling) strongly constrain the output structure of the per-token
latent space and are further likely to be at least somewhat related to downstream tasks at the per-token
level. However, it is also clear that language modeling objectives alone will (in general) neither
necessarily constrain the per-sample latent space nor offer insight into how to solve downstream
per-sample tasks. For natural language, we can use techniques like prompting to re-frame per-sample
tasks as per-token, language-modeling tasks, but approaches of this nature do not exist for non natural
language domains (Figure 1).

This analysis suggests that if we want to design PT methods for scientific domains, in particular
where per-sample, fine-tuning tasks are of interest, then we need to design new algorithms with
per-sample, PT objectives that are related to these eventual downstream tasks. Of course, for PT, we
still wish the resulting model to be general across tasks within a domain, so we can re-frame this
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“... the food was worse this time!”

“I left a [MASK] review because the staff was 
so nice and the food tasted so good!”

“... the staff was so nice and the food tasted 
so good!”

“I loved the Eggs Benedict.” , 

“Last time, [MASK] I loved the Eggs Benedict. 
But the food was worse this time!”
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“VEWTQQERSIIAGIFANLNYEDIGPKALARCL...”
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“M[MASK]LVPRGSHMPEAIE...”
“X[MASK]RENLYFQGXNISE...”

“MPKSIRSFFPLAYKIVYLDTAALALKPKPSIT...” , 

“[MASK] is a common American...”
“I loved the [MASK]. It was tasty!”
“Eggs Benedict is a common American...”
“I loved the Eggs Benedict. It was tasty!”,
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“I loved the Eggs Benedict. It [MASK] tasty!”
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Task 1.1: Secondary Structure

Task 1.2: Sequence Motif Linking

Task 2.1: Protein-Protein Interaction

Task 2.2: Remote HomologyTask 2.2 Sentiment Analysis

Task 2.1: Same-Author Prediction 

Task 1.2: Entity Linking

Figure 1: A: NLP language modeling objectives are clearly related to both per-token and per-sample downstream tasks. B: For
other domains, “language modelling” objectives may only offer information at the per-token level.

question as whether or not we can design PT methods that induce structure in the per-sample latent
space that reflects relationships of interest for the target domain.

2.2 Weaknesses of existing per-sample PT tasks

Researchers have devoted significant efforts to developing per-sample PT objectives. For example,
BERT’s NSP task is a per-sample binary classification objective. In order to understand if/why these
per-sample objectives may be insufficient for non-NLP PT, we conducted a review of over 90 NLP
and NLP-derived PT methods. We classified existing per-sample objectives on two independent
axes: whether or not they constrain the per-sample latent space in an implicit or explicit manner, and
whether or not they do so only shallowly or deeply.

Explicit methods constrain structure in such a way that one can directly reason about the relational
structure of the per-sample latent space at optimality. For example, under a supervised classification
objective such as BERT’s NSP task [17], one can explicitly quantify how similar two samples
will be in the latent space (under an inner-product similarity metric) based on whether or not they
share the same PT task label. In contrast, under a contrastive learning PT objective defined by a
noising/augmentation procedure such as DeCLUTR [26], one cannot explicitly reason about how two
independent samples will be related in the output latent space.

Shallow methods constrain structure in such a manner that the constraints could be fully satisfied even
in a very low-dimensional per-sample latent space. For example, a binary classification supervised
pre-training task requires only a single dimension to satisfy at optimality, as samples can merely be
mapped such that the sign of their output corresponds to their pre-training label.

With this breakdown, we find that while there has been significant research on how to design effective
PT systems, the vast majority of that research has focused on systems that either impose no per-
sample pre-training objectives; impose explicit, but shallow objectives; or impose deep, but implicit
objectives. There is thus a marked gap in research on per-sample pre-training losses that are at once
explicit and deep, or generalizable frameworks explaining how to design such objectives.

Our framework, Structure-Inducing Pre-training (SIPT) is designed precisely to fill this gap. For full
details on our review, formal definitions of the terms introduced above, and quantitative analyses of
the papers analyzed, please see Appendix Sections B.

3 Our New PT Framework: Structure-Inducing Pre-training (SIPT)

3.1 General Pre-Training Problem Formulation

Given a dataset XPT ∈ XNPT , a PT method aims to learn an encoder fθ : X → Z such that fθ can
be transferred to FT tasks that are unknown at pre-training time. While we can leverage additional
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“[CLS]MGLSLAKHGE...”

“[CLS]ALLSMAKLLGE...”

“[CLS]MGLLALGGGA...”
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linked

unlinked
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Structure-inducing objective

Masking objective

Pre-training graph

Pre-training dataset

Figure 2: Our Pre-training (PT) Framework: We re-cast the PT formulation by taking a pre-training graph GPT as an auxiliary
input. GPT is used to define a new structure-inducing objective LSI, which pushes a pre-training encoder fθ to embed samples
such that samples are close in the latent space if and only if they are linked in GPT.

information at PT time to inform the training of fθ (e.g., PT-specific labels YPT), the encoder fθ
must take only samples from X as inputs so that it can be used for fine-tuning. Pre-training methods
typically solve this problem by training fθ to minimize a pre-training loss LPT over XPT.

3.2 SIPT Framework

Our pre-training problem framework includes two small, but important, differences from the standard
formulation (Figure 2).

First, we assume that we have as an additional input to the PT problem a graph GPT = (V,E)
where vertices denote pre-training samples within XPT (e.g., {xPT|xPT ∈ XPT} ⊆ V ) and edges
represent user-specified relationships. Importantly, while we take the graph GPT an input to the PT
problem, we cannot use it as a direct input to fθ. Just like in traditional pre-training, fθ must take
as input only samples from X . This is because otherwise, we can not apply fθ to the same, general
class of FT tasks over domain X .

Second, we decompose the PT loss LPT into two components, weighted with hyperparameter
0 ≤ λSI ≤ 1:

LPT = (1− λSI)LM + λSILSI.

LM is a traditional, intra-sample objective (e.g., a language model), and LSI is a new, structure-
inducing objective designed to regularize the per-sample latent space geometry in accordance with
the relationships (edges) in GPT. Under our framework, LSI is only allowable for GPT, fθ , and Z if
it permits some stable optima at which point a radius nearest-neighbor connectivity algorithm under
some distance function in Z will recover GPT (see the formal constraint in Appendix C.1). Note
that this constraint strikes a connection between our framework and the wealth of existing research
focused on graph representation learning [24, 16, 60, 59, 48, 32]. These techniques do indeed offer
valuable insights into how to sample minibatches over graph-structured data and devise losses for
graph embeddings; however, many methods for actually modeling graph-structured data, including
deep attributed graph embeddings and graph convolutional neural networks, should not be seen as
replacements for our techniques here as they are typically not adaptable to contexts in which the
graph is not known at inference time, and so they could not be used in our pre-training setting where
fθ must take in only inputs from X directly.

As the new loss term added LSI is explicitly designed to induce the structure of GPT in Z , we
call methods trained under our framework structure-inducing pre-training (SIPT) methods. In
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Appendix C we show that many existing PT approaches can be re-realized as SIPT methods, including
classification-based PT objectives, contrastive methods, or existing graph alignment methods.

3.3 Theoretical Analyses

Under our framework, one can link the structure of the PT graph GPT to eventual FT task performance.
In particular, as a SIPT embedder f over graph GPT approaches optimality under the loss LSI, it
produces an embedding space such that nearest-neighbor performance for any downstream task is
lower bounded by the performance that could be obtained via a nearest neighbor algorithm over graph
GPT (Theorem 1). This fact directly connects the geometry of the graph GPT with the eventual
fine-tuning performance of a SIPT embedder f . Furthermore, it demonstrates the advantage of
employing an explicit constraint rather than an implicit one; by controlling the structure of GPT,
users can directly choose to add different inductive biases to the PT process, in a manner that has a
provable impact on the eventual suitability for downstream FT tasks.

Theorem 1. Let XPT be a PT dataset, GPT be a PT graph, and let fθ∗ be an encoder pre-trained
under a PT objective permissible under our framing that realizes a LSI value no more than ℓ∗. Then,
under embedder f , the nearest-neighbor accuracy for a FT task y converges as dataset size increases
to at least the local consistency (Definition 5) of y over GPT.

In Appendix Section D.1, we establish Corollaries 1-2 that illustrate the importance of choosing
graphs GPT which impose deep structural constraints. We provide complete proofs for all theoretical
results and semi-synthetic experiments validating this theory in Appendix Sections D and E.

4 Validating SIPT via Real-world Experiments

4.1 Experimental Goals and General Procedures

This section shows that SIPT methods leveraging rich pre-training graphs GPT consistently match
or outperform comparable pre-training baselines. To do so, we pre-train new models across three
separate biomedical domains under the SIPT framework. In each case, we use rich pre-training graphs
GPT defined from publicly available data and designed to capture different forms of inductive biases
relevant to the respective domains. We assess the efficacy of these models via fine-tuning performance
across a battery of fine-tuning tasks in each domain. Furthermore, we compare these models against
comparable existing pre-training methods, including (wherever possible) methods leveraging both
primarily intra-sample pre-training objectives (e.g., language modeling) and existing methods that
augment language model pre-training with a per-sample objective (e.g., supervised classification
given a set of pre-training labels). We also perform ablation studies and hyperparameter tuning
analyses to assess the extent to which the SIPT objective is responsible for resulting performance
gains.

4.2 Datasets and Tasks

We examine three data modalities for our experiments: PROTEINS, containing protein sequences;
ABSTRACTS, containing free-text biomedical abstracts; and NETWORKS, containing sub-graphs of
protein-protein interaction (PPI) networks. These modalities, and the datasets we use to assess each
modality, are summarized in Table 1.

The PROTEINS and ABSTRACTS domains are sequential domains; in each of these, intra-sample
language model pre-training tasks can be used as natural baselines. In the NETWORKS domain, where
each sample consists of a subgraph of a protein-protein interaction graph, not a sequence, “language
modeling” is adapted to a task of masked node prediction, as in [37].

Table 1 also lists all FT benchmarks we use for validation, and FT tasks across all domains are also
detailed in Table 2. In all cases, we adopt a traditional transfer-learning approach, where the entire
pre-training encoder is transferred, and only the fine-tuning task-specific head is learned from scratch.
Further details can also be found in Appendix section F.
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PROTEINS ABSTRACTS NETWORKS

Data Modality
(xi is a...)

Protein Sequence Biomedical Paper Ab-
stract

PPI Network Ego-graph

PT Dataset Tree-of-life [144] Microsoft Academic
Graph [108, 36]

[37]

GPT:
(xi,xj) ∈ E iff

xi interacts with xj xi’s paper cites xj’s pa-
per

xi’s central protein agrees on all
but 9 Gene Ontology (GO) labels
with xj’s central protein.

Per-token
baseline

TAPE [84] SciBERT [4] Attribute Masking [37]

Per-sample
baseline

PLUS [73] None Multi-task learning [37]

FT Dataset TAPE [84] SciBERT [4] [37]

Table 1: A summary of our datasets, tasks, and benchmarks. For example, for the PROTEINS domain, our pre-training dataset
is the set of protein sequences contained in the tree-of-life dataset [144], proteins are linked in our pre-training graph GPT if
and only if they interact according to the tree-of-life graph, and we compare over the fine-tuning tasks in the TAPE benchmark
against both the raw, per-token baseline publicly available in the TAPE model [84] as well as the per-sample baseline published
in the PLUS pre-training model [73].

FT Dataset FT Task Name Abbr. Description Metric

TAPE
[84]

Remote Homology RH Per-sequence classification task
to predict protein fold category.

Accuracy

Secondary Structure SS Per-token classification task to
predict amino acid structural
properties.

Accuracy

Stability ST Per-sequence, regression task to
predict stability.

Spearman’s ρ

Fluorescence FL Per-sequence, regression task to
predict fluorescence.

Spearman’s ρ

Contact Prediction CP Intra-sequence classification to
predict which pairs of amino
acids are in contact in the pro-
tein’s 3D conformation.

Precision @ L/5

SciBERT
[4]

Paper Field PF Per-sentence classification prob-
lem to predict a paper’s area of
study from its title.

Macro-F1

SciCite SC Per-sentence classification prob-
lem to predict citation intent

Macro-F1

ACL-ARC AA Per-sentence classification prob-
lem to predict citation intent

Macro-F1

SciERC SRE Per-sentence relation extraction Macro-F1

NETWORKS
[37]

Multi-label binary classification
into 40 Gene Ontology terms

Macro-AUROC

Table 2: Fine-tuning tasks.
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Domain Task Vs. Per-Token PT vs. Per-Sample

RRE ∆ RRE ∆

PROTEINS

RH 7.0%±1.2 ↑ 8.4%±2.4 ↑
FL -0.8%±1.3 ∼ 12.8%±1.1 ↑
ST 13.1%±2.5 ↑ 2.2%±2.8 ∼
SS 4.5%±0.2 ↑ 4.5%±0.2 ↑
CP 10.5% ∗ ↑ N/A

ABSTRACTS

PF 0.3%±0.2 ∼ N/A
SC 2.4%±4.1 ∼ N/A
AA 17.7%±6.5 ↑ N/A
SRE 6.7%±0.4 ↑ N/A

NETWORKS 7.8%±5.2 ∼ 5.1%±2.7 ↑

Table 3: Relative reduction of error (RRE; defined to be [baseline error]−[GPT model error]
[baseline error] ) of models trained under our framework

vs. published per-token or per-sample baselines. Higher numbers indicate models under our framework reduce error more and
thus outperform baselines. The ∆ column indicates whether the model offers a statistically significant improvement (↑), no
significant change (∼), or a statistically significant decrease (↓). Statistical significance is assessed via a t-test at significance
level p < 0.1. Per-sample analysis and variance estimates for CP were infeasible due to the computational cost of this task.

4.3 LSI and Training Procedures

As discussed in the definition of our framework (Section 3.2), a SIPT method differs from a standard
PT method by (1) the choice of graph GPT (Table 1) and (2) the design of the new, structure-inducing
loss LSI. To define LSI in our experiments, we leverage ideas from structure-preserving metric
learning (SPML) [107, 95, 94]. SPML is a form of metric learning where positive relationships
are defined by edges in a graph rather than a shared supervised label. We adapt two losses, a
traditional contrastive loss [31] and a multi-similarity loss [113], from supervised metric learning to
the graph-based, structure-preserving context of LSI terms in SIPT.

