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Abstract

Reinforcement learning (RL) algorithms require carefully designed shaped reward
functions to learn effective policies, especially in environments with sparse task
rewards. However, manually designing a suitably shaped reward function is chal-
lenging and often requires extensive domain knowledge and trial and error. Current
methods for automating reward design can be prohibitively time-consuming. In
this paper, we cast the reward design process as an online model selection problem
and propose ORSO (Online Reward Selection and Policy Optimization), a novel
algorithm to efficiently design shaped reward functions. Because existing online
model selection algorithms are provably efficient, ORSO can identify effective re-
ward functions efficiently. We provide regret guarantees for ORSO and demonstrate
its effectiveness on several continuous control benchmarks. Compared to prior
methods, ORSO is more sample-efficient, consistently finds high-quality dense
reward functions, and achieves similar performance to hand-engineered rewards
created by domain experts.

1 Introduction

Reinforcement learning (RL) [Sutton and Barto, 2018] is a powerful framework for learning a
policy for an agent (e.g., a robot) that maximizes some reward function through interaction with
an environment. The reward function specifies the task’s goal or objective to be achieved. Many
interesting real-world tasks are sparse-reward in nature, meaning the learning agent only receives
a reward signal upon task completion. This sparsity of rewards makes it difficult for RL agents
to learn a good policy, as there is a lack of learning signals to guide the agent toward the desired
behavior during training. To address this issue, a common approach is to introduce dense, shaped
rewards that provide informative feedback at each step, guiding the agent toward desired behaviors
[Margolis and Agrawal, 2023]. However, designing a reward function that accurately captures the
desired behavior and provides sufficient learning signals remains a significant challenge [Singh et al.,
2009, Ng et al., 1999]. These reward-shaping techniques essentially modify the RL training objective.
For instance, a task reward function for a door-opening robot might only consider whether the door
is open or not, providing little learning signal. To guide the robot towards opening the door more
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easily, a shaped reward function could combine the final door-open reward with an intermediate
reward for minimizing the distance between the robot’s hand and the door handle.

Manually designing shaped reward functions [Margolis and Agrawal, 2023, Liu et al., 2024] requires
significant domain expertise and can be cumbersome for complex tasks. Alternative approaches at-
tempted to automate the reward design process using coding language models [Ma et al., 2023]. Both
manual reward design and prior automated methods essentially perform an evolutionary search, itera-
tively training policies with selected reward functions and observing their performance. This process
is time-consuming, as it requires training policies to completion for each reward function candidate.

In this paper, we formulate the reward design process as an online learning problem, which allows
us to leverage techniques from the online model selection literature to efficiently search over reward
function candidates. We propose ORSO (Online Reward Selection and Policy Optimization). ORSO
operates in two phases: (1) generating a set of candidate reward functions using a stochastic generator,
and (2) efficiently identifying the best reward function from this set via online reward selection and
policy optimization.

Specifically, we leverage the coding abilities of large language models like GPT-4 [Achiam et al.,
2023] to generate Python code for reward functions based on minimal environment descriptions
and formulate the problem of reward selection as a model selection problem [Pacchiano et al., 2020,
2023, Agarwal et al., 2017, Foster et al., 2019, Lee et al., 2021], where each model represents a
candidate reward function (and its associated policy).

We provide regret guarantees for ORSO under a specific model selection algorithm and demonstrate
its effectiveness on several continuous control tasks using the Isaac Gym simulator [Makoviychuk
et al., 2021]. Compared to prior methods, ORSO consistently finds high-quality reward functions that
lead to policies achieving similar performance to hand-engineered rewards created by domain experts.
Moreover, ORSO is more sample-efficient, requiring substantially fewer environment interactions
and less computation time than evolutionary methods.

The paper is structured as follows. Section 2 states the reward design problem and provides
some notation and necessary background. Section 3 introduces the ORSO algorithm, detailing the
reward design and online reward selection phases. Section 4 presents theoretical guarantees on the
convergence of ORSO and Section 5 describes the experimental setup and results.

2 Preliminaries

In this section, we introduce the necessary notation for our analysis and formally define the reward
design problem.

Reinforcement Learning (RL) In RL, the objective is to learn a policy for an agent (e.g., a robot)
that maximizes the expected cumulative reward during the interaction with the environment. The
interaction between the agent and the environment is formulated as a Markov decision process (MDP)
[Puterman, 2014], M = (S,A, P, r̃, γ, ρ0), where the S and A denote state and action spaces,
respectively, P : S × A → ∆S

1 is the state transition dynamics, r̃ : S × A → ∆R denotes the
reward function, γ ∈ [0, 1) is the discount factor, and ρ0 ∈ ∆S is the initial state distribution. At
each timestep t ∈ N of interaction, the agent selects an action at ∼ π( · | st) based on its policy π,
receives a (possibly) stochastic reward r̃t ∼ r̃(st, at), and transitions to the next state st+1 according
to the transition dynamics P ( · | st, at). RL algorithms aim to find a policy π⋆ that maximizes the
discounted cumulative reward, i.e.,

π⋆ ∈ argmax
π

Jr̃(π) := E

[ ∞∑
t=0

γtr̃t

∣∣∣∣∣ s0 ∼ ρ0, at ∼ π( · | st),
r̃t ∼ r̃(st, at), st+1 ∼ P ( · | st, at)

]
. (1)

