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Abstract
The recent development of physics informed neural networks
(PINNs) has explored the inclusion of prior physics knowl-
edge into the objective function of deep learning models as
differential equation loss component to supervise learning of
complex systems under data-constrained settings. However,
PINN framework requires that expert-provided knowledge
about the physical system is perfectly accurate, neglecting
cases where there is potential for fallibility in expert judg-
ment. We extend this research to consider the effect of explicit
fallible expert judgment in the learning process. First, we the-
oretically upper bound the effect of fallible expert-provided
information on the convergence of PINNs to the true solu-
tion. We show how to opportunistically leverage fallible ex-
pert knowledge when data are scarce, and gracefully diminish
reliance on inaccurate expert judgment as more data are ac-
quired. Second, we examine the limitations of the PINN in
learning noisy real-world physical systems, and apply a mod-
ified Seq2seq learning with applications in turning operation
in lathe machines. We also propose a combination of PINN
framework with recurrent neural networks for predicting sys-
tem behavior outside the training domain.

Introduction
In recent years, experts, scientists, engineers and technicians
have provided valuable prior knowledge to accelerate learn-
ing and optimization for AI systems. For example, research
in rejection learning [4, 3] and learning-to-defer [14], train a
model to learn when to query an expert to make a classifica-
tion [11, 20]. In predictive maintenance and manufacturing
processes, combination of structured knowledge from ex-
perts with machine learning (ML) has proven to reduce costs
and optimize machine operation [9, 1, 12]. Traditionally, the
technicians or engineers can read off patterns in measurable
quantities (e.g., sound, vibration, force) during machine op-
eration, that can capture the error modes due to degradation,
corrosion, overheating, etc. Physics knowledge in the form
of ordinary differential equations (ODEs) or partial differ-
ential equations (PDEs) can also be regarded as structural
knowledge. With the introduction of physics-informed ma-
chine learning [10, 21, 23, 19, 5, 13, 15, 18], the expert’s
knowledge of underlying physics can be incorporated into
deep learning for predictive maintenance.
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The current physics-informed approaches refer to sim-
ulated data-sets with well-known physical functions and
boundary conditions that accurately describe the phe-
nomenon being studied. In real-world noisy systems an ex-
pert’s assessment of the underlying physics may never be
perfectly accurate. Thus, a method that can flexibly combine
expert physical knowledge with data-driven models makes it
possible to obtain the best of both worlds: small-data accu-
racy by leveraging expert judgement and large-data general-
izability despite potentially misspecified expert knowledge.

In this paper we take physics-informed neural network
(PINN) under the scenario where experts give misspecified
judgement of machine behavior. Our main contributions are:

• A theoretical proof of convergence of PINN under mis-
specification, and show how to diminish the reliance on
inaccurate physics knowledge for PINN with empirical
evaluation on chattering data.

• We introduce a combination of PINN with recurrent neu-
ral network to tackle the problem of imbalanced data dis-
tribution, which is a more common scenario in the time
series prediction for predictive maintenance.

• We examine current limitations of PINN, and apply mod-
ified seq2seq training resulting in faster convergence.

Background: Introduction to PINN
Physics-informed neural networks (PINNs), introduced by
Raissi et al. [15], are effective tools for solving differen-
tial equations. This approach leverages the fact that partial
derivatives are easily calculable from neural networks using
auto-differentiation. As a result, the neural network tries to
minimize the linear combination of structural loss and em-
pirical data loss. Here we refer to the simplest form of PINN,
which solves the following differential equation problem:

Let Ω be an open bounded set in Rd, with a boundary ∂Ω.
A partial differential equation takes the form: L[u](x) =
f(x),∀x ∈ Ω,B[u] = g(x),∀x ∈ ∂Ω, where L is a dif-
ferential operator and B is a boundary condition (such as
Dirichlet or Neumann). For simplicity, consider the linear
elliptic PDE with Dirichlet boundary condition and thus, the
boundary condition becomes: u(x) = g(x),∀x ∈ ∂Ω.

Given a class of neural networks H, the goal is to find
a neural network h that best approximate the solution u
of the above equation, which is equivalent to minimize



PINN loss [15] defined as: LossPINN(xr, xb, h, λr, λb) =
λr∥L[h](xr)−f(xr)∥2+λb∥h(xb)−g(xb)∥2, where xr, xb

are points from Ω and ∂Ω respectively. We consider the
setting where there are also a set of collected measure-
ment points (e.g. sensor measurements on a lathe machine)
(x, u(x)), x ∈ Ω. Then, treating the physics prior as regu-
larization, the goal is to minimize a Data-Regularized PINN
(DRP) loss:

LossDRP(xr, xb, xt, h, λr, λb) = λr∥L[h](xr)− f(xr)∥2

+λb∥h(xb)− g(xb)∥2 + ∥h(xt)− u(xt)∥2
(1)

Minimizing Data-Regularized PINN loss will also si-
multaneously lead to minimize the PINN Loss, because
LossPINN ≤ LossDRP, and ∥h(xt) − u(xt)∥2 will be min-
imized so that h approximates u, while the empirical data
can be noisy with some i.i.d noise; i.e. u(xt) + ϵ.