In addition to these losses, in the ABSTRACTS and PROTEINS domains, we use a warm-start procedure
to initialize pre-training from existing language models rather than beginning from scratch. This
saves significant computational time and allows for a powerful ablation study to isolate performance
improvements to the introduction of our LSI term. We also perform extensive hyperparameter tuning
studies on these two domains to identify appropriate values for λSI, and adapt those findings to the
NETWORKS domain. Further details about the experimental setup, including formal statements of
our contrastive and multi-similarity losses, are in Appendix Section F.

4.4 Results

SIPT matches or outperforms baselines across all 3 domains and 10 FT tasks

We compute the relative reduction of error 1 of the best performing SIPT model vs. the per-token or
per-sample baselines across all FT tasks (Table 3). We can see that in 10/15 cases, SIPT improves
over existing methods, and in no case does it do worse than either baseline. We see improvements
of up to approximately 17% (0.05 macro-F1 raw change) on AA, 6% on SRE (0.01 macro-F1 raw
change), and 4% on RH (2% accuracy raw change). SIPT models further establish a new SOTA on
AA and RH and match SOTA on FL, ST, & PF. In appendix Figure 6, we also show how performance
evolves as a function of FT iterations for the NETWORKS dataset, demonstrating performance gains
accrue rapidly during fine-tuning and are stable throughout training. Raw results for all settings are
present in Appendix Section F.9.

Note that these performance gains, calculated both against standard per-token approaches and methods
that impose additional per-sample objectives, persist (though for NETWORKS, the gains are not quite
statistically significant) over all three data modalities and all different GPT types we use here. This
shows that explicitly regularizing the per-sample latent space geometry offers value across NLP, non-
language sequences, and non-sequential domains, as well as while leveraging graphs including those

1RRE = (1−baseline)−(1−SIPT)
(1−baseline) . RRE is unitless and suitable for comparing across tasks.
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defined by external knowledge, by self-supervised signals in the data directly, and by nearest-neighbor
methods over multi-task label spaces.

Observed gains are uniquely attributable to the novel loss LSI

As outlined in the Methods section, our experimental design permits us to determine how much of the
observed gains in Table 3 are due to the novel loss component, as opposed to, for example, continued
training, new PT data, or the batch selection procedures used in our method which also indirectly
leverage the knowledge inherent in GPT. Unsurprisingly, some gains are observed due to these other
factors, and performance gains shrink when considering these ablation studies. However, even when
comparing against the maximal performance baseline or ablation study overall, neither the direction
of observed relationships nor the statistical significance of observed comparisons changes. Therefore,
we can conclusively state that the performance improvements observed here are uniquely attributable
to the new, structure-inducing components introduced by our framework. Full ablation study results
can be found in the Methods section (Tables 7-8).

5 Conclusion

We show that despite the breadth of research into PT methods, methods for imposing explicit and
deep structural constraints over the per-sample, pre-training latent space Z are under-explored
(Figure 4). Our theoretical and empirical analyses show that this deficit matters in practice. In
particular, we define a new pre-training framework, structure-inducing pre-training (SIPT), under
which the PT loss is subdivided into two components: one which is designed to capture intra-sample
(e.g. per-token) relationships and one which is designed to constrain the per-sample latent space
to capture relationships between samples given by a user-specified pre-training graph GPT. Under
our framework, we show both theoretically and via experiments that the structure induced in Z can
be directly connected to eventual fine-tuning performance. Empirically, we show that novel SIPT
methods leveraging a variety of pre-training graphs can consistently outperform compelling existing
PT methods across three real-world domains.

Our work highlights several important directions for future research. For example, are there losses
better suited than metric learning losses for pre-training graphs—e.g., can we leverage the graph
distance alongside the intra-batch distance to improve negative sampling strategies? In addition,
can we produce theoretical results on the convergence of pre-trained models? Can we advance
the understanding of when and how pre-trained models converge to solutions that recover GPT?
In a different direction, can pre-trained models reflect forms of structure beyond nearest neighbor
relationships—e.g., such as by leveraging higher-order topological considerations or by matching
a distance function rather than a discrete graph? We anticipate that further analyses of these and
other questions will lead to new pre-training methods and enable pre-training to be successful across
scientific domains.
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Figure 3: Per-sample vs. Per-token Latent Space Language model pre-training methods produce both per-sample and per-token
latent spaces. Traditional language modelling objectives (illustrated here via the RoBERTa [65] model, which uses only a
masked language model loss during pre-training) only constrain the per-token latent space.

A Further Details on Why LMPT is Less Effective in non-NLP Domains

A.1 Per-token vs. Per-sample Latent Space: Definition of Z

Let fθ be a pre-training (PT) model trained over a dataset X ∈ XNPT . Furthermore, let us assume
that samples x ∈ X are composed of smaller units (e.g. tokens, sequence time-points, nodes in a
network, etc.). Let us denote this by saying that x = w1, w2, . . . , wnx . Finally, as is true in natural
language processing (NLP) and NLP-derived settings, we assume that fθ can be seen to produce
output embeddings for both the entire sample x—which we will denote by fθ(x)—and for the
internal tokens individually—which will denote by fθ(wj |x). For example, in the BERT model [17],
fθ(x) will be given by the output embedding of the [CLS] token of x and fθ(wj |x) will be given
by the output embedding of the j-th token in x.

We can then formally define the per-sample latent space, Z(S) (which we will also refer to as Z
without the superscript), and the per-token (aka intra-sample) latent space Z(T) (Definitions 1 & 2,
and Figure 3).

Definition 1. Per-Sample Latent Space We define the per-sample latent space induced by fθ as
Z(S) = {fθ(x)|x ∈ X}. We will also use Z with no superscript to refer to this space.

Definition 2. Per-token/Intra-sample Latent Space We define the per-token latent space (also known
as the intra-sample latent space) induced by fθ as Z(T) = {fθ(wj |x)|wj ∈ x,x ∈ X}.

Both of these spaces are very different and are useful in different contexts; for a task like named entity
recognition, where the unit of classification is a single or short span of tokens, analyzing the per-token
latent space will be more informative, whereas for a task like sentiment analysis, where the unit of
classification is an entire sample (sentence), the per-sample latent space would be preferred [17].
Furthermore, another key difference between these spaces is that the traditional PT language model
objective only induces significant constraints on the geometry of the per-token latent space and does
not impact the per-sample latent space at all. This illustrates a gap in the capabilities of PT methods.
In our work, we are concerned with precisely this gap and focus our attention on Z (i.e. Z (S)). We
focus our attention on the per-sample latent space for 3 reasons:
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1. There has been significantly more research on how to regularize the per-token latent space
than the per-sample latent space, as we show in our extensive review (Table 4).

2. In many domains outside of NLP, the per-sample latent space is often of much greater interest
than the intra-sample latent space. For example, in modelling protein sequences [84], drug
structures [37], or electronic health record time series [70], per-sample tasks are of much
greater interest than intra-sample tasks.

3. Even within NLP, modern methods struggle much more with representing whole passages
of text rather than short, isolated spans. This is evidenced by the battery of work examining
sentence representations atop pre-trained language models [56, 25].

A.2 Why is NLP Different than Other Domains?

In this work, we have implicitly argued that because a PT objective like masked language modelling
(MLM) will not necessarily directly enrich the per-sample latent space Z(S), it may yield models less
well suited to downstream per-sample tasks than other approaches. One seeming contradiction to this
is that methods in NLP like RoBERTa [65] (for which MLM is the only PT objective) succeed across
both per-token and per-sample tasks.

In fact, this observation does not contradict our hypothesis but reflects a unique advantage of the
natural language modality that does not apply in other domains. In particular, in the NLP domain (and
not in other domains), we can leverage the flexibility of the language to sidestep any deficit in Z(S)

by re-framing per-sample tasks as per-token, language modelling tasks. Significant literature exists
documenting this phenomenon through the lenses of prompting, cloze-filling models, text-to-text
transformers, and theoretical analyses [5, 93, 91, 83, 18]. For example, [93] examines the efficacy of
pre-trained language models on sentiment analysis explicitly and show that the language modelling
component alone can be used in a per-token manner to indirectly solve a review sentiment analysis
task by judging the likelihood of following the review with a “:)” emoji vs. a “:(” emoji. In this way,
they shift the per-sample task of sentiment analysis to a per-token task via the (inserted) emoji.

However, language model pre-training has also inspired many derived methods to be used in other
non-NLP domains. For example, in modelling graphs, [37] has examined vertex or edge-masking
strategies reminiscent of MLM, with vertices and edges analogous to tokens and entire graphs whole
samples; in modelling time series data, [70] has examined masked imputation models, with timepoints
analogous to tokens and whole time series to samples; and in modelling protein sequences, [73] has
used masked language modelling directly, with individual amino acids representing tokens and entire
proteins representing samples. In all three of these domains, we cannot re-frame per-sample tasks
as “per-token” tasks as we can in NLP, and accordingly, the problem of insufficient per-sample latent
space regularization will likely be much more severe in these domains. Accordingly, existing work,
including the three works referenced above, all find that augmenting the language model pre-training
task with additional, per-sample level supervised tasks can be beneficial, or even absolutely essential,
to improving performance [37, 125, 70, 73].

B Our Review of NLP-derived PT Methods

B.1 Defining Explicit and Deep Structural Constraints

Central to our hypothesis is the claim that most NLP-derived PT methods today do not impose
explicit, deep constraints on the (per-sample) latent space geometry of Z . To justify this claim, we
define “explicit” and “deep” structural constraints (Definitions 3-4).

Definition 3. Explicit vs. Implicit Structural Constraints:

A PT objective LPT imposes a structural constraint that is explicit (vs. implicit) to the degree that it
(as fθ approaches optimality) permits us to reason directly about the relationship (in particular, the
distance) between any two samples zi and zj in the latent space Z .

Definition 4. Deep vs. Shallow Structural Constraints:

A PT objective LPT imposes a structural constraint that is deep (vs. shallow) on the basis of how
much information (e.g., how many dimensions) would be required to fully satisfy the constraint.
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For example, consider a classification PT loss according to labels yi ∈ Y and a logit layer which
maps zi 7→ ỹi. This method produces an explicit structural constraint because near optimality, we
can infer that the relative (cosine) distance between two samples zi and zj is small if and only if
yi = yj . However, this constraint is also shallow, because to fully satisfy this constraint, we need
only embed each class c ∈ Y with a unique position pc ∈ Z , then compress all samples zi near their
class prototype pyi

, which can be accomplished in a very low dimensional space Z . In particular,
these class prototypes and embeddings can be arranged to optimality in R2 simply by distributing all
class prototypes uniformly along the unit circle, then pushing all sample embeddings towards the
prototypes along the unit circle.

In contrast, consider a contrastive method that asserts that zi = fθ(xi) should be close to z′
i =

fθ(x̃i), under some noising/augmentation procedure xi 7→ x̃i, but simultaneously far from other
samples zj . While this method constrains the latent space to be smooth with respect to the noising
process, it offers only an implicit constraint on Z as it is generally not possible to infer how the
distance between distinct samples zi and zj is constrained. However, it imposes a deeper constraint
than does the classification objective because the implicit connections between samples induced by
the noising procedure reflect relationships that can not necessarily be captured in a low-dimensional
space (dependent on dataset size and density).

B.2 Pre-training Review Methodology

Papers were selected via a manual search of the natural language processing (NLP) and NLP-derived
pre-training methods (i.e., methods focused primarily on other domains or on multi-modal domains
were excluded) via Google Scholar as well as by crawling through references of papers already
included. Citation counts for each work were obtained via Google Scholar on August 2nd, 2022.
Publication date (used to calculate citations per month since publication date) was computed as the
earlier of either (1) the paper’s venue-specific date of publicatoin or (2) the first submission date to
the arXiv or BioRxiv platform, as referenced via an exact title match. A manual review was done to
classify how pre-training methods constrain latent space geometry and assign subjective, numerical
“shallow-deep” and “explicit-implicit” axes scores. In total, over 90 methods were examined, of
which 71 were suitable for inclusion in numerical review results (Figure 4 and Table 4). All methods
considered are summarized and categorized (and reasons for exclusions are given) in Appendix G.

B.3 Review Findings

To show that existing methods largely do not provide means to impose structural constraints that are
simultaneously deep and explicit, we survey over 90 existing PT methods on the basis of how their ob-
jective functions constrain the Z (Figure 4, Appendix Sections B.2, B.4, G). Throughout all examined
methods, we find that deep, explicit structural constraints are almost never employed. Instead, most
methods either (1) impose no per-sample PT objectives at all ([5, 65, 84]), (2) use explicit, but shallow,
supervised PT objectives (e.g., BERT’s “Next-sentence Prediction” (NSP) objective, ALBERT’s
“Sentence-order Prediction” (SOP) objective, or various multi-task objectives [17, 52, 63]), or (3)
use implicit, but deep, un- or self-supervised contrastive PT objectives (e.g., contrastive sentence
embedding losses [26, 50, 116, 87, 71]).

Across all surveyed methods, we find that only four methods impose simultaneously explicit and
deep constraints: KEPLER [112], CK-GNN [21], XLM-K [40], and WebFormer [28]. All four can
be described as some form of per-sample graph alignment, in which the output embeddings of pairs
of samples zi = fθ(xi) and zj = fθ(xj) are constrained based on whether or not an edge exists
between nodes xi and xj in some pre-training graph GPT. This form of constraint is explicit, as the
graph GPT contains concrete relationships that will be induced in the output latent space, but also
deep, as the geometry of the graph GPT can be arbitrarily complex.

However, all these methods have major limitations. In KEPLER and XLM-K, the per-sample
embeddings are only constrained to a restricted set of samples corresponding to entity descriptions
from a knowledge graph. As such, there are no constraints implied on the general domain of free-text
samples in X alone [112, 40]. In CK-GNN, the graph connectivity is derived from a cluster-restricted
1-nearest-neighbor graph in an alternate modality’s distance space, which may offer a limited higher-
order structure, and unlike the NLP approaches, this method has no intra-sample (e.g. per-token)
pre-training task [21]. Finally, in WebFormer, the graph used is inferred from the structure of the
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Whole-sample Graph Alignment
[68-71]
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S-I: Per-sample embeddings are not
constrained during pre-
training at all.

S-E: Per-sample embeddings are
constrained via self- or fully
supervised classification
objectives

D-I: Per-sample embeddings are
constrained via unsupervised
contrastive learning or
autoencoding objectives

D-E: Per-sample embeddings are
constrained via alignment to
an auxiliary pre-training
graph.