Reward Design (RD) The reward function r̃ encodes the task objective, but it is often sparse,
complicating the RL optimization process. It is common to design a dense reward function to facilitate
learning. We formalize the reward design (RD) problem as follows.
Definition 2.1 (Reward Design). Let A be a reinforcement learning algorithm that takes an MDP
M = (S,A, P, r̃, γ, ρ0) as input and returns a policy πM = A(M). GivenM and A, the reward

1∆S denotes the set of probability distributions over S.
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design problem aims to find a reward function r : S ×A → ∆R such that the policy πMr = A(Mr),
whereMr = (S,A, P, r, γ, ρ0), achieves a higher expected return under the original reward r̃, i.e.,

Jr̃(πMr ) ≥ Jr̃(πM). (2)

The space of possible reward functions R = {r | r : S ×A → ∆R} is typically infinite, making
exhaustive search infeasible. However, we can usually have access to a set of candidate reward
functions, RK =

{
r1, . . . , rK

}
. How do we select the optimal one efficiently? Naively training

using each ri and selecting the best-performing one can be computationally prohibitive. Consequently,
we aim to develop more efficient techniques for reward selection that can explore and exploit the
candidate reward functions without training on each reward function until convergence. In this paper,
we cast the problem into a model selection problem.

Model Selection We borrow the notation from Pacchiano et al. [2023]. We consider a general
sequential decision-making process consisting of a meta-learner interacting with an environment
over T ∈ N rounds. In each round t = 1, 2, . . . , T , the agent selects a policy πt and after executing
policy πt, the environment returns a reward rt ∈ R. The objective of the learner is to choose
policies π1, . . . , πT to maximize the expected cumulative sum of rewards E

[∑T
t=1 rt

]
. We denote

by vπ = E[r | π] the expected reward, given that the learner plays policy π, i.e., the value of policy
π. The instantaneous regret of π is reg(π) = v⋆ − vπ, where v⋆ is the value of the optimal policy.
The cumulative regret after T rounds of interaction is Reg(T ) =

∑T
t=1 reg(πt). The total reward

accumulated by the algorithm over T rounds is denoted by uT =
∑T

t=1 v
πt .

In model selection, the meta-learner interacts with an environment over T rounds, selecting from
K base learners (reward function candidates). In each round t, the meta-learner picks a base learner
it ∈ [K] and follows its policy, updating the learner’s state with new data. Unlike multi-armed
bandits (MAB), where mean rewards are stationary, the mean rewards here are non-stationary due
to the stateful nature of base learners (the base learners are learning as they see more data), making
the design of effective model selection algorithms challenging.

The policy associated with base learner i at round t is denoted by πi
t, so that πt = πit

t . We denote
the number base learner i has been played up to round t as ni

t =
∑t

ℓ=1 1 {it = i} and the total
cumulative reward for learner i as ui

t =
∑t

ℓ=1 1 {it = i} vπi
t . We denote the internal clock for each

base learner with a subscript (k) such that πi
(k) is the policy of learner i when chosen for the k-th

time, i.e., πi
t = πi

(ni
t)

.

3 ORSO: Online Reward Selection and Policy Optimization

In this section, we introduce ORSO (Online Reward Selection and Optimization), a novel approach to
efficiently and effectively design reward functions for reinforcement learning. Our method operates
in two phases: (1) reward generation and (2) online reward selection and policy optimization.
Figure 1 illustrates the main components of ORSO., which will be further described in this section.

Reward Generation In the first phase of ORSO, we generate a set of candidate reward functionsRK

for the online selection phase. Given an MDPM = (S,A, P, r̃, ρ0) and a stochastic generator G, we
sample K reward function candidates,RK =

{
r1, . . . , rK

∣∣ ∀i ∈ [K], ri : S ×A → ∆R, r
i ∼ G

}
,

from G during the reward design phase. The generator G can be any distribution over the reward
function spaceR. For instance, if the set of possible reward functions is given by a linear combination
of two reward components c1, c2, which are functions of the current state and action, such that
r(s, a) = w1c1(s, a) + w2c2(s, a), then the generator G can be represented by the means and
variances of two normal distributions, one for each weight w1, w2.

Online Reward Selection and Policy Optimization Our algorithm for online reward selection and
policy optimization is described in Algorithm 1. On a high level, the algorithm proceeds as follows.
Given an MDPM = (S,A, P, r̃, ρ0), an RL algorithm A and a reward generator G, we sample set
of K reward functionsRK ∼ G and initialize K distinct policies π1, . . . , πK . The base learners are
represented by tuples

{
(πi, ri)

}K

i=1
of policies and reward functions. During each step t of the reward
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Figure 1: Overview of ORSO. ORSO samples a set of reward functionsRK from a stochastic generator
G (e.g., a human reward engineer, a large language model, a distribution over reward component
coefficients). During the online reward selection and policy optimization phase, ORSO actively selects
which reward function to use at every iteration of RL training using a model selection algorithm. The
algorithm returns the best reward function according to the ground truth task performance metric.

selection process, the algorithm selects a base learner it ∈ [K] according to a selection strategy. We
then construct the MDP corresponding to the selected reward function,Mit = (S,A, P, rit , ρ0),
and perform N iterations of training with algorithm A, updating the policy corresponding to reward
function it to obtain πit . Policy πit is simultaneously evaluated under the true reward function r̃ and
the necessary variables for the model selection algorithm are then updated (e.g., reward estimates,
arm visitation counts, and confidence intervals). The algorithm returns the reward function r and the
corresponding policy π that performs the best under the true reward function r̃.

