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Abstract001

We systematically investigate cross-lingual002
ability transfer in language models through con-003
trolled experiments across three problem sets:004
algorithmic addition, graph navigation, and nat-005
ural language modeling. Our experimental de-006
sign creates high-resource and low-resource007
“language” pairs differing in vocabulary, gram-008
mar, and computational requirements. We show009
that training on mixed datasets consistently en-010
ables strong positive transfer, significantly im-011
proving low-resource language performance012
compared to training on low amount of data in013
isolation. We observe improvements from 0%014
to 100% accuracy in arithmetic tasks, from 24%015
to 98% accuracy in graph navigation tasks, and016
69.6% perplexity reduction in natural language017
modeling. We demonstrate that transfer effec-018
tiveness depends on computational complexity019
and linguistic differences, where grammar mod-020
ifications support stronger transfer than vocabu-021
lary modifications. These findings provide com-022
pelling evidence that cross-lingual ability trans-023
fer is a robust mechanism which contributes024
to the quality of large language models in low-025
resource languages.026

1 Introduction027

Language models have enormous potential for dis-028

seminating knowledge and significantly enhancing029

human problem-solving capabilities. Their perfor-030

mance typically relies on large training corpora,031

which are predominantly composed of content writ-032

ten in English. Consequently, it is likely that certain033

topics are well-represented in English but scarcely034

covered in less commonly used languages. A pes-035

simistic expectation is that models trained under036

such conditions would fail to answer certain queries037

in the underrepresented languages. However, sev-038

eral empirical studies provide evidence which sug-039

gests that this is not necessarily the case, and that040

abilities learned in one language can transfer to041

others (Shaham et al., 2024).042

To investigate this phenomenon systematically, 043

we propose an experimental setup that enables us 044

to draw clear and decisive conclusions about cross- 045

lingual transfer. Specifically, we study three dis- 046

tinct setups in which a language model is trained 047

via next-token prediction on datasets consisting of 048

sequences from the same domain but expressed in 049

two different languages. One of these languages 050

is well-represented, such that training solely on it 051

would yield good performance, while the other is 052

sparsely represented, leading to poor performance 053

if trained on in isolation. 054

Our experiments demonstrate that training on 055

a mixture of the two languages allows the model 056

to transfer capabilities from the high-resource lan- 057

guage to the low-resource one. The three experi- 058

mental setups are designed to reflect different types 059

of abilities that language models can acquire. In 060

the first setup, the task is to learn a basic algorithm 061

(addition), the second setup involves learning to 062

navigate graphs and the third focuses on standard 063

language modeling, with performance measured 064

via perplexity. The languages used in these setups 065

differ in vocabulary and grammar, and in the case 066

of the addition task, also in numerical encoding 067

(Roman versus Arabic numerals) which also re- 068

quires different underlying algorithm. 069

Across all three tasks, we observe a consistent 070

positive transfer from the high-resource to the low- 071

resource language. These results strongly suggest 072

that such transfer is likely to occur in current state- 073

of-the-art multilingual language models, even when 074

some languages are significantly underrepresented. 075

The remainder of this paper is organized as fol- 076

lows. Section 2 reviews related work on cross- 077

lingual transfer, parameter merging, and symbolic 078

reasoning transfer in language models. Section 3 079

describes our experimental setup, including the 080

three distinct tasks we use to study ability transfer, 081

the different language representations for each task, 082

and our model architecture and training procedures. 083
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Section 4 presents our main experimental results,084