Figure 4: Existing Pre-training (PT) Methods: A summary of 71 existing natural language processing (NLP) and NLP-derived
PT methods, categorized into clusters based on how they impose structural constraints over the PT (per-sample) latent space.
Clusters are arranged on axes via manual judgements on whether the imposed constraint is shallow vs. deep and implici vs.
explicit. Clusters are sized such that the area corresponds to the number of citations methods included in that cluster have
received on average per month since first publication, according to Google Scholar’s citation count. “None” captures models that
leverage no pre-training loss over the per-sample embedding. “NSP” refers to “Next-sentence Prediction,” the per-sample PT
task introduced in BERT [17]. “SOP” refers to “Sentence-order Prediction,” the per-sample PT task introduced in ALBERT [52].
Note that over 90 studies in total were considered in our review, but only 71 met the inclusion criteria to be included in this
figure. These methods are described in more detail in Appendix Sections B.2, B.4, G and Table 4.

HyperText Markup Language (HTML) underlying web-pages, and relationships are only constrained
at the per-sample level for limited structural relationships within the HTML. Further, WebFormer
is a specialized model specifically for processing web content (text and HTML elements), so their
approach can’t be directly generalized to other domains [28]. Moreover, none of these methods offer
general insights for how to realize this style of deep, explicit per-sample constraints in other contexts,
nor do they provide any theoretical guidance on how these constraints relate to performance for
fine-tuning tasks [112, 21, 40, 28].

Overall, our review of pre-training methods establishes unequivocally that pre-training methods
capable of providing explicit, deep structural constraints are significantly under-explored. Across all
the methods we reviewed, only four methods leverage constraints are explicit and deep, all of which
have significant limitations, and there is no general consensus on how to constrain Z explicitly and
deeply. These findings motivate our new framework, which offers insight into how to realize deep,
explicit structural constraints in pre-training models across diverse contexts and provides theoretical
guidance on how structural constraints relate to fine-tuning performance.

B.4 Further Analysis of Reviewed Methods

This work has extensively examined how existing pre-training methods constrain the per-sample
latent space. However, it is also worth examining how these methods constrain the per-token latent
space to demonstrate the extent to which per-sample objectives are under-explored in current pre-
training research. To that end, we break down all of the studies included in our review not only by
how they constrain their per-sample latent spaces but also by how they constrain their per-token
latent spaces (Table 4). These groupings are also done at a greater granularity than the previously
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examined categories to offer more insight into which methods use which techniques. We see that not
only are there more types of per-token latent space constraints leveraged (10 vs. 7), but also methods
consistently leverage a much greater diversity of per-token constraints vs. per-sample constraints
(1.45 per-token constraints per method vs. 0.58 per-sample constraints, on average). We can further
see from Figure 4 that the citation volume for works in this space is also heavily concentrated around
methods that first employ no per-sample PT objective, followed by methods that only impose shallow,
explicit methods, which further establishes this research gap.
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[76] ELMO ✓
[5] GPT-3 ✓
[83] T5 ✓
[65] RoBERTa ✓
[81] GPT-1 ✓
[82] GPT-2 ✓
[55] BART ✓
[15] Unsupervised Cross Lingual ✓
[12] ELECTRA ✓
[42] SpanBERT ✓
[18] UniLM ✓
[29] DAPT ✓
[103] ERNIE (Sun et. al.) ✓ ✓
[77] KnowBERT ✓ ✓ ✓ ✓
[84] TAPE ✓
[118] LUKE ✓ ✓
[90] T0pp ✓
[117] Pretrained Encyclopedia ✓ ✓
[85] MSA ✓ ✓
[101] COLAKE ✓ ✓ ✓
[34] BERTMK ✓ ✓
[79] ERICA ✓ ✓
[128] JAKET ✓ ✓
[142] CALM ✓
[130] KeBioLM ✓ ✓ ✓ ✓
[136] MG-BERT (Molecules) ✓
[6] CDLM ✓ ✓
[33] KgPLM ✓ ✓
[53] kNN PT ✓ ✓
[58] LP-BERT ✓ ✓ ✓
[3] MG-BERT (NLP) ✓ ✓
[100] UD-PrLM ✓ ✓
[88] ESM-1B ✓
[2] UniRep ✓
[17] BERT ✓ ✓
[139] ERNIE (Zhang et. al.) ✓ ✓ ✓ ✓
[99] CokeBERT ✓ ✓ ✓ ✓
[140] SPIDER ✓ ✓ ✓
[51] Syntatic-Distilled BERT ✓ ✓ ✓
[52] ALBERT ✓ ✓
[135] SMedBERT ✓ ✓ ✓ ✓
[63] MT-DNN ✓ ✓
[37] Graph-PT ✓ ✓
[44] SentiLARE ✓ ✓
[73] PLUS ✓ ✓ ✓
[70] EHR-PT ✓ ✓
[104] ERNIE 2.0 (Sun et. al.) ✓ ✓ ✓
[102] ERNIE 3.0 (Sun et. al.) ✓ ✓ ✓ ✓
[129] Dict-BERT ✓ ✓ ✓ ✓
[124] LinkBERT ✓ ✓
[111] StructBERT ✓ ✓
[54] MARGE ✓ ✓
[30] REALM ✓ ✓ ✓ ✓
[127] GraphCL ✓
[80] GCC ✓
[26] DeCLUTR ✓ ✓
[116] CLEAR ✓ ✓
[126] JOAO ✓
[71] COCO-LM ✓ ✓
[50] InfoWord ✓ ✓
[134] MICRO-Graph ✓ ✓
[8] STS-CT ✓ ✓
[67] CAPT ✓
[141] GearNet ✓ ✓ ✓
[11] InfoXLM ✓ ✓
[96] GLM ✓ ✓ ✓
[22] KCL ✓
[112] KEPLER ✓ ✓
[21] CK-GNN ✓
[40] XLM-K ✓ ✓
[28] Webformer ✓ ✓ ✓ ✓

Table 4: Existing Pre-training (PT) Methods: A subset of existing PT methods, broken down by how they constrain per-token
and per-sample latent space geometries.
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C Further Details on SIPT

C.1 Constraints on LSI in our Framework

Formally, for LSI to be valid, then there must exist a distance function d : Z × Z → R, radius
r ∈ R, and loss value ℓ∗ ∈ R such that at any solution θ∗ for which LSI(θ

∗) < ℓ∗, the learned
embeddings zi = fθ∗(xi) must recover the graph GPT under a radius nearest neighbor connectivity
algorithm via distance function d and radius r—i.e., it must be the case that (xi,xj) ∈ E if and only
if d(fθ∗(xi), fθ∗(xj)) < r. Furthermore, for the particular graph GPT and latent space Z , the set of
θ∗ such that LSI(θ

∗) < ℓ∗ must be non-empty (i.e. such a solution must exist).

C.2 Realizing Existing Methods in our Framework

Let X ∈ XNPT be the pre-training dataset throughout this section. In cases where we have some
auxiliary information (e.g., supervised, per-sample, pre-training labels), they will be denoted by
Y ∈ YNPT .

Methods with no per-sample objectives

Naturally, we can realize any method that only employs a per-token pre-training objective within
our framework simply by setting λSI = 0. This realization is trivial and offers no insight into the
suitability of these pre-training methods for downstream per-sample tasks.

Methods with a supervised, single-task per-sample objective (e.g., BERT [17])

A simple, single-task, per-sample, classification pre-training objective induces a geometric constraint
in the output latent space on the basis of the inner product “distance” between samples of the
same vs. different class labels. We can use this observation to realize a reduction from a valid
SIPT objective to the original classification objective. In particular, we can introduce a graph
G = ({xi ∈ X}, {(xi,xj)|yi = yj}) which consists of cliques corresponding to each unique label
c ∈ Y . Then, leveraging any structure-preserving metric learning loss with a cosine distance objective
will, at optimality, recover a solution that also satisfies the original classification objective, where we
use centroids of the induced clique embeddings to represent class embeddings.

Methods with a supervised, multi-task per-sample objective (e.g., MT-DNN [63])

A slightly more complicated case is when methods employ a multi-task, per-sample classification
objective. In this case, there are two ways to realize this task within the SIPT framework. First,
we can simply transform the multi-task objective into a single-task objective by constructing a new
label-space consisting of the Cartesian product of all label spaces for each task individually. This will
greatly increase the number of “labels” in the task, but then the problem can be realized via a graph
of disconnected cliques much like in the single-task setting.

However, there is another manner in which we can realize this objective in the SIPT framework; In
particular, suppose our collection of tasks consists of k label spaces: Y = Y1 × · · · × Yk. Then, we
can construct a graph G = (V,E) such that:

1. the vertices consist of all pre-training samples xi as well as auxiliary nodes corresponding
to each label c(j)h ∈ Yh across each task: V = {xi ∈ X} ∪ Y1 ∪ · · · ∪ Yk

2. the edges contain links between each sample xi and label y(i)h across all tasks 1 ≤ h ≤ k:
E = {(xi, c

(j)
h )|y(i)h = c

(j)
h }.

Then, we can see that if we solve the SIPT problem under a structure-preserving metric learning loss,
we will naturally have produced embeddings for each xi which are close (in inner-product distance
space) to the class embeddings corresponding to their labels for each task, while they are also far
from other, non-matching class embeddings, as desired. This second approach is more useful to us
in considering the ramifications of this style of constraint because it enables us to make more rigid
theoretical guarantees via the SIPT theory.
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Methods with a based contrastive per-sample objective (e.g., GraphCL [127])

It is challenging to realize contrastive learning approaches within the SIPT framework, but it is still
possible. Here, we highlight two distinct types of contrastive learning approaches we can capture
within SIPT: a noising/augmentation-based approach, in which sample embeddings are constrained
to be similar to embeddings of noised versions of said samples; and a multi-modal (or multi-lingual)
contrastive approach, in which there exists a 1:1 mapping between two different sub-modalities
within X which is used to join those two modalities into a unified latent space (e.g. a model which
constrains embeddings of English sentences to be close to embeddings of their french translations,
but far from unrelated sentences).

To consider the augmentation/noising policy type first, let h : xi 7→ x̃i represent the noising
transformation. Then, to build an analogous SIPT model to this model, we construct an augmented
dataset consisting of all original data points alongside all possible transformed versions of the original
data points under h: X ′ = X∪

(⋃NPT

i=1 Im (h|xi)
)

. Note that even in contexts where h is continuous
(and thus has an infinite image), we can still construct this dataset in practice because training is only
performed over a finite number of steps, meaning our augmented dataset X ′ need only be expanded
to cover a finite number of augmentations. Then, the associated pre-training graph is simple; we
simply use every sample in the augmented dataset X ′ as a vertex and connect any two samples if and
only if one is a transformed version of the other. This forms a graph of many disconnected stars (one
star for each original datapoint xi), and thus it does not directly enforce any particular geometry via
our current theory. However, in cases where dataset size is sufficiently large, h sufficiently expressive,
and data density sufficiently high, then the natural continuity of any neural network model will induce
additional, auxiliary connections across these stars (if, for example, the noised versions of two distinct
samples have a high probability of being very similar), which increases the depth of the geometric
constraints enforced. Quantifying the exact parameters of these interactions, however, we leave to
future work.

In the case of the multi-modal/multi-lingual contrastive alignment objective across k modalities, our
setup is much simpler: we simply let GPT be a k-partite graph whose samples consist of individual
data points (across all modalities) and edges connect samples that compose a matching pair across
modalities (e.g. edges link English sentences to their french translations). The extent to which
this constrains the output geometry in practice, then, comes down to several questions: (1) Is the
cross-modal alignment a one-to-one, one-to-many, or many-to-many alignment (which impacts the
geometry of the resulting graph), (2) How large and dense is the dataset (which impacts the extent to
which additional, indirect edges will be induced due to continuity in practice), and (3) How do other
pre-training objectives constrain the individual modalities separately? In a case where this graph is
one-to-one, and no other constraints are induced in each modality separately, this objective will offer
only minimal constaints as the resulting graph will consistent of many disconnected 2-cliques.

Methods with a per-sample graph-alignment objective (e.g., KEPLER [112])

Methods that explicitly align samples with a provided pre-training graph (KEPLER [112], CK-
GNN [21], XLM-K [40], and WebFormer [28]) are naturally already realized within SIPT, so need
no further commentary here.

C.3 Structure-inducing Losses Examined in this Study

Multi-similarity loss

The multi-similarity loss, parametrized by w+, w−, and t, is given below:

LSI =
1

Nw+
log

1 +
∑

(i,j)∈E

e−w+(⟨fθ(xi),fθ(xj)⟩−t)

+
1

Nw−
log

1 +
∑

(i,j)̸∈E

ew−(⟨fθ(xi),fθ(xj)⟩−t)

 ,

Contrastive loss

Our contrastive loss is modeled after [31]’s version. For this loss, we assume we are given the
following mappings: ‘pos’, which maps x into a positive node (i.e., linked to x in GPT), and ‘neg’,
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which maps x into a negative node (i.e., not linked to x in GPT). The union of a seed minibatch
B of points XB and its images under ‘pos’ and ‘neg’ mappings form a full minibatch. This loss is
specified by the positive and negative margin parameters µ+ and µ− as:

L(CL)
SI =

1

N

∑
xi∈X

max(D(xi,pos(xi))− µ+, 0) +
1

N

∑
xi∈X

max(µ− −D(xi,neg(xi)), 0).

C.4 Additional Choices within the SIPT Framework

In addition to a loss term, we can use negative sampling to improve efficiency. Using the full
graph GPT, which is not available in many contexts where negative sampling is employed, we can
leverage the distance between samples calculated on GPT, which provides a complementary source
of information beyond embedding space distance alone. For example, one could use this to limit
negative samples within the same connected component, but more complex strategies based on graph
sampling (e.g. [131]) could also be used.

D Further Details and Proofs of SIPT Theory

D.1 Corollaries of Theorem 1

Corollary 1. Let XPT ∈ XN , be a PT dataset with corresponding labels y ∈ YN
PT. Define

GPT = (XPT, E) such that (xi,xj) ∈ E if and only if yi = yj .

Then, the local consistency for a given FT task y(FT) over GPT (and thus by Theorem 1, the nearest-
neighbor accuracy for any optimized SIPT embedder) is upper bounded by the probability that a
sample xi’s fine-tuning label y(FT)

i agrees with the majority class label for task y(FT) over the clique
consisting of all nodes with the same pre-training label yi as xi.

Corollary 2. Let XPT be a PT dataset that can be realized over a valid manifold M. Assume XPT

is sampled with full support over M. Let GPT(XPT, E) be an r-nearest-neighbor graph over M
(e.g., (xi,xj) ∈ E if and only if the geodesic distance between the two points on M is less than
r: DM(xi,xj) < r). Let y(FT) be a FT classification task that is almost everywhere smooth on the
manifold.

