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ABSTRACT

Integrating AI and human expertise can significantly enhance decision-making
across various scenarios. This paper introduces a novel approach that leverages
the Product of Experts (PoE) model to optimize decision-making by strategically
combining AI with human inputs. While human experts bring diverse perspectives,
their decisions may be constrained by biases or knowledge gaps. To address these
limitations, we propose an AI agent that provides probabilistic, rule-based insights,
complementing and filling human experts’ knowledge gaps. A key feature of
our approach is the strategic selection of human experts based on how well their
knowledge complements or enhances the AI’s recommendations. By dynamically
adapting the expert selection process, we ensure that decisions benefit from the
most impactful and complementary inputs. Our PoE model calibrates inputs from
both AI and human experts, leveraging their combined strengths to improve deci-
sion outcomes. Furthermore, operating in an online setting, our framework can
also continuously update the AI’s knowledge and refine expert selection criteria,
ensuring adaptability to evolving environments. Experiments in simulation envi-
ronments demonstrate that our model effectively integrates logic rule-informed AI
with human expertise, enhancing collaborative decision-making.

1 INTRODUCTION

In decision-making across various domains, human expertise is invaluable, but AI is increasingly
being leveraged to augment and enhance these processes. Rather than replacing human specialists, as
noted by Duan et al. (2019), a more promising approach is to combine AI with human knowledge,
enhancing decision outcomes by utilizing the strengths of both. This collaboration between AI and
human expertise has already proven beneficial in fields such as human resources (Davenport et al.,
2010), marketing (Huang & Rust, 2022), and clinical radiology (Futoma et al., 2017; Bien et al.,
2018), enabling more informed, comprehensive, and reliable decisions.

Consider the challenge of diagnosing and treating rare diseases in healthcare. Multidisciplinary
treatment (MDT) is crucial in these cases, as it combines expertise across various fields to address
the complexities of rare conditions. Despite this, individual biases and cognitive blind spots of
human experts can still lead to suboptimal decisions. An AI doctor could play a critical role here
by complementing human doctors’ knowledge, filling gaps, and offering new perspectives based on
its vast domain-specific data. This collaboration has the potential to improve diagnostic accuracy
and treatment outcomes. Similarly, in academic peer review, bias and inconsistency can impact
evaluations of research articles due to reviewers’ subjective preferences and varied expertise. By
integrating AI reviewers into this review process, we may bring objective, probabilistic insights to
complement human judgment, improving fairness and efficiency in the review process.

Yet, key questions arise: How should AI be effectively integrated into expert teams? How can AI
and human decisions be combined to ensure optimal outcomes? And how can we ensure AI plays a
positive, complementary role without introducing new risks or biases? In this paper, we propose an
AI-human collective decision-making framework to address these questions.
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Our framework features a logic-informed AI agent designed to be transparent and interpretable. By
grounding its decision-making process in rule-based logic, we aim to enhance human experts’ trust in
AI’s recommendations and foster more effective collaboration with human experts.

At the core of our framework is the Product of Experts (PoE) model (Hinton, 2002; Cao & Fleet, 2014),
which synthesizes AI and human inputs in a novel and elegant way. Unlike traditional ensemble
methods such as bagging and boosting, PoE blends AI’s probabilistic rule-based insights with the
often more intuitive, experience-based judgments of human experts. This integration harmonizes
diverse perspectives, ensuring that AI enhances decision-making without overriding human expertise.
Additionally, a confusion matrix is used to assess and estimate the reliability of human contributors,
enabling a more informed combination of AI and expert input.

Crucially, our framework incorporates an active perception mechanism for selecting human experts
from a diverse pool, such as medical specialists within a hospital or across different institutions. This
ensures that only the most informative and complementary expertise is utilized for each case. In our
framework, the AI first generates initial recommendations, such as treatment options for a patient.
Based on these recommendations, the system identifies and selects human experts whose insights
complement and enhance the AI’s output. Leveraging information gain, the framework automatically
filters out less effective experts and adaptively chooses the most suitable ones for various scenarios
and patients, such as those with specific rare conditions or complex needs, grouping them according
to their strengths. The overall framework of the AI-human collaborative decision-making system
operates in an online setting. As more patient data becomes available, our algorithm can further
expand the AI’s cognitive regions and refine its understanding of each expert’s specialized areas,
continuously improving decision-making, generalization, and predictive accuracy (Hoi et al., 2021).
The architecture of our framework, illustrated in Fig. 1, highlights these innovations.

To summarize, our main contributions are as follows:

• We introduce a novel human-AI collaborative decision-making framework that integrates a logic-
informed AI agent with the PoE model. This probabilistic model combines AI and human expertise,
leveraging collective insights to enhance decision quality and reliability. The logic-informed AI
agent ensures transparency and interpretability, grounding decisions in rule-based logic.

• Our framework features an active perception module that optimally selects human experts based on
the estimation of their expertise. This module ensures that only the most relevant and impactful
expertise is utilized, improving decision-making efficiency.

• We provide both theoretical analyses and empirical evidence to support the effectiveness of our
framework. We demonstrate how the PoE model with the logic-informed AI agent and the active
perception module improves decision accuracy and robustness. Additionally, we illustrate how the
framework’s adaptability to evolving data and environments is supported by empirical validation.

2 RELATED WORK

Ensembles and Opinion Pools Prior research has convincingly demonstrated the performance
advantages of leveraging multiple predictors over a single predictor. This principle is evident in
both model combinations (Kittler et al., 1998; Bagui, 2005; Sagi & Rokach, 2018) and human
opinion aggregations (Hong & Page, 2004; Lamberson & Page, 2012). Majority voting (Dietterich,
2000) and naive Bayes aggregation (Xu et al., 1992) are prevalent methods for aggregating non-
probabilistic classifiers. However, majority voting may fall short in accuracy enhancement with a
limited number of predictors, and naive Bayes aggregation, while effective at the class level, does
not fully exploit instance-level uncertainties presented by probabilistic labelers. In the realm of
human opinion ensembling, methods range from additive linear and log-linear opinion pools for
subjective distributions (Genest & Zidek, 1986), to techniques for weighting linear combinations of
continuous human predictions (Davis-Stober et al., 2015), and voting strategies for consolidating
label predictions from multiple human predictors (Lee & Lee, 2017). Our work differentiates itself
by focusing on the integration of label-based human decisions with probabilistic model predictions,
aiming to optimize the combination of these distinct sources of input.

Human-AI Complementarity Human-AI Complementarity aims to enhance the accuracy of
predictions made by human experts utilizing decision support systems beyond the capabilities of

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

…

Endocrine 
knowledge

Neurosurgical 
knowledge

Imaging 
knowledge Pathology 

knowledge

Knowledge- and data-driven AI agent

Last Round

Who should join the decision-making table?

Step 1: Initial Assessment

AI’s Assessment:

① Gitelman Syndrome: 40%

② Bartter Syndrome: 30%

③ Liddle Syndrome: 5%

④ Cushing Syndrome: 20%

⑤ Malignant hypertension: 5%

Step 2: 

Step 3: Final Decision and Prognostic Follow-up

Assessment:
① Carter: Gitelman Syndrome
② Rhodes: Bartter Syndrome

Hayes‘s Final Decision:
Gentleman Syndrome

M
ul

tid
is

ci
pl

in
ar

y 
Te

am

Assessment:
① Carter: Gitelman Syndrome
② Rhodes: Bartter Syndrome
③ Spencer: Gitelman Syndrome
④ Tanner: Cushing Syndrome

① Carter: Gitelman Syndrome
② Rhodes: Bartter Syndrome

⋮
⑤ Grant: Gitelman Syndrome
⑥ Blake: Gitelman Syndrome

Assessment:Invite:
③ Spencer

④ Tanner

Invite:
⑤ Grant

⑥ Blake

Suggestion：

Feedback

① Gitelman Syndrome: 70%
② Bartter Syndrome: 20%
③ Liddle Syndrome: 2%
④ Cushing Syndrome: 7%
⑤ Malignant hypertension: 1%

