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Abstract

We systematically investigate cross-lingual
ability transfer in language models through con-
trolled experiments across three problem sets:
algorithmic addition, graph navigation, and nat-
ural language modeling. Our experimental de-
sign creates high-resource and low-resource
“language” pairs differing in vocabulary, gram-
mar, and computational requirements. We show
that training on mixed datasets consistently en-
ables strong positive transfer, significantly im-
proving low-resource language performance
compared to training on low amount of data in
isolation. We observe improvements from 0%
to 100% accuracy in arithmetic tasks, from 24%
to 98% accuracy in graph navigation tasks, and
69.6% perplexity reduction in natural language
modeling. We demonstrate that transfer effec-
tiveness depends on computational complexity
and linguistic differences, where grammar mod-
ifications support stronger transfer than vocabu-
lary modifications. These findings provide com-
pelling evidence that cross-lingual ability trans-
fer is a robust mechanism which contributes
to the quality of large language models in low-
resource languages.

1 Introduction

Language models have enormous potential for dis-
seminating knowledge and significantly enhancing
human problem-solving capabilities. Their perfor-
mance typically relies on large training corpora,
which are predominantly composed of content writ-
ten in English. Consequently, it is likely that certain
topics are well-represented in English but scarcely
covered in less commonly used languages. A pes-
simistic expectation is that models trained under
such conditions would fail to answer certain queries
in the underrepresented languages. However, sev-
eral empirical studies provide evidence which sug-
gests that this is not necessarily the case, and that
abilities learned in one language can transfer to
others (Shaham et al., 2024).

To investigate this phenomenon systematically,
we propose an experimental setup that enables us
to draw clear and decisive conclusions about cross-
lingual transfer. Specifically, we study three dis-
tinct setups in which a language model is trained
via next-token prediction on datasets consisting of
sequences from the same domain but expressed in
two different languages. One of these languages
is well-represented, such that training solely on it
would yield good performance, while the other is
sparsely represented, leading to poor performance
if trained on in isolation.

Our experiments demonstrate that training on
a mixture of the two languages allows the model
to transfer capabilities from the high-resource lan-
guage to the low-resource one. The three experi-
mental setups are designed to reflect different types
of abilities that language models can acquire. In
the first setup, the task is to learn a basic algorithm
(addition), the second setup involves learning to
navigate graphs and the third focuses on standard
language modeling, with performance measured
via perplexity. The languages used in these setups
differ in vocabulary and grammar, and in the case
of the addition task, also in numerical encoding
(Roman versus Arabic numerals) which also re-
quires different underlying algorithm.

Across all three tasks, we observe a consistent
positive transfer from the high-resource to the low-
resource language. These results strongly suggest
that such transfer is likely to occur in current state-
of-the-art multilingual language models, even when
some languages are significantly underrepresented.

The remainder of this paper is organized as fol-
lows. Section 2 reviews related work on cross-
lingual transfer, parameter merging, and symbolic
reasoning transfer in language models. Section 3
describes our experimental setup, including the
three distinct tasks we use to study ability transfer,
the different language representations for each task,
and our model architecture and training procedures.



Section 4 presents our main experimental results,
analyzing the factors that influence transfer effec-
tiveness. Section 5 discusses the implications of
our findings and acknowledges the limitations of
our approach. Finally, Section 6 concludes with
a summary of our contributions and directions for
future research.

2 Related Work

When it comes to leveraging the capabilities
of LLMs to transfer knowledge from a well-
represented language to an underrepresented one,
recent works show that, for example, English-
centric pre-trained language models can be effec-
tively transferred to other languages with only a
tiny fraction of data (<1% of original data). Model
with the newly learned language yields perfor-
mance on par with fully multilingual models (Lee
et al., 2025).