Then, as PT dataset size (and thus the size of GPT) tends to ∞, and r tends to zero, the local
consistency of y(FT) over GPT (and thus by Theorem 1 the nearest-neighbor accuracy of an SIPT
embedder) will likewise tend to 1.

Informally, these corollaries establish that when a shallow structural constraint is used (e.g. a
supervised classification objective), then the associated SIPT-equivalent model permits only minimal
guarantees for FT performance, driven by the extent to which an FT task label is consistent within the
classes under the supervised PT objective. In contrast, if a deep structural constraint is used, realized
in Corollary 2 via GPT being a nearest-neighbor graph over an arbitrary manifold M, then a SIPT
model permits a theoretical guarantee for FT performance that approaches unity as the pre-training
dataset size grows for any FT task that is smooth over M.

D.2 Proof of Theorem 1

We begin by defining the notion of “Local Consistency,” which (informally) quantifies how “smooth”
a given fine-tuning task label is over a graph GPT (Definition 5). In addition, note that throughout
all proofs, we will assume that the PT and FT datasets are iid, that FT tasks, though they may be
unobserved over PT samples, are well defined over the entire PT and FT domain and thus true labels
do exist (though they may be unknown) for PT samples, and that the sampling distribution of the
PT/FT data has full support over the label-space of any considered task.

Definition 5 (Local Consistency). Let y : X → Y be a task over a domain X , and let G = (V,E) be
a graph such that X ⊆ V . The local consistency LCG(y) is the probability that a node’s label y(x)
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agrees with the majority of labels of x’s neighbors in G:

LCG(y) = P

y(x) = argmax
c∈Y

∑
x′∈X|(x,x′)∈E

1y(x′)=c

 .

Note this is closely related to homophily [143, 39, 132].

With Local Consistency defined, we can now formally prove Theorem 1, reproduced below.
Theorem 1. Let XPT be a PT dataset, GPT be a PT graph, and let fθ∗ be an encoder pre-trained
under a PT objective permissible under our framing that realizes a LSI value no more than ℓ∗. Then,
under embedder f , the nearest-neighbor accuracy for a FT task y converges as dataset size increases
to at least the local consistency (Definition 5) of y over GPT.

Proof. Given f realizes SIPT-optimal embeddings, we know that if we define a r-NN predictor via
the same radius r∗ at which f achieves optimality, then this predictor will be correct exactly as often
as the label of a given node in the graph GPT agrees with the labels of its neighbors—which is
LCGPT

(y). This classifier may not be well defined for small FT dataset sizes. However, as if data is
not sufficiently dense, there may be no data points within the radius r of a given query. Similarly,
without sufficient PT data, the LC computed over the empirical distribution of the graph GPT may
be a poor proxy for the true distribution. As PT and FT dataset sizes increase, however, we can
achieve at least this performance. We may be able to achieve even higher performance if other effects
motivate stronger performance at radii smaller than r∗, but this is not guaranteed.

D.3 Proof of Corollary 1

Corollary 1. Let XPT ∈ XN , be a PT dataset with corresponding labels y ∈ YN
PT. Define

GPT = (XPT, E) such that (xi,xj) ∈ E if and only if yi = yj .

Then, the local consistency for a given FT task y(FT) over GPT (and thus by Theorem 1, the nearest-
neighbor accuracy for any optimized SIPT embedder) is upper bounded by the probability that a
sample xi’s fine-tuning label y(FT)

i agrees with the majority class label for task y(FT) over the clique
consisting of all nodes with the same pre-training label yi as xi.

Proof. This follows directly from the definition of Local Consistency, GPT, and the law of total
probability. In particular,

LCGPT
(yFT) = P

yFT(xi) = argmax
ℓ∈YFT

∑
xj∈XPT|(xi,xj)∈E(GPT)

1yFT(xi)=ℓ


= P (yFT(xi) = MC(xi, yFT))

=
∑

ℓPT∈YPT

P(yi = ℓPT)P(yFT(xi) = MC(xi, yFT)|yi = ℓ),

With Local consistency found, a simple application of Theorem 1 completes the proof.

Note that this has a dependence on the PT dataset size as the probabilities P are taken over the
empirical distribution induced by the dataset XPT and graph GPT inherent in local consistency —
if XPT is too small, these empirical distributions will be poor proxies for the true distribution and
this bound will not hold tightly. However, once saturation is reached, it will not improve beyond this
fixed upper bound relating to task correlation.

D.4 Proof of Corollary 2

Corollary 2. Let XPT be a PT dataset that can be realized over a valid manifold M. Assume XPT

is sampled with full support over M. Let GPT(XPT, E) be an r-nearest-neighbor graph over M
(e.g., (xi,xj) ∈ E if and only if the geodesic distance between the two points on M is less than
r: DM(xi,xj) < r). Let y(FT) be a FT classification task that is almost everywhere smooth on the
manifold.
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Then, as PT dataset size (and thus the size of GPT) tends to ∞, and r tends to zero, the local
consistency of y(FT) over GPT (and thus by Theorem 1 the nearest-neighbor accuracy of an SIPT
embedder) will likewise tend to 1.

Proof. As r → 0, provided PT dataset size increases at a sufficient associated rate so as to maintain a
constant minimum degree of G, we have the property that the total diameter over M contained in a
node’s local neighborhood within GPT likewise decreases. Given some fixed node x ∈ M that is
within the interior of a set of constant yFT label, this implies that, eventually, it will grow sufficiently
small that all of x’s neighbors share the same label as x under yFT.

More concretely, it is clear that this point will occur exactly when r is the geodesic distance between
x and the boundary of the surrounding constant-label patch containing x. But, it is clear that the only
sections of M will not have the property that neighborhoods around points will be constant w.r.t.
yFT labels will almost everywhere be patches within distance r of the points where yFT changes.

This implies that as r → 0, then almost everywhere will the neighborhoods around a node x be
constant w.r.t. yFT. However, this implies that almost everywhere would yFT display perfect local
consistency, as desired.

E Semi-synthetic Experiments Validating Theoretical Results

We can further validate the theoretical analyses of our framework via semi-synthetic experiments. In
particular, we create several datasets of natural language sentences augmented with synthetic graphs
with known relationships to certain FT tasks (e.g., low or high local consistency, low or high rates of
noise). We then use these datasets to validate three important properties of PT methods: First, do
PT methods trained with a LSI and GPT yield Nearest-neighbor FT performance in accordance with
our theory? In particular, do (a) FT tasks with high local consistency over the PT graph offer better
performance, and (b) those with very low local consistency offer worse performance? Second, do
PT methods trained with a LSI and GPT suffer significantly when pre-training graphs are polluted
with noise? Finally, third, do the latent space geometry regularizing properties of LSI yield methods
whose embeddings more clearly cluster than embeddings produced by traditional pre-training alone?

E.1 Pre-training & fine-tuning datasets

Across all experiments, our synthetic datasets consist of free-text sentences from https://www.kaggle.
com/mikeortman/wikipedia-sentences (CC BY-SA 4.0 License).

Topics were assigned to these sentences by running Latent Dirichlet Allocation via Scikit-learn [75]
over a Bag-of-words representation to 100 topics, with otherwise default parameters. Given the
probabilities over all 100 topics, we treated the prediction of the most probable topic as a 100-class
multi-class classification problem for our FT task in these experiments.

To test across various graphs, we produce a number of pre-training graphs per experiment, as detailed
below.

E.2 Pre-training graphs

We use graphs spanning 3 categories. (1) A graph (CLIQUES) consisting of disconnected cliques,
where sentences are linked in the graph if they share the same topic label. (2) Graphs composed of
nearest-neighbor graphs defined over simplicial manifolds built using topic probabilities to localize
sentences onto simplices. We explore manifolds with a range of topological complexity, including:
PLANE, MÖBIUS, SPHERE, and TORUS. Finally, (3) we define three graphs according to a mechanis-
tic process that allows us to control how topic labels relate to graph structure: first, so that topics are
maximally conserved within local neighborhoods (NEIGHBORHOOD); second, by assigning sentences
to nodes in the graph such that each graph motif corresponds to a unique topic (MOTIF); and third,
such that node topics are driven by non-local graph structural features, on the basis of graphlet degree
vectors (STRUCTURAL). Details for each pre-training graph formation are given below.

CLIQUES Graph Setup
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To construct the Cliques graph setting, we choose a random subset of sentences as XPT and define
GPT = (XPT, E) such that (xi,xj) ∈ E if and only if xi and xj share the same topic label.

PLANE, MÖBIUS, SPHERE, & TORUS Graphs

For these graphs, we take a more involved practice to localize sentences onto specifiable simplicial
manifolds, then construct pre-training graphs via radius nearest neighbor graphs on those manifolds.
This involves several steps:

Localizing Sentences on Simplices We can localize any sentence in our overall dataset onto a
2-simplex by mapping them onto the (re-normalized) probabilities associated with their
top-3 topics. Doing this means that the simplex on which they are localized has vertices
corresponding to possible topics among our 100 total topics.

Stitching Topic-simplices Into Manifolds Given these topic-simplex localized sentences, we need
to construct our manifolds. To do so, we first produce any arbitrary simplicial tiling of
a 2-manifold. With this tiling, all that remains to localize sentences onto the manifold is
to find a self-consistent mapping of topics to simplex vertices (in the tiling) such that all
topic-simplices induced by this mapping have sufficiently many associated samples to enable
roughly uniform sampling.

Sampling Points After finding a self-consistent map of topics to simplicial tiling vertices that satisfy
density requirements, we can sample sentences onto the manifold. To make this process
more uniform, we also calculate the relative entropy of each sentence (over the re-normalized
probabilities of the top-3 topics), bin those entropies into buckets, then sample first what
entropy bucket we wish to draw from such that the induced distribution of sentence entropies
is approximately uniform, then sample within that entropy bucket.

Calculating on-Manifold Distances Finally, with sentences sampled and localized onto a simplicial
manifold, we then need to compute approximate geodesic distances to enable building radius-
nearest-neighbor graphs over these sentences. To do so, we use an approximate algorithm
that considers only on-simplex distance (e.g., it does not consider any curvature penalties)
which is equivalent to calculating the distance between any pair of points over the simplices
presuming they were flattened onto a plane (this flattening naturally does not preserve
manifold topology, but along only the shortest path between any particular set of two points
it is always possible to do so with a 2-manifold).

The above process describes how to produce a radius-nearest-neighbor graph for any specifiable
manifold using our topic-model outputs. We do this for simplicial manifolds that correspond
topologically to a simple plane (PLANE), a möbius strip (MÖBIUS), a sphere (SPHERE), and a torus
(TORUS).

STRUCTURAL, NEIGHBORHOOD & MOTIFS Graphs

In order to form these examples, we must (1) define our overall graphs, (2) featurize these graphs in
a manner that is reflective of different forms of graph structure, then (3) use these featurizations to
assign sentences to graph nodes to form our pre-training dataset.

Graph Construction We sample graphs by first building a base cycle of a parametrized size, then
add motifs along this cycle by sampling small graphs from all possible connected graphs of
size less than 6 nodes.

Node Featurization Nodes in this graph are then assigned internal features based on three notions
of graph topology. For the “Neighborhood” label, a node n is identified according to an
index-vector indicating which nodes in the graph are within shortest-path distance 3 of n.
For the “Motif” label, n is identified based on its membership either in the base cycle or
any of the attached random subgraphs. For the “Structural” label, n is identified based on
its graphlet degree vector (of order 4). For structural and homophily features, categorical
labels are then produced by feeding these raw representations through a k-means clustering
algorithm.

Sentence Assignment We assign sentences to nodes in multiple ways so that we can produce datasets
that reflect each of the notions of graph structure discussed previously. In particular, for
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Figure 5: Semi-synthetic Experiments Results: (a) Comparisons between nearest-neighbor FT AUROC (higher is better)
of LM PT models and SIPT models over various graphs with various forms of structural alignment. LC indicates the label
consistency between FT task and GPT (Definition 5). (b) Nearest-neighbor FT AUROC vs. noise rate. Up to 10% noise SIPT
dramatically outperforms LM PT, and at 50% noise, the two approaches are equal. (c-d) Embedding space of MPT and SIPT
models on the MÖBIUS dataset. Point colors indicate topic labels. SIPT’s embedding space reflects the structure of the PT graph,
whereas MPT does not.

either the neighborhood, motif, or structural labels, each sentence topic is matched to a node
label, then sentences are assigned randomly to nodes in the graph with a matching topic
label. Note that this produces a dataset where the graph structure is only partially reflected
by the node’s features, which is itself another useful test of the SIPT method, as it would not
be useful if SIPT could only capture data in contexts where the graph was perfectly reflected
by the node features themselves.

Expected local consistency between graphs GPT and the topic prediction FT task

Of all these graphs, we expect that topics will display a low local consistency over the STRUCTURAL
graph and a moderately high local consistency over the MOTIF graph (as graph motifs are all
connected components), and high local consistency everywhere else.

E.3 Network Architecture & Hyperparameters

The Cliques and Mechanistic experiments use a shallow Transformer model with 2 layers and 10
hidden units. The Manifold experiments use a 3-layer Transformer model with 256 hidden units.
Hyperparameters were not tuned but were chosen by hand to produce as small a network as possible
while permitting reasonable learning dynamics.

E.4 Experimental setup

To answer our three questions, we will pre-train models under both traditional LM pre-training
alone and a new, structure-inducing PT (SIPT) method within our paradigm that augments the loss
with a contrastive learning loss over GPT, with λSI = 0.1. Both models use a shallow transformer
encoder for fθ and a character-level tokenization scheme. Final results are reported via the AUROC
of 3-nearest-neighbor classifiers over the latent space, per-sample embeddings. In line with our
theoretical predictions, we expect to see higher NN FT performance in all settings where the FT task
(topic prediction) has high local consistency over the graph GPT (all graphs except STRUCTURAL)
and worse performance in the case where the local consistency is very low (STRUCTURAL).

We also assess the stability of our method as the graph GPT is noised using the CLIQUES graph by
randomly adding additional edges with varying rates.

E.5 Semi-synthetic Results

E.5.1 SIPT improves performance over LM PT by 0.26± 0.13 AUROC on graphs where the
topic task has a high local consistency

As can be seen in Figure 5a, SIPT offers significant improvements over LM PT in nearest-neighbor
FT AUROC across all graph types with strong topic local consistency.
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E.5.2 SIPT’s empirical results are in agreement with theoretical findings

In line with our theoretical findings, SIPT only under-performs LM PT on the STRUCTURAL graph
where the topic task (by design) does not have strong local consistency. This validates our theoretical
results by showing that local consistency strongly predicts Nearest-neighbor FT performance.

