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ABSTRACT

We introduce two synthetic likelihood methods for Simulation-Based In-
ference (SBI), to conduct either amortized or targeted inference from ex-
perimental observations when a high-fidelity simulator is available. Both
methods learn a conditional energy-based model (EBM) of the likelihood
using synthetic data generated by the simulator, conditioned on parameters
drawn from a proposal distribution. The learned likelihood can then be
combined with any prior to obtain a posterior estimate, from which sam-
ples can be drawn using MCMC. Our methods uniquely combine a flexible
Energy-Based Model and the minimization of a KL loss: this is in contrast
to other synthetic likelihood methods, which either rely on normalizing
flows, or minimize score-based objectives; choices that come with known
pitfalls. Our first method, Amortized Unnormalized Neural Likelihood
Estimation (AUNLE), introduces a tilting trick during training that allows
to significantly lower the computational cost of inference by enabling the
use of efficient MCMC techniques. Our second method, Sequential UNLE
(SUNLE), utilizes a new conditional EBM learning technique in order to
re-use simulation data and improve posterior accuracy on a specific dataset.
We demonstrate the properties of both methods on a range of synthetic
datasets, and apply them to a neuroscience model of the pyloric network in
the crab, matching the performance of other synthetic likelihood methods
at a fraction of the simulation budget.

1 INTRODUCTION

Simulation-based modeling expresses a system as a probabilistic program (Ghahramani, 2015),
which describes, in a mechanistic manner, how samples from the system are drawn given the
parameters of the said system. This probabilistic program can be concretely implemented in
a computer - as a simulator - from which synthetic parameter-samples pairs can be drawn.
This setting is common in many scientific and engineering disciplines such as stellar events
in cosmology (Alsing et al., 2018; Schafer & Freeman, 2012), particle collisions in a particle
accelerator for high energy physics (Eberl, 2003; Sjostrand et al., 2008), and biological
neural networks in neuroscience (Markram et al., 2015; Pospischil et al., 2008). Describing
such systems using a probabilistic program often turns out to be easier than specifying the
underlying probabilistic model with a tractable probability distribution. We consider the
task of inference for such systems, which consists in computing the posterior distribution
of the parameters given observed (non-synthetic) data. When a likelihood function of the
simulator is available alongside with a prior belief on the parameters, inferring the posterior
distribution of the parameters given data is possible using Bayes’ rule. Traditional inference
methods such as variational techniques (Wainwright & Jordan, 2008) or Markov Chain Monte
Carlo (Andrieu et al., 2003) can then be used to produce approximate posterior samples
of the parameters that are likely to have generated the observed data. Unfortunately, the
likelihood function of a simulator is computationally intractable in general, thus making the
direct application of traditional inference techniques unusable for simulation-based modelling.

Simulation-Based Inference (SBI) methods (Cranmer et al., 2020) are methods specifically
designed to perform inference in the presence of a simulator with an intractable likelihood.
These methods repeatedly generate synthetic data using the simulator to build an estimate of
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the posterior, that either can be used for any observed data (resulting in a so-called amortized
inference procedure) or that is targeted for a specific observation. While the accuracy of
inference increases as more simulations are run, so does computational cost, especially when
the simulator is expensive, which is common in many physics applications (Cranmer et al.,
2020). In high-dimensional settings, early simulation-based inference techniques such as
Approximate Bayesian Computation (ABC) (Marin et al., 2012) struggle to generate high
quality posterior samples at a reasonable cost, since ABC repeatedly rejects simulations that
fail to reproduce the observed data (Beaumont et al., 2002). More recently, model-based
inference methods (Wood, 2010; Papamakarios et al., 2019; Hermans et al., 2020; Greenberg
et al., 2019), which encode information about the simulator via a parametric density (-ratio)
estimator of the data, have been shown to drastically reduce the number of simulations
needed to reach a given inference precision (Lueckmann et al., 2021). The computational
gains are particularly important when comparing ABC to targeted SBI methods, implemented
in a multi-round procedure that refines the estimation of the model around the observed
data by sequentially simulating data points that are closer to the observed ones (Greenberg
et al., 2019; Papamakarios et al., 2019; Hermans et al., 2020).

Previous model-based SBI methods have used their parametric estimator to learn the
likelihood (e.g. the conditional density specifying the probability of an observation being
simulated given a specific parameter set, Wood 2010; Papamakarios et al. 2019; Pacchiardi &
Dutta 2022), the likelihood-to-marginal ratio (Hermans et al., 2020), or the posterior function
directly (Greenberg et al., 2019). We focus in this paper on likelihood-based (also called
Synthetic Likelihood; SL, in short) methods, of which two main instances exist: (Sequential)
Neural Likelihood (Papamakarios et al., 2019), which learns a likelihood estimate using
a normalizing flow trained by optimizing a Maximum Likelihood (ML) loss; and Score
Matched Neural Likelihood (Pacchiardi & Dutta, 2022), which learns an unnormalized (or
Energy-Based, LeCun et al. 2006) likelihood model trained using conditional score matching.
Recently, SNL was applied successfully to challenging neural data (Deistler et al., 2021).
However, limitations still remain in the approaches taken by both SNL and SMNL. One
the one hand, flow-based models may need to use very complex architectures to properly
approximate distributions with rich structure such as multi-modality (Kong & Chaudhuri,
2020; Cornish et al., 2020). On the other hand, score matching, the objective of SMNLE,
minimizes the Fisher Divergence between the data and the model, a divergence that fails to
capture important features of probability distributions such as mode proportions (Wenliang &
Kanagawa, 2020; Zhang et al., 2022). This is unlike Maximimum-Likelihood based-objectives,
whose maximizers satisfy attractive theoretical properties (Bickel & Doksum, 2015).