analyzing the factors that influence transfer effec-085

tiveness. Section 5 discusses the implications of086

our findings and acknowledges the limitations of087

our approach. Finally, Section 6 concludes with088

a summary of our contributions and directions for089

future research.090

2 Related Work091

When it comes to leveraging the capabilities092

of LLMs to transfer knowledge from a well-093

represented language to an underrepresented one,094

recent works show that, for example, English-095

centric pre-trained language models can be effec-096

tively transferred to other languages with only a097

tiny fraction of data (<1% of original data). Model098

with the newly learned language yields perfor-099

mance on par with fully multilingual models (Lee100

et al., 2025).101

Building on this foundation, Schäfer et al.102

(Schäfer et al., 2024) investigates the unintuitive103

finding that language imbalance can drive cross-104

lingual generalization in language models. Us-105

ing controlled experiments on perfectly equiva-106

lent “cloned languages,” the authors demonstrate107

that the presence of a predominant language in108

the training data boosts the performance of less109

frequent languages and strengthens the alignment110

of model representations across languages. They111

found that a bilingual training dataset with a 90/10112

language split can yield better performance on both113

languages than a balanced 50/50 split, and this ef-114

fect is amplified with scale.115

Another work by Kang and Kim (Kang and Kim,116

2025) investigates how factual knowledge is trans-117

ferred between languages in large language mod-118

els. They observe that despite multilingual capa-119

bilities, LLMs often exhibit "language-binding",120

where factual knowledge remains tied to the input121

language, leading to inconsistent recall. Their work122

highlights that LLMs tend to process information123

monolingually, influenced by the input’s linguistic124

form. To address this, they propose a Language-125

to-Thought (L2T) prompting strategy, which aims126

to decouple the reasoning process from the input127

language, demonstrating that aligning an LLM’s128

internal thought with the required knowledge is129

crucial for successful cross-lingual transfer, even130

without direct translation-based learning.131

Similarly, Yu et al. (Yu et al., 2024) shows that132

language models can absorb new capabilities by133

merging parameters from other models without re- 134

training. They used a method that merges task- 135

specific models, creating composites that often out- 136

perform individual source models. This suggests 137

that blending parameters (LoRA adapters, delta 138

weights) can sum abilities across models. 139

Collectively, these studies illustrate aspects of 140

ability transfer via language and domain mixing: 141

models trained in one context (language or task) 142

can leverage that knowledge in another, especially 143

when training data are combined or structured clev- 144

erly. In particular, multilingual and multi-task ap- 145

proaches often allow a model to inherit or enhance 146

abilities across languages and domains (Chen et al., 147

2024, 2025). These findings motivate our work 148

in which we systematically study the transfer of 149

model abilities in a controlled setup in which we 150

vary certain aspects of generated sequences. 151

3 Experimental Setup 152

This section details the data generation process and 153

the structure of training datasets across all experi- 154

ments; furthermore, we discuss the used training 155

paradigm and model architecture. 156

3.1 Data 157

To systematically investigate cross-lingual abil- 158

ity transfer, we design three distinct experimental 159

paradigms that vary along three key dimensions: 160

task type, vocabulary/grammar differences, and 161

algorithmic complexity. Our experimental frame- 162

work distinguishes between two fundamental task 163

categories: 164

1. Problem-solving tasks where models must 165

learn specific algorithms to generate correct 166

solutions (Addition, Graph Navigation) 167

2. Language modeling tasks where models gen- 168

erate text following natural language patterns 169

(TinyStories (Eldan and Li, 2023)) 170

This categorization allows us to isolate different 171

mechanisms of cross-lingual transfer and under- 172

stand how it varies with different problem com- 173

plexities. 174

For all problem-solving datasets, we systemati- 175

cally identify two critical thresholds: (1) the mini- 176

mum number of training samples required for suc- 177

cessful generalization and (2) the failure threshold 178

where models begin to lose their ability to general- 179

ize effectively. 180
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In language modeling, we determine only the181