Collaborative Discussion

First Round

Figure 1: Overview of the proposed decision-making framework. Upon the arrival of a new patient,
several doctors from different specialties and an AI agent engage in a collaborative discussion to
provide their individual assessments. Subsequently, integrates these assessments, calibrating and
combining them to produce a decision distribution. If the entropy of this distribution exceeds a
specified threshold, and if fewer doctors than required have participated, additional experts are invited
until the criteria are met. Following action implementation and based on the outcome, the encounter
data is stored in a buffer for the AI agent to refine its decision-making model through rule learning.

the experts alone or the AI classifiers independently (De et al., 2019; De Toni et al., 2024). Despite
this goal, empirical studies have frequently found that human-AI teams do not surpass the highest
performance of either the human or the AI alone, even with AI explanations (Bansal et al., 2021; Liu
et al., 2021). Several works model this challenge as a mixture of experts involving both humans and
AI. This approach was initially introduced by (Madras et al., 2017) and later adapted by (Wilder et al.,
2020) and (Pradier et al., 2021) with the introduction of a mixture of expert surrogates. However,
these methods have often failed empirically due to difficulties in optimizing the loss function.
Subsequent approaches have sought to improve these models, notably by enhancing calibration
(Raman & Yee, 2021). Furthermore, (Buçinca et al., 2024) introduced offline reinforcement learning
to develop decision support policies that optimize human-centric objectives, achieving improvements
in joint human-AI accuracy. Nevertheless, these methods were not designed for contexts requiring
collaboration between multiple humans and AI, thus overlooking the diversity in human groups. To
address this gap, (Verma et al., 2023) introduced a model with ensemble prediction combining AI
and human predictions, but optimization of collaboration costs is lacking. (Mozannar et al., 2023)
formulated a novel surrogate loss function capable of deferring to one of the multiple users without
combining AI and human predictions. Additionally, (Steyvers et al., 2022) used a Bayesian modeling
framework to incorporate both human and machine predictions, demonstrating that hybrid human-
machine models perform better than single models, but this approach overlooks model interpretability
and human-AI interaction.

3 OUR PROPOSED AI-HUMAN COLLABORATIVE FRAMEWORK

In this section, we introduce our AI-human collaborative decision-making framework. We will use
the multidisciplinary treatment (MDT) setting commonly encountered in healthcare as an example.
In MDT, experts from diverse fields collaborate to diagnose and treat patients with complex medical
conditions. This scenario naturally requires a collective approach that brings together varied expertise
for optimal care.

Problem Setup At each decision point, the system is presented with a patient characterized by
features x ∈ X , and it must select an action a ∈ A (e.g., a treatment option). The final decision on the
action a is made collectively by a human medical team with the support of an AI agent. The human

3
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medical team consists of up to L doctors, denoted as H := {h1, . . . , hL}, each with potentially
diverse areas of expertise. The AI agent, modeled as a probabilistic function p(a | x) ∈ ∆|A|,
represents a probability distribution over possible actions. This probability simplex ∆|A| reflects the
AI’s assessment of the likelihood of different treatment options being successful, given the patient’s
features.

Once the medical team, with the aid of the AI agent, determines the final action, which will be
executed, the system observes a reward r ∈ {0, 1}, indicating the patient’s response to the chosen
treatment. For example, the reward r = 1 reflects a successful outcome (e.g., recovery or improve-
ment), while r = 0 reflects an unsuccessful outcome. We aim to design an AI-human collective
decision-making system that effectively integrates human expertise with AI to make more efficient,
informed, and superior decisions for patients.

In the following, we start by designing a logic-informed AI agent that uses domain knowledge, like
logic rules, to ensure decisions are traceable and transparent, fostering trust and better collaboration.
Next, we introduce the PoE ensemble model, which integrates probabilistic insights from the AI
with human opinions, effectively combining diverse perspectives. We provide a simple theoretical
justification to highlight the benefits of this probabilistic ensemble method. Then, we present the
active perception module given the PoE model, which aims to sequentially select the most relevant
human experts from the pool based on their expertise and prior decisions, ensuring weaker experts
are filtered out of the decision-making process.

3.1 DESIGN A LOGIC-INFORMED AI AGENT

In healthcare, domain knowledge, such as detailed disease pathophysiology, treatment strategies, and
clinical guidelines, is often represented as a compact set of logic rules. These rules can represent
critical medical insights, including diagnostic criteria, therapeutic interventions, and best practices
for managing complex or rare conditions. We will explore how to incorporate this rich medical
knowledge as prior information to construct a logic-informed probabilistic AI agent. This AI agent,
enhanced with domain-specific expertise, aims to bridge the knowledge gaps of human doctors.

We develop our logic-informed AI agent using the classic Plackett-Luce model (Maystre & Gross-
glauser, 2015), which is commonly used to model the probability of selecting an option from a set,
based on the relative utility of each option. The core idea is to utilize the rule-based features to
construct a utility function, which will then guide the AI agent in making probabilistic decisions.

Logic Rules for Feature Construction The domain knowledge is encoded as Horn rules, defining
the conditions under which particular actions should be taken. For example, some of the Horn rule
examples are as follows:

Rule 1: If a patient shows specific symptoms, then a drug should be prescribed.
Rule 2: If a patient previously responded positively to treatment, continue with the same
treatment.
Rule 3: If a patient is an adult with an underlying condition, consider surgery.

We will encode these rules into Boolean features that will be grounded from data to determine which
action a ∈ A, such as a ∈ {Drug, Surgery, . . . }, to take. Specifically, for each action a, we construct
Boolean features ϕa(x) based on the above described rules, such as

• For Drug Treatment (i.e., a = Drug), the logic-informed Boolean features include:

ϕa(x) =

[
I( SymptomPresent (x))

I( ResponseToPreviousTreatment (x))

]
• For Surgery (i.e.,a = Surgery), the logic-informed Boolean features could be:

ϕa(x) = [I(Adult(x) ∧ UnderlyingCondition (x))]

In these expressions, ϕa(x) are Boolean features reflecting whether specific conditions are met for
action a. Intuitively, once the features associated with a particular action are grounded as true, the
probability of selecting the corresponding action should be boosted. We will explicitly model this
using the utility function.

4
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Utility Function Formulation The utility function for each action a is expressed as a linear
combination of the Boolean features derived from the logic rules:

Utility(a,x) = w⊤
a ϕa(x) (1)

where wa represents the weight vector associated with action a, and ϕa(x) is the Boolean feature
vector specific to action a. This formulation allows the AI agent to compute a utility score for each
action based on the observed features. To incorporate stochastic behavior into the action selection
process, the selected action is the optimal solution of a random utility maximization problem:

argmax
a

Utility(a,x) + ga (2)

where ga denotes the independent Gumbel noise associated with action a. Given the model in Eq. (2),
we can derive the AI-agent’s probability of selecting action a as follows:

pAI(a | x) = exp (Utility(a,x))∑
a′∈A exp (Utility (a′,x))

, a ∈ A (3)

where Utility(a,x) is modeled based on logic rules, as specified in Eq. (1). When using this AI
agent in collaborative decision-making, we need to specify the rule weights, denoted as {wa}a∈A,
and the set of logic rules, denoted as Γ, which have been estimated from historical data or calibrated
from human expert input. In the next section, we will discuss how to estimate or refine these feature
weights and the rule set, which is essential to making our model flexible, adaptable, and responsive to
new data or expert knowledge.

3.2 FUSING HUMAN OPINIONS AND AI RECOMMENDATIONS

We propose the following Product-of-Experts model to integrate the probabilistic recommendations
from the AI agent with the typically deterministic opinions made by human experts, combining them
into a unified probabilistic framework. Suppose there is one AI agent pAI and L human experts
{h1, . . . , hL} have been invited, each possessing potentially different domain expertise. Given a
feature x, let hl(x) be the deterministic opinion of the l-th expert, and pAI(a | x) be the probabilistic
recommendation provided by our logic-informed AI agent. Let pl(a | hl(x) = ul) be the conditional
probability that action a is the true action given that the l-th expert’s opinion is ul. It transforms a
deterministic opinion from human experts to a probabilistic recommendation. The true action, in this
context, refers to the final action implemented.