Contributions. In this work, we introduce Amortized Unnormalized Likelihood Neural
Estimation (AUNLE), and Sequential UNLE, a pair of SBI Synthetic Likelihood methods
performing respectively sequential and targeted inference. Both methods learn a Conditional
Energy Based Model of the simulator’s likelihood using a Maximum Likelihood (ML) objective,
and perform MCMC on the posterior estimate obtained after invoking Bayes’ Rule. While
posteriors arising from conditional EBMs exhibit a particular form of intractability called
double intractability, which requires the use of tailored MCMC techniques for inference, we
train AUNLE using a new approach which we call tilting. This approach automatically
removes this intractability in the final posterior estimate, making AUNLE compatible with
standard MCMC methods, and significantly reducing the computational burden of inference.
Our second method, SUNLE, departs from AUNLE by using a new training technique for
conditional EBMs which is suited when the proposal distribution is not analytically available.
While SUNLE returns a doubly intractable posterior, we show that inference can be carried
out accurately through robust implementations of doubly-intractable MCMC methods. We
demonstrate the properties of AUNLE and SUNLE on an array of synthetic benchmark
models (Lueckmann et al., 2021), and apply SUNLE to a neuroscience model of the crab
Cancer borealis, increasing posterior accuracy over prior art while needing only a fraction of
the simulations required by the most efficient prior method (Glockler et al., 2021).

2 BACKGROUND

Simulation Based Inference (SBI) refers to the set of methods aimed at estimating the
posterior p(f|z,) of some unobserved parameters 6 given some observed variable z, recorded
from a physical system, and a prior p(f). In SBI, one assumes access to a simulator
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Figure 1: Performance of SMNLE, NLE and AUNLE traing using a simulator with a bimodal
likelihood p(z]@), and a gaussian prior p(f) using 1000 samples. Top: Simulator likelihood
p(x]6p) for some fixed 6y. Bottom: posterior estimate.

G : (0,u) — y = G(0,u), from which samples y|f can be drawn, and whose associated
likelihood p(y|@) accurately matches the likelihood p(z|f) of the physical system of interest.
Here, u represents draws of all random variables involved in performing draws of z|f. By
a slight abuse of notation, we will not distinguish between the physical random variable x
representing data from the physical system of interest, and the simulated random variable
y draw from the simulator: we will use x for both. The complexity of the simulator
(Cranmer et al., 2020) prevents access to a simple form for the likelihood p(z|6), making
standard Bayesian inference impossible. Instead, SBI methods perform inference by drawing
parameters from a proposal distribution 7(6), and use these parameters as inputs to the
simulator G to obtain a set of simulated pairs (z,6) which they use to compute a posterior
estimate of p(0|z). Specific SBI submethods have been designed to handle separately the
case of amortized inference, where the practitioner seeks to obtain a posterior estimate valid
for any x, (which might not be known a priori), and targeted inference, where the posterior
estimate should maximize accuracy for a specific observed variable x,. While amortized
inference methods set their proposal distribution 7 to be the prior p, targeted inference
methods iteratively refine their proposal 7w to focus their simulated observations around the
targeted x, through a sequence of simulation-training rounds (Papamakarios et al., 2019).

2.1 (CONDITIONAL) ENERGY-BASED MODELS.

Energy-Based Models (LeCun et al., 2006) are unnormalized probabilistic models of the form

o= Bu(@)

gy(x) = 72(11)) . Z(Y) :/e—EW(”)dx,

where Z(v) is the intractable normalizing constant of the model, and Ey, is called the energy
function, usually set to be a neural network with weights . By directly modelling the density
p(z) of the data through a flexible energy function, simple EBMs can capture rich geometries
and multi-modality, whereas other model classes such a normalizing flows may require a
more complex architecture (Cornish et al., 2020). The flexibility of EBMs comes at the cost
of having an intractable density g, (z) due to the presence of the normalizer Z(v), increasing
the challenge of both training and sampling. In particular, an EBM’s log-likelihood log gy,
and associated gradient V., log ¢y both contain terms involving the (intractable) normalizer
Z(¢) intractable intractable

log qy(x) = —Ey(x) —log Z(1), Vylogqy(r) = =VyEy(x) + Epmg, Vi EBy(x) .

making ezact training of EBMs via Maximum Likelihood impossible. Approximate likelihood
optimization can be performed using a Gradient-Based algorithm where at each iteration



Under review as a conference paper at ICLR 2023

k, the intractable expectation (under the EBM gy, ) present in V. log gy, is replaced by

one under a particle approximation q = % Zfil w;dy, of g,. The particles y@ forming q
are traditionally set to be samples from a MCMC chain with invariant distribution gy, ,
with uniform weights w; = %, while recent work on EBM for high-dimensional image data
uses an adaptation of Langevin Dynamics (Raginsky et al., 2017; Du & Mordatch, 2019;
Nijkamp et al., 2019; Kelly & Grathwohl, 2021). We outline the traditional ML learning
procedure for EBM in Algorithm 2, where make_particle_approx(q, o) is a generic routine
producing a particle approximation of a target unnormalized density ¢ and an initial particle

approximation §g.

Energy-Based Models are naturally extended to both joint EBMs ¢y, (6, z) = % (Kelly

& Grathwohl, 2021; Grathwohl et al., 2020) and conditional EBMs (CEBMs Khemakhem
et al. 2020; Pacchiardi & Dutta 2022) of the form:

@)= 0 g0 / By (@0)g )
qu(x|0) = , i) = | e H Yy,
Y 2(0.9)

Unlike joint and standard EBMs, conditional EBMs define a family of conditional densities
qy(x]0), each of which is endowed with an intractable normalizer Z(6, ).

2.2 SYNTHETIC LIKELIHOOD METHODS FOR SBI

Synthetic Likelihood (SL) methods (Wood, 2010; Papamakarios et al., 2019; Pacchiardi &
Dutta, 2022) form a class of SBI methods that learn a conditional density model gy (x|6) of
the unknown likelihood p(x|6) for every possible pair of observations and parameters (x, ).
The set {qy(z|6), ¥ € ¥} is a model class parameterised by some vector ¢ € ¥, which recent
methods set to be a neural network with weights 1. We describe the existing Neural SL
variants to date.

Neural Likelihood Estimation (NLE, Papamakarios et al. 2019) sets ¢, to a (normalized)
flow-based model, and is optimized by maximizing the average conditional log-likelihood
E(6)p(x|0) 108 ¢y (2]0). NLE performs inference by invoking Bayes’ rule to obtain an unnor-

malized posterior estimate py(0|z) = % o p(8)gy (x|0) from which samples can

be drawn either using MCMC, or Variational Inference (Glockler et al., 2021).