Convergence Under Misspecification
Despite prior works indicating that optimizing the empir-
ical PINN loss will result in an optimal solution of the
ODE/PDE [17], a more common scenario is that experts can
only provide limited physical information. The desired solu-
tion might be described by a PDE that is similar in behavior,
but different in coefficients, boundary conditions, etc. from
the expert’s guidelines. Thus, the physics priors are actually
misspecified, so the resulting PDE is:

(L+ ϵL)u(x) = f(x) + ϵf (x), ∀x ∈ Ω

u(x) = g(x) + ϵg(x), ∀x ∈ ∂Ω
(2)

Consider misspecified data-regularized PINN (MDRP) loss:

LossMDRP(xr, xb, xt, h, γ) = ∥h(xt)− u(xt)∥2

+ λr∥(L+ ϵL)[h](xr)− f(xr)− ϵf (xr)∥2

+ λb∥h(xb)− g(xb)− ϵg(xb)∥2
(3)

To analyze how minimizing the empirical misspecified
data-regularized PINN loss can help to estimate a solution
of the Equation (2) with misspecified experts’ guidance, we
first formulate a simpler scenario where the both the PDE
and neural networks satisfy the following:

• Smoothness. The function we are estimating, u ∈
L2(Ω), should satisfy the Hölder continuity conditions.
In addition, operator L,B, and functions f, g, h, u are in
α Hölder space for some 0 < α < 1.

• Neural Network approximation. There exist suffi-
ciently large neural networks that are able to approximate
the solutions to the PDE to arbitrary accuracy.

• Ellpticity. The operator L is linear and elliptic.

The following Lemma bounds the data-regularized PINN
loss using the empirical misspecified data-regularized PINN
loss on which the neural network is trained.

Lemma 1.1 Suppose mr and mb denotes the number of
collocation points where the differential equation is enforced
τr = {xi

r}
mr
i=1 and τb = {xi

b}
mb
i=1 are the boundary points.

Further, assume that for any xr ∈ Ω and xb ∈ ∂Ω, there
exists x′

r ∈ τr and x′
b ∈ τb such that ∥xr − x′

r∥ ≤ ϵr
and ∥xb − x′

b∥ ≤ ϵb. In addition, let mt be the number of
measurement data and τt = {xi

t}
mt
i=1 be the set of sam-

ples from measurement. Also assume that for any x ∈ Ω,
there exists x′

t ∈ τt such that ∥xt − x′
t∥ ≤ ϵt. Then we

can bound LossPINN or LossDRP above with empirical aver-
age LossMDRP

m :

LossDRP ≤ CmLossMDRP
m (h, λ′) + ϵh + ϵm (4)

where Cm = 3max{Crmrϵ
d
r , Cbmbϵ

d−1
b , Ctmtϵ

d
t }, λ′ =

3λ, and ϵh, ϵm are error terms with Hölder constants and
misspecifications, respectively.

Theorem 1 Suppose for each mt, Hm contains a network
hm that perfectly optimizes the empirical misspecified data-
regularized PINN loss, that is, LossMDRP

m (hm) = 0. Also, let

mr = O(mt) and mb = O(m
d−1
d

t ). Then with probability
at least 1− δ for any δ ∈ (0, 1), over iid samples:

LossDRP(xr, xb, xt, hm, λ) ≤ O(m
−( 2α

d +1)
t logmt)

+O(m
− 2α

d
t logmt) +O(m−1

t )
(5)

where we pick specific regularization parameter λ =
O(m−1

t ) so that the misspecification error will be O(m−1
t )

in Eq. (5), i.e. the expert-provided misspecified physics
knowledge is washed away as more measurement data is col-
lected. Full proof of Lemma 1.1 and Theorem 1 is detailed
in Appendix A.