Algorithm 1 ORSO: Online Reward Selection and Policy Optimization

Require: MDPM = (S,A, P, r̃, ρ0), algorithm A, generator G
1: Sample K reward functionsRK =

{
r1, . . . , rK

}
∼ G

2: Initialize K policies Π =
{
π1, . . . , πK

}
3: for t = 1, 2, . . . , T do
4: Select an arm it ∈ [K] according to a selection strategy
5: Construct MDPMit = (S,A, P, rit , ρ0)
6: Update πit ← A(Mit , N, πit) and evaluate rt ← Eval(πit)
7: Update necessary variables
8: end for
9: // Best policy and reward function under the true reward function

10: return π, r = argmaxi∈[K](Eval(π
i))

3.1 Implementation

In our experiments, we seek to remove the necessity of designing reward components manually,
therefore we employ a large language model to write Python code for the reward functions. Sampling
reward functions from the language model could result in invalid reward functions, such as those
with infinite or non-numerical values. To address this, we employ rejection sampling to discard
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samples that do not meet specific criteria. Section 5 provides further details on the implementation
of the sampling process and the rejection criteria.

While ORSO is a general algorithm that can employ any selection method to pick the reward function
to train on, the performance is highly dependent on the choice of algorithm. For example, ε-greedy
could overcommit early on to a seemingly good reward function that plateaus in the long run. On the
other hand, the Doubling Data-Driven Regret Balancing (D3RB) algorithm introduced by Pacchiano
et al. [2023] selects the base learner via regret balancing and allows us to provide regret guarantees
for ORSO. We provide the full ORSO pseudocode with the D3RB algorithm for reward selection
in Appendix A.

4 Theoretical Guarantees

In this section, we provide regret guarantees for ORSO with D3RB as the selection algorithm. The
main idea underlying our regret guarantees is that the internal state of all suboptimal reward functions
is only updated up to a point where the regret equals that of the best algorithm. We first introduce
some useful definitions for our analysis.
Definition 4.1 (Regret scale and coefficients (Definition 2.1 from Pacchiano et al. [2023])). The

regret of base learner i after being played k times is
∑k

ℓ=1 reg(πi
(ℓ))√

k
. For a positive constant dmin, the

regret coefficient of base learner i after being played for k rounds is

di(k) = max

{
dmin,

∑k
ℓ=1 reg(π

i
(ℓ))√

k

}
. (3)

We assume there exists a base learner that monotonically dominates every other learner.
Assumption 4.2. There is a base learner i⋆ such that at all time steps, its expected sum of rewards
dominates any other learner, i.e., ui⋆

(t) ≥ uk
(t), for all i ∈ [K] and such that its average expected

rewards are increasing, i.e.,
ui⋆
(t)

t ≤
ui⋆
(t+1)

t+1 , for all t ∈ N. This is equivalent to saying that di⋆(t) ≥
di⋆(t+1) for all t ∈ N.

Assumption 4.2 implies that learner i⋆’s cumulative expected reward sequences are always at least
as large as the sum of rewards for any other learner and that its average performance is increasing
monotonically. Following the notation of Pacchiano et al. [2023], we refer to the event that the
confidence intervals for the reward estimator are valid as E . Then we can refine Lemma 9.3 from
Pacchiano et al. [2023] in the case where Assumption 4.2 holds.
Lemma 4.3. Under event E and Assumption 4.2, with probability 1−δ, the regret of all base learners
i is bounded in all rounds T as

ni
T∑

t=1

reg(πi
(t)) ≤ 6di⋆T

√
ni⋆
T + 1 + 5c

√
(ni⋆

T + 1) ln
K lnT

δ
, (4)

where di⋆T = di⋆
(ni⋆

T )
.

We provide the proof for Lemma 4.3 in Appendix B. Lemma 4.3 implies that when Assumption 4.2
holds, the regrets are perfectly balanced. This is in stark contrast with the regret guarantees of

Pacchiano et al. [2023] that prove the D3RB algorithm’s overall regret to scale as
(
d̄
(i⋆)
T

)2√
T where

d̄i⋆t = maxℓ≤t d
i⋆
ℓ . Instead, our results above depend not on the monotonic regret coefficients d̄i⋆t

but on the true regret coefficients di⋆t . Even if learner i⋆ has a slow start (and therefore a large d̄i⋆T ),
as long as monotonicity holds and the i⋆-th learner recovers in the later stages of learning, our results
show that D3RB will achieve a regret guarantee comparable with running learner i⋆ in isolation.

5 Practical Implementation and Experimental Results

In this section, we present a practical implementation of ORSO and its experimental results on several
continuous control tasks. We evaluate the performance of ORSO along two axes. Firstly, we show the
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ability of ORSO to design effective reward functions, meaning reward functions that lead to policies
that perform well under the true reward function. More importantly, we show that ORSO is more
efficient than the conventional method of training policies on each reward function until convergence.

5.1 Experimental Setup

Environments and RL Algorithm We evaluate ORSO on a set of continuous control tasks using
the Isaac Gym simulator [Makoviychuk et al., 2021]. We train our policies using proximal policy
optimization (PPO) [Schulman et al., 2017] and build our implementation on CleanRL [Huang et al.,
2022]. We use the hyperparameters provided by the environment developers.

5.1.1 Baselines

The rewards generated by ORSO are compared against three baselines. We analyze the performance
of policies trained using each reward function detailed below. We also evaluate the reward function
design efficiency of ORSO compared to EUREKA [Ma et al., 2023].