Score Matched Neural Likelihood Estimation (SMNLE, Pacchiardi & Dutta 2022)
models the unknown likelihood using a conditional Energy-Based Model gy (x|0) of the form
of Equation (2), trained using a score matching objective adapted for conditional density
estimation. The use of an unnormalized likelihood model makes the posterior estimate
obtained via Bayes’ Rule known up to a #-dependent term:

efE,/,(z,G)
qy(0]z) o p(0)qy (x0) o Z(Q)p(@)’ Z(0) = / e el g, 3)

intractable

Posteriors of this form are called doubly intractable posteriors (Mgller et al., 2006). In the
case where the likelihood ¢y (x]0) can be sampled from, Mgller et al. (2006); Murray et al.
(2006) have proposed tractable MCMC methods that draw an auxiliary variable y ~ gy (x(0)
at every iteration to compute the acceptance probability of the proposed sample. Importantly,
these MCMC methods still admit g, (6|z) as their invariant distribution, making inference
as exact as in standard MCMC methods. In the case of SMNLE however, ¢, (z|f) cannot be
tractably sampled from; SMNLE instead uses an approximate doubly intractable method,
which replaces the exact sample y by the result of an MCMC chain with invariant distribution
qy(x]0). Even though this variant introduces an additional approximation not present in
standard (“singly” intractable) MCMC algorithms, the distance between the true posterior
and the distributions of the MCMC samples can be bounded under specific assumptions
(Alquier et al., 2016).

Both the likelihood objective of NLE and the score-based objective of SMNLE do not involve
the analytic expression of the proposal 7, making it easy to adapt these methods for either
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amortized or targeted inference. To address the limitations of both methods mentioned in
the introduction, we next propose a method that combines the use of flexible Energy-Based
Models as in SMNLE, while being optimized using a likelihood loss as in NLE.

3 UNNORMALIZED NEURAL LIKELIHOOD ESTIMATION

In this section, we present our two methods, Amortized-UNLE and Sequential-UNLE. Both
AUNLE and SUNLE approximate the unknown likelihood p(x|6) for any possible pair of (z, 6)
using a conditional Energy-Based Model ¢y (2|6) as in Equation (2), where E,; is some neural
network. Additionally, AUNLE and SUNLE are both trained using a likelihood-based loss;
however, the training objectives and inference phases differ to account for the specificities of
amortized and targeted inference, as detailed below.

3.1 AMORTIZED UNLE

Given a likelihood model gy (z|6), a natural learning procedure would involve fitting a model
qy(z]0)7(0) of the true “joint synthetic” distribution 7(0)p(z|f), as NLE does. However, we
show that using an alternative — tilted — version of this model allows to compute a posterior
that is more tractable than the ones computed by other SL methods relying on conditional
EBMs such as SMNLE (Pacchiardi & Dutta, 2022). Our method, AUNLE, fits a joint
probabilistic model gy » of the form:

7(0)e~Fu(.0)
Zz(¥)
by maximizing its log-likelihood L, (%) := Er(g)p(x|6) [108 @y, (7, 0)] using an instance of

Algorithm 2. The gain in tractability offered by AUNLE is a direct consequence of the
following proposition, its joint model.

Proposition 1. Let Py := {qy(:|0) , ¢ € ¥}, and gy € Py. Then we have:

Qo (@,60) =  Za(w) = / (0)e=Ee=0 dpdp. 4)

o (likelihood modelling) qp - (x|0) = qy(x|0)

o (joint model tilting) qy,(x.6) = [(O)r(0)qy («|6), for F(8) := Z(0,0)/Zx(¥)

o ((Z, 0)-uniformization) If p(-|0) € Py, then the * minimizing L,(v)) satisfies:
qy (x]0) = p(10), and Z(0,4*) = Zx(¢*).

Proof. The first point follows by holding 6 fixed in gy - (z,6). To prove the second point,

- B, — B,
notice that gy (z,0) = ggz:ﬁg ”(O)ZE (Z) - 2(0(712/}))7'((9) ezg; w(;) For the last point, note that

at the optimum, we have that gy« »(x,0) = 7(0)p(x|0). Integrating out x on both sides of
the equality yields f(0)m(0) = 7(0), proving the result. O

Proposition 1 shows that AUNLE indeed learns a likelihood model gy (z|6) through a joint
model gy, tilting the prior # with f(6). Importantly, this tilting guarantees that the
optimal likelihood model will have a normalizing function Z(6;1) constant (or uniform) in 6,

-EB h* o
reducing AUNLE’s posterior to a standard unnormalized posterior gy« (0]z) = p(6) %7

from which samples can be drawn using classical MCMC techniques, as for NLE. AUNLE’s
posterior contrasts with the posterior of SMNLE (Pacchiardi & Dutta, 2022), an amortized
SBI method which also computes a posterior using a conditional EBM of the likelihood, but
that remains doubly intractable, as discussed in Section 2. The gain in tractability of AUNLE’s
posterior is beneficial from an inference accuracy standpoint as it removes the need to use an
otherwise approximate doubly-intractable technique when performing inference. Importantly,
such a property is also beneficial from a computational cost standpoint, since approximate
doubly-intractable methods require running an (inner) MCMC chain with target gy« (x|6)
for every iteration of the (outer) MCMC chain with target gy« (6]x), roughly squaring the
computational cost of standard MCMC methods. This computational advantage is all the
more important since AUNLE returns an amortized posterior, valid for any observed data
T, and which may be thus sampled from more than once. We confirm in Appendix B.3 that
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the (Z, 0)-uniformization of AUNLE’s posterior, which is only guaranteed in a well-specified
setting, at the true optimum ¥*, holds well in practice.