Noticing that LossPINN is upper bounded by LossDRP, then
with probability 1 over iid samples:

lim
mt→∞

LossPINN(xr, xb, xt, hm, λ′) =

lim
mt→∞

LossDRP(xr, xb, xt, hm, λ′) = 0
(6)

Theorem 2 By invoking (6) and LemmaD.1 in [17], the
distance between neural network approximation h and PDE
solution u∗ is bounded by:

∥u∗ − h∥C0(Ω) ≤ C(∥f − L[h]∥C0(Ω) + ∥g − h∥C0(∂Ω))
(7)

for any h ∈ C0(Ω) satisfying L[h] ∈ C0,α(Ω) and h ∈
C0,α(∂Ω). Notice that the two terms on the right hand side
converge to zero for hm as PINN loss converges to 0. Thus,
all lemmas and theorems above together indicate that one
can learn a neural network h that well approximates the true
PDE solution u, even with misspecification, for large mt by
choosing appropriate λ. In practice, the value of λ can be set
using cross-validation, as we discuss in next section, to trade
off amount of misspecification with amount of data.

Turning Machine Data Analysis
The lathe machine is prone to failure during the tuning pro-
cess, and thus the experts have been seeking the help of ma-
chine learning to detect the chatter and causes of the chatter
[6]. The real system data are samples from experiments per-
formed by [22], where sensors were used to measure the op-
eration of the lathe machine during the turning process. The



data consisted of accelerometer and audiosensor recordings
of lathe machines during a turning process under multiple
experimental settings (details in Appendix B). While pre-
vious literature has shown the general ODE governing ma-
chine tuning [16]: a d2

dt2 y(t) + b d
dty(t) + cy(t) + d = 0 ,

the details of parameters (the a, b, c, d in the ODE form) are
dependent on the configurations of lathe machines.

Expert’s Estimation We have recruited nine participants
to give an estimation of the ODEs related to one damped har-
monic oscillator. The details of the experiment settings and
experts’ prediction can be found in Appendix B. We mea-
sure the mean squared error of the solution of the experts
with the collected data and see that even good experts give
a MSE of 0.079 on the normalized scale, which shows the
deviation of the expert’s prediction from the actual system.

PINN’s Estimation Under Misspecified Experts In our
evaluation, we utilize the expert’s ODE with least MSE and
build a 6 layer DNN to optimize the data-regularized PINN
loss, which is defined as λlossdata + lossPINN, where λ is the
regularization coefficient (notice using λ to regularize either
lossdata or lossPINN are equivalent, in theory part we add λ
to lossPINN, and here we add λ to lossdata, hence the λ here
increases to emphasize more reliance on data). We set λ > 1
to rely more on measurement data than misspecified physics.
For comparison, we also trained another network that mini-
mizes data loss only, with all other setting identical as pre-
vious. The prediction result is shown in Figure 1.

Figure 1: Prediction of combined PINN and pure
data model, PINN (MSEdata=6.3e-3, MSEODE=1.7e-3)
shows smooth result while data model (MSEdata=4.2e-3,
MSEODE=6.4) causes heavy overfitting.

It is obvious that the data-regularized PINN results in a
smoother and more rational result than pure data-driven net-
work, which overfits the noisy data and cannot represent the
underlying physics. Besides, we invoke a cross-validation
model selection approach to choose best λ that gives the op-
timal λ choice, detailed in Appendix C.

Imbalanced Data Distribution
Here we focus on another practical problem in utilizing
PINN: what if we could only obtain measurement from par-
tial domain? This is particularly true in physics, as data is
not available when temperature is high in a diffusion sys-
tem, or velocity is high in a dynamic motion system, etc. Fig
2 shows that, for periodic functions, vanilla PINN approach
can only work well within domains that have data, but con-

verges to an arbitrary solution in non-measurable domains.
We elaborate on this aspect further in the next section.

Figure 2: Vanilla PINN result over chatter data, solid/dash
lines represent visible/invisible data and physics to network.

To resolve the scenario when only partial data is avail-
able, we leverage the advantage of LSTM in predicting se-
quential data or time-continuous functions. We first build a
vanilla PINN with data regularization to well approximate
the solution values in the domain where data is available,
then the model is followed by a convolutional LSTM, trained
with the prediction from PINN, to predict next labels in the
domain where we have no data. Since the prediction from
PINN has contained enough physics information, the metric
when learning the ConvLSTM is simply the means square
error between prediction and labels, without any physics-
informed regularization.

Figure 3: DNN+LSTM prediction over chatter data, noticing
information of second-half is invisible to neural networks.

The evaluation of proposed method is illustrated by Fig-
ure 3, which indicates that the proposed method conducts
better and more rational predictions than vanilla PINN.
Though the result can be much dependent on the context
length of the ConvLSTM, our empirical knowledge indi-
cates setting context length to approximately equal to the
period length leads to smooth and reasonable predictions.