Dense/Shaped (DS). Firstly, we consider the human-designed reward functions for each task. These
are highly engineered reward functions provided by the developers of the environments. We note
that these are constructed such that training PPO with the given hyperparameters yields a performant
policy with respect to the ground truth reward function.

Sparse/Unshaped (SU). This is the ground truth reward function r for each MDP. These reward
functions can be sparse (for manipulation) or unshaped (for locomotion). We use the same reward
definitions as EUREKA, which we report in Appendix C.

EUREKA. Similarly to our implementation, EUREKA uses a large language model to generate
Python code for the reward functions of several continuous control tasks. EUREKA uses an evolution-
ary scheme to evaluate and improve its reward functions. During each iteration, EUREKA samples a
set of reward functions from an LLM, trains an RL algorithm on each reward function, and uses the
best-performing reward function as a context for the LLM to perform the evolutionary step. In our
experiments, we sample 4 reward functions and perform 5 evolutionary steps in EUREKA, for a total
of 20 candidate reward functions.

5.1.2 Reward Generation

We use GPT-4 [Achiam et al., 2023] as a reward generator to avoid having to manually design reward
function components. The language model is prompted to generate reward function code in Python
based on some minimal environment code describing the observation space and useful class variables.

While the LLM produces seemingly good code, this does not guarantee that the sampled code is
bug-free and runnable. We employ a simple rejection sampling technique to construct sets of only
valid reward functions with high probability, such that reward functions that are not compilable or
that produce ±∞ or NaN values are discarded. The details of the rejection sampling mechanism can
be found in Appendix D. In our experiments, we find that sampling K = 16 valid reward functions
from G suffices to produce at least one effective reward function.

5.1.3 Online Reward Selection and Policy Optimization

We evaluate multiple reward selection algorithms from the multi-armed bandit and model selection
literature: explore-then-commit (ETC), ε-greedy (EG), upper confidence bound (UCB) [Auer, 2002],
exponential-weight algorithm for exploration and exploitation (EXP3) [Auer et al., 2002], and
doubling data-driven regret balancing (D3RB) [Pacchiano et al., 2023]. We provide the pseudocode
and the hyperparameters used for each selection algorithm in Appendix F.

Since our reward selection algorithm operates in an online fashion, it is not necessary to train on
each reward function until convergence as suboptimal arms are discarded early on or played less
often. We can therefore reduce the total number of iterations required to find the optimal arm. For
this reason, we train for a total of ln(K) × n_iters iterations with ORSO, where n_iters is the
number of iterations used for training PPO with the DS reward function.

6



0

2

4

6

8

10

Ta
sk

 S
co

re

Ant

0

2

4

6

Humanoid

0

10

20

30
Allegro Hand

0.0

2.5

5.0

7.5

10.0

12.5

Ta
sk

 S
co

re

Shadow Hand

0

100

200

300

400

500
Cartpole

0

100

200

300

400

500
Ball Balance

Dense Sparse Eureka ORSO-EG ORSO-ETC ORSO-Exp3 ORSO-UCB ORSO-D3RB

Figure 2: Mean performance of selected arms on each task with 95% confidence intervals.

Table 1: Average number of PPO iterations for each algorithm as a multiple of n_iters

ENVIRONMENT EUREKA ORSO (OURS)

ANT 13.20 ± 2.50 2.77
HUMANOID 9.80 ± 4.48 2.77
ALLEGRO HAND 6.67 ± 2.82 2.77
SHADOW HAND 5.25 ± 4.67 2.77
CARTPOLE 15.80 ± 1.40 2.77
BALL BALANCE 16.00 ± 1.66 2.77

5.2 Main Results

We evaluate ORSO’s ability to efficiently choose the optimal reward function fromRK , comparing
various online selection strategies’ performances. Each algorithm is applied to the sameRK ∼ G
set for fairness. We repeat this process with different random seeds, generating diverse sets of reward
functions from G. This allows us to evaluate the LLM’s reward function generation effectiveness. To
evaluate the selected reward functions’ quality, we train a PPO agent using each best reward function
for n_iters iterations. Additionally, we compare our results with EUREKA, training and evaluating
its top reward functions across multiple seeds. PPO is also run on DS and SU reward functions for
further comparison.

ORSO Reward Functions Achieve High True Reward In Figure 2, we report the mean evaluation
performance for the reward function selected by each method with 95% confidence intervals. We can
observe that the performance of ORSO is consistently similar to or better than that of the DS reward
function and improves upon the true SU reward function.

We were unable to replicate the results of EUREKA reported by Ma et al. [2023] in manipulation tasks.
To investigate this discrepancy, we trained a policy for the SHADOW HAND using the reward functions
specified by Ma et al. [2023], achieving a maximum task performance of approximately 0.80 across
3 seeds. We found that the performance reported by Ma et al. [2023] was due to the inclusion of
a manually added bonus term in the DS reward function, which ORSO generated automatically.

ORSO Efficiently Selects an Effective Reward Functions We measure the efficiency of our algo-
rithm by the number of PPO iterations necessary to find a good reward function. This is equivalent to
comparing sample efficiency and wall-clock/compute efficiency for a given task and hardware config-
uration. Table 1 reports the number of iterations necessary to select the reward function as a multiple
of n_iters with 95% confidence intervals. ORSO requires only ln(K) ≈ 2.77 n_iters iterations
when K = 16. On the other hand, in the worst case, EUREKA with 4 rewards per evolution requires
20 n_iters iterations. However, this is not the case in practice as EUREKA does not reject invalid
rewards before starting training. Therefore, we see that the effective multiple of n_iters is lower.
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Figure 3: Task score of ORSO (top) and EUREKA (bottom) on ALLEGRO HAND during training. The
different colors represent different reward functions used during training. The vertical dashed lines
indicate the evolution steps in EUREKA. The ×’s symbolize reward functions that throw an error
when used for training.