Algorithm 1 Amortized-UNLE Algorithm 2 maximize_ebm_log_1(D,vy)
Input: prior p(f), simulator G, budget N Input: Training Data D := {x giLN v 1, Initial
Output: Posterior estimate gy (6|z) EBM parameters g
Initialize 1, gy, » o e~ Fé0 @0 () Output: Density estimator g, (z, 0)
T=p Initialize ¢y, (3:) oc e Fuo @) gy oc 3, O(ai 07)
fOPZ'Z(),...,NdO fork:O K —1do
Draw 0 ~ 7, x ~ G(0, ) q := make partlcle approx(gy, ,q)

Add (0,z) to D G — N S VyEy, (27,01 +E;V By, (2, 6)

end for

Get ¢* := maximize_ebm_log_1(D, 1) Y1 = ADAM(¢y, @)
Set gy- (0]z) := e For (=0 p(9) end for

Infer using MCMC on gy~ (6]z) Return gy,

3.2 TARGETED INFERENCE USING SEQUENTIAL-UNLE

In this section, we introduce our second method, Sequential-UNLE (or SUNLE in short),
which performs targeted inference for a specific observation x,. SUNLE follows the traditional
methodology of targeted inference by splitting the simulator budget N over R rounds (often
equally), where in each round r, a likelihood estimate gy (z|0) in the form of a conditional
EBM is trained using all the currently available simulated data D. This allows to construct a

new posterior estimate gy (0]z)=e~Er @9 p(9) ) Z (1, 0) which is used to sample parameters

{O(i)}fvz/lR that are then provided to the simulator for generatlng new data 2* ~ G(0()). The
new data are added to the set D and are expected to be more similar to the observation of
interest x,. This procedure allows to focus the simulator budget on regions relevant to the
single observed data of interest x,, and, as such, is expected to be more efficient in terms of
the simulator use than amortized methods (Lueckmann et al., 2021). Next, we discuss the
learning procedure for the likelihood model and the posterior sampling.

Learning the likelihood. At each round r, the effective proposal 7 of the training data
available can be understood (provided the number of data points drawn at reach rounds is
randomized) as a mixture probability: 7 := (7 (0)+qys (0]z,)+ . .. +qy:_ (0]7,)) which is
used to update the likelihood model. In this case, the analytical form of 7 is unavailable as it
requires computing the normalizing constants of the posterior estimates at each round, thus
making the tilting approach introduced for AUNLE impractical in the sequential setting.
Since currently available likelihood objectives (Kelly & Grathwohl, 2021; Du & Mordatch,
2019) for EBMs take as input unconditional (or joint) EBMs, a likelihood learning approach
building on such objectives would require modeling and learning the entire joint distribution
m(0)p(x|0) including the proposal 7(6). This latter point is problematic since 7 is not needed
for inference, and can be highly complex (as it is set to be the current posterior estimate),
increasing the difficulty of training. Instead, SUNLE learns a likelihood model maximizing
the average conditional log-likelihood,

intractable

Vo Ey(z 9)—|—Eqw(.|9i)vq/)Ed,(m.,Hi)) (5)

an

N
1 o
= E log qy(2*60"), VL) =
i=1

where (2%, 0%)¥ | are the current samples. Unlike standard EBM objectives, this loss directly
targets the likelihood ¢y (x|6), thus bypassing the need for modelling the proposal 7. We
propose in Algorithm 4 a method that optimizes this objective (previously used for normalizing
flows in Papamakarios et al., 2019) when the density estimator is a conditional EBM. The
intractable term of Equation (5) is an average over the EBM probabilities conditioned on all
parameters from the training set, and thus differs from the intractable term of (1), composed
of a single integral. Algorithm 4 approximates this term during training by keeping track of
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one particle approximation g; = &z, per conditional density gy (-|#%) comprised of a single
particle. The algorithm proceeds by updating only a batch of size B of such particles using
an MCMC update with target probability chain gy, (-|0?), where v is the EBM iterate
at iteration k of round r. Learning the likelihood using Algorithm 4 allows to use all the
existing simulated data during training without re-learning the proposal, maximizing sample
efficiency while minimizing learning complexity. The multi-round procedure of SUNLE is
summarized in Algorithm 3.

Posterior sampling. Unlike AUNLE, SUNLE’s likelihood estimate ¢, does not inherit
the (Z,0)-uniformization property guaranteed by Proposition 1. As a consequence, its
posterior gy (0|z) is doubly intractable as it involves the intractable normalizing constant
Z(¢r,0). Nevertheless, we propose to sample from gy» (6|z) using Doubly-Intractable MCMC
techniques. We consider a custom robust doubly intractable implementation that allows
for accurate inference even on challenging posteriors with no parameter tuning other than
compute-related parameters like the number of warmup steps.

Algorithm 3 Sequential-UNLE Algorithm 4 maximize_cebm_log_1(D, )

Input: prior p(#), simulator G, budget N, NO.Input: Training data D := {@) 2O}V Ini-
rounds R ) ) tial EBM parameters

Output: Posterior estimate gy (6]x) Output: Cond. Density estimator gy (x|0)

Initialize 7' = p, 1o, gy x < €0 CD7(0) pitialize gy, o e Foo @) (G = 5, )N
Get D = {00 ~ 7(0),2) ~ G(0, )} fork—o, q% K —1do A= 0ok
forr=1,...,Rdo fori=0,...,N—1do
Get ¢} := maximize_cebm_log_1(D,t;_;) ; := make_particle_approx(qy, (-,6"), qi)
Set w41 (0]z) = e~ v Op(0) /2 (17 0) end for
Get {Hi}fv:/fiwmb; via Doubly-Intr. MCMC G= -is VyEBy, (2,00 +Eq V. By, (2, 07)
Get D=DU {00,z ~ G(e0, )} N Prs1= ADAM(¢y, G)
end for end for
Infer using Doubly-Intr. MCMC on gy (f]x) Return gy,

4 EXPERIMENTS

In this section, we study the performance and properties of AUNLE and SUNLE in three
different settings: a toy model that highlights the failure modes of other synthetic likelihood
methods, a series of benchmark datasets for SBI, and a real life neuroscience model.