E.5.3 SIPT is robust to incomplete and noisy pre-training graphs

Figure 5b shows Nearest-neighbor FT AUROC as a function of noise rate on the CLIQUES graph. For
up to 15% noise, SIPT shows improvements over LM PT, and even at 50% noise, the two approaches
perform comparably.

E.5.4 SIPT pre-trained embeddings show stronger clustering than LM PT embeddings

Figure 5c-d shows embeddings produced under the MÖBIUS graph either by LM PT or SIPT, clustered
via UMAP into 2 dimensions. It is clear visually from these figures that SIPT embeddings show clear
clusters strongly associated with the topic-modelling FT task, whereas LM PT embeddings do not.

E.6 Conclusions

From these analyses, we see that augmenting PT with per-sample structure-inducing objectives
can both (1) offer significant advantages over existing PT architectures and (2) permit analytical
reasoning about which FT tasks PT will offer improvements. These findings are not surprising; in
these semi-synthetic experiments, we designed our graphs explicitly to have either high or low local
consistency with respect to our FT task so that we could probe exactly whether SIPT methods would
behave in accordance with theory in tightly controlled settings. In this way, the graphs GPT used
here may not be reflective of graphs in the real world, which will be chosen more independently of
specific FT tasks. To address this, in the Results section, we demonstrate experimental results over
diverse real-world datasets with real, FT-task-independent graphs to show that the gains persist in
more realistic scenarios.

F Further Details on Real-world Experiments

F.1 Further Details on the PROTEINS Dataset and FT tasks

PT Dataset We use a dataset of ∼1.5M protein sequences from the Stanford Tree-of-life
dataset [144] (https://snap.stanford.edu/tree-of-life/data.html). The associated Github repos-
itory for this resource lists an MIT license.

PT Graph Two proteins are linked in GPT if and only if they are documented in the scientific
literature to interact, according to the tree-of-life interaction dataset. This is an external
knowledge graph.

FT Dataset/Tasks We use the TAPE FT benchmark tasks [84], including Remote homology (RH),
a per-sequence classification task to predict protein fold category (metric: accuracy); Sec-
ondary structure (SS), a per-token classification task to predict amino acid structural prop-
erties (metric: accuracy); Stability (ST) & Fluorescence (FL), per-sequence, regression
tasks to predict a protein’s stability and fluorescence, respectively (metric: Spearman’s ρ);
and Contact prediction (CP), an intra-sequence classification task to predict which pairs of
amino acids are in contact in the protein’s 3D conformation (metric: Precision at L/5).

Baselines We compare against the published TAPE model [84], which uses an LM task alone as
our per-token comparison point, and the PLUS [73] model, which optimizes for LM and
supervised classification jointly, for our per-sample comparison point.

The tasks in the TAPE benchmark [84] on which we test are described more fully below. All
these datasets are publicly available. All datasets can be obtained directly on TAPE’s Github
(https://github.com/songlab-cal/tape#data), which lists no licenses for these datasets though the
overall Github is released under a BSD 3-Clause "New" or "Revised" License.

Remote Homology This is a per-sequence, multi-class classification problem, evaluated using
accuracy, which tasks a model to predict a protein fold category at a per-sequence level.
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This task’s dataset contains 12,312/736/718 train/val/test proteins and is originally sourced
from [35].

Secondary Structure This is a per-token, multi-class classification problem, evaluated using accu-
racy, which tasks a model to predict the structural properties of each amino acid in the final,
folded protein. This task’s dataset contains 8,678/2,170/513 train/val/test proteins, and is
originally sourced from [49].

Stability This is a per-sequence, continuous regression problem evaluated using the Spearman
correlation coefficient, which tasks a model to predict the protein’s stability in response to
environmental conditions. This task’s dataset contains 53,679/2,447/12,839 train/val/test
proteins, and is originally sourced from [89].

Fluorescence This is a per-sequence, continuous regression problem evaluated using the Spearman
correlation coefficient, which tasks a model to predict how brightly a protein will fluoresce.
This task’s dataset contains 21,446/5,362/27,217 train/val/test proteins, and is originally
sourced from [92].

F.2 Further Details on the ABSTRACTS Dataset and FT tasks

PT Dataset We use a dataset of ∼650K free-text scientific article abstracts from the Microsoft
Academic Graph (MAG) dataset [108, 36]. The ABSTRACTS PT data (the Microsoft
Academic Graph dataset) is licensed with an Open Data Commons Attribution License
(ODC-By) v1.0 license.

PT Graph Two abstracts are linked in GPT if and only if their corresponding papers cite one another.
This is a self-supervised graph.

FT Dataset/Task We use a subset of the fine-tuning tasks used in the SciBERT paper [4], including
Paper field (PF), SciCite (SC), ACL-ARC (AA), and SciERC Relation Extraction (SRE), all
of which are per-sentence classification problems (metric: Macro-F1). PF tasks models to
predict a paper’s area of study from its title, SC & AA tasks both predict an “intent” label
for citations, and SRE is a relation extraction task.

Baseline We compare against the published SciBERT model [4] as our per-token comparison and
lack an associated per-sample comparison as we don’t know of any published per-sample
models in the academic papers modality.

The tasks in the SciBERT benchmark [4] on which we test are described more fully below. All tasks
here are per-sentence, multi-class classification problems (i.e., we do not study any per-token tasks),
and all are evaluated in Macro-F1 (out of 1). All FT datasets can be obtained from the SciBERT
Github (https://github.com/allenai/scibert), which lists no dataset-specific licenses but is released
with an Apache-2.0 license.

Paper Field This problem asks models to predict a paper’s area of study given its title. This task’s
dataset contains 84,000/5,599/22,399 train/val/test sentences. Though the original dataset is
derived from the MAG [108], it was formulated into this task format by SciBERT directly [4].

SciCite This problem tasks models to predict an “intent” label for sentences that cite other scientific
works within academic articles. This task’s dataset contains 7,320/916/1,861 train/val/test
sentences, and is originally sourced from [13].

ACL-ARC This problem tasks models to predict an “intent” label for sentences that cite other scien-
tific works within academic articles. This task’s dataset contains 1,688/114/139 train/val/test
sentences and is originally sourced from [43].

F.3 Further Details on the NETWORKS Dataset and FT tasks

PT Dataset We use a dataset of ∼70K protein-protein interaction (PPI) ego-networks here, sourced
from [37]. Each individual sample here describes a single protein, realized as a biological
network (i.e., an attributed graph) corresponding to the ego-network about that protein (i.e.,
a small subgraph containing all nodes within the target protein) in a broader PPI graph.
Unlike our other domains, this domain does not contain sequences. The NETWORKS PT
dataset releases its code and dataset files under an MIT license.
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PT Graph The dataset from [37] is labeled with the presence or absence of any of 4000 protein gene
ontology terms associated with the central protein in each PPI ego network. Leveraging
these labels, two PPI ego-networks are linked in GPT if and only if the Hamming distance
between their observed label vectors is no more than 9. This is an alternate-representation
nearest-neighbor graph.

FT Dataset/Tasks Our FT task is the multi-label binary classification of the 40 gene-ontology term
annotations (metric: macro-AUROC) used in [37]. We use the PT set for FT training and
evaluate the model on a held-out random 10% split.

Baselines We compare against both attribute-masking [37] and multi-task supervised PT.

The Networks FT task is a multi-task, binary classification task. Recall that the dataset here consists of
PPI ego-networks, which means that an individual sample input to the model is an attributed graph x
which contains a central node, corresponding to a protein, along with the ego-graph surrounding that
node in a larger PPI graph. This ego-graph can thus be seen to correspond to the central protein, and
the FT and PT tasks leverage this association, as both of which flag whether or not that central protein
is associated with particular gene-ontology (GO) terms (annotations relating to protein properties or
function applied in the literature). The PT tasks contain 4000 possible GO annotations, but the FT
tasks correspond to a smaller set of only 40 GO terms, chosen as they were of greater interest than
the full set. See the original source ([37]) for more information and full details.

F.4 Further Details on Experimental Procedure

To minimize computational burden, we do not pre-train a structure-inducing model from scratch for
PROTEINS and ABSTRACTS datasets. Instead, we initialize a model from the per-token baseline
directly, then perform additional pre-training for only a small number of epochs under the new SIPT
loss subdivision. We assess both multi-similarity and contrastive LSI variants in these domains. On
the NETWORKS dataset, we pre-train all models (including baselines) from scratch, and based on
early experimental results, we only assess the contrastive loss variant.

F.5 Further Details on Ablation Studies

Note that the warm-start procedure described above on the PROTEINS and ABSTRACTS domains
allows a powerful ablation study: by additionally training a PT model from the per-token baseline
with λSI = 0, we can uniquely assess the impact of the new loss term, rather than simply additional
training or the different PT dataset. We perform this ablation study for all applicable datasets. For the
NETWORKS dataset, no additional ablation studies are needed to assess the impact of the loss term,
given all models are trained from scratch with the same early-stop procedures.

F.6 Further Details on Choosing λSI

For the PROTEINS and ABSTRACTS dataset, to choose the optimal value of λSI for use at PT time,
we pre-trained several models and evaluated their efficacy in a link retrieval task on GPT = (V,E).
In particular, we score a node embedder f by embedding all nodes n ∈ V as f(n), then rank all
other nodes n′ by the euclidean distance between f(n) and f(n′), and assess this ranked list via IR
metrics including label ranking average precision (LRAP), normalized discounted cumulative gain
(nDCG), average precision (AP), and mean reciprocal rank (MRR), where a node n′ is deemed to be
a “successful” retrieval for n if (n, n′) ∈ E. In this way, note that we choose λSI in a manner that is
independent of the fine-tuning task and can be determined solely based on the PT data. Final results
for these experiments are shown in Methods Table 9 for the proteins dataset and Methods Table 10
for scientific articles.

Ultimately, this process suggests that λSI of 0.1 is a robust setting, and as such, 0.1 was used directly
for the NETWORKS task without further optimization.

F.7 Further Details on Architecture & Hyperparameters

The architectures of our encoders for the PROTEINS and ABSTRACTS domains are fully determined
from our source models in TAPE [84] and SciBERT [4]. In particular, for proteins and scientific
articles, we use a 12-layer Transformer with a hidden size of 768, an intermediate size of 3072, and
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Task Batch Size LR
Remote Homology 16 1e-5
Fluorescence 128 5e-5
Stability 512 1e-4
Secondary Structure 16 1e-5

Table 5: Final hyperparameters for our PROTEINS domain. All tasks used 200 total epochs and performed early stopping after
25 epochs of no validation set improvement. LR, learning rate.

Task # Epochs LR
Paper Field 2 5e-5
ACL-ARC 4/5 5e-5
SciCite 3/2 1e-5

Table 6: Final hyperparameters for our ABSTRACTS dataset. All models used a batch size of 32 and no early stopping to match
the original SciBERT paper [4]. LR, learning rate. A / B = [LM PT Hyperparameter] / [SIPT Hyperparameter].

12 attention heads. Provided TAPE and SciBERT tokenizers are also used. A single linear layer to
the output dimensionality of each task is used s the prediction head, taking as input the output of the
final layer’s [CLS] token as a whole-sequence embedding. We also tested either pre-training for
a single or for four additional epochs, based on validation set performance, and ultimately used a
single epoch for proteins and four for scientific articles.

For the NETWORKS domain, we match the architecture used in the original source [37] for the mask
model runs. Save that for computational efficiency, we scale the batch size up as high as it can go,
then proportionally scale up the learning rate to account for the larger batch size. This corresponds to
a batch size of 1024, the learning rate of 0.01, a GCNN encoder type of GIN, embedding dimensions
of 300, 5 layers, 10% dropout, mean pooling, and a JK strategy of “last”.

Fine-tuning hyperparameters (learning rate, batch size, and the number of epochs) were determined
based on a combination of existing results, hyperparameter tuning, and machine limitations. On
proteins, most hyperparameters were set to follow those reported for a LM PT model in [69], though
additional limited hyperparameter searches were performed to validate that these choices were
adequate. As the original source for these hyperparameters was an LM PT model, any bias here
should be against SIPT, meaning this is a conservative choice. Early stopping (based on the number
of epochs without observing improvement in the validation set performance) was employed, and
batch size was set as large as possible given the limitations of the underlying machine. For the PLUS
reproduction, we compared hyperparameters analogous to the reported PLUS hyperparameters for
other tasks and analogous to our hyperparameters for other tasks and used those that performed best
on the validation set. For scientific articles, we performed a grid search to optimize downstream
task performance on the validation set, with the learning rate varying between 5e-6 and 5e-5 and
the number of epochs between 2 and 5. The same grid search was used in the original SciBERT
method. We additionally match the SciBERT benchmark by applying a dropout of 0.1, using the
Adam optimizer with linear warm-up and decay, a batch size of 32, and no early stopping. For the
NETWORKS, FT hyperparameters were again chosen to match the original source model [37] to save
the increase in batch size and learning rate. No additional hyperparameter search was performed.

Final hyperparameters for each downstream task are shown in Tables 5 for proteins and 6 for scientific
articles.

F.8 Further Details on Implementation and Compute Environment

We leverage PyTorch for our codebase. FT Experiments and NETWORKS PT were run over various
ubuntu machines (versions ranged from 16.04 to 20.04) with a variety of NVIDIA GPUs. PROTEINS
and ABSTRACTS PT runs were performed on a Power 9 system, each run using 4 NVIDIA 32 GB
V100 GPUs with InfiniBand at half precision.
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Figure 6: Fine-tuning (FT) Performance over NETWORKS: FT AUROC as a function of FT iteration for the NETWORKS
dataset. The SIPT method converges faster and performs better than intra-sample (masked node modelling) or per-sample
(multi-task classification) pre-training.

Model RH FL ST SS CP
TAPE 21% 0.68 0.73 73% 0.32
PLUS 19.8%±1.7∗ 0.63 0.76 73% N/A
LM PT 23.8%±1.1 0.67±0.00 0.76±0.02 73.9%±0.0 0.38
SIPT-C 25.1%±0.6 0.68±0.00 0.77±0.01 73.9%±0.0 0.38
SIPT-M 26.6%±1.0 0.68±0.00 0.76±0.01 74.2%±0.1 0.39

Table 7: Results of the TAPE Transformer [84], the PLUS Transformer [73] (∗: our measurements), our LM PT baseline, and
two SIPT variants (“-C” indicates the contrastive loss, “-M” the multisimilarity loss). Higher is better.