To better visualize how ORSO selects the best reward function and discards suboptimal ones
efficiently, we plot the task score for ALLEGRO HAND during training of both ORSO (with D3RB)
and EUREKA in Figure 3. We can observe that ORSO initially switches reward function frequently,
but can quickly discard suboptimal arms and select the best reward function. On the other hand,
EUREKA trains on each reward function for n_iter iterations, regardless of its performance so far.
We report additional curves for all tasks and algorithms in Appendix E.

6 Related Work

Reward Design for RL Designing effective reward functions for reinforcement learning has been
a long-standing challenge. Previous approaches include manually specifying reward components
and tuning their coefficients [Ng et al., 1999, Margolis and Agrawal, 2023], learning reward models
from demonstrations [Ziebart et al., 2008, Ho and Ermon, 2016, Abbeel and Ng, 2004] or preferences
[Zhang and Ramponi, 2023, Christiano et al., 2017], and using evolutionary strategies to optimize
reward functions [Ma et al., 2023]. While promising, these methods often require significant domain
expertise, large amounts of data, or computationally expensive processes.

LLMs for Reward Functions Recent work has explored using large language models (LLMs) to
generate reward functions based on natural language descriptions [Ma et al., 2023, Yu et al., 2023,
Xie et al., 2023]. Our approach builds upon this line of work by leveraging LLMs as stochastic reward
generators but introduces a more efficient online reward selection and policy optimization process.
In a related but distinct setting, there have been efforts to directly utilize language and vision models
as reward models [Rocamonde et al., 2023, Klissarov et al., 2023, Kwon et al., 2023]. Rocamonde
et al. [2023] employs CLIP similarity as a state-only reward model. Motif [Klissarov et al., 2023]
first constructs a pair-wise preferences dataset using a large language model (LLM), learns a
preference-based intrinsic reward model with the Bradley-Terry model, and then uses this reward
model to train a reinforcement learning agent.

Online Model Selection The problem of model selection in sequential decision-making has been
of interest in recent years [Agarwal et al., 2017, Foster et al., 2019, Pacchiano et al., 2020, Lee et al.,
2021]. Our work is closely related to the Pacchiano et al. [2023], which tackles the problem of
selecting the best model or hyperparameters in a sequential fashion. In our setting, the set of models
comprises various reward functions and their corresponding policies.

7 Conclusion

This paper formalizes the reward design problem for RL and proposes ORSO, a novel algorithm
that automates the design of dense reward functions. ORSO operates in two phases: (1) generating

8



a set of candidate reward functions, and (2) efficiently identifying the best reward function from
this set via online reward selection and policy optimization.

We provide a theoretical analysis of ORSO’s regret when using the D3RB algorithm for selection.
Moreover, we evaluate our approach on a set of continuous control tasks, demonstrating ORSO’s
consistent ability to find high-quality reward functions. Notably, ORSO is substantially more sample
and compute efficient than prior evolutionary approaches.

Our work opens up several exciting avenues for future research. Although ORSO can design effective
dense reward functions efficiently, it still requires a task reward or success metric in the code, which
can be non-trivial to design. Future work could focus on eliminating the need for specifying ground
truth rewards by leveraging methods that directly translate language instructions into evaluators, such
as using vision-language models. By automating reward design, we believe ORSO can accelerate
progress toward agents that can easily acquire complex behaviors from high-level task specifications.
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A ORSO with Doubling Data-Driven Regret Balancing

Here, we present the complete ORSO algorithm with Doubling Data-Driven Regret Balancing (D3RB)
as the model selection algorithm. In our experiments, we use dmin = 1, δ = 0.1, and c = 0.1.

B Proof of Lemma 4.3

In this section, we present the complete proof of Lemma 4.3. We will start by showing that when
Assumption 4.2 holds, then with probability at least 1− δ, the estimated regret coefficient of learner
i⋆ will never double provided that dmin ≥ c, where c is the confidence multiplier in D3RB.
Lemma B.1 (Non-doubling regret coefficient). When E holds, and algorithm D3RB is in use

d̂i⋆t = dmin and ni
T ≤ ni⋆

T + 1 for all i ∈ [K] (6)

for all t ∈ N.
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Algorithm 2 ORSO with D3RB: Online Reward Selection and Policy Optimization with D3RB

Require: MDPM = (S,A, P, r̃, ρ0), algorithm A, generator G, minimum regret coefficients dmin,
failure probability δ

1: Sample K reward functionsRK =
{
r1, . . . , rK

}
∼ G

2: Initialize K policies Π =
{
π1, . . . , πK

}
3: Initialize balancing potentials ϕi

1 = dmin for all i ∈ [K]

4: Initialize regret coefficients d̂i0 = dmin for add i ∈ [K]
5: Initialize counts ni

0 = 0 and total values ûi
0 = 0 for all i ∈ [K]

6: for t = 1, 2, . . . , T do
7: Select a base learner it ∈ [K] ∈ argmini∈[K] ϕ

i
t

8: Construct MDPMit = (S,A, P, rit , ρ0)
9: Update πit ← A(Mit , N, πit) and receive reward rt ← Eval(πit)