Failure of PINN: Analysis and Solution
Despite the exciting achievements of PINN, under certain
physical circumstances, it also exhibits multiple optimiza-
tion difficulties. The most severe one is that, without mea-
surement data, PINN fails to approximate periodic physics
solutions with high frequency and equivalently, PINN dis-
plays difficulties in converging to a global optimal when one
is trying to approximate too many periods by a single neural
network. Similar findings were also reported by [7]. How-
ever, no existing work explains the optimization landscape
that leads to this phenomenon.

To understand why PINN fails to approximate high fre-
quency functions, we start with a toy spring mass system,



which has general formulation: mutt + ku = 0, u(0) =

A, ut(0) = B, where utt is equivalent to d2

dt2u(t).
A general solution to this ODE system under given ini-

tial condition (IC) and boundary condition (BC) is u(t) =

Acosωt + B
ω sinωt, where ω =

√
k
m . Nevertheless, ig-

noring the IC and BC, a trivial solution to the system is
u(t) = 0. Though u(t) = 0 is analytically incorrect so-
lution to the given system given the initial and boundary
conditions, we should recognize that the neural network
is a numerical approach with a black box operator. Re-
call that vanilla PINN defines an optimization objective as
lossPINN = lossPDE + lossBC+IC. When the collocation points
are close enough to the initial state, lossBC+IC plays con-
straints in approximation. However, as collocation points be-
come away from initial state, lossBC+IC will no longer be a
constraint to those points, and the neural network will ap-
proximate arbitrary solutions that fit the physics equation,
including the trivial solution. Thus, PINN intends to learn
a combined solution with correct solution in the beginning,
and an arbitrary solution, typically a trivial solution due to
its simplicity to approximate, in the later part of the do-
main, which is analytically incorrect but numerically pos-
sible. This phenomenon for learning a simple spring mass
system with PINN is shown in Figure 4.

Figure 4: PINN solver of spring mass system, which under-
fits the true solution because lossBC+IC plays limited effect.

This phenomenon is caused due to imbalanced optimiza-
tions in different parts of the domain. In Figure 4, we observe
a ‘fast decay’ of approximation for t ≤ 0.4 and eventually
it converges to a trivial solution. For clarity, we name part
t ≤ 0.4 as decaying region, and the remaining part as flat
region. It turns that the ODE loss is small in the flat region,
but not in the decaying region. Since PINN optimizes the
ODE loss over the whole domain and the trivial solution is
easy to approximate, if too many collocation points are suf-
ficient periods away from initial state, then optimizing these
points to a trivial solution is more favorable. Since a trivial
solution is well optimized (error is 0 or close to 0) at the
flat region, its gradient can be extremely trivial such that the
neural network can never jump from the local optima.

In [7], Seq2seq training was proposed as a fix for this
problem. Seq2seq trains multiple PINNs by slicing the do-
main sequentially, in which the last prediction from previ-
ous PINN serves as the initial condition for the next PINN.
Through leveraging seq2seq training, one could slice the do-
main into parts, in which each part has much fewer periods
than original domain, possibly make more collocation points
close to the initial state to avoid estimating a flat region.

One problem for seq2seq training is that the use of ini-

tial condition from prediction makes error cumulative, lead-
ing to an inferior approximation in later part of the domain.
In addition, empirical evaluation indicates seq2seq training
with vanilla PINN is typically slow in convergence and hard
to reach a desired error. Thus our works make following
adaptions for better convergence: (1) Inspired by [8], instead
of softly enforcing the initial conditions, we try to hard-code
the initial conditions using second-order Taylor approxima-
tion;(2) Instead of directly learning with a given equation,
we stretch the equation in time domain to a lower frequency,
and squeeze its prediction back for normal approximation.

To illustrate the proposed modification, we leverage a
simple ode autt + but + cu + d = 0, with IC/BC u(0) =
A, ut(0) = B, which is a variant of a spring mass system.
The first trick indicates an approach of approximating:

u = A+Bt+ t2h (8)
rather than u = h. Here h refers to the neural network,
which makes it harder for the neural network to approxi-
mate a trivial solution. The second trick is that we stretch t
by k times and evaluate PINN loss based on:

k2autt + kbut + cu+ d = 0 (9)
whose solution is in same shape, but different in time scale,
we then let u′(t) = u(kt) to reproduce the original solution.

(a) training loss

(b) prediction result

Figure 5: Training loss and prediction for seq2seq and
modified-seq2seq, with no measurement data.

By letting a = 0.8, b = 0.32.c = 4800, d = −3000
and A = 1, B = 0, we empirically evaluate the pro-
posed modifications versus original seq2seq training. Figure
5 shows a faster convergence of error for modified seq2seq,
when both models are optimized using Adam optimizer with
lr = 0.001, indicating the proposed method is easier for
training. Since vanilla seq2seq training cannot converge to
a desired loss, it leads to a larger error for next initial state.
Cumulatively, the error will be magnified through cascade,
and eventually result in an inferior prediction.