F.9 Full Results

Here we provide the raw FT results for all tasks. Raw results for the NETWORKS domain are shown
in Figure 6, and for the PROTEINS and ABSTRACTS domains, respectively, are shown in Tables 7, 8.

F.10 SIPT Results are in Accordance with Theory and Guiding Hypothesis

Results over all real-world domains are consistent with our theoretical analyses and guiding hypothesis.
We can also analyze the extent to which induced structure helps non-NLP domains by examining the
results of our λSI tuning procedure. In particular, we find that far less structure-inducing is necessary
on our ABSTRACTS dataset (λSI = 0.01) than on our PROTEINS dataset (λSI = 0.1). This agrees
with our guiding hypothesis that per-sample latent space regularization is much more necessary on
non-NLP domains than on NLP domains.

Model PF SC AA SRE
SciBERT 0.66 0.85 0.71 0.80
LM PT 0.66±0.0 0.85±0.01 0.70±0.05 0.80±0.01

SIPT-C 0.66±0.0 0.86±0.01 0.76±0.02 0.81±0.00
SIPT-M 0.66±0.0 0.85±0.00 0.73±0.05 N/A

Table 8: Results of the original SciBERT [4] model, our own LM PT baseline, and two SIPT variants (“-C” indicates the
contrastive loss, “-M” the multisimilarity loss). Higher is better.
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Method λSI LRAP nDCG AP MRR
Random Baseline N/A 0.88% 27.1% 0.88% 0.003
TAPE [84] N/A 8.50% 34.9% 2.41% 0.226
LM PT Baseline 0 8.92% 38.0% 2.33% 0.238

SIPT (TAPE Initialized)

0.01 9.69% 39.1% 2.56% 0.254
0.10 10.95% 39.4% 3.46% 0.260
0.50 10.54% 40.3% 3.43% 0.246
0.90 10.12% 39.0% 3.16% 0.237
0.99 14.50% 37.5% 3.13% 0.236

Table 9: PT set link-retrieval performance for a random baseline, the raw TAPE model, and SIPT for various weighting
parameters λSI on the dataset of protein sequences. LRAP, label ranking average precision; nDCG, normalized discounted
cumulative gain; AP, average precision; MRR, mean reciprocal rank. Higher values indicate better performance. Highlighted in
grey are realizations of SIPT framework that yield better results than the strongest baseline, providing evidence that incorporating
sequence-level relational information into PT (i.e., λSI > 0) leads to improved performance.

To demonstrate this, we show the final results for the guiding link-retrieval task for the PROTEINS
domain in Table 9 and for the ABSTRACTS domain in Table 10. In both settings, we compare the
following models.

Random Nodes are embedded with random vectors to assess chance performance.
Initial Model Nodes are embedded with the base pre-trained model we build on in our experiments

without further modifications. This model is TAPE [84] for proteins and SciBERT [4] for
scientific articles.

LM PT Nodes are embedded with the final encoder after additional pre-training on our graph-
augmented datasets, but without any SIPT (i.e., λSI = 0).

CS RoBERTa (for scientific articles only) Nodes are embedded via [29]’s DAPT CS RoBERTa
model, which is another LM PT model over scientific abstracts which performed very well
on ACL-ARC, the task on which SIPT does best in scientific articles.

SIPT (for various values of λSI). Nodes are represented via SIPT PT models at the specified
weighting. For proteins, all SIPT models are initialized from TAPE, but for scientific articles,
we test against both initializing from SciBERT and CS RoBERTa (as both are just different,
domain-specific LM PT models).

Note that in addition to the discrepancy in the magnitude of improvement (over scientific articles,
average precision goes from 12.9% to 14.2%, vs. 2.4% to 3.5% on proteins, which is proportionally
much more significant), we can also see that SIPT improves retrieval performance over the baselines
for proteins much more than it does for scientific articles. This is, admittedly, largely due to [29]’s
CS RoBERTa model’s surprisingly good performance without any modifications, however as we
also compare SIPT pre-trained from a CS RoBERTa model and it does not demonstrate significant
improvements, we still feel this is a fair comparison. These findings are consistent with our hypothesis
that SIPT will offer more significant advantages in non-natural language domains.

G Review of Language Model Pre-training Methods

In this supplementary section, we describe all of the models featured in our review (Figure 4 and
Table 4) and highlight key details of their approach.

G.1 Language modelling alone

[76] General domain NLP; ELMO leverages a biLSTM to perform language modelling; unlike
later methods, for FT tasks, models do not typically re-train the entire LSTM but rather
use a weighted combination of model interior hidden states as (at FT time) static word-
embeddings.

[65] General domain NLP; RoBERTa includes only a masked language modelling objective.
[81, 82, 5] General domain NLP; The GPT series of models use autoregressive language modelling

alone and focus on generative language tasks, not general PT/FT, though GPT-III does
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Method λSI LRAP nDCG AP MRR
Random Baseline N/A 0.89% 26.0% 0.27% 0.016
SciBERT [4] N/A 17.22% 52.8% 5.16% 0.272
LM PT Baseline (SciBERT initialized) 0 16.79% 35.4% 5.00% 0.271
DAPT CS RoBERTa [29] N/A 32.56% 50.3% 12.86% 0.459
LM PT Baseline (CS RoBERTa initialized) 0 30.58% 48.3% 12.36% 0.438

SIPT (SciBERT initialized)

0.01 42.26% 58.7% 14.23% 0.536
0.10 34.73% 52.5% 9.39% 0.457
0.50 32.85% 50.8% 8.37% 0.438
0.90 31.61% 49.8% 7.82% 0.426
0.99 30.72% 49.0% 6.80% 0.415

SIPT (CS RoBERTa initialized)

0.01 33.32% 51.2% 8.61% 0.448
0.10 25.46% 44.4% 5.88% 0.359
0.50 25.08% 44.0% 6.08% 0.355
0.90 22.43% 41.6% 4.27% 0.317
0.99 22.38% 41.5% 4.68% 0.316

Table 10: PT set link-retrieval performance for a random baseline, the raw SciBERT model, and SIPT for various weighting
parameters λSI on the scientific articles dataset. LRAP, label ranking average precision; nDCG, normalized discounted
cumulative gain; AP, average precision; MRR, mean reciprocal rank. Higher values indicate better performance. Highlighted in
grey are realizations of SIPT framework that yield better results than the strongest baseline, providing evidence that incorporating
sequence-level relational information into PT (i.e., λSI > 0) leads to improved performance.

show that by reframing many classical NLP fine-tuning tasks as generative language tasks,
GPT-III can still offer a compelling zero and few-shot solution to these tasks using only the
pre-trained embedder [5].

[55] General domain NLP; BART utilizes a denoising language-model objective across various
noising constraints.

[18] General domain NLP; UniLM integrates several different kinds of language modelling, including
bidirectional, unidirectional, and sequence-to-sequence LMs. They impose no other PT
losses.

[84, 88, 2] Protein sequences; Various methods have explored language modelling alone for protein
sequences. One notable entry is the TAPE benchmark, which also introduces a public
benchmark of FT tasks for future comparisons.

[136] Molecular Graphs; Molecular Graph BERT (MG-BERT; no relation to MG-BERT [3]) uses
masked atom prediction to pre-train a GNN over molecular graphs.

[15] General domain NLP; This paper pre-trains a model for multi-lingual language modelling, using
only a multi-lingual masked language modelling objective.

[29] General domain NLP; DAPT advocates for continual pre-training on increasingly task-focused
text to improve its relevance to various downstream tasks. DAPT uses a RoBERTa baseline
pre-training model, which includes only a masked language modelling objective. It shows
significant gains after adaptation. However, as they only adapt the pre-training context to
the more focused text, this induces no additional constraints on the latent space geometry.

[42] General domain NLP; SpanBERT changes the traditional masked language modelling task to a
task in which contiguous spans are masked wholesale, rather than individual tokens.

G.2 Language modelling & templated tasks/prompting as language modelling

[83] General domain NLP; T5 not only performs a robust analysis of various existing pre-training
strategies but also introduces the “text-to-text” style of diverse pre-training, in which various
downstream NLP tasks can be re-realized as language modelling tasks via templating
and prompting, then integrated into language model pre-training alongside unsupervised
objectives (such as traditional masked language modelling, albeit realized as a sequence-to-
sequence task). As they realize all these downstream tasks as additional language modelling
tasks, they neither officially produce a directly constrained per-sample embedding nor
constrain the geometry of Z beyond traditional masked language modelling.

38



[142] General domain NLP; CALM builds on ideas from T5 to propose a text-to-text pre-training
objective that leverages recognized per-token KG entities from the source text as a generative
prompt.

[90] General domain NLP; T0pp extends the architecture of T5 [83] to ingest templated language
modelling task from a wide variety of possible input tasks, then evaluates its performance in
a zero-shot manner on unseen fine-tuning tasks.

G.3 Language modelling & Per-token KG Integration

[103] General domain NLP; ERNIE 1 augments traditional MLM with entity-specific masking (e.g.,
masking the word “Mozart” from the sentence “Mozart was a musician”) to force the model
to recover common-sense knowledge about named entities.

[33] General domain NLP; KgPLM adapts the discriminative training ideas of ELECTRA [12]
alongside the idea of entity masking explored previously. They perform entity masking and
a discriminative loss identifying which tokens were replaced focused on entity replacements.

[79] General domain NLP; ERICA presents a mechanism for leveraging contrastive learning and
distant supervision to incorporate external knowledge into a PLM for improving language
understanding. ERICA augments MLM with two per-token tasks to ensure the per-token
representations within a document reflect the structure of the KG. First, ERICA ensures
that the pooled representations of head and tail entities are similar when conditioned on a
relation (which is prepended to the document prior to embedding). Second, ERICA ensures
that relation embeddings (defined as concatenated head, tail per-token entity embeddings)
are similar within and across documents. As both tasks are done on per-token embeddings
and never at a per-sample level, this approach induces minimal constraints on the per-sample
latent space.

[77] General domain NLP; Know-BERT integrates per-token entity information into an MLM
pre-training scheme by performing unconstrained attention over a per-entity knowledge
graph (only on pre-identified candidate entity spans), alongside any available entity linking
supervision information via direct Named Entity Linking. This has similarities with [130]
and [23].

[130] Biomedical domain NLP; KeBioLM integrates a per-token KG into a biomedical language
model by augmenting token entity representations with attention lookups into a biomedical
KG (regardless of whether the attended entities match a given entity mention in the source
text, though they do only apply this on recognized entities). To ensure this attention is
meaningful, they perform named entity linking and recognition as auxiliary PT objectives,
leveraging the same KG embeddings used during the attention calculation. In doing so,
the method incentivizes per-token representations to be similar to their associated entity
representations, thus ensuring that the entities are reflected in the attention over the KG.
KG embeddings are initialized using Trans-E [74]. Their usage of automatically attending
over entities within their language model (without explicit constraints on those matches) is
motivated by [23]’s work in [23] and has similarities to Know-BERT [77].

[118] General domain NLP; LUKE performs pre-training using MLM and an entity-specific mask-
ing/recognition scheme that is a slight variation on the traditional entity-specific masking
[103] proposed. At FT time, they have other knowledge-specific integrations, including
specialized query matrices in KQV attention based on attending to either traditional tokens
or entities. However, at PT time, LUKE’s only modulation over a ROBERTA [65] baseline
is an entity masking task.

[101] General domain NLP; COLAKE performs a priori entity linking on the source text, then
replaces per-token mentions with entity embeddings, and appends to the input text sub-
graphs from a (relational) knowledge graph, including both neighboring mentions and
relations in the augmented input text block. This input is then encoded via a transformer
that limits attention flow between tokens of different types and trains the entire ensemble
with masked language, entity, and relation modelling.

[117] General domain NLP; In this paper, traditional masked language modelling is augmented with
an entity-replacement-detection task. Named entity recognition and linking are performed
before pre-training, and entity replacements are constrained to be the same type as the true
entity.
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[58] Knowledge Graph Completion; LP-BERT constructs a specialized pre-training corpus consisting
of entity-relation statements from a knowledge graph. This is used in a pre-training context
under three pre-training tasks: masked language modelling, masked entity modelling, and
masked relationship modelling. All three are per-token, and no per-sample tasks are used at
pre-training time.

[100] Multilingual Language Models; UD-PrLM examines multilingual pre-training, and aims to
improve it by incorporating universal dependency parse trees into the model. They incor-
porate a per-token task to align tokens with identified dependency parse tree components,
alongside masked language modelling.

G.4 Language modelling, Per-token KG Integration, & Supervised Classification

[104, 102] General domain NLP; ERNIE 2.0 & 3.0 augments traditional MLM with entity-specific
masking (e.g., masking the word “Mozart” from the sentence “Mozart was a musician”) as
well as a multi-task per-sample task, largely motivated at classifying a block of text based
on internal text cohesion (predict the true order of the sentences within an input sample &
identify whether the sentences within the input sample are spatial neighbors, come from
the same document, or come from different documents). ERNIE 3.0 additionally augments
pre-training with a per-token relation-embedding task using cloze-filling as a vehicle to
perform relation extraction on pre-specified per-token KGs.

[139] General domain NLP; ERNIE (no relation to [103, 104]) uses both architectural and objective-
function changes to inject per-token knowledge into PT. Specifically, they separately embed
all named entities in a sample using the architecture to join contextualized entity embeddings
alongside the embeddings of tokens, realizing that entity in the span and performing entity-
specific masking. In addition, they simultaneously perform standard MLM and next-sentence
prediction in the manner of BERT [17].

[3] General domain NLP; MG-BERT introduces a GCNN layer after BERT token, aggregating token
embeddings together over a unified graph consisting both of co-occurrence relationships
and knowledge graph relationships.

[128] General domain NLP; JAKET embeds entities by extracting per-token representations of entity
texts inside per-entity descriptions, then produces updated KG embeddings via a graph
attention network [106]. Those embeddings are then fed into a language model alongside
per-token embeddings corresponding to those entities. The entire model is trained according
to an MLM objective, plus entity category prediction and relation prediction (only on the
entity embeddings extracted from entity descriptions and fed through the GCNN—not on
the raw entities within the contextualized text).

[34] Biomedical NLP; BERT-MK introduces a transformer-based subgraph summarization network
that produces entity embeddings for dynamically chosen subgraphs of a given knowledge
graph. This network is trained via a contrastive triplet-validity objective. These are then
fused with per-token embeddings in free-text based on apriori entity-token matching (i.e.,
named entity recognition and linking must be performed first and separately before using
this model).