Given human experts’ opinions u1, . . . , uL and the AI agent’s recommendation pAI(a | x), we
propose to ensemble these opinions and recommendations using the following model:

pPoE
(
a | {hl(x) = ul}l=1,...,L, p

AI(a | x)
)
∝

L∏
l=1

pl(a | hl(x) = ul) · pAI(a | x), a ∈ A. (4)

This model can be interpreted as a Product-of-Experts (PoE) model through augmenting the feature
space. Indeed, consider a lifted parameter space Θ := X ×

∏L
l=1{ϕl(x) : x ∈ X}, where for each

l = 1, . . . , L, when hl(x) = ul, the feature mapping ϕl(x) maps x to a |A|-dimensional one-hot
vector eul

. On the parameter space Θ, the formula (4) is a product-of-experts model with L + 1
experts, including L human experts and one AI agent.

Advantages of PoE in Collective Intelligence The PoE model offers an elegant approach to inte-
grating AI and human expert opinions by multiplying and renormalizing their probability distributions.
The PoE type of ensemble model provides several key appealing features:
1) Reinforcing good actions: In the region of features where all participants are highly accurate, i.e.,
the probabilities pl(a | hl(x) = ul) and pAI(a | x) are closer to one, PoE model (4) exponentially
amplifies the probability of the correct action, ensuring near-optimal decisions in those areas.
2) Robust to influence from weak experts: In regions of the feature space where not all experts are
strong, the PoE model effectively balances their contributions. By preventing less confident experts
from disproportionately influencing the outcome, the model ensures that the overall decision remains
driven by the stronger experts. This stands in contrast to other ensemble models, where weak experts
may dilute the decision. For a more detailed discussion, refer to Appendix C.
3) Enabling a sequential expert selection with uncertainty quantification. Thanks to its probabilistic
nature, the PoE model enables us to identify and select the most informative and complementary
experts, optimizing the decision-making process by minimizing decision entropy, as we will establish
in Section 3.3.
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Human Expert Reliability Model To build a probabilistic model p(a | hl(x)),∀l ∈ {1, . . . , L},
for human experts given their deterministic opinions, we adopt a simple and effective expert reliability
model, usually known as the confusion matrix, to learn the unknown cognitive processes. Formally,
the confusion matrix of the l-th expert defines {pl (k | hl (x) = u)}k,u, which gives the probability
that action k is the true action when the l-th expert’s deterministic opinion is u. We parameterize this
relationship using a Softmax function and obtain the human expert reliability model:

pl (k | hl (x) = u) =
exp

(
ψl

k,u

)∑
k′∈A exp

(
ψl

k,u′

) , u, k ∈ A (5)

where the matrix ψl := [ψl
k,u] ∈ R|A|×|A| are learned parameters, which can be interpreted as

the confidence we place in expert l’s decision u being correct when the optimal action is k. The
estimation procedure of the confusion matrices of the L experts is detailed in the next section.

AI-Human Ensemble Model Plugging the AI agent model (3) and the human expert reliability
model (5) into the Product-of-Experts model (4), we arrive at our final AI-Human ensemble model

pPoE(a | {hl(x) = ul}l=1,...,L, p
AI(x)

)
=

exp
(∑L

l=1 ψ
l
a,ul

+ ηUtility(a,x)
)

∑
a′∈A exp

(∑L
l=1 ψ

l
a′,ul

+ ηUtility(a′,x)
) , a ∈ A (6)

It models the predicted probability of action a, given the feature x and the deterministic opinions
of the human experts {ul}l=1,...,L. The term

∑
l ψ

l
a,ul

aggregates the influence of the experts’
opinions, and the tuning hyper-parameter η balances between human opinions and the AI agent’s
logic-rule-based utility.

In our AI-human collaborative system, it is important to note that the final decision rests with the
human expert team, with the support of the AI agent in the decision-making process. If a human
decision-maker feels that the current recommendation is insufficient for making a confident choice,
the AI can identify and invite additional relevant experts from the pool to assist in the decision-
making process. This adaptive mechanism ensures that human experts retain their ultimate authority
throughout the decision-making process.

3.3 TARGETED EXPERT SELECTION WITH ACTIVE PERCEPTION

Our AI-human PoE model has a natural advantage in quantifying uncertainty, which provides
an additional benefit: targeted expert selection. For example, in a healthcare setting, this means
that rather than consulting a large panel of experts—an approach that can be both inefficient and
resource-intensive—we can strategically choose the experts whose insights are most pertinent to the
patient’s condition. This targeted approach not only reduces the time and cost associated with expert
consultations but also enhances the accuracy and relevance of the final recommendations by focusing
on the experts who provide the most valuable contributions.

We propose the following sequential expert selection scheme. The process begins with the AI agent
making an initial decision by generating a conditional probability distribution over actions using its
rule-based model (3). Based on this distribution, the system selects a human expert from the pool
who is expected to provide the greatest information gain or reduce the current entropy of the decision
model, i.e., the PoE model. Once the expert is consulted, the system updates the PoE distribution
to incorporate their opinion. This process is repeated iteratively, with the system selecting the next
expert from the remaining pool until either the entropy of the decision model, which measures the
ambiguity of the recommendation, falls below a predefined threshold, or a specified number of experts
have been consulted.

Specifically, let Hl := {h1, h2, . . . , hl} represent the set of currently consulted experts with their
opinions provided, and H \Hl be the set of remaining unconsulted experts. The goal at the current
stage is to select the next expert hl+1 from the remaining pool, aiming to maximize information
gain, computed as

max
h̃∈H\Hl

InfoGain(h̃) :=H
(
pPoE(· | h1(x) = u1, . . . , hl(x) = ul, p

AI(x)
))

−H

(∑
ũ

ph̃(ũ) · p
PoE
(
· | h1(x) = u1, . . . , hl(x) = ul, h̃(x) = ũ, pAI(x)

))
,

(7)
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which is equivalent to maximizing the reduction in decision entropy (since the first term in the
information gain is constant with respect to h̃). Therefore, the expert selection is expressed as:

h∗
l+1(x) = arg min

h̃∈H\Hl

H

(∑
ũ

ph̃(ũ) · p
PoE
(
· | {hi(x) = ui}i=1,...,l, h̃(x) = ũ, pAI(x)

))
(8)

whereH(·) represents the entropy of the current decision-making distribution, defined asH(p) =
−
∑

a∈A p(a) log p(a), quantifying uncertainty in the distribution. A higher entropy indicates greater
uncertainty, while a lower entropy reflects more confidence in specific outcomes. Here, ũ denotes
the potential opinions of the candidate expert. The prior p(ũ) can be estimated from historical data,
capturing the likelihood of different opinions from the candidate expert. While developing a more
precise model would require an estimator for ĥ(x) based on features x ∈ X for each expert, we
simplify our approach in this paper by relying on the historical frequency of actions as the prior p(ũ).

This targeted expert selection approach ensures that the most informative and complementary experts
will be chosen at each stage. The intuition is as follows. Let pPoE(· | h1(x) = u1, . . . , hl(x) =
ul, p

AI(x)) =: q(·) represent the probability distribution suggested by the current AI-human PoE
model. The inclusion of an expert h̃ ∈ H \ Hl not in the current selection, with a confusion
matrix ψ̃, would result in an updated probability distribution qh̃(·) := qh̃(·)q(·)/Zh̃, where qh̃(·) :=∑

ũ ph̃(ũ)ψ̃ũ(·) and Zh̃ is a normalizing constant. Recall that due to the concavity of the function
q 7→ −q log q, an entropy-minimizing distribution tends to approach a deterministic distribution.
Consequently, if −q(·) logq(·) is relatively large for some actions a and a′, it indicates that the
current expert selection remains ambiguous between these two actions. To minimize the entropy (or
equivalently maximize the information gain), our selection principle (8) is more likely to choose a
complementary expert capable of distinguishing between actions a and a′.