Conclusion
In this paper we have theoretically proven that PINN can
recover the ordinary and partial differential equation with
limited data, even when the governing physics knowledge
that enforces PINN’s loss function is not a precise estima-
tion. We further demonstrate the effectiveness of PINN with
a real-life scenario of machine turning process and predic-
tive maintenance. We have also analyzed the potential fail-
ure characters of PINN because of its difficulty to converge
to a global optimal or the lack of data throughout the in-
put domain. We have provided the modified PINN models
to target each of the above scenarios.
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Appendix
A. Proof of Lemma 1.1 and Theorem 1
Proof of Lemma 1.1

Instead of considering a special case of Dirichlet bound-
ary condition, let start with a general PDE with misspecifi-
cation:

(L+ ϵL)u(x) = f(x) + ϵf (x), ∀x ∈ Ω

(B + ϵB)u(x) = g(x) + ϵg(x), ∀x ∈ ∂Ω

The Misspecified Data-Regularized PINN Loss and its
empirical loss are modified accordingly:

LossMDRP(xr, xb, xt, h, γ) = ∥h(xt)− u(xt)∥2

+ λr∥(L+ ϵL)[h](xr)− f(xr)− ϵf (xr)∥2

+ λb∥(B + ϵB)[h](xb)− g(xb)− ϵg(xb)∥2

LossMDRP
m (h, γ) =

1

mt

mt∑
i=1

∥h(xi
t)− u(xi

t)∥2

+
λr

mr

mr∑
i=1

∥(L+ ϵL)[h](x
i
r)− f(xi

r)− ϵf (x
i
r)∥2

+
λb

mb

mb∑
i=1

∥(B + ϵB)[h](x
i
b)− g(xi

b)− ϵg(x
i
b)∥2

Invoking the inequality: ∥x+ y + z∥2 ≤ ∥x∥2 + ∥y∥2 +
∥z∥2, we have:

∥L[h](xr)− f(xr)∥2 ≤ 3(∥L[h](x′
r)− f(x′

r)∥2

+ ∥L[h](xr)− L[h](x′
r)∥2 + ∥f(xr)− f(x′

r)∥2)
∥B[h](xb)− f(xb)∥2 ≤ 3(∥B[h](x′

b)− g(x′
b)∥2

+ ∥B[h](xb)− B[h](x′
b)∥2 + ∥g(xb)− g(x′

b)∥2)

Again, apply ∥x + y + z∥2 ≤ ∥x∥2 + ∥y∥2 + ∥z∥2 to
∥L[h](x′

r)− f(x′
r)∥2 and ∥B[h](x′

b)− g(x′
b)∥2, we have:

∥L[h](x′
r)− f(x′

r)∥2 ≤ 3(∥(L+ ϵL)[h](x
′
r)− f(x′

r)

− ϵf (x
′
r)∥2 + ∥ϵL[h](x′

r)∥2 + ∥ϵf (x′
r)∥2)

∥B[h](x′
b)− g(x′

b)∥2 ≤ 3(∥(B + ϵB)[h](x
′
b)− g(x′

b)

− ϵg(x
′
b)∥2 + ∥ϵB[h](x′

b)∥2 + ∥ϵg(x′
b)∥2)

In addition, we derive the measurement data term as:

∥h(xt)− u(xt)∥2 ≤ 3(∥h(x′
t)− u(x′

t)∥2

+ ∥h(xt)− h(x′
t)∥2 + ∥u(x′

t)− u(xt)∥2)
With all inequalities listed above, we have:

LossDRP(xr, xb, xt, h, λ) ≤ 3∥h(x′
t)− u(x′

t)∥2 + 3∥h(xt)

− h(x′
t)∥2 + 3∥u(x′

t)− u(xt)∥2 + 9λr(∥(L+ ϵL)[h](x
′
r)

− f(x′
r)− ϵf (x

′
r)∥2 + ∥ϵL[h](x′

r)∥2 + ∥ϵf (x′
r)∥2)

+ 9λb(∥(B + ϵB)[h](x
′
b)− g(x′

b)− ϵg(x
′
b)∥2

+ ∥ϵB[h](x′
b)∥2 + ∥ϵg(x′

b)∥2) + 3λr(∥L[h](xr)

− L[h](x′
r)∥2 + ∥f(xr)− f(x′

r)∥2) + 3λb(∥B[h](xb)

− B[h](x′
b)∥2 + ∥g(xb)− g(x′

b)∥2)