second threshold by manually observing a signifi-182

cant drop in generated text quality, while also tak-183

ing note of worsened evaluation perplexity. Con-184

cerning the first threshold, we simply use all avail-185

able source language for training.186

3.1.1 Addition187

Arithmetic addition serves as our primary problem-188

solving task, chosen for its algorithmic clarity189

and scalable complexity. While addition ap-190

pears straightforward for humans with reasonable191

operand lengths, it presents interesting challenge192

for Transformers (Nogueira et al., 2021), particu-193

larly as operand length increases.194

We generate addition problems where both195

operands have lengths randomly sampled from 3−9196

digits. We format the data in a way, where each197

digit is tokenized separately, e.g. 32 + 10 = 42198

is tokenized as 3 2 + 1 0 = 4 2, following199

previous work (Lee et al., 2023), where authors200

demonstrated improved performance with least-201

significant-token-first ordering, we reverse the out-202

put sequence: 3 2 + 1 0 = 2 4.203

To study transfer across different mathematical204

representations, we implement four distinct “lan-205

guages” for arithmetic:206

• Standard: Standard decimal notation (3 2 +207

1 0 = 2 4)208

• Letter: Different vocabulary representation209

(0 → A, 1 → B, ..., 9 → J) with modified210

syntax (! A B , C D = E F)211

• Roman: Roman numeral representation (X X212

I + I V = V I X)213

• Hexadecimal: Base-16 arithmetic (1 A + B214

= 5 2)215

These variants implicitly contain various algo-216

rithmic complexities. The letter mapping preserves217

the underlying decimal addition algorithm while218

only changing surface syntax, whereas Roman and219

hexadecimal variants require different algorithms.220

This setup allows us to then distinguish between221

surface-level transfer and deeper transfer of model222

capabilities.223

3.1.2 Graph Navigation Problem224

Another task for which we test transfer of abilities225

from one language to another is graph navigation.226

Graph navigation can be seen as a prototypical227

task which in the most simplest form tests com- 228

positional reasoning where one needs to compose 229

several steps seen independently to reach a target 230

state from an initial state in a fixed graph. 231

Each instance of this problem is determined by 232

a initial state and a target state and the task of the 233

model is to produce sequence of tokens which cor- 234

responds to a valid path between these two states. 235

To evaluate the trained model, unseen pairs of ini- 236

tial and target states are used. 237

Our training data for this task consist of different 238

shortest paths between each two nodes in the fixed 239

randomly generated Erdős–Rényi graph with 100 240

nodes. We set the probability of edge creation pa- 241

rameter to 0.02, which results in 152 edges. There 242

are, therefore, 10000 possible pairs of initial and 243

target states from which we sample the training and 244

testing data. 245

To introduce language diversity in this task we 246

can again change the vocabulary and the grammar. 247

To change the vocabulary, we reindex the nodes so 248

that the new token ids are unique (by adding a large 249

constant to original ids). To change the grammar 250

we express each path as a sequence of edges instead 251

of sequence of nodes. 252

Khona et al. (Khona et al., 2024) provided a 253

partial explanation for how are Transformers able 254

to learn graph navigation. They have shown that 255

the Transformer embeds the nodes of the graph 256

into a vector space such that the distances between 257

node embeddings reflect shortest path metric on 258

the graph and then use this metric to decide which 259

node to expand next. 260

3.1.3 TinyStories 261

TinyStories is a synthetic natural language dataset 262

which consists of text written in simple English, 263

uses a limited vocabulary and simple grammat- 264

ical structures, making it ideal for studying lan- 265

guage modeling in controlled conditions. For ex- 266

periments, we must first translate the dataset and 267

effectively obtain a parallel corpus. This parallel 268

corpus can be in any language, but we deliberately 269

chose the Czech language, since a high quality 270

translation was already obtained in (Hyner et al., 271

2024). 272

We can then train a tokenizer on both corpora 273

to obtain a shared vocabulary via the BPE algo- 274

rithm. Since the amount of text of both languages 275

is similar, we can assume that the tokenizer will 276

contain an unbiased set of tokens, capturing both 277

languages efficiently. The total number of tokens 278
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(vocab. size) is set to 30000.279