4 MODEL LEARNING

In this section, we discuss how to update the AI agent model (as defined in Eqs. (1) and (3)) and
the human expert reliability model (as defined in Eq. (5)). By continuously refining these model
parameters as data accumulates, we ensure our AI-human collaborative framework aligns with
real-world needs, enhancing its accuracy and reliability in decision-making.

Learning AI-Agent Given the observed data (xi, ai, ri), i = 1, . . . , n, where xi is the patient
feature, ai is the executed action, and ri is the observed reward, we will learn or refine the logic rule
set Γ and their associated weights {wa}a∈A by maximum likelihood estimation (MLE). However,
the original MLE problem involves continuous updates of rule weights alongside a discrete rule
set search, which is inherently a combinatorial problem. To tackle this complexity, we employ a
column generation method, starting with a smaller, manageable problem that reduces the search space
significantly. We iteratively identify new rules and update their weights, gradually expanding the
search space as we advance. For a detailed description of the AI agent model learning algorithm,
please refer to Appendix A.

Learning Confusion Matrix of Human Experts We also address the update of the human expert
reliability model, specifically the confusion matrices {ψl}l=1,...,L. In scenarios with limited data,
estimating the reliability of human agents (via confusion matrices) becomes challenging. To address
this, we use a Bayesian approach and employ the Maximum A Posteriori (MAP) estimator for each
parameter, assuming a Beta prior for the probability estimates. This allows for more robust estimates,
even with small datasets. The detailed derivation and methodology are provided in the Appendix. B.

5 EXPERIMENTS

To assess the effectiveness of our proposed framework, we conducted a series of synthetic experi-
ments. Our results demonstrate that the PoE model, optimized using an information gain objective,
significantly outperforms other existing methods, including sparsely gated Mixture of Experts (MoE)
(Shazeer et al., 2017), weighted voting, average voting, and various PoE model strategies within
the current setting. Furthermore, we visualize the expert invitation process to illustrate how maxi-
mizing information gain can bridge cognitive gaps within a human-AI collaboration team. Finally,

7
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we show that the performance of the AI agent improves with increased experience, ensuring both
interpretability and accuracy as the agent learns over time.

Experimental Setup We generated synthetic datasets that emulate real-world conditions by incor-
porating a diverse array of rule-based simulation doctors and an AI agent. Initially, we predefined
a set of ground truth rules, detailed in Table 2, to create the sample data. Each simulation doctor
is characterized by distinct cognitive regions, allowing us to categorize them into three levels of
expertise. Doctors 1, 2, and 3 specialize in actions 1, 2, and 3, respectively. They possess all ground
truth rules relevant to their understanding regions but also include several erroneous rules. In contrast,
Doctors 4, 5, and 6 demonstrate broader expertise, comprehending two actions and making mistakes
in only one. Additionally, we introduced a random decision-maker, Doctor 7, who makes arbitrary
decisions regardless of patient features. Our AI agent is relatively accurate, incorporating half of the
ground truth rules that are consistent with our assumptions. It provides an initial treatment suggestion,
which is then relayed to the responsible doctor, who assesses whether to invite additional doctors for
their opinions. Following the treatment decision, the final choice is evaluated by our oracle, which
possesses the complete set of ground truth rules and provides a reward based on Eq. 11. For a detailed
description of the simulation process, please refer to Appendix Appendix D.

Synthetic Data Generation We divided the entire dataset into two disjoint subsets: (i) a training
dataset Dt and (ii) an evaluation dataset De. The training dataset Dt = {xt, {ul}Ll=1, at, rt, a

∗}
includes comprehensive data such as consultation history and patient feedback, which are used to fit
the calibration parameters. The evaluation dataset De is exclusively reserved for evaluation purposes.
The optimal actions for each patient in all two datasets are initially derived from the rule set, followed
by sampling-related symptoms, incorporating a degree of noise to simulate real-world uncertainties.

We designed two evaluation datasets with different levels of difficulty. In the Level-0 sample set,
patients satisfy only one ground-truth rule within the corresponding optimal action and do not meet
any other rules. In contrast, patients in the Level-1 sample set satisfy all ground-truth rules in their
respective classes while also satisfying one ground-truth rule from another class. This setup ensures
the reliability of our simulation experiments, as Level-1 patients are more suitable for Doctors 4, 5,
and 6, whose expertise extends beyond the other doctors’ domains.

Evaluation Metrics To assess the performance of our framework, we employed several key metrics,
including accuracy and cumulative reward. Accuracy measures the likelihood that the final decisions
made by different models align with the ground-truth labels. Cumulative reward quantifies the total
reward accrued in the evaluation dataset, as determined by our oracle, a rule-based decision maker
that utilizes the ground truth rule set.

5.1 INFORMATION GAIN-DRIVEN POE MODEL ADAPTATION FOR VARIED CONTEXTS

We present a comprehensive comparison of our PoE model, aimed at maximizing information gain,
as shown in Table. 1. Our framework is evaluated against traditional methods, along with an ablation
study. Consistently, our approach outperforms all baseline models, highlighting its effectiveness
in enhancing decision-making processes. Notably, when paired with a reasonably accurate AI
agent, our method surpasses standalone models, even in scenarios where human models provide
less reliable label suggestions. In contrast to ensemble techniques like MoE and traditional voting
methods, our PoE model effectively filters out noisy or misleading information, leading to improved
accuracy. A key concern with PoE models that lack a guiding AI agent (no AI) is their tendency to
adapt to incorrect distributions, resulting in suboptimal decisions. We demonstrate the feasibility
of training an interpretable and precise AI agent using established medical knowledge and expert
insights. Our PoE model, when coupled with a calibrated AI agent, exhibits higher confidence than
its uncalibrated version (no AI calibration). By applying temperature scaling, we can adjust the AI
agent’s probability distribution based on prior experience without altering the softmax function’s
peak, thereby controlling the entropy of the distribution, as shown in Guo et al. (2017). Compared
to traditional PoE models that do not aim to maximize information gain, our approach proves more
robust, particularly when experts have distinct cognitive regions.
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Table 1: Comparison between different models in the synthetic experiments. The performance is
evaluated by accuracy and cumulative rewards among 100 evaluation samples with 10 repeated
experiments.

Methods Level-1 Level-0

Accuracy ↑ Rewards ↑ Accuracy ↑ Rewards ↑
AI agent 0.565 ± 0.044 85.8 ± 3.86 0.577 ± 0.033 71.3 ± 3.22
Doctor1 0.399 ± 0.021 80.4 ± 3.35 0.385 ± 0.043 61.9 ± 3.88
Doctor2 0.442 ± 0.027 81.9 ± 2.98 0.446 ± 0.060 63.1 ± 3.85
Doctor3 0.459 ± 0.049 80.0 ± 5.34 0.415 ± 0.028 63.7 ± 5.21
Doctor4 0.591 ± 0.036 87.1 ± 2.58 0.556 ± 0.045 68.6 ± 2.83
Doctor5 0.596 ± 0.026 87.5 ± 2.87 0.559 ± 0.043 68.2 ± 3.54
Doctor6 0.633 ± 0.032 87.8 ± 2.90 0.571 ± 0.036 68.0 ± 4.47
Doctor7 0.267 ± 0.024 71.4 ± 4.05 0.280 ± 0.039 62.1 ± 5.94
MoE 0.523 ± 0.051 83.7 ± 1.95 0.476 ± 0.045 66.6 ± 5.35
Majority voting 0.325 ± 0.009 77.2 ± 3.60 0.330 ± 0.013 60.0 ± 4.77
Weighted voting 0.322 ± 0.004 80.7 ± 4.36 0.327 ± 0.011 60.3 ± 3.28
PoE + Infogain 0.659 ± 0.042 89.0 ± 1.94 0.668 ± 0.051 72.3 ± 4.02
PoE + Infogain (no AI) 0.428 ± 0.053 80.6 ± 4.29 0.371 ± 0.051 62.9 ± 5.31
PoE + Infogain (no AI calibration) 0.634 ± 0.034 87.1 ± 2.70 0.636 ± 0.028 71.3 ± 3.97
PoE 0.339 ± 0.031 76.3 ± 5.22 0.322 ± 0.031 58.1 ± 5.56
PoE (no AI) 0.337 ± 0.031 76.6 ± 2.15 0.340 ± 0.052 61.7 ± 4.29
PoE (no AI calibration) 0.338 ± 0.030 77.0 ± 2.61 0.330 ± 0.043 62.8 ± 2.99