[99] General domain NLP; Coke is similar to ERNIE [139], JAKET [128], and BERT-MK [34]
in that it aggregates entity information by leveraging a GCNN over a restricted dynamic
context KG based on token-entity mentions then integrates those augmented embeddings
into the per-token embeddings of a BERT-style pretrained model (similar to JAKET and
BERT-MK), but also leverages the denoising entity autoencoder task of ERNIE [139]. In
addition, in the variant of COKE derived from the BERT model, COKE also employs the
next-sentence prediction task introduced in BERT [17].

[135] Medical domain NLP; SMedBERT leverages a complex, multi-faceted loss including MLM,
Sentence-order prediction SOP (as introduced in, e.g., ALBERT [52]), and includes per-
token KG information by aggregating token embeddings across KG embeddings (produced
via trans-H [114]) corresponding to matching entities and the neighbors of matching entities
in the KG. They also include relation and entity masking variations to ensure the PT model
learns per-token information corresponding to the KG. This method bares similarity to
Coke [99] and JAKET [128]. However, unlike Coke and JAKET, SMedBERT realizes the
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entity/neighbor matching via a geometric objective, which results in an explicit per-token
knowledge graph alignment.

[129] General domain NLP; Dict-BERT focuses on augmenting BERT by concatenating definitions
of rare words via a per-token KG integration. They add two additional tasks atop the tradi-
tional MLM task. First, a task maximizing the mutual information between a masked rare
word (treated as a named entity) and its definition (represented as the per-token embedding
of the first mention of the entity in the concatenated definition). Second, a task discrimi-
nating valid rare word definition per-sequence embeddings from non rare-word definition
embeddings via a classification objective.

[44] Sentiment Analysis; SentiLARE integrates sentiment analysis and labels into pre-training by
including word polarity signals during masked language modelling and embedding and
augmenting pre-training with a supervised sentence sentiment prediction. Word polarities
are determined via an external knowledge base integrated at the per-token level.

[140] Dialogue Modelling; SPIDER augments traditional MLM and NSP pre-training with two
tasks specific to dialogue modelling: first, utterance order prediction, in which individual
utterances (which are nested within a larger sample) are shuffled and the true order is
predicted, and a geometric task ensuring that subject, verb, object triples from the utterances
obey a geometric relationship inspired by KG embedding methods.

G.5 Language modelling & Graph link-prediction realized as single-task classification

These methods all employ some variant of a graph link-prediction task over their data. However, they
all realize this link prediction task not by enforcing any relationship between independent sample
embeddings but rather by concatenating samples corresponding to linked (or unlinked, for negative
samples) pairs of vertices in the source graph, then framing the learning problem as a binary or
multi-class classification problem over the (now concatenated) single output whole sample embedding.
In doing so, they transform the task from one that implies a deep geometric constraint over the output
latent space to one that only enforces an intra-sample objective and imposes only a shallow geometric
constraint on the per-sample latent space.

[17] General domain NLP; Masked language model plus the binary classification of whether the
input text block is sequentially consistent, with samples chosen via true positive pairs vs.
randomly joined sentences. This can be seen as a link prediction task over a graph consisting
of independent, disconnected “sticks”, with each stick corresponding to sentences in the
documents in the corpus, in sequential order.

[52] General domain NLP; Masked language model plus the binary classification of whether the
input text block is sequentially consistent, with samples chosen via true positive pairs vs.
reordered positive sentence pairs. This can be seen as a link prediction task over a directed
graph consisting of independent, disconnected “sticks”, with each stick corresponding to
sentences in the documents in the corpus, in sequential order, with edge direction indicating
sequential ordering.

[124] General domain NLP; Masked language model plus the classification of whether the input text
block contains sentences from either (1) random documents, (2) a sequentially consistent
pair within a single document, or (3) within a pair of sentences within two linked documents
according to a document linking graph G. This can be seen as a link prediction/edge
classification task over a graph whose nodes are text blocks in the corpus, with two distinct
edge modalities. First, to capture sequential consistency within a document, one edge
type produces a set of independent, disconnected “sticks”, with each stick corresponding
to sentences in the documents in the corpus, in sequential order. Second, to capture the
document linking graph G, sentences in a document Di are all linked to all sentences in a
document Dj if and only if documents i and j are linked in G.

[51] General domain NLP; While this model incorporates an interesting per-token syntatic knowledge
distillation procedure, at a per-token level it merely leverages BERT’s NSP loss [17].
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G.6 Language modelling & Single-task Classification

[73] Protein sequences; Masked language model plus the multi-class classification of to which
protein family an input sequence belongs. Uses non-standard whole-sequence embedding
procedure (no [CLS] token).

[111] General domain NLP; StructBERT includes masked language modelling, a token permutation
language modelling task, and an extended version of the NSP/SOP task at a per-sample
level.

G.7 Language modelling & Multi-task Classification

[63] General domain NLP; Masked language model plus multi-task classification across various
NLP tasks.

[37] Graph data; This model uses a masked imputation task similar to a masked language model and
a highly multi-task supervised whole-graph level prediction. On this non-NLP domain, [37]
finds that the multi-task whole-graph level task is essential for performance.

[70] EHR Timeseries data; This model uses a masked imputation task similar to a masked language
model over time series data and a multi-task supervised whole-sequence prediction task.
On this non-NLP domain, [70] finds the multi-task whole-sequence level task essential for
performance.

G.8 Language modelling & whole-sample graph-based contrastive objectives

[112] General domain NLP; KEPLER augments traditional MLM on text samples with a constraint
ensuring the (per-sample) embeddings of entity descriptions pulled from pre-specified
knowledge graphs (KGs) reflect geometric constraints, leveraging the [105] geometric
constraints. As we will see in our theoretical analyses, these constraints are much more
restrictive on the latent space geometry and thus imply a greater encoding of domain
knowledge in the model. Note that JAKET [128] also leverages entity descriptions in its
per-token encoding. However, these descriptions are (1) extracted via per-token embeddings,
using the first mention of the token, not whole-sample embeddings, and (2) integrated
back into the original text in a per-token manner, not optimized over directly via geometric
constraints as in KEPLER.

[21] Molecules; CK-GNN designs a pre-training scheme for molecular graphs in which a molecular
GNN is trained to produce molecule embeddings that obey the similarity structure of a 1-NN
graph in a cluster-limited molecular fingerprint space (using the Dice similarity coefficient).
Unlike the NLP approaches, this method has no intra-sample (i.e., per-token, where here
“token” refers to individual atoms within the molecular graph) pre-training task.

[40] Multi-lingual NLP; Much like KEPLER, XLM-K augments traditional MLM with two tasks
that constrain the geometry of the per-sample latent space via a (now multi-lingual) graph
of entity descriptions linked to sentences containing said entities. Like KEPLER, as the
graph connections here are defined only for entity descriptions and not all free-text, the
latent space regularization is only over a limited slice of the space.

[28] General domain NLP/IR; WebFormer designs a pre-training scheme leveraging the structure
of DOM trees in HTML pages to impose multiple per-sample and per-sample/per-token
hybrid constraints that encourage individual samples to be (a) close to noised versions
of themselves based on reordering or masking and (b) to be close to representations of
their parent/child nodes in the DOM tree, thus imposing a structural penalty geometrically.
By mixing per-sample and per-token tasks, WebFormer even more closely entangles the
per-sample and per-token latent spaces in their model, and this approach bears closer study
in other contexts.

G.9 Language modelling & whole-sample augmentation/noising based contrastive objectives

[50] General domain NLP; InfoWord incorporates an objective alongside masked language modelling
which pushes the whole-sample embedding of a sentence to have high mutual information
with various sub-contexts within that sentence and low mutual information with sub-contexts
of other sentences.
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[26] General domain NLP; DeCLUTR optimizes for masked language modelling alongside a con-
trastive objective comparing anchor spans to positive spans chosen from within individual
samples, contrasted against spans from other samples. This is considered “whole-sample”
rather than a per-token contrastive loss as the embeddings of the spans (which can be quite
long) are produced via a canonicalized pooling operation used for sentence embeddings.

[116] General domain NLP; CLEAR optimizes for masked language modelling alongside a con-
trastive objective powered by per-sentence noising strategies, including word or span dele-
tion, reordering, and synonym substitution.

[71] General domain NLP; COCO-LM builds on other discriminative language modelling variants
such as ELECTRA [12] by adding two additional tasks. First, a true language modelling
task atop the auxiliary-model-driven corrupted input text. Second, a contrastive objective
pushing corrupted sentences towards their un-corrupted originals and those derived from
distinct sentences farther apart.

[8] General domain NLP; Semantic re-tuning via contrastive tension adds a pre-training objective
onto language model pre-training. This is done to encourage the final per-sample representa-
tions of a single sentence embedded via two otherwise independently trained models to be
similar and those of different sentences to be distinct.

[22, 127, 126, 80, 134] Networks; KCL,GraphCL, JOAO, MICRO-Graph and GCC use
augmentation-based contrastive learning pre-training methods for network datasets. KCL
is notable as it is (1) specialized for molecular graphs and (2) uses a knowledge-derived
augmentation strategy that constructs a knowledge enriched version of an input molecular
graph as its “augmentation policy.” MICRO-Graph is also notable as its contrastive objective
compares a graph to dynamically clustered “motif” subgraphs from within said graph as
positive pairs.

[96] General domain NLP; GLM integrates a per-token KG through traditional entity masking (albeit
with an improved selection mechanism) and a per-sample contrastive objective that uses the
entity knowledge graph to generate distractor negative samples for the contrastive learning
task.

[67] General domain NLP & Computer Vision; CAPT proposes a noising based contrastive learning
loss in substitution for the masked language modelling loss of BERT. They employ no
per-token pre-training task.

[141] Protein Sequences/Structures; GearNet introduces a vehicle for pre-training not over protein
sequences, but rather over protein structures, realized as graphs. They combine intra-
sample/per-amino-acid tasks, including prediction of masked node features and prediction
of geometric relationships between nodes as implied by the protein graphs, and a per-sample
noising based contrastive objective.

G.10 Language modelling & multi-modal or multi-lingual contrastive objectives

Note that by viewing multiple data modalities as “augmentations” of the data samples, one can realize
these methods (in general) as examples of augmentation-based contrastive learning objectives, such
as those used in [25]. However, as these methods are common, we highlight them explicitly here.

[11] General domain NLP; InfoXLM focuses on multi-lingual pre-training, and leverages per-token
tasks. This includes multi-lingual masked language modelling and translation language
modelling (i.e., variations on a traditional masked language modelling task). It also in-
corporates a cross-lingual per-sample contrastive objective that aligns the geometry of the
latent spaces across distinct languages. One important nuance is that they use different
layer depths to define the latent space for their cross-lingual contrastive objective vs. their
per-token objectives, which is not natively describable in our framework. In addition, as each
monolingual corpus lacks any rich, independent per-sample task, any individual monolingual
latent space cannot be guaranteed to have any rich structural constraints.
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G.11 Language modelling alone with relationally-concatenated samples

These methods concatenate samples together before processing them with a pre-training encoder based
on inter-sample relations. This is an orthogonal direction to adding greater per-sample dependencies
to pre-training methods than our framework but warrants commentary nonetheless.

[85] Protein sequences; MSA transformers extend protein-sequence language models such that they
do not take in as input a single sequence but rather an entire multiple-sequence alignment
(MSA) profile. These profiles consist of many sequences corresponding to evolutionary
homologs of the same protein. This concatenated input is processed via a sparsified form of
axial self-attention, which enables cross-attention between the various aligned sequences.
They impose no per-sequence tasks by default in this architecture.

[53] General domain NLP; This theoretical analysis shows that transformers cannot model depen-
dencies between sentences that never appear in the same example during pre-training. To
combat this, they propose concatenating samples via inter-sample relations (in particular, via
a kNN method) at pre-training time, enabling a greater diversity of cross-attention contexts
during pre-training vs. fine-tuning. Thus, while they only use language modelling during
pre-training, they speculate that their sample-augmentation procedure helps the model better
reason about per-sample information through per-token tasks.

[6] General domain NLP; CDLM proposes to concatenate multiple related documents (leveraging
categorical information to cluster documents) together into a single sample prior to per-
forming traditional masked language modelling. To limit the model’s complexity, attention
is restricted to intra-document for unmasked tokens but allowed to be global for masked
tokens.

[30] General domain NLP; REALM uses a latent variable model to learn a relevance score between
input text spans and documents in an auxiliary document base. The top-k documents,
according to this relevance score, are then concatenated to the input prior to solving the
masked language modelling task used during pre-training. In this way, the model learns
to join relevant documents from an external knowledge base in accordance with which
documents would most improve the masked language modelling objective. In addition,
by learning this relevance score, the model introduces an implicit whole-sample structural
constraint on the latent space according to the unsupervised clustering induced by relevance
assignment.

G.12 Autoencoding & Unsupervised Clustering

[54] General domain NLP; MARGE deviates significantly from the norm by not employing any form
of language modelling or other forms of a per-token pre-training task. Instead, it employs
only a per-sample contextualized autoencoding objective and an unsupervised per-sample
retrieval step (to provide context for said autoencoding). While this approach does provide
a deeper form of a per-sample structural constraint than many other approaches, it is also
implicit and has no mechanism for injecting domain knowledge. MARGE is also tested
solely on downstream tasks at the per-sample level, so it is unclear if this method would
offer reduced benefits for per-token downstream tasks.

G.13 Methods orthogonal to our framework

[64] KG-BART is a text-generation model that leverages per-token knowledge after a text-encoder to
enrich the generated text with information from a textual knowledge graph (in a per-token
manner). It is neither used for general pre-training nor does it leverage any additional
per-sample constraints.

[122] Text-based Knowledge Graphs; This work produces embeddings of nodes in KGs by com-
bining transformer-based text encodings with graph convolutional network KG embedding
methods, leveraging link prediction as the pre-training task. Entity descriptions / textual
features represent the individual nodes. Link prediction can be seen as inducing a geometric
constraint via the connectivity of the knowledge graph on whole-sample embeddings. How-
ever, given that relationships are used in encoding the data as well, GraphFormer cannot be
used in a context where KG links may not be observed at FT time. It should be seen not
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as a general text PT method but as an advanced KG embedding mechanism, so it does not
directly fall under our framework.

[1] KeLM (unrelated to KELM [66]) is a method for converting a free-text KG into textual nodes
so language modelling can be used over that corpus and is orthogonal to the methods of
pre-training.

[87] This paper is a method for populating a KG from free-text via BERT. It has no bearing on
incorporating structure or knowledge into PT and is irrelevant to our framework.