3.2 Model and Training Details280

For Addition and Graph Navigation Problem, we281

use the LitGPT (AI, 2023) implementation of GPT282

architecture (Radford et al., 2018), where we train283

from scratch and compute loss only from the model284

output w.r.t. ground truth after some pre-set delim-285

iter. For example, in the Addition problem set, this286

would be the equals sign (=). We then measure287

the model quality using an appropriate metric, in288

the Addition case, we evaluate using simple exact289

match accuracy metric. In Graph Navigation prob-290

lem set, we use a validity metric, which we explain291

further in Section 4. The model size varies across292

experiments, which we show in Table 1.293

For these two tasks, we use simple WordLevel294

tokenizers rather than typical subword tokenizers295

(BPE (Sennrich et al., 2016), WordPiece (Song296

et al., 2021)). Since we deliberately structure our297

text data so that each meaningful unit (number, op-298

erator, etc.) is separated by whitespace, WordLevel299

tokenization naturally aligns with our data struc-300

ture, whereas subword tokenizers would unneces-301

sarily fragment these atomic units.302

For the TinyStories data, we train GPT-Neo303

(Black et al., 2021) models from the Transform-304

ers library (Wolf et al., 2020) for open-ended gen-305

eration. Here, we measure the quality using the306

perplexity metric.307

We evaluate cross-lingual transfer by training308

models on mixed datasets containing varying pro-309

portions of source and target language examples.310

We compare the relevant metric to the setup where311

the model is trained on the individual languages312

alone.313

Table 1: Used Model Parameters

Parameter Addition Graph Search TinyStories

Layers 12 6 4
Heads 8 4 16
Emb. Size 128 64 768
Batch Size 1024 64 80a

Learning Rate 0.002 0.003b 0.0005
Scheduler Lin. Incr. Cos. Warmup Constant
Block Size 64 128 512
Model Size ∼ 2.5× 106 ∼ 3.1× 105 ∼ 3.3× 107

a Gradient Accumulation is set to 16. b Maximum learning
rate; increase per batch is determined by warmup steps (1560
for 10k training samples).

All models were trained on a single Nvidia 40GB314

A100 GPU. For problem-solving tasks, it takes315

approximately 1 hour to train each model. Training 316

full TinyStories models took 40 hours, training 317

limited TinyStories models took 3 hours. 318

We note that we train each mixed model 3 times 319

to obtain and report the mean value and standard 320

deviation of the corresponding evaluation metric. 321

4 Experimental Results 322

In this section, we present our main empirical 323

contribution: language mixing can significantly 324

improve model performance on target languages 325

across three distinct problem domains. Our results 326

demonstrate what we term “ability transfer” - the 327

phenomenon where model capabilities acquired in 328

one linguistic representation transfer to enhance 329

performance in another. This transfer effect proves 330

particularly beneficial for target languages with 331

limited training data, which suggests that cross- 332

lingual training can help as an effective form of 333

data augmentation for low-resource scenarios. 334

We evaluate transfer effectiveness using three 335

different metrics for each task type. For arithmetic 336

problems, we use exact match accuracy, measur- 337

ing whether the generated sequence of tokens pre- 338

cisely match the ground truth sequence. For graph 339

navigation tasks, we use validity, which assesses 340

whether the generated node sequence represents 341

a valid path in the graph with correct starting and 342

ending nodes, regardless of optimality - acknowl- 343

edging that models may discover shortest paths, 344

sub-optimal paths, or reproduce the exact training 345

path. For language modeling tasks, we measure 346

perplexity to evaluate how well the model predicts 347

the probability distribution of target language text, 348

with lower values indicating better language under- 349

standing. 350

4.1 Addition 351

We begin by training models on each arithmetic 352

representation across varying sample sizes to es- 353

tablish the two thresholds previously defined in 354

Section 3.1. In Figure 1, we show exact match ac- 355

curacy results for standard and Roman addition as 356

representative examples. For standard addition, we 357

observe that models fail to generalize at 4k samples, 358

while with 8k samples, the model achieves perfect 359

accuracy. Roman addition shows a more gradual 360

performance curve, where a model achieved over 361

80% accuracy even at 4k samples. 362

Using these thresholds, we design transfer exper- 363

iments with previously determined sample ratios 364
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(a) Standard Addition dataset
training curves showing the
impact of training sample size
on model performance.
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(b) Roman Addition dataset
training curves showing the
impact of training sample size
on model performance.