5.2 VISUALIZATION OF THE SEQUENTIAL DECISION-MAKING PROCESS

To illustrate human-AI complementarity, we examine one of the most challenging samples to evaluate
the performance of our algorithm. This sample satisfies all rules of its respective optimal action a1
while also fulfilling one rule from each of the other classes. The features of this sample are defined
as follows: [x0 = 1, x1 = 1, x2 = 0, x3 = 1, x4 = 1, x5 = 0, x6 = 1, x7 = 0, x8 = 1, x9 = 1].
Importantly, this instance meets the criteria for rules 1, 3, 4, and 5, which lie outside the expertise of
both the AI agent and all other human models. We conduct this experiment to determine whether the
PoE model can effectively capture the features of this complex sample by recovering the ground truth
rule set and fine-tuning the output distribution to yield an accurate decision. As shown in Figure 2,
we observe that inviting more informative human participants significantly enhances the recovery
of the cognitive region of the human team. Furthermore, the entropy of the final distribution after
calibration, illustrated in Figure 3, has been minimized, leading to a more accurate recovery of the
ground truth conditional distribution.
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Figure 2: Dynamics of the cognitive region of human-AI team following sequential model invitation.
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Figure 3: Comparison of probability distribution and entropy following sequential invitation.

5.3 VALIDATION OF THE AI AGENT’S COMPREHENSIVE COGNITIVE REGION

We validate the rule-learning capability of our AI agent by simulating real-world scenarios with a
cohort of 20,000 pre-generated Level-0 patients. Initially, the AI agent provides its assessments and
then strategically invites medical professionals based on the criterion of maximizing information
gain. An oracle subsequently delivers feedback in the form of rewards, enabling us to update the
AI agent’s parameters every 5,000 patients. Detailed information about the experimental setup is
provided in Appendix D. To assess the decision-making ability of our AI agent, we utilize accuracy
and reward metrics, as illustrated in Figure 5. The mean absolute error (MAE) and standard deviation
of the learned rule weights across ten replicates are reported in Table 5, alongside the accuracy of
the learned rules in these replicates. Furthermore, we document the rules learned by the AI agent
after each update in Table 6. The results conclusively demonstrate that our rule-learning method is
highly effective in accurately identifying the ground-truth cognitive region with sufficient data. This
validation shows that our AI agent can adapt and optimize its rule set as new data is incorporated,
further supporting its application in complex, real-world decision-making environments.
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Figure 4: Learning curves for AI-agent on synthetic experiments. The x-axis represents the number
of samples in the training dataset, while the y-axis shows the accuracy and the number of positive
rewards in a total of 1000 evaluation samples.

6 CONCLUSION

In this paper, we proposed a novel AI-human collaborative decision-making framework using a
Product of Experts (PoE) model to dynamically integrate AI and human expertise. Our approach
strategically selects human experts based on their ability to complement the AI’s rule-based insights,
leading to more accurate and robust decisions. We provided both theoretical analysis and empirical
validation of our method, demonstrating its superiority over traditional ensemble techniques and
human-only approaches, particularly in complex, real-world-inspired scenarios. Additionally, we
present a feasible mechanism for improving the AI agent online, allowing continuous adaptation to
evolving environments. By ensuring transparency and interpretability through a logic-informed AI
agent, our work pushes the boundaries of human-AI collaboration.
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A LEARNING AI-AGENT

We consider a contextual bandit setting. At each round t, we receive a context xt (i.e., features of
a new patient). We choose an action at ∈ A (i.e., some type of treatment) and receive a reward
rt ∈ {0, 1} (i.e., the survival or recovery condition of a patient). We assume

r (xt, at) ∼ Bernoulli(fat(xt)) (9)
where for different actions a ∈ {1, . . . ,K} we have distinct oracles f1(x), . . . , fK(x). Given
the history, {(xt, at, rt)}t=1,2,..., these oracles are fit to the covariates and rewards from each arm
separately. In other words,

f̂k = argmin
fk

∑
{(xt,at,rt):at=k}

ℓ(rt, fk(xt)), k = 1, . . . ,K, (10)

where the loss can be the negative log-likelihood. Specifically, we make fk explainable and logic rule
informed,

log

(
p(rt = 1 | xt, at = k)

p(rt = 0 | xt, at = k)

)
= log

(
fk(xt)

1− fk(xt)

)
= w⊤

k ϕk(xt) (11)

Here, wk = [wki] ∈ Rd, ϕk(xt) = [ϕki(xt)] ∈ {0, 1}d, and each feature ϕki(xt) is the action-
dependent rule-based binary feature specific at = k. We denote all the rule sets as Γ = {Γk}, where
Γ is the rule set and Γk is the subset of rules associated with action type k.

At time round t, given the covariate xt, the AI agent makes the decision to maximize the patient’s
outcome according to

p(k = argmax
a

r(xt, a)) =
fk(xt)∑

a∈{1,...,K} fa(xt)
(12)

It is more convenient to sample
a ∼ Mult

(
softmax

(
η × sigmoid−1 (f1 (xt) , . . . , fk (xt))

))
(13)

That is

pAI(a = k | xt,w,Γ) =
exp

(
ηw⊤

k ϕk(x)
)∑

a∈A exp (ηw⊤
a ϕa(x))

(14)

where η trades off the exploration and exploitation. Increasing η will drive the policy to do more
exploitation. We treat η as the calibrating parameter.

For the AI agent, the learning algorithm is as follows. The AI agent estimates f̂1, . . . , f̂K by fusing
the information from prior knowledge and historical patient data. Denote the prior knowledge as
Γ0 = {Γ0

k}, each rule weight and the additional rules distilled from data will be estimated by

ŵk, Γ̂k = arg min
w,Γ\Γ0

k

∑
i∈D:ai=k

ℓ(ri, fk(xi | w,Γ)), k = 1, . . . ,K (15)

All the models f̂1, . . . , f̂K will be updated separately. For example, when we estimate f̂k, only the
{(xt, at, rt) : at = k} will be used. We only explain how to estimate f̂k, and the same procedure can
be applied to other models. We propose to update the rule set and each rule weight using the column
generation type of algorithm. To make the derivation more convenient, we make some modifications
and assume r̃t ∈ {+1,−1} and

p(rt = 1 | xt, at = k) =
exp

(
1
2w

⊤
k ϕk(xt)

)
exp

(
1
2w

⊤
k ϕk(xt)

)
+ exp

(
− 1

2w
⊤
k ϕk(xt)

) (16)

=
1

1 + exp
(
−w⊤

k ϕk(xt)
) (17)

= σ(w⊤
k ϕk(xt)), (18)

p(rt = −1 | xt, at = k) =
exp

(
− 1

2w
⊤
k ϕk(xt)

)
exp

(
1
2w

⊤
k ϕk(xt)

)
+ exp

(
− 1

2w
⊤
k ϕk(xt)

) (19)

=
1

1 + exp
(
w⊤

k ϕk(xt)
) (20)

= σ(−w⊤
k ϕk(xt)). (21)
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where σ(·) is the sigmoid function. The negative log-likelihood given the model assumption as
described in Eq. (11) becomes

ℓ(wk,Γk) = − 1

N

N∑
n=1

log
(
σ
(
r̃nw

⊤
k ϕk(xn)

))
(22)

From now on, we will drop the subscript k. We formulate the overall model learning problem as an
MLE problem, where the objective function is the negative log-likelihood, i.e.,

Original Problem : w∗,Γ∗ = arg min
w,Γ\Γ0

ℓ (w,Γ) (23)

where ℓ (w,Γ) is computed as Eq. (22). The above original problem is hard to solve, due to that the
set of variables is exponentially large and can not be optimized simultaneously in a tractable way.
We, therefore, use a divide-and-conquer idea and start with a small and durable problem, where the
search space is much smaller, and we gradually increase the search space.