Experimental details AUNLE and SUNLE are implemented using jax (Frostig et al.,
2018). We approximate expectations of AUNLE’s joint EBM using 1000 independent MCMC
chains with a Langevin kernel parameterised by a step size o, that automatically update
their step size to maintain an acceptance rate of 0.5 during a per-iteration warmup period,
before freezing the chain and computing a final particle approximation. Additionally, we
introduce a new method which replaces the MCMC chains by a single Sequential Monte Carlo
sampler (Chopin et al., 2020; Del Moral et al., 2006), which yields a similar performance as
the Langevin-MCMC approach discussed above, but is more robust for lower computational
budgets (see Appendix A.2). The particle approximations are persisted across iterations
(Tieleman, 2008; Du & Mordatch, 2019) to reduce the risk of learning a “short run” EBM
(Nijkamp et al., 2019; Xie et al., 2021) that would not approximate the true likelihood
correctly (see Appendix B.2 for a detailed discussion). All experiments are averaged across 5
random seeds (and additionally 10 different observations xz, for benchmark problems). We
provide all code! needed to reproduce the experiments of the paper. Training and inference
are computed using a single RTX5000 GPU. For benchmark models, a single round of EBM
training takes around 2 minutes on a GPU (see Appendix B.4).

4.1 A TOY MODEL WITH A MULTI-MODAL LIKELIHOOD

First, we illustrate the issues that SNLE and SMNLE can face when applied to model certain
distributions using a simulator with a bi-modal likelihood. Such a likelihood is known to
be hard to model by normalizing flows, which, when fitted on multi-modal data, will assign
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Figure 2: Performance of AUNLE (resp. SUNLE) compared with NLE and SMNLE (resp.
SNLE), using the Classifier Accuracy Metric (Lueckmann et al., 2021) (lower is better).
AUNLE and SUNLE exhibit robust performance across a wide array of problems. Additional
details on the experimental setup can be found in Appendix B.5.

high-density values to low-density regions of the data in order to “connect” between the
modes of the true likelihood (Cornish et al., 2020). Moreover, multi-modal distributions are
also poorly handled by score-matching, since score-matching minimizes the Fisher Divergence
between the model and the data distribution, a divergence which does not account for mode
proportions (Wenliang & Kanagawa, 2020). Figure 1 shows the likelihood model learned by
NLE and SMNLE on this simulator, which exhibit the pathologies mentioned above: the
score-matched likelihood only recovers a single mode of the likelihood, while the flow-based
likelihood has a distorted shape. In contrast, AUNLE estimates both the likelihood and the
posterior accurately. This suggests that AUNLE has an advantage when working with more
complex, possibly multi-modal, distributions, as we confirm later in Section 4.3.

4.2 RESULTS ON SBI BENCHMARK DATASETS

We next study the performance of AUNLE and SUNLE on 4 SBI benchmark datasets with
well-defined likelihood and varying dimensionality and structure (Lueckmann et al., 2021):

SLCP: A toy SBI model introduced by (Papamakarios et al., 2019) with a unimodal gaussian
likelihood p(z|f). The dependence of p(z|f) on € is nonlinear, yielding a complex posterior.

The Lotka-Volterra Model (Lotka, 1920): An ecological model describing the evolution
of the populations of two interacting species, usually referred to as preys and predators.

Two Moons: A famous 2-d toy model with posteriors comprised of two moon-shaped
regions, and yet not solved completely by SBI methods.

Gaussian Linear Uniform: A simple gaussian generative model, with a 10-dimensional
parameter space.

These models encompass a variety of posterior structures (see Appendix B.1 for posterior
pairplots): the two-moons and SLCP posteriors are multimodal, include cutoffs, and exhibit
sharp and narrow regions of high density, while posteriors of the Lotka-Volterra model
place mass on a very small region of the prior support. We compare the performance of
AUNLE and SUNLE with NLE and its sequential analogue SNLE, respectively: NLE and
SNLE represent the gold standard of current synthetic likelihood methods, and perform
particularly well on benchmark problems (Lueckmann et al., 2021). We use the same set
of hyperparameters for all models, and use a 4-layer MLP with 50 hidden units and swish
activations for the energy function. Results are shown in Figure 2.

While some fluctuations exist depending on the task considered, these results show that
the performance of AUNLE (and SUNLE when targeted inference is necessary) is on par
with that of (S)NLE, thus demonstrating that a generic method involving Energy-Based
models can be trained robustly, without extensive hyperparameter tuning. Interestingly,
the model where UNLE has the greatest advantage over NLE is Two Moons, which is
the benchmark that exhibits a likelihood with the most complex geometry; in comparison,
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the three remaining benchmarks have simple normal (or log-normal) likelihood, which are
unimodal distributions for which normalizing flows are particularly well suited. This point
underlines the benefits of using EBMs to fit challenging densities. Finally, we remark that
SMNLE, which addresses only amortized inference Pacchiardi & Dutta (2022) struggled in
practice for the toy problems investigated here.

4.3 UsING SUNLE IN A REAL WORLD NEUROSCIENCE MODEL

We investigate further the performance of SUNLE by running its inference procedure on a
simulator model of a pyloric network located in stomatogastric ganglion (STG) of the crab
Cancer borealis given an observed an neuronal recording (Haddad & Marder). This model
simulates 3 neurons, whose behaviors are governed by synapses and membrane conductances
that act as simulator parameters 6 of dimension 31. The simulated observations are composed
of 15 summary statistics of the voltage traces produces by neurons of this network (Prinz
et al., 2003; 2004). Amortized SBI methods require tens of millions of samples, while currently,
the most sample-efficient targeted inference method for this problem is SNVI (a variant of
SNLE that replaces the MCMC-powered posterior sampling by a variational inference step
Glockler et al. 2021) which uses 30 rounds simulating each 10000 samples.
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Figure 3: Inference with SUNLE on a model of the pyloric network. Left: simulations
obtained by using the final posterior mean and maximum a posteriori (MAP) as a parameter.
Center: the empirical observation x,: arrows indicate the summary statistics. Top-right:
fraction of simulated observations with well-defined summary statistics (higher is better) at
each round for SNVI and SUNLE, with dashed lines indicating the maximum fraction for
each method. Bottom-right: performance of the posterior using the Energy Distance.