Building on this foundation, Schifer et al.
(Schifer et al., 2024) investigates the unintuitive
finding that language imbalance can drive cross-
lingual generalization in language models. Us-
ing controlled experiments on perfectly equiva-
lent “cloned languages,” the authors demonstrate
that the presence of a predominant language in
the training data boosts the performance of less
frequent languages and strengthens the alignment
of model representations across languages. They
found that a bilingual training dataset with a 90/10
language split can yield better performance on both
languages than a balanced 50/50 split, and this ef-
fect is amplified with scale.

Another work by Kang and Kim (Kang and Kim,
2025) investigates how factual knowledge is trans-
ferred between languages in large language mod-
els. They observe that despite multilingual capa-
bilities, LLMs often exhibit "language-binding",
where factual knowledge remains tied to the input
language, leading to inconsistent recall. Their work
highlights that LLMs tend to process information
monolingually, influenced by the input’s linguistic
form. To address this, they propose a Language-
to-Thought (L2T) prompting strategy, which aims
to decouple the reasoning process from the input
language, demonstrating that aligning an LLM’s
internal thought with the required knowledge is
crucial for successful cross-lingual transfer, even
without direct translation-based learning.

Similarly, Yu et al. (Yu et al., 2024) shows that
language models can absorb new capabilities by

merging parameters from other models without re-
training. They used a method that merges task-
specific models, creating composites that often out-
perform individual source models. This suggests
that blending parameters (LoRA adapters, delta
weights) can sum abilities across models.

Collectively, these studies illustrate aspects of
ability transfer via language and domain mixing:
models trained in one context (language or task)
can leverage that knowledge in another, especially
when training data are combined or structured clev-
erly. In particular, multilingual and multi-task ap-
proaches often allow a model to inherit or enhance
abilities across languages and domains (Chen et al.,
2024, 2025). These findings motivate our work
in which we systematically study the transfer of
model abilities in a controlled setup in which we
vary certain aspects of generated sequences.

3 Experimental Setup

This section details the data generation process and
the structure of training datasets across all experi-
ments; furthermore, we discuss the used training
paradigm and model architecture.

3.1 Data

To systematically investigate cross-lingual abil-
ity transfer, we design three distinct experimental
paradigms that vary along three key dimensions:
task type, vocabulary/grammar differences, and
algorithmic complexity. Our experimental frame-
work distinguishes between two fundamental task
categories:

1. Problem-solving tasks where models must
learn specific algorithms to generate correct
solutions (Addition, Graph Navigation)

2. Language modeling tasks where models gen-
erate text following natural language patterns
(TinyStories (Eldan and Li, 2023))

This categorization allows us to isolate different
mechanisms of cross-lingual transfer and under-
stand how it varies with different problem com-
plexities.

For all problem-solving datasets, we systemati-
cally identify two critical thresholds: (1) the mini-
mum number of training samples required for suc-
cessful generalization and (2) the failure threshold
where models begin to lose their ability to general-
ize effectively.



In language modeling, we determine only the
second threshold by manually observing a signifi-
cant drop in generated text quality, while also tak-
ing note of worsened evaluation perplexity. Con-
cerning the first threshold, we simply use all avail-
able source language for training.

3.1.1 Addition

Arithmetic addition serves as our primary problem-
solving task, chosen for its algorithmic clarity
and scalable complexity. While addition ap-
pears straightforward for humans with reasonable
operand lengths, it presents interesting challenge
for Transformers (Nogueira et al., 2021), particu-
larly as operand length increases.

We generate addition problems where both
operands have lengths randomly sampled from 3—9
digits. We format the data in a way, where each
digit is tokenized separately, e.g. 32 + 10 = 42
is tokenized as 3 2 + 1 @ = 4 2, following
previous work (Lee et al., 2023), where authors
demonstrated improved performance with least-
significant-token-first ordering, we reverse the out-
putsequence: 3 2 + 1 0 = 2 4.