By letting λ′ = 3λ, and leveraging the property of Hölder
space, we could bound LossDRP by LossMDRP by:

LossDRP(xr, xb, xt, h, λ) ≤ 3LossMDRP(x′
r, x

′
b, x

′
t, h, λ

′)

+ 3ϵ2αt [h]2α,Ω + 3ϵ2αt [u]α,Ω + λ′
rϵ

2α
r [L[h]]2α,Ω

+ λ′
rϵ

2α
r [f ]2α,Ω + λ′

bϵ
2α
b [B[h]]2α,∂Ω + λ′

bϵ
2α
b [g]2α,∂Ω

+ 3λ′
r(∥ϵL[h](x′

r)∥2 + ∥ϵf [h](x′
r)∥2)

+ 3λ′
b(∥ϵB[h](x′

b)∥2 + ∥ϵg[h](x′
b)∥2)

For writing simplicity, we use ϵh to represent the error
terms with Hölder constants and ϵm to represent misspec-
ification error terms. Assuming there exists positive con-
stants cr, cb, ct, such that ∀ϵ > 0, Axi

r
, Axi

b
, and Axi

t
sat-

isfy crϵ
d ≤ µr(Axi

r
), cbϵ

d−1 ≤ µb(Axi
b
), and ctϵ

d ≤
µt(Axi

t
). Also there exists positive constants Cr, Cb, Ct, s.t.

∀xr, xt ∈ Ω, xb ∈ ∂Ω, such that µr(Bϵ(xr) ∩ Ω) ≤ Crϵ
d,

µb(Bϵ(xb) ∩ ∂Ω) ≤ Cbϵ
d−1, and µt(Bϵ(xt) ∩ Ω) ≤ Ctϵ

d.
Here, Axi

r
, Axi

b
, and Axi

t
are the Voronoi cell defined as:

Axi
r
= {x ∈ U |∥x− xi

r∥ = min
x′∈τr

∥x− x′∥}

Axi
b
= {x ∈ Γ|∥x− xi

b∥ = min
x′∈τb

∥x− x′∥}

Axi
t
= {x ∈ U |∥x− xi

t∥ = min
x′∈τt

∥x− x′∥}

Let γi
r = µr(Axi

r
), γi

b = µr(Axi
b
), and γi

t = µt(Axi
t
), let

γ∗
r = maxi γ

i
r, γ∗

b = maxi γ
i
b, and γ∗

t = maxi γ
i
t , by taking

expectations with respect to (xr, xb) ∼ µ = µr × µb, we
could express the expectation in terms of empirical loss as:

Eµ[L(xr, xb, h, λ)]

≤ 3mrγ
∗
r

λ′
r

mr

mr∑
i=1

∥(L+ ϵL)[h](x
i
r)− f(xi

r)− ϵf (x
i
r)∥2

+ 3mbγ
∗
b

λ′
b

mb

mb∑
i=1

∥(B + ϵB)[h](x
i
b)− g(xi

b)− ϵg(x
i
b)∥2

+ 3mtγ
∗
t

1

mt

mt∑
i=1

∥h(xi
t)− u(xi

t)∥2 + ϵh + ϵm

where L(xr, xb, h, λ) = (λr∥L[h](xr)−f(xr)∥2)IΩ(xr)+
(λb∥B[h](xb)− g(xb)∥2)I∂Ω(xb), and IA(x) is an indicator
function on set A. Based on the assumption above, we also
have γ∗

r ≤ Crϵ
d
r , γ∗

b ≤ Cbϵ
d−1
b , and γ∗

t ≤ Ctϵ
d
t . Then we

can obtain:

Eµ[L(xr, xb, h, λ)]

≤ 3Crmrϵ
d
r

λ′
r

mr

mr∑
i=1

∥(L+ ϵL)[h](x
i
r)− f(xi

r)− ϵf (x
i
r)∥2

+ 3Cbmbϵ
d−1
b

λ′
b

mb

mb∑
i=1

∥(B + ϵB)[h](x
i
b)− g(xi

b)− ϵg(x
i
b)∥2

+ 3Ctmtϵ
d
t

1

mt

mt∑
i=1

∥h(xi
t)− u(xi

t)∥2 + ϵh + ϵm

≤ C ′
mLossMDRP

m (h, λ′) + ϵh + ϵm



where C ′
m = 3max{Crmrϵ

d
r , Cbmbϵ

d−1
b , Ctmtϵ

d
t }. Then

the proof is completed.
Proof of Theorem 1

By expanding ϵh and ϵm, let ϵmr = 3(∥ϵL[h](x′
r)∥2 +

∥ϵf [h](x′
r)∥2) and ϵmb = 3(∥ϵB[h](x′

b)∥2 + ∥ϵg[h](x′
b)∥2)