We perform targeted inference on this model using SUNLE with a MLP of 9 layers and 300
hidden units per layers for the energy E,, and perform doubly intractable MCMC to draw
new proposal parameters across rounds. All inference and training steps are initialized using
previously the available MCMC chains and EBM parameters. We report in Figure 3 the
evolution of the rate of simulated obvservations with valid summary statistics, - a metric
indicative of posterior quality - as well as the Energy-Scoring Rule (Gneiting & Raftery,
2007) of SUNLE and SNVT’s posteriors across rounds. The synthetic observation simulated
using SUNLE’s posterior mean closely matches the empirical observation (Figure 3, Left vs
Center). As shown in Figure 3, SUNLE matches the performance of SNVI in only 5 rounds,
reducing by 6 the simulation budget of SNVI to achieve a comparable inference quality.
After 10 rounds, SUNLE’s poterior significantly exceeds the performance of SNVI in terms
of number of valid samples obtained by taking the final posterior samples as parameters.
The total procedure takes only 3 hours (half of which is spent simulating samples), 10 times
less than SNVI.

Conclusion The expanding range of applications of Simulation-Based Inference poses new
challenges to the way SBI algorithms model data. In this work, we presented SBI methods
that use an expressive Energy-Based Model as their inference engine, fitted using Maximum
Likelihood. We demonstrated promising performance on synthetic benchmarks and on a
real-world neuroscience model. In future work, we hope to see applications of this method to
other fields where EBMs have been proven successful, such as physics (Noé et al., 2019) or
protein modelling (Ingraham et al., 2018).
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SUPPLEMENTARY MATERIAL FOR THE PAPER Maximum Likelihood Learning
of Energy-Based Models for Simulation-Based Inference

The supplementary materials includes the following materials:

e A discussion of the computational rationale motivating the tilting approach of
AUNLE.

e We propose a training method for EBM which uses the family of Sequential Monte
Carlo samplers to efficiently approximate expectations under the EBM during
approximate likelihood maximization. We show that using these new methods can
lead to increased stability and performance for a fixed budget.

e An experiment in Appendix B.3 that suggest that the uniformization of AUNLE’s
posterior holds in learned AUNLE models.

e A discussion in Appendix B.2 about the (absence of) manifestation of the short-run
effect [Nijkamp et al., 2019] in UNLE.

e A detailed computational analysis in Appendix B.4 of AUNLE, which proves highly
competitive over alternatives.

e Figures in Appendix B.1 of UNLE’s posterior sapmles for benchmark and the pyloric
network’s problems.

e Finally, we provide additional details in Appendix B.6 on the results of SUNLE on
the pyloric network: we provide an estimation of the pairwise marginals of the final
posterior, which contains patterns also present in the pairwise marginals obtained
by Glockler et al. [2021].

A  METHOLOGICAL DETAILS

A.1 ENERGY-BASED MODELS AS DOUBLY-INTRACTABLE JOINT ENERGY-BASED
MODELS

AUNLE learns a likelihood model gy («|0) by minimizing the likelihood of a tillted joint EBM

—E,(z,0)
%. While the gain in tractability arising in AUNLE’s posterior suffices to motivate

the use of this model, another computational argument holds. Consider the non-tilted joint
model: (2[6)
qy (T
(0 .
O z6.0)

Expectations under this model can be computed by running a MCMC chain implementing a
Metropolis-Within-Gibbs sampling method as in Kelly & Grathwohl [2021], which uses:

e any proposal distribution for g (z|0) o gy (x]0), such a MALA proposal

e an approximate doubly-intractable MCMC kernel step for ¢, (6]z) w(@)%

which is doubly intractable.

However, running the approximate doubly intractable MCMC kernel step requires sampling
from gy (z|6), incurring an additional nested loop during training. Thus, naive MCMC-based
Maximum-Likelihood optimization of untilted joint EBM is prohibitive from a computational
point of view.

A.2 TRAINING EBMS USING SEQUENTIAL MONTE CARLO

The main technique to compute particle approximations of the EBM iterations (returned
by the generic make_particle_approx) when training an EBM using Algorithm 2 is to run
N MCMC chains in parallel targeting the EBM Song & Kingma [2021]; aggregating the
final samples y; of each chain ¢ yields a particle approximation ¢ = % >, 0y; of the EBM
in question. In this appendix section, we describe an alternative make_ebm_approx which

13
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efficiently constructs EBM particle approximations across iterations of Algorithm 2 through
a Sequential Monte Carlo (SMC) algorithm [Chopin et al., 2020; Del Moral et al., 2006]. In
addition to its efficienty, this new routine does not suffer from the bias of incurred by the
use of finitely many steps in MCMC-based methods. We apply this routine within the EBM
training step of AUNLE’s, and show that the learned posteriors can be more accurate than
MCMC methods for a fixed compute power allocated to training.

A.2.1 BACKGROUND: SEQUENTIAL MONTE CARLO SAMPLERS

Sequential Monte Carlo (SMC) Samplers [Chopin et al., 2020; Del Moral et al., 2006] are
a family of efficient Importance Sampling (IS)-based algorithms, that address the same
problem as the one of MCMC, namely computing a normalized particle approximation of a
target density ¢ known up to a normalizing constant Z. The particle approximation ggasc
computed by SMC samplers (consisting of N particles y, like in MCMC methods, but
weighted non-uniformly by some weights w?) is produced by defining a set of L intermediate
densities <Vl)lL:o bridging between the target density 1;=q and some initial density v,
for which a particle approximation v}’ : > = 1NV = wééyé are readily available. The
intermediate densities are often chosen to be a geometric interpolation between vy and
vy, le. v (uo)l_%(ul)%, so that v; are also known up to some normalizing constant.
SMC samplers sequentially constructs an approximation I/lN = > w} yi to the respective
density v; at time [, using previously computed approximations of v;_; at time [ — 1. At
each time step, the approximations are obtained by applying three successive operations:
Importance Sampling, Resampling and MCMC sampling. We provide a vanilla SMC sampler
implementation in Algorithm 5, and refer to this algorithm as make_smc_particle_approx

Algorithm 5 SMC(q, v, )

1: Hyper-parameters: Number of particles N, number of steps L, re-sampling threshold
A€ [+,1).
Input: Target density g, initial density v, particle approximations v}’ and v
Output: Particle approximations to gq.