To study transfer across different mathematical
representations, we implement four distinct “lan-
guages” for arithmetic:

e Standard: Standard decimal notation (3 2 +
10=24

* Letter: Different vocabulary representation
00— A,1— B, .. 9 — J) with modified
syntax (! AB, CD=EF)

* Roman: Roman numeral representation (X X
I+IV=VIX

¢ Hexadecimal: Base-16 arithmetic (1 A + B
=52)

These variants implicitly contain various algo-
rithmic complexities. The letter mapping preserves
the underlying decimal addition algorithm while
only changing surface syntax, whereas Roman and
hexadecimal variants require different algorithms.
This setup allows us to then distinguish between
surface-level transfer and deeper transfer of model
capabilities.

3.1.2 Graph Navigation Problem

Another task for which we test transfer of abilities
from one language to another is graph navigation.
Graph navigation can be seen as a prototypical

task which in the most simplest form tests com-
positional reasoning where one needs to compose
several steps seen independently to reach a target
state from an initial state in a fixed graph.

Each instance of this problem is determined by
a initial state and a target state and the task of the
model is to produce sequence of tokens which cor-
responds to a valid path between these two states.
To evaluate the trained model, unseen pairs of ini-
tial and target states are used.

Our training data for this task consist of different
shortest paths between each two nodes in the fixed
randomly generated Erd6s—Rényi graph with 100
nodes. We set the probability of edge creation pa-
rameter to 0.02, which results in 152 edges. There
are, therefore, 10000 possible pairs of initial and
target states from which we sample the training and
testing data.

To introduce language diversity in this task we
can again change the vocabulary and the grammar.
To change the vocabulary, we reindex the nodes so
that the new token ids are unique (by adding a large
constant to original ids). To change the grammar
we express each path as a sequence of edges instead
of sequence of nodes.

Khona et al. (Khona et al., 2024) provided a
partial explanation for how are Transformers able
to learn graph navigation. They have shown that
the Transformer embeds the nodes of the graph
into a vector space such that the distances between
node embeddings reflect shortest path metric on
the graph and then use this metric to decide which
node to expand next.

3.1.3 TinyStories

TinyStories is a synthetic natural language dataset
which consists of text written in simple English,
uses a limited vocabulary and simple grammat-
ical structures, making it ideal for studying lan-
guage modeling in controlled conditions. For ex-
periments, we must first translate the dataset and
effectively obtain a parallel corpus. This parallel
corpus can be in any language, but we deliberately
chose the Czech language, since a high quality
translation was already obtained in (Hyner et al.,
2024).

We can then train a tokenizer on both corpora
to obtain a shared vocabulary via the BPE algo-
rithm. Since the amount of text of both languages
is similar, we can assume that the tokenizer will
contain an unbiased set of tokens, capturing both
languages efficiently. The total number of tokens



(vocab. size) is set to 30000.

3.2 Model and Training Details

For Addition and Graph Navigation Problem, we
use the LitGPT (Al 2023) implementation of GPT
architecture (Radford et al., 2018), where we train
from scratch and compute loss only from the model
output w.r.t. ground truth after some pre-set delim-
iter. For example, in the Addition problem set, this
would be the equals sign (=). We then measure
the model quality using an appropriate metric, in
the Addition case, we evaluate using simple exact
match accuracy metric. In Graph Navigation prob-
lem set, we use a validity metric, which we explain
further in Section 4. The model size varies across
experiments, which we show in Table 1.

For these two tasks, we use simple WordLevel
tokenizers rather than typical subword tokenizers
(BPE (Sennrich et al., 2016), WordPiece (Song
et al., 2021)). Since we deliberately structure our
text data so that each meaningful unit (number, op-
erator, etc.) is separated by whitespace, WordLevel
tokenization naturally aligns with our data struc-
ture, whereas subword tokenizers would unneces-
sarily fragment these atomic units.

For the TinyStories data, we train GPT-Neo
(Black et al., 2021) models from the Transform-
ers library (Wolf et al., 2020) for open-ended gen-
eration. Here, we measure the quality using the
perplexity metric.