to denote the misspecified errors. Also let ϵhr = [L[h]]2α,Ω+

[f ]α,Ω, ϵhb = [B[h]]2α,∂Ω + [g]α,∂Ω, and ϵht = 3([h]2α,Ω +

[u]α,Ω) to denote the errors involved with Holder constants.
That is, ϵh+ ϵm = λ′

r(ϵ
2α
r ϵhr + ϵmr)+λ′

b(ϵ
2α
b ϵhb+ ϵmb)+

ϵ2αt ϵht. By leveraging Lemma 1.2, rather than setting ϵr =

c
− 1

d
r m

− 1
2d

r , ϵb = c
− 1

d−1
r m

− 1
2(d−1)

r , we tighten the bound to
ϵr = (2 logmr

crmr
)

1
d , ϵb = (2 logmb

cbmb
)

1
d−1 , and similarly, we set

ϵt = ( 2 logmt

ctmt
)

1
d . Then the following bound holds with >

1 − δ probability for any δ ∈ (0, 1). with probability. The
Data-Regularized PINN Loss can be bounded as:
LossPINN(xr, xb, xt, h, λ) ≤ LossDRP(xr, xb, xt, h, λ)

≤ C ′
mLossMDRP

m (h, λ′) + λ′
r((

2 logmr

crmr
)

2α
d ϵhr + ϵmr)

+ λ′
b((

2 logmb

cbmb
)

2α
d−1 ϵhb + ϵmb) + (

2 logmt

ctmt
)

2α
d ϵht

By setting λ′
r = λ′

b = 1
mt

, we could conclude the em-
pirical loss will converge to 0 as mt → ∞. Suppose mr =

O(mt) and mb = O(m
d−1
d

t ), since we assume that there ex-
ists hm ∈ H such that hm perfectly optimizes the empirical
data-regularized PINN loss, that is, LossMDRP

m (hm, 1
mt

) = 0,
then the upper bound becomes:

LossDRP(xr, xb, xt, h, λ) ≤ O(m−1
t ) +O(m

−( 2α
d +1)

t logmt)

+O(m
− 2α

d
t logmt)

Then the proof is completed.
In addition, for picking proper λr, λb, rather than sim-

ply setting to 1
mt

, [2] proposed a method that automatically
choosing appropriate λ by hold-out validation.

B. Expert’s Evaluation of Lathe Machine
Tuning

Here we summarized our experiment and the results we have
acquired from the experts.

Participants
Participants were eligible for the study if they had a me-
chanical engineering background with a focus on machining
theory and operation of lathe machines. Our recruitment ef-
forts focused on: 1) researchers with expertise in machin-
ing dynamics, 2) undergraduate and graduate mechanical
engineering students who have training in machining the-
ory and operation of lathe machines, and 3) technicians who
supervise and maintain lathe machines. Participants were
recruited by online free-lancing work platforms (Upwork,
Fiverr). Experts were also asked to complete a preliminary
survey asking about the years of experience and domain
specializations. We recruited nine individuals from June 30,
2021 to August 30, 2021 including one researcher, six tech-
nicians/engineers, and two students.

Procedure
Experts were asked to provide equations for a lathe machine
under normal operation. In the tasks, the experts were asked
to provide judgments about a simulated system with a data
generating process known to the experimenters, but hidden
to the participant. While the machine turning process gener-
ally follows a second-order ODE as:

a
d2

dt2
y(t) + b

d

dt
y(t) + cy(t) + d = 0

we would like the experts to give an estimation of the pa-
rameters in the ODE.

We utilize the normal operation part of F 12-Jun-
2017 rpm570 doc0p008.mat collected by [22]. We observe
the turning machine data is 16000 points from interval t ∈
[0, 0.1] with a sampling frequency of 6.2e−6. Since the orig-
inal data space is relatively too small for neural network
training, we normalize the data to u(t)/|(u(t)max−u(t)min|
and t/|tmax − tmin|. Thus, the data is re-normalized to
t ∈ [0, 1] and u(t) ∈ [0, 1]. We also re-scale the expert’s
evaluation accordingly.

Results
With the experts’ estimation we calculated the analytical so-
lution to the ODE problem:

y(t) = C1e
t(−b−

√
−4ac+b2)
2a + C2e

t(−b+
√

−4ac+b2)
2a − d

c

With C1 and C2 are calculated based on each individual’s
parameters. We take the same sampling frequency on the
analytical solutions and measure the mean squared distance
to the actual noisy data. The rescaled MSE is calculated by
averaging L2-distance the between rescaled expert’s predic-
tion of 16, 000 time points and normalized data.