Construct geometric path (1/5){;1 from vy and q.
fori=1,...,L do ‘ 4
Compute IS weights w; and W}

Draw N samples (Y;/)}Y, from (Y} )N, according to weights (W7)X ,, then set Wi=1.
Sample Y;" ~ K, (Y}, -) using Markov kernel K.
end for N
Return approximation qéVMC::(YL’, I/Vi)i:1

[y

Importantly, under mild assumptions, the particle approximation constructed by SMC
provides consistent estimates of expectations of any function f under the target ¢:

We briefly compare the role played by the number of steps and particles in both MCMC and
SMC algorithms:

Number of particles SMC samplers differ from MCMC samplers in their origin of their
bias: while the bias of MCMC methods comes from running the chain for a finite number of
steps only, the bias of SMC methods comes from the use of finitely many particles.

Number of steps While it is usually beneficial to use a high number of iterations within
MCMC samplers to decrease algorithm bias and ensure that the stationnary distribution is
reached, the number of steps (or intermediate distributions) in SMC is beneficial to ensure
a smooth transition from the proposal to the target distribution: however, the variance
of SMC samplers as a function of the number of steps is not guaranteed to be decreasing
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even if variance bounds that are uniform in the number of steps can be derived by making
assumptions on K; Chopin et al. [2020]. When applying SMC within AUNLE’s training loop,
we find that using more SMC samplers steps usually increase the quality of the final posterior.

In the next paragraph, we describe how to use SMC routine efficiently to approximate EBM
expectations within Algorithm 2.

A.2.2 EFFICIENT USE OF SMC DURING AUNLE TRAINING USING OG-SMC

A naive approach which uses the SMC routine of Algorithm 5 within the EBM training loop
of Algorithm 2 would consist in calling the SMC at every training iteration using a fixed,
predefined proposal density vy and associated particle approximation and g, such as one
from a standard gaussian distribution. However, as training goes, the EBM is likely to differ
significantly from the proposal density qg, requiring the use of many SMC inner steps to
obtain a good particle approximation.

A more efficient approach, which we propose, is to use the readily available particle unnor-
malized EBM density q,+-1 and associated particle approximation G* computed by SMC at
the iteration k-1 as the input to the call to SMC targeting the EBM g+ at iteration k.
Algorithm 6 implements this approach.

Algorithm 6 SMC-powered ML training of EBMs

Input: Training Data {x(i) N |, Initial EBM parameters 1)
Output: Density estimator gy, ()

Initialize gy, (z) oc e P (™) ¢ 1 = 1y,4_1 = D
for i =0,...,max_iter — 1 do
# ¢ := make_particle_approx(qy,,q)
Qr := SMC(qyy> Qr—1, Gr—1)
dk = Qo
G = =% X VyEy,(a') +EqV y E(x)
Vi1 = ADAM(Yy, G)
end for
Return gy,

In practice, we find that using 20 SMC intermediate densities (with 3 steps of ;) in each
call to SMC yields a similar performance as a 250-MCMC steps EBM training procedure. By
considering a more constrained budget, using only 5 SMC intermediates densities outperforms
a 30-steps MCMC EBM training procedure.
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Figure 4: Performance of AUNLE, using either a MCMC-powered particle approximation
routine, or a SMC: using 30 MCMC steps or 5 SMC steps
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Figure 5: Performance of AUNLE, using either a MCMC-powered particle approximation
routine, or a SMC: using 200 MCMC steps or 20 SMC steps

B ADDITIONAL EXPERIMENTAL AND INFERENTIAL DETAILS

B.1 POSTERIOR PAIRPLOTS ON BENCHMARK PROBLEMS

We report the ground truth estimated posterior pairplots on benchmark problems. AUNLE
and SUNLE exhibit satisfying mode coverage, and are able to capture complex posterior
structures.

B.2 MANIFESTATION OF THE SHORT-RUN EFFECT IN UNLE

It was shown in Nijkamp et al. [2019] that EBMs trained by replacing the intractable
expectation under the EBM with an expectation under a particle approximation obtained
by running parallel runs of Langevin Dynamics initialized from random noised and updated
for a fixed (and small) amount of steps can yield an EBM whose density is not proportional
to the true density, but rather a generative model that can generate faithful images by
running few steps of Langevin Dynamics from random noise on it. Our design choices for
both training and inference purposefully avoid this effect from manifesting itself in UNLE.
During training, we estimate the intractable expectation using persistent MCMC or SMC
chains, e.g by initializing the MCMC (or SMC) algorithm of iteration k& with the result of
the MCMC (or SMC) algorithm at iteration k& — 1, yielding a different training method than
short-run EBMs. At inference, the posterior model is sampled from Markov Chains with a
significant burn-in period, contrasting with the sampling model of short-run EBMs. Figure 7
compares the density of UNLE’s posterior estimate for the two-moons model (a 2d posterior
which can be easily visualized) with the true posterior. As the Figure 7 shows, AUNLE and
SUNLE’s posterior density match the ground truh very closely, demonstrating that UNLE’s
EBM is not a short-run generative model, but a faithful density estimator.