We evaluate cross-lingual transfer by training
models on mixed datasets containing varying pro-
portions of source and target language examples.
We compare the relevant metric to the setup where
the model is trained on the individual languages
alone.

Table 1: Used Model Parameters

Parameter Addition = Graph Search  TinyStories
Layers 12 6 4
Heads 8 4 16
Emb. Size 128 64 768
Batch Size 1024 64 80"
Learning Rate 0.002 0.003° 0.0005
Scheduler Lin. Incr.  Cos. Warmup Constant
Block Size 64 128 512
Model Size ~25x%x10° ~3.1x10° ~3.3x10"

2 Gradient Accumulation is set to 16.  ° Maximum learning
rate; increase per batch is determined by warmup steps (1560
for 10k training samples).

All models were trained on a single Nvidia 40GB
A100 GPU. For problem-solving tasks, it takes

approximately 1 hour to train each model. Training
full TinyStories models took 40 hours, training
limited TinyStories models took 3 hours.

We note that we train each mixed model 3 times
to obtain and report the mean value and standard
deviation of the corresponding evaluation metric.

4 Experimental Results

In this section, we present our main empirical
contribution: language mixing can significantly
improve model performance on target languages
across three distinct problem domains. Our results
demonstrate what we term “ability transfer” - the
phenomenon where model capabilities acquired in
one linguistic representation transfer to enhance
performance in another. This transfer effect proves
particularly beneficial for target languages with
limited training data, which suggests that cross-
lingual training can help as an effective form of
data augmentation for low-resource scenarios.

We evaluate transfer effectiveness using three
different metrics for each task type. For arithmetic
problems, we use exact match accuracy, measur-
ing whether the generated sequence of tokens pre-
cisely match the ground truth sequence. For graph
navigation tasks, we use validity, which assesses
whether the generated node sequence represents
a valid path in the graph with correct starting and
ending nodes, regardless of optimality - acknowl-
edging that models may discover shortest paths,
sub-optimal paths, or reproduce the exact training
path. For language modeling tasks, we measure
perplexity to evaluate how well the model predicts
the probability distribution of target language text,
with lower values indicating better language under-
standing.

4.1 Addition

We begin by training models on each arithmetic
representation across varying sample sizes to es-
tablish the two thresholds previously defined in
Section 3.1. In Figure 1, we show exact match ac-
curacy results for standard and Roman addition as
representative examples. For standard addition, we
observe that models fail to generalize at 4k samples,
while with 8k samples, the model achieves perfect
accuracy. Roman addition shows a more gradual
performance curve, where a model achieved over
80% accuracy even at 4k samples.

Using these thresholds, we design transfer exper-
iments with previously determined sample ratios
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(a) Standard Addition dataset
training curves showing the
impact of training sample size
on model performance.

(b) Roman Addition dataset
training curves showing the
impact of training sample size
on model performance.

Figure 1: Comparison of training sample size impact
across different datasets. We note that in Roman Ad-
dition, even a model trained on 4k samples achieves
> 80% exact match accuracy.

for source and target languages. We train models
with identical hyperparameters on mixed datasets
while varying language proportions. The models
are then evaluated on exact match accuracy for both
languages.

Figure 2 visualizes that transfer direction might
impact model quality. When standard addition
serves as the source language, models achieve sub-
stantial improvements on target languages. How-
ever, when we reverse the language roles, using
Roman addition as the source, models fail to learn
standard addition despite having access to double
the target language training samples.
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(b) Roman — Standard trans-
fer fails to generalize, despite
doubled target language sam-
ple size.

(a) Standard — Roman trans-
fer shows +40% accuracy
improvement compared to
Roman-only training.

Figure 2: Exact match accuracy, where target language
is Roman and source language is Standard in 2a and
switched in 2b. The accuracies correspond to Table 2.
We observe asymmetric transfer effects between stan-
dard and Roman addition, demonstrating that transfer
direction in this case determines model quality.