We start with Γ0 and first learn the corresponding rule weights. Then, we expand this rule set to Γ1

by solving a constructed subproblem for searching for a new rule to add. After that, we reestimate all
the rule weights. The overall algorithm alternates between searching for a new rule and updating the
rule weights, i.e., Γ0 → w0 → Γ1 → w1 → . . . . This will produce a nested sequence of subsets
Γ0 ⊂ Γ1 ⊂ · · · ⊂ Γm ⊂ · · · .
Given the current candidate rule set Γm, the rule weights are updated by solving a (restricted) master
problem formulated by

RMP: w∗
m = argmin

w
ℓ (w,Γm) . (24)

Let’s further denote

ym(x) :=

m∑
i=1

wiϕ (x; γi) (25)

where ym(x) is constructed by m adaptive basis functions, and for each basis, wiϕ (x; γi), we let wi

be the rule weight and γi encode the rule content.

In other words, after the rule weights update, we have

∀γi ∈ Γm ∂ℓ

∂wi
= 0 (26)

We will construct a subproblem to do the rule search and get Γm+1 from Γm.

Given Γm and w∗
m := [w∗

1:m], where each element w∗
i ̸= 0, we construct a new rule weight vector

by augmenting one extra dimension, wm+1 := [w∗
1:m, wm+1], where wm+1 = 0. The new rule is

determined by computing the gradient with respect to the weights from the remaining rule set,

∀γi ∈ Γ \ Γm,
∂ℓ

∂wi
=

∂ℓ

∂ym+1

∂ym+1

∂wi
=

1

N

N∑
n=1

−r̃n exp
(
−r̃nw∗⊤

m ϕm(xn)
)

1 + exp (−r̃nw∗⊤
m ϕm(xn))

· ϕm+1(xn) (27)

A subproblem is formulated to propose a new logic rule, which can potentially best decrease the loss
function.

Suppose we force all the rule weights to be positive, then the subproblem to find the rule that yields
the most negative gradient, i.e.,

Subproblem: min
γi

∂ℓ

∂wi
, ∀γi ∈ Γ \ Γm (28)

Suppose we allow the rule weight can be both positive and negative, we search for a new rule so that
the magnitude of the gradient is maximized, i.e.,

Subproblem: max
γi

∣∣∣∣ ∂ℓ∂wi

∣∣∣∣ , ∀γi ∈ Γ \ Γm (29)

Intuitively, since the new rule hasn’t been added and its corresponding rule weight is zero at the
moment if the weight gradient is negative, we must increase the rule weight (i.e., the new weight may
be positive) to decrease the current loss function. If the gradient is positive, we need to decrease the
rule weight (i.e., the new weight might be negative) to decrease the current loss function. The new
rule to add is the one that yields the maximal magnitude of the gradient.
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Stopping rule If we continue to run the above algorithm, the algorithm will not terminate until
every possible rule has been added to the rule, i.e., the model contains no non-zero weights. In this
case, there is no meaning to using the above column generation type of algorithm. In practice, we
will set the stopping threshold, λ, and will terminate the algorithm if the maximal magnitude of the
gradient does not exceed λ, i.e.,

max
γi

∣∣∣∣ ∂ℓ∂wi

∣∣∣∣ < λ (30)

Here, λ is the hyperparameter and tradeoff the model flexibility and sparsity.

AI-agent Calibration We treat η as the calibrating parameter determined by the host. We will
adopt the Platt scaling (temperature scaling) Platt et al. (1999) Niculescu-Mizil & Caruana (2005) for
calibration.

The main idea is we can use the historical data D to estimate

ŵk, Γ̂k = argmin
w,Γ

∑
i∈D:ai=k

ℓ(ri, fk(xi | w,F)), k = 1, . . . ,K (31)

The primary goal is to minimize the negative log-likelihood. Notably, η adjusts the entropy of the
output distribution without altering the location of the maximum in the softmax function output,
thereby finely tuning the probability distribution across various classes.

Algorithm 1 Optimized Learning Process of AI agent

Initialization: Initialize Oracles f̂1:K , Data Buffer D1:K , Calibration Parameters η and ψ.
1: for each patient t = 1, 2, . . . do
2: Receive context xt.
3: Update AI agent calibration parameters η and estimate parameter ψl

k,u for each expert
reliability model.

4: if information gain threshold is satisfied then
5: Sample action at according to the policy:

at = argmax
k

pPoE(k | h1(x) = u1, . . . , hl(x) = ul, p
AI(x))

6: else
7: Minimize the entropy of the policy function and invite corresponding experts with Eq. 8:

h∗l+1(x) = arg min
h̃∈H\Hl

H

(∑
ũ

ph̃(ũ) · p
PoE

(
· | {hi(x) = ui}i=1,...,l, h̃(x) = ũ, pAI(x)

))
8: Sample action at according to the new policy:

at = argmax
k

pPoE(k | h1(x) = u1, . . . , hL(x) = ul, h
∗
l+1(x) = ul+1, p

AI(x))

9: Observe reward rt and store (xt, at, rt) in Dat .
10: Update the oracle for the action taken:

ŵk, Γ̂k = argmin
w,Γ

∑
i∈D:ai=k

ℓ(ri, fk(xi | w,F)), k = 1, . . . ,K

B LEARNING THE CONFUSION MATRIX

To address the small data challenge, we employ a Bayesian approach and leverage the Maximum
A Posteriori (MAP) estimator for the human expert reliability model. Specifically, we focus on a
probabilistic model p(a | hl(x)) for each human expert l. The confusion matrix ψl = [ψl

k,u] ∈
R|A|×|A| encodes the confidence we place in expert l’s decision u being correct when the optimal
action is k. This relationship is modeled as:
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log

(
p(rt = 1 | at = k, hl(xt) = u)

p(rt = 0 | at = k, hl(xt) = u)

)
= ψl

k,u (32)

From this formulation, we can recover the probability as follows:

p(rt = 1 | at = k, hl(xt) = u) =
1

1 + exp(−ψl
k,u)

(33)

For notational simplicity, we define:

p(rt = 1 | at = k, hl(xt) = u) := plk,u

Given the observed data D = {hl(xt), at, rt}Tt=1, where hl(xt) represents the action recommended
by human expert l, at is the executed action, and rt is the observed reward, we can estimate the
confusion matrix ψl = [ψl

k,u] ∈ R|A|×|A| using Maximum Likelihood Estimation (MLE), based on
instances where at = k and expert l’s recommendation was u.

Considering the small data regime, we adopt a Bayesian approach and aim to estimate the MAP value
p̂MAP
k,u . We assume a Dirichlet prior for pk,u, which reduces to a Beta distribution in the binary case:

pk,u | α, β ∼ Beta(α, β) (34)

p(pk,u | α, β) ∝ pα−1
k,u (1− pk,u)β−1 (35)

The posterior distribution, combining the likelihood with the prior, becomes:

pk,u | D, α, β ∼ Beta

(
α+

∑
t

rt, β +
∑
t

(1− rt)

)
(36)

Thus, the MAP estimate for pk,u is given by:

p̂MAP
k,u =

α− 1 +
∑

t:at=k,hl(xt)=u rt

α+ β − 2 + nlk,u
(37)

where nlk,u represents the number of instances where action hl(xt) = u was recommended, and the
true action at = k was implemented. This formulation is analogous to the standard Beta-Bernoulli
posterior.

C ADVANTAGES OF THE PROPOSED POE MODEL IN COLLECTIVE
INTELLIGENCE

LetRl ⊆ X be the specialized region of Expert l, l = 1, . . . , L. In the specialized regionRl, the l-th
expert has a high prediction precision. The conditional probability of a is the optimal action given
the l-th expert’s opinion is a, is represented as

pl (a | hl (x) = a) =

{
1− ϵl, if a = a∗

ϵl, if a ̸= a∗

where ϵl > 0 is a small number.
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C.1 POE VS. MOE IN COMMON REGIONS

On the specialized regionR1 ∩R2 ∩ · · · ∩RL, all experts will choose the optimal action a with high
probability.