10: // Update necessary variables
11: Set ni

t = ni
t−1, û

i
t = ûi

t−1, d̂
i
t = d̂it−1, and ϕi

t+1 = ϕi
t for all i ∈ [K] \ {it}

12: Update statistics for current learner nit
t = nit

t−1 + 1 and ûit
t = ûit

t−1 + rt
13: Perform misspecification test

ûit
t

nit
t

+
d̂itt−1

√
nit
t

nit
t

+ c

√√√√ ln
K lnn

it
t

δ

nit
t

< max
j∈[K]

ûj
t

nj
t

− c

√√√√ ln
K lnnj

t

δ

nj
t

(5)

14: if test is triggered then
15: Double the regret coefficient d̂i1t ← 2d̂itt−1
16: else
17: Keep the regret coefficient unchanged d̂i1t ← d̂itt−1
18: end if
19: Update the balancing potential ϕit

t+1 ← d̂itt

√
nit
t

20: end for
21: // Best policy and reward function under the true reward function
22: return π, r = argmaxi∈[K](Eval(π

i))

Proof. In order to show this result it is sufficient to show that when E holds, algorithm i⋆ does not un-
dergo any doubling event. Doubling of the regret coefficients only happens when the misspecification
test triggers for algorithm i⋆.

We will show this by induction. Let us assume d̂i⋆t−1 = dmin and that it = i⋆. When E holds, the
left-hand side (LHS) of D3RB’s misspecification test satisfies

ûit
t

nit
t

+
d̂itt−1

√
nit
t

nit
t

+ c

√√√√ ln
K lnn

it
t

δ

nit
t

=
ûi⋆
t

ni⋆
t

+
d̂i⋆t−1

√
ni⋆
t

ni⋆
t

+ c

√√√√ ln
K lnni⋆

t

δ

ni⋆
t

≥ ui⋆
t

ni⋆
t

+
d̂i⋆t−1

√
ni⋆
t

ni⋆
t

(i)
=

ui⋆
t

ni⋆
t

+
dmin

√
ni⋆
t

ni⋆
t

(7)

where (i) holds because by the induction hypothesis d̂i⋆t−1 = dmin. We will now show that ni⋆
t ≥ nj

t

for all j ∈ [K]. Since by the inductive hypothesis d̂i⋆ℓ = dmin for all ℓ ≤ t − 1, the potential

ϕi⋆
ℓ = dmin

√
ni⋆
ℓ−1 for all ℓ ≤ t.
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For i ∈ [K] let t(i) be the last time – before time t – algorithm i was played. For i ̸= i⋆ we have
t(i) < t. Since i was selected at time t(i), by definition of the potentials,

d̂i⋆t(i)−1

√
ni⋆
t(i)−1 = dmin

√
ni⋆
t(i)−1 ≥ d̂it(i)−1

√
ni
t(i)−1 ≥ dmin

√
ni
t(i)−1

so that ni⋆
t(i)−1 ≥ ni

t(i)−1. Since both ni⋆
t = ni⋆

t(i)−1 + 1 and ni
t = ni

t(i)−1 + 1 we conclude that

ni⋆
t ≥ ni

t.

We now turn our attention to the right-hand side (RHS) of D3RB’s misspecification test. When E
holds, the RHS of D3RB’s misspecification test satisfies,

max
j∈[K]

ûj
t

nj
t

− c

√√√√ ln
K lnnj

t

δ

nj
t

≤ max
j∈[K]

uj
t

nj
t

(i)

≤ max
j∈[K]

ui⋆
(nj

t)

nj
t

(ii)

≤ ui⋆
t

ni⋆
t

(8)

where inequalities (i) and (ii) hold because of Assumption 4.2. Combining inequalities 7 and 8 we
conclude the misspecification test of algorithm D3RB will not trigger. This finalizes the proof.

We are now ready to prove the regret bound on the base learners given in Lemma 4.3

Lemma 4.3. Under event E and Assumption 4.2, with probability 1−δ, the regret of all base learners
i is bounded in all rounds T as

ni
T∑

t=1

reg(πi
(t)) ≤ 6di⋆T

√
ni⋆
T + 1 + 5c

√
(ni⋆

T + 1) ln
K lnT

δ
, (4)

where di⋆T = di⋆
(ni⋆

T )
.

Proof. Consider a fixed base learner i and time horizon T , and let t ≤ T be the last round where i
was played but the misspecification test did not trigger. If no such round exists, then set t = 0. By
Corollary 9.1 in Pacchiano et al. [2023], i can be played at most 1+ log2

d̄i
T

dmin
times between t and T

and thus

ni
T∑

k=1

reg(πi
(k)) ≤

ni
t∑

k=1

reg(πi
(k)) + 1 + log2

d̄iT
dmin

.
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If t = 0, then the desired statement holds. Thus, it remains to bound the first term in the RHS above
when t > 0. Since i = it and the test did not trigger we have, for any base learner j with nj

t > 0,

ni
t∑

k=1

reg(πi
(k)) = ni

tv
⋆ − ui

t (definition of regret)

= ni
tv

⋆ − ni
t

nj
t

uj
t +

ni
t

nj
t

uj
t − ui

t

=
ni
t

nj
t

(
nj
tv

⋆ − uj
t

)
+

ni
t

nj
t

uj
t − ui

t

=
ni
t

nj
t

 nj
t∑

k=1

reg(πj
(k))

+
ni
t

nj
t

uj
t − ui

t (definition of regret)

≤ ni
t

nj
t

(
djt

√
nj
t

)
+

ni
t

nj
t

uj
t − ui

t (definition of regret rate)

≤

√
ni
t

nj
t

djt

√
ni
t +

ni
t

nj
t

uj
t − ui

t.