Table 2 shows transfer results across all language
pairs, comparing model performance when models
are trained independently on individual languages

or on mixed datasets. The results show that mixed
training always improves performance on the sec-
ond language while maintaining high accuracy on
the first language. Interestingly, letter and hex-
adecimal addition achieve near-perfect transfer (98-
100% accuracy), while Roman addition shows mod-
erate improvements.

4.2 Graph Navigation Problem

The process to obtain the training data sizes is the
same as in Section 4.1. However, the goal of this
experiment is slightly different. While with addi-
tion, we did not explicitly discuss how specifically
the languages differ, in this experiment, the goal is
to observe the impact of lexical vs. syntactic manip-
ulation on ability transfer. Here, we aimed to show
the relationship between linguistic similarity and
transfer effectiveness. Table 3 demonstrates that
the type of cross-lingual difference significantly im-
pacts transfer capability. When mixing sequential
node format with edge format, we observe nearly
perfect transfer, strongly outperforming baseline
performance. This suggests that models can effec-
tively learn to map between different grammatical
representations of the same underlying problem
structure. The vocabulary variant produces more
modest improvements. The combination of both
types of modifications presents significantly more
difficult task, while still showing decent improve-
ments over baseline performance.

4.3 TinyStories

Table 4 shows cross-lingual transfer results for nat-
ural language modeling. When training with only
10% Czech data, mixing with 90% English data
improves Czech perplexity from 28.67 to 8.72, a
69.6% improvement. While the mixed approach
doesn’t reach the performance of full Czech train-
ing (5.65), it shows that cross-lingual transfer pro-
vides substantial benefits for low-resource language
modeling scenarios.

Different from our algorithmic tasks where trans-
fer enabled models to solve previously impossible
problems (0% — 100% accuracy), language mod-
eling shows more grounded improvements. This
suggests different transfer mechanisms: algorith-
mic tasks perhaps benefit from learning discrete
computational procedures that generalize across
representations, while language modeling involves
learning continuous distributions over vocabularies
and grammatical structures.

The Czech-English language pair provides a



Language Pair Dataset Size Lang 1 Accuracy Lang 2 Accuracy
Lang1l Lang2 Alone Mixed Alone Mixed
Standard + Letter 11520 1280  100%  98.6% % 1.4% 0% 98.2% * 1.6%
Standard + Roman 8192 2048 100% 989% +1.7% 19.42% 59.38% + 3.5%
Standard + Hex 8192 4096  100% 97.5% =2.1% 0% 97.94% + 2.9%
Letter + Standard 8192 4096  100% 98.4% +1.8% 2298% 98.1% +1.5%
Roman + Standard 8192 4096  100% 982% +£2.0% 2298%  32% +£5.8%
Hex + Standard 25600 4096  100% 98.73% x1.3% 22.98% 96.09% +2.7%

Table 2: Cross-lingual transfer results showing the impact of language mixing on model performance across
different addition tasks.

Language Pair Dataset Size Lang 1 Accuracy Lang 2 Accuracy
Lang1l Lang2 Alone Mixed Alone Mixed
Diff. Vocab 2048 256 97.26% 99.32% £09% 23.9% 57.32% +4.2%
Diff. Grammar 2048 256 98.34% 98.93% +1.1% 23.9% 98.05% + 1.8%
Diff. Grammar and Vocab 2048 256 98.34% 98.83% +12% 23.8% 47.56% +3.6%
Diff. Vocab 2048 512 97.26% 98.34% +1.6% 64.45% 82.62% +2.9%
Diff. Grammar 2048 512 98.34% 99.41% +£0.8% 64.45% 97.17% +1.7%

Diff. Grammar and Vocab 2048 512 98.34% 99.51% +0.7% 68.37% 85.16% *+3.1%

Table 3: Cross-lingual transfer results showing the impact of language mixing on model performance across
different graph navigation trace formats. This table examines three types of cross-lingual differences: (1) Diff.
Grammar mixes sequential node lists (1 , 2 , 3 , 4) with consecutive node pairs (( 1 , 2 ) , (2, 3));
(2) Diff. Vocab mixes consecutive node pairs with numerical offset (( 10001 , 10002 ), ( 10002 , 10003
)) with standard indices (( 1 , 2 ), ( 2 , 3 )); and (3) Diff. Grammar and Vocab mixes sequential node
lists with offset consecutive pairs, combining both grammatical and vocabulary differences. Results show grammar
differences enable strongest transfer while vocabulary differences show moderate transfer.