To simply notation, we denote

pPoE (a | x) := pPoE(a | h1(x) = · · · = hL(x) = a).

For any a′ ̸= a, it holds that

pPoE (a | x)
pPoE (a′ | x)

=

L∏
l=1

(
1− ϵl
ϵl

)
· 1− ϵAI

ϵAI
.

Suppose ϵl = ϵ < 1/2, then we have

pPoE (a | x)
pPoE (a′ | x)

=

(
1− ϵ
ϵ

)L
1− ϵAI

ϵAI
(38)

increases exponentially with the number of experts L, which boosts the prediction precision exponen-
tially.

For the MoE Model, we denote

pMoE (a | x) := pMoE(a | h1(x) = · · · = hL(x) = a).

The MoE model takes an average over probabilities, which results in

pMoE (a | x)
pMoE (a′ | x)

=
1
L

∑L
l=1(1− ϵl) + ηpAI(a | x)/L

1
L

∑L
l=1 ϵl + ηpAI(a′ | x)/L

.

Assuming ϵl = ϵ for all experts, then the ratio

pMoE (a | x)
pMoE (a′ | x)

=
(1− ϵ) + ηpAI(a | x)
ϵ+ ηpAI(a′ | x)

(39)

does not scale with L and thus the common opinion is not reinforced.

Comparing (39) and (38), we see that, on a common region, the PoE model benefits significantly
more from the multiplicative combination of experts’ opinions.

C.2 POE VS. MOE IN UNCOMMON REGIONS

In uncommon regions, the probability pl (a | hl (xt)) of some expert l may be spread out across
non-optimal actions in A. An expert is considered weak in a specific region if the action with the
highest probability is incorrect. Let Ew denote the set of weak experts and Es denote the set of strong
experts.

Using the notation from the previous case, we have that

pPoE (a | x)
pPoE (a′ | x)

=
∏
l∈Es

(
1− ϵl
ϵl

) ∏
l∈Ew

pl(a | hl(x) = ul)

pl(a′ | hl(x) = ul)
.

Outside their specialized region, the experts’ opinions are less accurate. Supposed they are close to
random guesses:

pl (a | hl (x) = ul) ≈
1

|A|
, ∀a, u ∈ A,x /∈ Rl.

Assuming ϵl = ϵ for all experts, then the above ratio becomes

pPoE (a | x)
pPoE (a′ | x)

≈
(
1− ϵ
ϵ

)|Es|

. (40)

This shows that the prediction of the PoE model is to deteriorate too much due to the existence of
weak experts.
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In contrast, for a MoE model, we have

pMoE (a | x)
pMoE (a′ | x)

=
1
L

∑
l∈Es

(1− ϵl) + 1
L

∑
l∈Ew

pl(a | hl(x) = ul) + ηpAI(a | hl(x) = ul)/L
1
L

∑
l∈Es

ϵl +
1
L

∑
l∈Ew

pl(a | hl(x) = ul) + ηpAI(a′ | hl(x) = ul)/L
.

Then under the situation above, we have
pMoE (a | x)
pMoE (a′ | x)

=
(1− ϵ)|Es|+ |Ew|/|A|+ ηpAI(a | hl(x) = ul)

ϵ|Es|+ |Ew|/|A|+ ηpAI(a′ | hl(x) = ul)
.

Compared this with equation 40, in the MoE model, weak experts can have a larger influence on the
final decision because their opinions are averaged with the strong experts, diluting the strength of the
more confident predictions.

D SETTING OF SYNTHETIC EXPERIMENTS

The framework integrates three principal entities: an AI host, an AI agent, and human agents. We
assess their performance through a series of simulations, employing three distinct sets of synthetic
data, each derived from a unique ground truth rule set. Below, we detail the architecture of our
simulation framework.

Patient Simulator The sample generation process is rooted in a predefined set of ground truth
rules, as shown in Table. 2. Initially, the generator selects a set of actions based on the rule weights,
simulating population-level decision-making processes. This selection is formalized by the equation:

a ∼ Mult
(
softmax

(
sigmoid−1 (f1 (xt) , . . . , fk (xt))

))
,

where f (xt) represents the feature functions associated with the rule set, and the actions are selected
if the corresponding features satisfy the rule conditions.

After action selection, we initially generate a random binary sequence. For a Level-0 patient, at
least one of the rules corresponding to the selected actions must be satisfied, while none of the rules
associated with other actions should be met. For a Level-1 patient, all two rules from the selected
actions must be satisfied, along with at least one rule from the other actions. This definition ensures
varying levels of difficulty tailored to the expertise of different decision-makers, reflecting their
respective cognitive domains.

Table 2: The rules assigned to each rule-based decision-maker.

Head Predicate Rules Weight

a0
1: x0 ∧ x1 ∧ ¬x2 1.5
2: x3 ∧ x7 ∧ ¬x9 1.5

a1
3: x3 ∧ x4 ∧ ¬x5 1.4
4: x6 ∧ x7 ∧ x9 1.6

a2
5: ¬x2 ∧ x6 ∧ ¬x7 1.7
6 : x5 ∧ ¬x8 ∧ x9 1.4

Human Doctor Simulator In real-world healthcare environments, physicians from various special-
ties exhibit distinct domains of expertise and may even hold inaccurate beliefs. To simulate this, we
model each human doctor as a rule-based probabilistic decision-maker endowed with a unique set
of rules that reflect their specific expertise and biases. These rule sets can demonstrate preferences
for specific treatments or deviate significantly from the established ground-truth rule set. Unlike
real-world scenarios where doctors typically provide deterministic treatment choices, our simulated
doctors select the treatment corresponding to the probability distribution from the softmax function.

Our simulation framework includes a diverse pool of seven doctors. For each patient scenario, the AI
agent first offers a treatment suggestion. If the entropy of the collective treatment distribution does
not meet a predefined threshold (set at 0.3 in all our experiments), indicating a lack of consensus or
insufficient confidence among the initial doctors, the AI host intervenes. The AI host then invites
additional doctors from the pool to contribute their recommendations, aiming to refine the decision-
making process and enhance the reliability of the treatment choice. Details of all eight rule-based
decision-makers can be found in Table 3.
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Table 3: The rules assigned to each rule-based decision-maker.

Model Rule Set Weight Model Rule Set Weight

AI Agent

a0 ← x0 ∧ x1¬x2 1.4

Human 1

a0 ← x0 ∧ x1 ∧ ¬x2 1.5
a0 ← x3 ∧ x7 ∧ ¬x9 ∧ x8 1.6 a0 ← x3 ∧ x7 ∧ ¬x9 1.2
a1 ← x3 ∧ x4 ∧ ¬x5 1.7 a1 ← x3 ∧ ¬x4 1.3

a1 ← x6 ∧ x7 ∧ x8 ∧ x9 1.3 a1 ← x6 ∧ x8 ∧ ¬x9 1.4
a2 ← ¬x2 ∧ x6 ∧ ¬x7 1.5 a2 ← ¬x2 ∧ x6 ∧ x7 ∧ ¬x8 1.1

a2 ← x5 ∧ ¬x8 ∧ x9 ∧ x3 1.5 a2 ← x5 ∧ ¬x9 1.6

Human 2

a0 ← x0 ∧ ¬x1 1.5

Human 3

a0 ← x0 ∧ ¬x1 1.5
a0 ← x2 ∧ x3 ∧ x7 ∧ ¬x9 1.2 a0 ← x2 ∧ x3 ∧ ¬x9 1.2
a1 ← x3 ∧ x4 ∧ ¬x5 1.3 a1 ← x3 ∧ x4 ∧ x6 1.3
a1 ← x6 ∧ x8 ∧ x9 1.4 a1 ← x6 ∧ ¬x8 1.4

a2 ← ¬x2 ∧ x6 ∧ x7 ∧ ¬x8 1.1 a2 ← ¬x2 ∧ x6 ∧ ¬x7 1.1
a2 ← x5 ∧ ¬x9 1.6 a2 ← x5 ∧ ¬x8 ∧ x9 1.6