B.3 VALIDATING THE (Z,6) UNIFORMIZATION OF AUNLE’S POSTERIOR IN PRACTICE

Proposition 1 ensures that the normalizing constant Z(0;1) present AUNLE’s posterior
is independent of 0 provided that the problem is well-specified, and that v = ¥*, the
optimum of AUNLE’s population objective. In practice, these conditions will hold exactly,
and the uniformization of AUNLE’s posterior thus only holds approximately. To assess
the loss of precision associated with using a standard MCMC posterior in the context of
approximate uniformization, we compare the quality of AUNLE’s posterior samples obtained
using a standard MCMC sampler (which is valid only uniformization holds), and using a
doubly intractable MCMC sampler, which handles non-uniformized posteriors. We that
approximation error of doubly intractable samplers by using a large number of steps (1000)
when sampling from the likelihood using MCMC. As Figure 8 shows, there is no gain is using
a doubly intractable sampler for inference in AUNLE, suggesting that the uniformization
property of AUNLE holds well in practice.
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Figure 6: Posterior marginal (empirical) pairplots for SUNLE’s posterior (first column),
AUNLE’s posterior (second column) and the ground truth posterior for the 4 studied
benchmark problems. Each row outlines a separate benchmark problem.
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Unnormalized Density KDE of MCMC samples

>

AUNLE

SUNLE
Ground Truth

Figure 7: Normalized density of AUNLE and SUNLE for the two moons model. Left:
manually normalized posterior density of both AUNLE and SUNLE using a discretization
of the posterior over a grid. Middle: kernel density estimation of the MCMC samples
obtained from AUNLE and SUNLE’s posterior. Right: Ground Truth posterior. AUNLE
and SUNLE’s posterior densities match closely the true density, showing that these method
indeed learn a density estimator, and a generative model [Nijkamp et al., 2019].
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Figure 8: Quality of AUNLE’s posterior samples (measured in classifier accuracy) obtained
using a Standard MCMC sampler (S. MCMC) and a doubly intractable sampler (D. MCMC).
The results show no gain in using a doubly intractable sampler, justifying the use of standard
samplers for AUNLE.
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B.4 COMPUTATIONAL COST ANALYSIS

Training unnormalized models using approximate likelihood is computationally intensive, as
it requires running a sampler during training at each gradient step, yielding a computational
cost of O(T1 T2 N), where T} is the number of gradient steps, T» is the number of MCMC
steps, and N is the number of parallel chains used to estimate the gradient.

To maximize the efficiency of training, we implement all samplers using jax Frostig et al.
[2018], which provides a Just-In-Time compiler and an auto-vectorization primitive that
generates efficient, custom parallel sampling routines. For AUNLE, we the introduced a
warm-started SMC approximation procedure to estimate gradients, yielding a competitive
performance with as little as 5 intermediate probabilities per gradient computation. For
SUNLE, we warm-start the parameters of the EBM across training rounds, and warm-start
the chains of the Doubly Intractable sampler accross inference rounds, which significantly
reduces the need for burning steps and long training. Finally, all experiments are ran on
GPUs. Together, these techniques make AUNLE and SUNLE almost always the fastest
methods for amortized and sequential inference, with total per-problem runtimes of 2 for
AUNLE and 15 minutes for SUNLE on benchmark models (which is significantly faster than
NLE and SNLE on their canonical CPU setup Lueckmann et al. 2021) and less than 3 hours
for SUNLE on the pyloric network model (with half of this time spent simulating samples).
The latter is 10 times faster than SNVI (30 hours) on the same model. A breakdown of
training, simulation and inference time is provided in Figure 9. We note that (S)NLE was
ran on a CPU, which is the advertised computational setting [Lueckmann et al., 2021], since
(S)NLE deep and shallow networks that do not benefit much from GPU acceleration.

We note that the time spent performing inference is negligible for AUNLE, which uses
standard MCMC for inference thanks to the tilting trick employed in its model. On the other
hand, the runtime of SUNLE, which performs inference using a doubly intractable sampler is
dominated by its inference phase. This point demonstrates the computational benefits of the
AUNLE’s tilting trick. Note that SUNLE performs inference in a multi-round procedure, and
requires thus R training and inference phases (where R is the number of rounds), as opposed
to 1 for AUNLE. We alleviate this effect by leveraging efficient warm-starting strategies for
both training and inference, which allow to amortize these steps across rounds.

B.5 EXPERIMENTAL SETUP FOR SNLE AND SMNLE

SNLE The results reported for SNLE are the one present in the SBI benchmark suite
[Lueckmann et al., 2021], which reports the performance of both NLE and SNLE on all
benchmark problems studied in this paper.

SMNLE The results reported for SMNLE were obtained by running the implementation
referenced by Pacchiardi & Dutta [2022]. SMNLE comes in two variants: the first variant
uses plain Score Matching [Hyvérinen & Dayan, 2005] to estimate its conditional EBM, while
the second variant uses Sliced Score Matching [Song et al., 2020], which yields significant
computational speedups during training. For both methods, we train the model using 500
epochs, and neural networks with 4 hidden layers and 50 hidden and outputs units. To
optimize the inference performance, we carry out inference using our own Doubly Intractable
Sampler, which automatically tunes the all parameters of the doubly intractable samplers
except for the number of burn-in steps, and initializes the chain at local posterior modes.
We carry out a grid search over the learning rates 0.01 and 0.001, and leave other training
parameters to their default. Figures in the main body only report the performance of the
Sliced Score Matching variant, which perform better in practice and runs order of magnitude
faster. Figure 10 reports the performance of both variants for completeness. We used GPU
both to train and inference using SMNLE, yielding similar or higher training compared to
AUNLE for the sliced variant, and much longer training times for the standard variant.

B.6 NEUROSCIENCE MODEL: DETAILS

Pairwise Marginals We provide the full pairwise marginals obtained after computing
a kernel density estimation on the final posterior samples of SUNLE. We retrieve similar
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Figure 9: Runtime of UNLE: Analysis and Comparisons.
First row: time (in minutes) spent training, inferring, and simulating for AUNLE. Second
row. Second row: time (in minutes) spent training, inferring, and simulating for SUNLE.
Third row: runtime comparison between ANLE and NLE (in log-scale). Forth row: runtime
comparison between SUNLE and SNLE.
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Figure 10: Comparison of AUNLE, SMNLE with Sliced Score Matching (SSM), SMNLE
with Score Matching (SM) and NLE on a set of benchmark problems.
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patterns as the one displayed in the pairwise marginals of SNVI samples. We refer to Glockler
et al. [2021] for more details on the specificities of this model.
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Figure 11: Pairwise marginals of SUNLE’s posterior estimate on the C. borealis simulator
model.

Use of a Calibration Network Due to the presence of invalid observations, we proceed
as in Glockler et al. [2021] and fit a calibration network that allows to remove the bias
induced by throwing away pairs of (parameters, observations) when the observations do not
have well defined summary statistics. We use a similar architecture as in Glockler et al.
[2021].
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