Training Configuration Data Composition Test Perplexity Transfer
Czech  English - Improvement
*English-only 0% 100% 3.94 -
Czech-only (Limited) 10% 0% 28.67+1.3 -
Czech-only (Full) 100% 0% 5.65 -
Mixed Training 10% 90 % 872+1.2 +69.6 %

Table 4: Cross-lingual transfer results for TinyStories language modeling. Mixed training with 10% Czech and 90%
English data significantly improves Czech language performance compared to Czech-only training with limited
data.



challenging test case, as these languages differ sub-
stantially in morphology, syntax, and vocabulary.
The observed transfer indicates that models can
leverage common semantic concepts and patterns
even across typologically distant languages.

5 Discussion

Our experiments provide compelling evidence
that cross-lingual ability transfer is a robust phe-
nomenon that occurs across fundamentally differ-
ent types of tasks. The consistent positive trans-
fer we observe suggests that this phenomenon ex-
tends beyond surface-level linguistic similarities
and leverages computational mechanisms within
transformer architectures. The experimental re-
sults provided several interesting observations. The
asymmetric transfer patterns we observe, particu-
larly in arithmetic tasks where standard notation
transfers effectively to Roman numerals but not
vice versa, suggest that transfer effectiveness de-
pends on the computational complexity and learn-
ability of the underlying algorithms. This asymme-
try indicates that transfer is not merely about shared
semantic concepts but involves the transferability
of learned computational procedures. The graph
navigation experiments reveal that grammatical dif-
ferences facilitate stronger transfer than vocabu-
lary differences alone. The near-perfect transfer
(98.05% accuracy) when mixing sequential node
lists with edge representations suggests that mod-
els can effectively learn to map between different
grammatical encodings of the same underlying re-
lational structure.

6 Conclusion

This work provides systematic empirical evidence
for cross-lingual ability transfer in language mod-
els through controlled experiments across three dis-
tinct problem domains. Our findings demonstrate
that models can effectively transfer capabilities
from high-resource languages to low-resource ones,
even when the linguistic representations differ sub-
stantially in vocabulary, grammar, and underlying
algorithms.

Unlike previous work that primarily studied
transfer in natural language tasks, our synthetic
problem domains enable precise measurement of
transfer effectiveness and isolation of contribut-
ing factors. We demonstrate that language mixing
consistently improves performance on target low-
resource languages across problem-solving tasks

(addition, graph navigation) and language model-
ing (TinyStories). In arithmetic tasks, we observed
improvements from 0 % to 100% accuracy, while in
language modeling, we achieved a 69.6% perplex-
ity reduction for Czech when mixed with English
training data.

Limitations

Despite the compelling evidence for cross-lingual
ability transfer, our study has several important lim-
itations that should be considered when interpreting
these results. Our experiments focus on controlled
synthetic tasks that may not fully capture the com-
plexity of real-world language use. The synthetic
datasets have uniform difficulty distributions and
balanced complexity within each language. Real-
world multilingual datasets exhibit significant vari-
ation in domain coverage, text quality, and com-
plexity across languages. These factors could sub-
stantially influence transfer effectiveness in prac-
tical applications. Furthermore, our experiments
use relatively small transformer models compared
to contemporary large language models. Transfer
mechanisms may behave differently at scale, and
larger models might exhibit more robust transfer
across greater linguistic distances. Additionally,
we focus exclusively on decoder-only transformer
architectures, and other architectures might show
different transfer characteristics.
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