We now focus on j = i⋆ and use the balancing condition in Lemma 9.2 in Pacchiano et al. [2023] to

bound the first factor
√
ni
t/n

i⋆
t . This condition gives that ϕi

t+1 ≤ 3ϕi⋆
t+1. Since both ni⋆

t > 0 and

ni
t > 0, we have ϕi

t+1 = d̂it
√
ni
t and ϕi⋆

t+1 = d̂i⋆t

√
ni⋆
t . Thus, we get

√
ni
t

ni⋆
t

=

√
ni
t

ni⋆
t

· d̂
i
t

d̂i⋆t
· d̂

i⋆
t

d̂it
=

ϕi
t+1

ϕi⋆
t+1

· d̂
i⋆
t

d̂it
≤ 3

d̂i⋆t

d̂it
≤ 3, (9)

where the last inequality holds because of Lemma B.1 and because d̂it ≥ dmin.

Plugging this back into the expression above and setting j = i⋆, we have

ni
t∑

k=1

reg(πi
(k)) ≤ 3di⋆t

√
ni
t +

ni
t

ni⋆
t

ui⋆
t − ui

t.

To bound the last two terms, we use the fact that the misspecification test did not trigger in round t.
Therefore,

ui
t ≥ ûi

t − c

√
ni
t ln

K lnni
t

δ
(event E)

= ni
t

 ûi
t

ni
t

+ c

√
ln

K lnni
t

δ

ni
t

+
d̂it√
ni
t

− 2c

√
ni
t ln

K lnni
t

δ
− d̂it

√
ni
t

≥ ni
t

ni⋆
t

ûi⋆
t −

√
ni
t

ni⋆
t

c

√
ni
t ln

K lnni⋆
t

δ
− 2c

√
ni
t ln

K lnni
t

δ
− d̂it

√
ni
t. (test not triggered)
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Rearranging terms and plugging this expression in the bound above gives

ni
t∑

k=1

reg(πi
(k)) ≤ 3di⋆t

√
ni
t +

√
ni
t

ni⋆
t

c

√
ni
t ln

K lnni⋆
t

δ
+ 2c

√
ni
t ln

K lnni
t

δ
+ d̂it

√
ni
t

≤ 3di⋆t

√
ni
t + 3c

√
ni
t ln

K lnni⋆
t

δ
+ 2c

√
ni
t ln

K lnni
t

δ
+ d̂it

√
ni
t (Equation (9))

≤ 3di⋆t

√
ni
t + 3c

√
ni
t ln

K lnni⋆
t

δ
+ 2c

√
ni
t ln

K lnni
t

δ
+ 3d̂i⋆t

√
ni⋆
t

(Equation (9))

≤ 3di⋆t

√
ni
t + 3d̂i⋆t

√
ni⋆
t + 5c

√
ni
t ln

K ln t

δ
(max(ni

t, n
i⋆
t ) ≤ t)

(i)

≤ 3di⋆t

√
ni
t + 3dmin

√
ni⋆
t + 5c

√
ni
t ln

K ln t

δ
(Lemma B.1)

where inequality (i) follows from Lemma B.1. Finally, Lemma B.1 also implies ni
t ≤ ni⋆

t + 1 and
since dmin ≤ di⋆t ,

ni
t∑

k=1

reg(πi
(k)) ≤ 6di⋆t

√
ni⋆
t + 1 + 5c

√
(ni⋆

t + 1) ln
K ln t

δ
.

The statement follows by setting t = T .

C Task Score Functions

Table 2 reports the task score functions used as ground truth reward functions to evaluate the generated
rewards. The functions are the same as the ones used in Ma et al. [2023].

Table 2: Task success metric definitions.

ENVIRONMENT SUCCESS METRIC

ANT current_distance - previous_distance
HUMANOID current_distance - previous_distance
ALLEGRO HAND

∑
1 {rotation_distance < 0.1}

SHADOW HAND
∑

1 {rotation_distance < 0.1}
CARTPOLE

∑
1 {agent is alive}

BALL BALANCE
∑

1 {agent is alive}

D Rejection Sampling Mechanism

In this section, we provide additional details on the rejection sampling scheme used by ORSO. Given
criteria ϕ to be satisfied, rejection sampling repeats the following steps until we have sampled the
desired number, K, of valid reward functions:

1. Sample a candidate reward function r ∼ G

2. Chek if criteria ϕ is satisfied
• If ϕ(r) is satisfied, add r to the set of candidate reward functions
• If ϕ(r) is not satisfied, reject r

In our practical implementation, checking if criteria ϕ are satisfied consists of instantiating an
environment with the generated reward function, running a random policy on it, and checking the
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(a) Ant D3RB
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(b) Ant Exp3
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(c) Ant UCB
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(d) Ant ETC
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(e) Ant Epsilon-Greedy
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(f) Ant Eureka

Figure 4: Ant

values produced by the reward function. If the environment cannot be instantiated or if the values
returned by the reward function are ±∞ or NaN, the reward function is rejected. It is worth noting
that this only guarantees a higher probability of a valid reward function code as the policy used
to evaluate the function is random and the optimization process used during the training of an RL
algorithm could still induce undesirable values.