Human 4

a0 ← x0 ∧ x1 ∧ ¬x2 1.5

Human 5

a0 ← x0 ∧ x1 ∧ ¬x2 1.5
a0 ← x3 ∧ x7 ∧ ¬x9 1.4 a0 ← x3 ∧ x7 ∧ ¬x9 1.5
a1 ← x3 ∧ x4 ∧ ¬x5 1.6 a1 ← x3 ∧ ¬x4 1.7
a1 ← x6 ∧ x8 ∧ x9 1.4 a1 ← x5 ∧ x6 ∧ x8 ∧ x9 1.3
a2 ← ¬x2 ∧ ¬x6 1.4 a2 ← ¬x2 ∧ x6 ∧ ¬x7 1.6

a2 ← x5 ∧ x7 ∧ ¬x8 ∧ x9 1.6 a2 ← x5 ∧ ¬x8 ∧ x9 1.4

Human 6

a0 ← x0 ∧ ¬x1 1.5

Human 7

a0 ← x0 ∧ ¬x1 1.5
a0 ← x2 ∧ x3 ∧ x7 ∧ ¬x9 1.4 a0 ← x2 ∧ x3 ∧ x7 ∧ ¬x9 1.4
a1 ← x3 ∧ x4 ∧ ¬x5 1.6 a1 ← x3 ∧ ¬x4 1.6
a1 ← x6 ∧ x8 ∧ x9 1.4 a1 ← ¬x6 ∧ x8 1.4

a2 ← ¬x2 ∧ x6 ∧ ¬x7 1.5 a2 ← ¬x2 ∧ x6 ∧ x7 ∧ ¬x8 1.4
a2 ← x5 ∧ ¬x8 ∧ x9 1.6 a2 ← x5 ∧ x8 1.5

AI Agent Learning Our AI agent operates as a rule-based probabilistic decision-maker, initially
configured with a subset of ground truth rules and some of which are wrong, as shown in Table.
4. This initialization mimics real-world scenarios where prior knowledge informs decision-making
frameworks. Throughout the simulation, the AI agent dynamically updates its rule set and associated
weights based on incoming data to refine its decision-making process.

Table 4: The rules assigned to a nascent AI agent.

Head Predicate Rules Weight
a0 x0 ∧ x1 ∧ ¬x2 1.2
a1 x3 ∧ x4 ∧ ¬x5 1.2
a2 x2 ∧ x6 ∧ x7 1.2

To facilitate the learning of these rules, our system relies on a reward feedback mechanism. Specif-
ically, we simulate an oracle environment using the ground truth rule set. For each patient data
instance, the AI agent proposes a treatment which is then evaluated by the oracle. The oracle assesses
this treatment by computing the conditional probability of the treatment given the patient’s data as
depicted in Eq. 11. Subsequently, a reward is sampled using a Bernoulli distribution based on this
probability. This reward signal serves as crucial feedback, enabling the AI agent to optimize its rule
set for improved decision accuracy over time.

The metrics employed to evaluate the performance of rule learning are weight mean absolute error
(MAE) and rule accuracy. The calculation of weight MAE follows a stringent methodology: for rules
accurately identified in the ground-truth rule set, we directly compute the absolute error. For those
not accurately identified, we assign the absolute error to be equal to the true weight. Regarding rule
accuracy, if the rules in the ground-truth rule set are not accurately identified, we account for this in
our evaluation. These metrics effectively assess the performance of our rule-learning method.
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E EXPERIMENTAL RESULTS OF CUMULATIVE REWARDS

We employed a combination of methods across cumulative sample sizes, starting from 1,000 samples
and incrementally increasing by 5,000 samples at each step, up to a maximum of 16,000 samples.
The performance of these methods was evaluated using the same set of 100 evaluation samples across
all stages. This approach ensures consistency in evaluation while progressively analyzing the impact
of larger training datasets on the methods’ performance.

Figure 5: Temporal visualization of cumulative rewards.

F EXPERIMENTAL RESULTS OF RULE LEARNING

We report the rule learning accuracy of rule content and the MAE of rule weight in 5. Besides, we
also report the agent’s development by detailing the evolution of the rule set across varying training
sample sizes in one of the repeated experiments, as shown in Table. 6.

Table 5: The rule learning accuracy of the AI agent across different sample sizes is illustrated here.
Details on how to calculate rule accuracy and weight mean absolute error (MAE) can be found in
Appendix D.

Sample Size Rule Accuracy Weight MAE Sample Size Rule Accuracy Weight MAE

5000 0.55 ± 0.08 0.774 ± 0.118 10000 0.55 ± 0.08 0.757 ± 0.117
15000 0.80 ± 0.07 0.382 ± 0.113 20000 0.98 ± 0.05 0.134 ± 0.065

Table 6: Evolution of rule sets and weights possessed by the AI agent after processing every 5,000 samples.
This table reports all learned rules during each update.

Samples Rule Sets Weight Samples Rule Sets Weight

5000

a0 ← x0 ∧ x1 ∧ ¬x2 1.5354

10000

a0 ← x0 ∧ x1 ∧ ¬x2 1.5279
a0 ← x3 ∧ x7 ∧ ¬x9 1.3974 a0 ← x3 ∧ x7 ∧ ¬x9 1.4984
a1 ← x3 ∧ x4 ∧ ¬x5 1.2949 a1 ← x3 ∧ x4 ∧ ¬x5 1.3360
a2 ← ¬x2 ∧ x6 ∧ ¬x7 1.8813 a2 ← ¬x2 ∧ x6 ∧ ¬x7 2.0054

15000

a0 ← x0 ∧ x1 ∧ ¬x2 1.5494

20000

a0 ← x0 ∧ x1 ∧ ¬x2 1.5381
a0 ← x3 ∧ x7 ∧ ¬x9 1.4870 a0 ← x3 ∧ x7 ∧ ¬x9 1.4905
a1 ← x3 ∧ x4 ∧ ¬x5 1.5142 a1 ← x3 ∧ x4 ∧ ¬x5 1.5204
a1 ← x6 ∧ x8 ∧ ¬x9 1.5476 a1 ← x6 ∧ x8 ∧ ¬x9 1.5459
a2 ← ¬x2 ∧ x6 ∧ ¬x7 1.8329 a2 ← ¬x2 ∧ x6 ∧ ¬x7 1.5653

a2 ← x5 ∧ ¬x8 ∧ x9 1.4854
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G LIMITATION AND BROADER IMPACTS

A notable limitation of our proposed model lies in the rule-learning module of the branch-and-price-
based column generation algorithm. While it effectively identifies rules that capture partial aspects of
the ground truth, it occasionally fails to fully match clinical realities. Although stringent, these exact
matches hold significant importance in clinical contexts where precision is paramount for diagnosis
and treatment. In such scenarios, tailored strategies require more accurate rule-learning capabilities,
highlighting the need for improvement in the robustness of our approach.

In real-world applications, the interaction between doctors and AI often occurs within a multi-
agent system, where experts may take into account the perspectives of their peers and the AI’s
recommendations before reaching a final decision. This introduces a more interconnected and complex
decision-making environment than our current framework, which treats each expert independently.
Furthermore, while our framework supports human intervention to modify or remove high-risk rules,
this manual process can be time-consuming and requires substantial expertise. Future work could
focus on developing more user-friendly interfaces and automated tools to assist human experts in this
task, potentially increasing both efficiency and adoption.

A promising direction for future research involves the introduction of hypernetworks to enable
differentiable rule learning, which could improve the accuracy of rule discovery. However, purely
data-driven approaches without expert knowledge may introduce noise and fail to capture patient-
specific features. Therefore, combining knowledge-based and data-driven frameworks could enhance
the robustness and accuracy of rule learning in clinical settings. Moreover, incorporating a human-in-
the-loop algorithm would allow for the flexible integration of expert opinions in rule learning, further
improving security and stability. While our column-generation algorithm produces relatively stable
rules, these enhancements could better align the model with real-world complexities.

H COMPUTING INFRASTRUCTURE

All synthetic data experiments are performed on Ubuntu 20.04.3 LTS system with Intel(R) Xeon(R)
Gold 6248R CPU @ 3.00GHz, 227 Gigabyte memory.
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