Table 1: The results shown by nine experts and we measure
the scaled MSE to the normalized turning machine data.

Expert Estimated Values Scaled MSE
a b c d

1 1 4 600,000 -3000 0.120
2 1 0 450,000 -2500 0.079
3 1e-7 0 0.04 0.0025 0.89
4 1 0 650,000 -2500 0.199
5 1 0 500,000 -2500 0.081
6 6 0 2,627,000 0 0.489
7 1 0 10,000,000 -50000 0.096
8 1 0 322,000 -1720 0.124
9 20 0.5 10,000,000 -20000 0.425

C. PINN Result with Cross-validation
Here we apply Expert 1’s prediction as the prior physics
information fed into PINN. And to illustrate the effect of
regularization on data, we assume the initial and bound-
ary conditions based on chatter data are exactly given to
PINN, so PINN does not need to learn the additional pa-
rameters. We also perform a normalization of related ODE,



such that the largest coefficient in ODE is normalized to 1,
and PINN could learn the solution with fewer iterations, and
the learning rate can be enlarged to allow faster searching of
the optimization space. To achieve this, we apply a Taylor-
expansion based approach to decompose the output of PINN
into:

y(t) = A(1− t) +Bt+ t(1− t)h

Where A = y(0) and B = y(1) are the normalized
boundary conditions over t, intuitively, we hard-coded the
two points boundary conditions to easier training. The h is
the output of PINN when minimizing the data-regularized
loss: λlossdata + lossPINN. For the neural network we ap-
ply a six-layer neural network with number of nodes at
[1, 64, 64, 64, 10, 1] at each layer, and uniformly sampled
8000 out of the 16000 points from either data or colloca-
tion points for training, and rest points for validation. For all
models we trained, the training index and validation index
remain identical.

In the table 2 we provide a brief summary of the effects
of regularization on data loss and ODE loss computed on
validation set. We observe that as the regularization gets
larger, there is an increase in ODE loss because the PINN
relies more on data rather than the inaccurate physics prior.
Similarly the data loss is decreasing because the PINN is
more fitted to the data. However, we also notice that just in-
creasing the regularization to a significantly large amount
is not realizable: the data loss starts increasing at certain
level when the model starts overfitting to data. Interestingly,
the data loss suddenly decreases at extreme large regulariza-
tions, however this is still overfitting as the prediction actu-
ally fails to follow physics rules as is reflected in large ODE
loss (see Figure 7).

Thus, the effectiveness of cross-validation can be inter-
preted as follows: First, we expect the chattering data fol-
lows some physics rules, and a large λ which relies too heav-
ily on data causes large physics error, making prediction less
reliable; Second, the noise of data might not be iid or zero
mean, such that there exists biases in data MSE measure-
ment (and such correlations in noise between training and
validation set might explain why the model overfits to vali-
dation data for very large λ). In the table, we highlight two
results and plot the results of PINN with experts’ prediction
and noisy data. We notice that even through PINN solution,
shown with Figure 7, is at larger regularization and provides
smaller data loss, its solution tends to overfit to the data pro-
vided and is less informative of the general physics knowl-
edge. The PINN solution with regularization λ = 1, shown
in Figure 6 fits the general trend better even though it has a
slightly larger data loss.

However, no matter the regularization, we notice that in
general the MSE of the data+physics based model is smaller
than the experts’ predictions (physics only model, where the
expert provided physics is misspecified), which shows how
PINN with combination of experts and data can improve our
understanding of the machinery processes. Thus, this hy-
brid method can flexibly combine expert physical knowl-
edge with data-driven models making it possible to obtain
the best of both worlds: small-data accuracy by leveraging

expert judgement and large-data generalizability despite po-
tentially misspecified expert knowledge.

Table 2: Cross validation result. As regularization becomes
larger, we observe an increase in ODE loss and decrease in
Data loss.

Regularization Data MSE ODE MSE
1e-10 2.34e-2 7.19e-3
1e-5 1.97e-2 4.51e-6
1e-3 2.23e-2 4.80e-5
1e-1 9.61e-3 2.12e-4
1e+0 6.36e-3 3.64e-4
1e+1 6.31e-3 2.43e-3
1e+3 5.50e-3 1.99e-1
1e+5 5.43e-3 2.22e+0
1e+7 8.41e-3 1.23e+1
1e+9 1.90e-2 4.06e+1
1e+12 4.27e-3 1.75e+1
1e+15 5.18e-3 1.33e+1

Figure 6: Regularization is 1e+1. The PINN prediction cap-
tures the general trend.

Figure 7: Regularization is 1e+12. The PINN prediction
tends to overfit to the data, though it leads to lower MSE
error on validation data.