[133] This paper presents a method to drop redundant triples from a knowledge graph and a regular-
ization technique to limit the impact of added irrelevant knowledge to per-token knowledge-
enhanced PT methods such as ERNIE [139].

[123] Knowledge Graph Completion; KG-BERT is a method for knowledge graph completion in
which textual representations of entities and relations in KGs are embedded by fine-tuning a
pre-trained BERT style transformer for link prediction over a given KG. As this is only for
knowledge graph completion, it is orthogonal to our study of pre-trained models in general.

[109] Knowledge Graph Completion; Much like KG-BERT, SimKGC is a method for knowledge
graph completion that fine-tunes a BERT model via a contrastive loss over a fixed knowledge
graph for link prediction. Though their methodology overlaps with ours in that both use
variants of contrastive losses and SimKGC explores more complex negative sampling
strategies, the two methods are still very different. Ours is focused on general pre-training
and uses a single encoder and a unified latent space. In contrast, SimKGC is only examined
for KG completion and encodes head and tail entities via separate encoders.

[115] Event Extraction (EE); CLEVE designs a pre-training method specifically for event extraction.
Their pre-training method includes a text-encoder which includes a cross-event contrastive
loss pushing individual tokens from the same “event” closer together than those from
different events, which bears a surface similarity to our approach. In addition, they add a
graph encoder over the semantic structure of events. Their methodology is focused solely
on EE, which is orthogonal to our more general PT framework.

[47] General domain NLP and Computer Vision; ViLT is a method for pre-training aligned text-image
pairs. It leverages masked language modelling, an image-text matching binary classification
objective, and a contrastive objective comparing image and text representations. This
multi-modal contrastive objective is very similar (insofar as it relates to our framework) to
those works that perform multi-lingual or other multi-modal contrastive methods. In ViLT,
however, the transformer architecture processes images and text jointly in a single encoder,
so it is not well suited for use on only images or only text. This, combined with its focus on
computer vision, renders it orthogonal to our framework.

[57] General domain NLP and Computer Vision; StructuralLM proposes a new method of pre-
training for scanned documents that takes advantage of the structure of the document w.r.t.
images and text simultaneously. As their focus is on cross-modal pre-training of text and
image alignment, it is orthogonal to our work.

[20] General domain NLP and Computer Vision; This paper proposes a framework for simultaneous
(and continuous) discovery of edges in a multi-modal knowledge graph and the leveraging
of that knowledge graph to inform representation learning. However, it is not suitable for
our framework for two reasons. First, like ViLT, it is focused on image-text alignment
pre-training. Second, when producing node (e.g., images or text snippets) representations,
it requires connectivity information in the associated multi-modal knowledge graph. In
contrast, our methods take as input only elements from X .

[61] Named Entity Linking; SapBERT is a method for aligning the output of a pre-trained language
model with a per-token knowledge graph through a metric learning loss applied at a per-
sample level but only over entity names (not even entity descriptions). As it applies this as
a secondary, post-PT stage, and this method only optimizes for alignment between entity
names and a static KG, it is not a general PT framework. It is thus orthogonal to our efforts
here.

[68] Information Retrieval; HARP is a method for specializing pre-training towards ad-hoc query
information retrieval. They introduce four retrieval-specific pre-training tasks leveraging
hyperlinks in Wikipedia articles in addition to traditional masked language modelling. Rather
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than using the raw text of the hyperlinks or the per-sample representations of text spans
containing hyperlinks, both of which are explored in [7], these authors use attention weights
to extract various “queries” from the underlying text and match those against possible
destination pages via contrastive losses. This, therefore, does not impose a constraint on
the latent space over the original pre-training dataset X (but instead introduces a new latent
space consisting of query spans) and is further specialized exclusively for ad-hoc retrieval
tasks.

[41] Node Embedding for Heterogeneous Graphs; CPT-HG is a contrastive pre-training framework to
embed nodes in a heterogeneous network. Unlike in our setting, where the pre-training graph
GPT is only used as an implicit input to derive the loss function, in CPT-HG the graph (with
entire edge connectivity information) is the input to the problem. Thus, node embeddings
will rely on connectivity information, which is not permissible in our pre-training context.
So, this method is orthogonal to our study here.

[9] Expert Matching; CODE is a method specifically and exclusively designed to discover appropriate
experts in an employment/contracting setting and is thus orthogonal to our framework, which
is focused on more general pre-training.

G.14 Methods that only change things at FT time

[72] Biomedical domain NLP; MOP does not change anything at PT time but trains sub-KG adapters
on entity recognition tasks prior to FT to infuse entity knowledge into the PT method. It is a
per-token pre-training method.

[62] General domain NLP; K-BERT, at PT time, is actually equivalent to BERT [17]. However, it
does do other interesting things at FT time, including augmenting the sentence flow with
injected per-token knowledge graphs and limiting self-attention to only flow along links
supported by the original sentence or the injected knowledge. However, as this is only true
at FT time, it is equivalent to BERT at PT time.

[86] General domain NLP; This model, at PT time, is equivalent to BERT [17]. Like [62]. However,
it specializes in a fine-tuning procedure for sentence information retrieval tasks, similar to
how PT is adapted in this framework.

[121] General domain NLP; ConSERT adds an auxiliary specialization stage after pre-training to
fine-tune sentence representations. This new stage imposes a SimCLR [10] style data-
augmentation/noise-invariance based contrastive learning objective, using adversarial pertur-
bations, token shuffling, token/feature/span erasure, and dropout noising methods.

[138] General domain NLP; IS-BERT does not modify anything from traditional BERT at pre-
training time. However, they add a second PT stage to optimize sentence representations
alone using an auxiliary feature extractor in the form of various CNNs applied atop BERT
token representations. The final sentence representation is trained to maximize mutual
information with various sub-contexts within the sentence but low mutual information with
other sentences. In this second pre-training stage, there is no language modelling performed.
As this approach only adapts an auxiliary featurizer to produce sentence encodings and is
not intended for general transfer learning, it is inappropriate for our framework. A similar
work that integrates both components during pre-training, and thus is relevant in our work is
[50] and is discussed above.

[66] General domain NLP; KELM does not modify PT objective but instead enhances a model at
FT time by injecting per-token knowledge via a GNN module atop the pre-trained LM
embeddings via a unified text-entity graph. It is similar to KBERT [62] in this way but
resolves other issues with that approach relating to knowledge ambiguity and by supporting
multi-hop reasoning, again over the per-token embeddings.

[19] General domain NLP; KI-BERT augments BERT with KG-specific information via joint token-
entity embeddings and information fusion but does this only at FT time.

[119] General domain NLP; K-XLNet introduces a secondary FT stage in which knowledge injectors
throughout an XL-Net architecture are further trained to leverage knowledge (encoded via
free-text entity descriptions) that is injected into input sentences alongside matched tokens.
It does not modify the XL-Net PT stage at all.
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[110] General domain NLP; K-Adapter proposes to pre-train various knowledge adapters that can
be used alongside a pre-trained language model at a fine-tuning time. Thus, while there
is a pre-training process for the adapters, this process does not modulate the original pre-
trained language model. In addition, both adapters pre-trained in this work are based on
per-token knowledge graphs; one leverages concatenated entity embeddings to perform
relation classification, and another predicts which token in the sentence is the “head” in a
dependency parse tree, so no per-sample constraints are applied.

[78] General domain NLP; E-BERT injects per-token knowledge into BERT by first aligning em-
beddings of a knowledge graph with the input word piece embedding space of a (fixed,
pre-trained) BERT model, then using various strategies to input them alongside their source
mentions in FT text. They do no additional pre-training, so this model only affects the model
at FT time.

[27] General domain NLP; [27] augment LMPT methods with an additional, pre-FT procedure
in which the model is further trained using a supervised, per-sample metric learning task
leveraging FT labels directly to form the classes used for metric learning. They do not
materially change the task-independent PT procedure, though their FT metric learning
procedure does induce some structure at the per-sample level.

[137] QA; GreaseLM is a method for fusing information from knowledge graphs into pre-trained
language models. It shares many similarities with methods that do this for pre-training
purposes, such as JAKET [128], CokeBERT [99], SMedBERT [135], and Bert-MK [34].
However, unlike these methods, it only employs these techniques at the fine-tuning time,
for question answering tasks specifically. As it is not focused on general pre-training, it is
outside our scope.

[45] Language modelling; kNN language models improve the text generation powers of language
models by augmenting traditional decoding with a nearest-neighbor lookup operation over a
text datastore leveraging the embeddings of a token’s leftward context by the language model
to judge nearest neighbors. However, it involves no additional language model training and
can only be applied at the fine-tuning time to aid in text generation, and is thus out of our
scope.

[46] Sentence embedding; NT-Xent proposes a secondary specialization stage after pre-training
only for generating sentence embeddings. To do this, they employ a contrastive objective
contrasting the final CLS embeddings of an updating, specialized BERT model against a
pooled aggregate of the per-token embeddings across all layers of the pre-trained BERT
model used to initialize the specialized sentence embedding model.

[56, 98, 38] Sentence Embedding; These methods propose to use unsupervised per-sample smoothing
operations (a normalizing flow network in [56] and a mean/covariance standardization
whitening operation in [98, 38]) on the per-sample embeddings after pre-training in order to
produce higher quality per-sample embeddings.

[25] General domain NLP; SimCSE extends traditional MLM by imposing a second pre-training
stage for optimizing sentence embeddings. In this stage, SimCSE optimizes the transformer
such that the whole-sample embeddings satisfy either a supervised or unsupervised con-
trastive learning objective. In the supervised case, this is based on labeled sentence pairs
according to a Natural Language Inference (NLI) task, with entailment pairs being treated
as positives and contradiction pairs as hard negatives. In the unsupervised case, this is based
solely on applying multiple dropout masks to the same sentence to generate positive pairs.
Any two distinct sentence inputs are treated as negative samples. This extra pre-training
stage is applied to a relatively small number of samples (106) relative to the entire PT cohort,
which may help prevent catastrophic forgetting of the original pre-training objective.

[14] Academic NLP; SPECTER extends traditional language model pre-training by imposing a
second pre-training stage for optimizing document embeddings (realized as [CLS] token
embeddings of concatenated academic paper titles and abstracts). This stage uses a triplet-
based geometric loss to ensure that these per-sample embeddings reflect the structure of a
pre-specified citation network. This is a form of an explicit, structural constraint; however,
they do not ever test fully fine-tuning the SPECTER model in their paper and only compare it
against other, frozen pre-trained language models. This is likely to have a significant impact
on model comparisons. Similar to SimCSE [25], this extra pre-training stage is applied to a
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small number of samples (146K documents) to help prevent catastrophic forgetting of the
original pre-training objective.

[7] General domain NLP; This paper introduces a second pre-training stage after multi-lingual
masked language modelling. In this second stage, hyperlinks in the source text (drawn
from Wikipedia) are matched via single-task classification to a curated set of destination
URL categories, collapsing all URLs pointing to the same Wikipedia page across languages
into one. They do this classification in several ways, including incorporating the per-
sample representation of the text span rather than merely the hyperlink token representations
themselves (likely motivated by the likelihood of only a single hyperlink being present in
the source text). We can realize this task as instances of several other common paradigms:
(1) Single-task classification applied to the per-sample representation, (2) link prediction
in a graph linking cross-lingual Wikipedia pages together, or (3) as an example of named
entity recognition. This second stage is only allowed to modify the last two layers of the
transformer architecture, which may be a vehicle to prevent catastrophic forgetting.

[120] Sentiment Analysis; SAKG-BERT augments a pre-trained language model with a sentiment-
analysis knowledge graph at the fine-tuning time only by concatenating relevant relationships
from the KG based on sentiment-laden terms appearing in the review to the raw input text.
They do not otherwise change the pre-training or fine-tuning process.

48


	Introduction
	Motivation
	The importance of per-sample PT tasks in non-NLP domains
	Weaknesses of existing per-sample PT tasks

	Our New PT Framework: Structure-Inducing Pre-training (SIPT)
	General Pre-Training Problem Formulation
	SIPT Framework
	Theoretical Analyses

	Validating SIPT via Real-world Experiments
	Experimental Goals and General Procedures
	Datasets and Tasks
	LSI and Training Procedures
	Results

	Conclusion
	Further Details on Why LMPT is Less Effective in non-NLP Domains
	Per-token vs. Per-sample Latent Space: Definition of Z
	Why is NLP Different than Other Domains?

	Our Review of NLP-derived PT Methods
	Defining Explicit and Deep Structural Constraints
	Pre-training Review Methodology
	Review Findings
	Further Analysis of Reviewed Methods

	Further Details on SIPT
	Constraints on LSI in our Framework
	Realizing Existing Methods in our Framework
	Structure-inducing Losses Examined in this Study
	Additional Choices within the SIPT Framework

	Further Details and Proofs of SIPT Theory
	Corollaries of Theorem 1
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Corollary 2

	Semi-synthetic Experiments Validating Theoretical Results
	Pre-training & fine-tuning datasets
	Pre-training graphs
	Network Architecture & Hyperparameters
	Experimental setup
	Semi-synthetic Results
	SIPT improves performance over LM PT by 0.26 0.13 AUROC on graphs where the topic task has a high local consistency
	SIPT's empirical results are in agreement with theoretical findings
	SIPT is robust to incomplete and noisy pre-training graphs
	SIPT pre-trained embeddings show stronger clustering than LM PT embeddings

	Conclusions

	Further Details on Real-world Experiments
	Further Details on the Proteins Dataset and FT tasks
	Further Details on the Abstracts Dataset and FT tasks
	Further Details on the Networks Dataset and FT tasks
	Further Details on Experimental Procedure
	Further Details on Ablation Studies
	Further Details on Choosing SI
	Further Details on Architecture & Hyperparameters
	Further Details on Implementation and Compute Environment
	Full Results
	SIPT Results are in Accordance with Theory and Guiding Hypothesis

	Review of Language Model Pre-training Methods
	Language modelling alone
	Language modelling & templated tasks/prompting as language modelling
	Language modelling & Per-token KG Integration
	Language modelling, Per-token KG Integration, & Supervised Classification
	Language modelling & Graph link-prediction realized as single-task classification
	Language modelling & Single-task Classification
	Language modelling & Multi-task Classification
	Language modelling & whole-sample graph-based contrastive objectives
	Language modelling & whole-sample augmentation/noising based contrastive objectives
	Language modelling & multi-modal or multi-lingual contrastive objectives
	Language modelling alone with relationally-concatenated samples
	Autoencoding & Unsupervised Clustering
	Methods orthogonal to our framework
	Methods that only change things at FT time