E Additioanl Experimental Results

In Figures 4 to 9, we report additional curves ORSO and EUREKA.

F MAB Algorithms and Hyperparameters

In this section, we present the pseudocode for all reward selection algorithms used in our experiments
with their associated hyperparameters in Table 3. For locomotion tasks, we use F = 25 and for
manipulation, we use F = 100 iterations.
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(a) Humanoid D3RB
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(b) Humanoid Exp3
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(c) Humanoid UCB
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(d) Humanoid ETC
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(e) Humanoid Epsilon-Greedy
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(f) Humanoid Eureka

Figure 5: Humanoid

Algorithm 3 Explore-then-Commit

Require: Number of arms K, total time T , exploration phase length T0

1: Initialize counts ni
0 = 0 and total values ûi

0 = 0 for all i ∈ [K]
2: // Explore
3: for t = 1, . . . , T0 do
4: Select arm it = (t mod K) + 1
5: Play arm it and observe reward rt
6: Set ni

t = ni
t−1, and ûi

t = ûi
t−1 for all i ∈ [K] \ {it}

7: Update statistics for current learner nit
t = nit

t−1 + 1 and ûit
t = ûit

t−1 + rt
8: end for
9: // Commit

10: i⋆ = argmaxi(u
i
t/n

i
t)

11: for t = T0 + 1 to T do
12: Play arm i⋆ and observe reward rt
13: Set ni

t = ni
t−1, and ûi

t = ûi
t−1 for all i ∈ [K] \ {it}

14: Update statistics for current learner nit
t = nit

t−1 + 1 and ûit
t = ûit

t−1 + rt
15: end for
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(a) Allegro Hand D3RB
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(b) Allegro Hand Exp3
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(c) Allegro Hand UCB
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(d) Allegro Hand ETC
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(e) Allegro Hand Epsilon-Greedy
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(f) Allegro Hand Eureka

Figure 6: Allegro Hand

Algorithm 4 ε-Greedy

Require: Number of arms K, total time T , exploration probability ε
1: Initialize counts ni

0 = 0 and total values ûi
0 = 0 for all i ∈ [K]

2: for t = 1, . . . , T do
3: With probability ε, select a random arm it, else it = argmaxi(û

i
t/n

i
t)

4: Play arm it and observe reward rt
5: Set ni

t = ni
t−1, and ûi

t = ûi
t−1 for all i ∈ [K] \ {it}

6: Update statistics for current learner nit
t = nit

t−1 + 1 and ûit
t = ûit

t−1 + rt
7: end for

Algorithm 5 UCB (Upper Confidence Bound)

Require: Number of arms K, total time T , confidence multiplier c
1: Initialize counts ni

0 = 0 and total values ûi
0 = 0 for all i ∈ [K]

2: for t = 1, . . . ,K do
3: Select arm it = t
4: Play arm it and observe reward rt
5: Update statistics for current learner nit

t = nit
t−1 + 1 and ûit

t = ûit
t−1 + rt

6: end for
7: for t = K + 1, . . . , T do
8: Select arm it = argmaxi(û

i
t/n

i
t + c

√
2 ln t/ni

t)
9: Play arm it and observe reward rt

10: Set ni
t = ni

t−1, and ûi
t = ûi

t−1 for all i ∈ [K] \ {it}
11: Update statistics for current learner nit

t = nit
t−1 + 1 and ûit

t = ûit
t−1 + rt

12: end for
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(a) Shadow Hand D3RB
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(b) Shadow Hand Exp3
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(c) Shadow Hand UCB
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(d) Shadow Hand ETC
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(e) Shadow Hand Epsilon-Greedy

0 10000 20000 30000 40000 50000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ta
sk

 S
co

re

(f) Shadow Hand Eureka

Figure 7: Shadow Hand

Algorithm 6 Exp3 (Exponential-weight algorithm for Exploration and Exploitation)

Require: Number of arms K, total time T , learning rate η
1: Initialize weights wi

0 = 1 and probabilities pi0 = 1/K for all i ∈ [K]
2: for t = 1, . . . , T do
3: Select arm it according to distribution Pt = [p1t , . . . , p

K
t ]

4: Play arm it and observe reward rt
5: Estimate reward r̂t = rt/p

it
t

6: Update weight wit
t = wit

t−1 exp(ηr̂t/K)
7: Update probabilities

pit = (1− η)
wi

t∑K
j=1 w

j
t

+
η

K
for all i ∈ [K]

8: end for

Table 3: Hyperparameters for MAB Algorithms

ALGORITHM PARAMETER VALUE

EXPLORE-THEN-COMMIT T0 5 ·K
EPSILON-GREEDY ε 0.1
UCB c 1.0
EXP3 η 0.1
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(a) Cartpole D3RB
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(b) Cartpole Exp3
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(c) Cartpole UCB
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(d) Cartpole ETC

0 50 100 150 200 250
Iteration

0

100

200

300

400

500

Ta
sk

 S
co

re

(e) Cartpole Epsilon-Greedy
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(f) Cartpole Eureka

Figure 8: Performance of different methods on the Cartpole environment.
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(a) Ball Balance D3RB
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(b) Ball Balance Exp3
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(c) Ball Balance UCB
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(d) Ball Balance ETC
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(e) Ball Balance Epsilon-Greedy

0 200 400 600 800 1000 1200 1400
Iteration

0

100

200

300

400

500

Ta
sk

 S
co

re

(f) Ball Balance Eureka

Figure 9: Performance of different methods on the Ball Balance environment.
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