Figure 1: Comparison of training sample size impact
across different datasets. We note that in Roman Ad-
dition, even a model trained on 4k samples achieves
> 80% exact match accuracy.

for source and target languages. We train models365

with identical hyperparameters on mixed datasets366

while varying language proportions. The models367

are then evaluated on exact match accuracy for both368

languages.369

Figure 2 visualizes that transfer direction might370

impact model quality. When standard addition371

serves as the source language, models achieve sub-372

stantial improvements on target languages. How-373

ever, when we reverse the language roles, using374

Roman addition as the source, models fail to learn375

standard addition despite having access to double376

the target language training samples.377
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(a) Standard → Roman trans-
fer shows +40% accuracy
improvement compared to
Roman-only training.
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Roman Addition

(b) Roman → Standard trans-
fer fails to generalize, despite
doubled target language sam-
ple size.

Figure 2: Exact match accuracy, where target language
is Roman and source language is Standard in 2a and
switched in 2b. The accuracies correspond to Table 2.
We observe asymmetric transfer effects between stan-
dard and Roman addition, demonstrating that transfer
direction in this case determines model quality.

Table 2 shows transfer results across all language378

pairs, comparing model performance when models379

are trained independently on individual languages380

or on mixed datasets. The results show that mixed 381

training always improves performance on the sec- 382

ond language while maintaining high accuracy on 383

the first language. Interestingly, letter and hex- 384

adecimal addition achieve near-perfect transfer (98- 385

100% accuracy), while Roman addition shows mod- 386

erate improvements. 387

4.2 Graph Navigation Problem 388

The process to obtain the training data sizes is the 389

same as in Section 4.1. However, the goal of this 390

experiment is slightly different. While with addi- 391

tion, we did not explicitly discuss how specifically 392

the languages differ, in this experiment, the goal is 393

to observe the impact of lexical vs. syntactic manip- 394

ulation on ability transfer. Here, we aimed to show 395

the relationship between linguistic similarity and 396

transfer effectiveness. Table 3 demonstrates that 397

the type of cross-lingual difference significantly im- 398

pacts transfer capability. When mixing sequential 399

node format with edge format, we observe nearly 400

perfect transfer, strongly outperforming baseline 401

performance. This suggests that models can effec- 402

tively learn to map between different grammatical 403

representations of the same underlying problem 404

structure. The vocabulary variant produces more 405

modest improvements. The combination of both 406

types of modifications presents significantly more 407

difficult task, while still showing decent improve- 408

ments over baseline performance. 409

4.3 TinyStories 410

Table 4 shows cross-lingual transfer results for nat- 411

ural language modeling. When training with only 412

10% Czech data, mixing with 90% English data 413

improves Czech perplexity from 28.67 to 8.72, a 414

69.6% improvement. While the mixed approach 415

doesn’t reach the performance of full Czech train- 416

ing (5.65), it shows that cross-lingual transfer pro- 417

vides substantial benefits for low-resource language 418

modeling scenarios. 419

Different from our algorithmic tasks where trans- 420

fer enabled models to solve previously impossible 421

problems (0% → 100% accuracy), language mod- 422

eling shows more grounded improvements. This 423

suggests different transfer mechanisms: algorith- 424

mic tasks perhaps benefit from learning discrete 425

computational procedures that generalize across 426

representations, while language modeling involves 427

learning continuous distributions over vocabularies 428

and grammatical structures. 429

The Czech-English language pair provides a 430
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Language Pair Dataset Size Lang 1 Accuracy Lang 2 Accuracy
Lang 1 Lang 2 Alone Mixed Alone Mixed

Standard + Letter 11520 1280 100% 98.6% ± 1.4% 0% 98.2% ± 1.6%
Standard + Roman 8192 2048 100% 98.9% ± 1.7% 19.42% 59.38% ± 3.5%
Standard + Hex 8192 4096 100% 97.5% ± 2.1% 0% 97.94% ± 2.9%
Letter + Standard 8192 4096 100% 98.4% ± 1.8% 22.98% 98.1% ± 1.5%
Roman + Standard 8192 4096 100% 98.2% ± 2.0% 22.98% 32% ± 5.8%
Hex + Standard 25600 4096 100% 98.73% ± 1.3% 22.98% 96.09% ± 2.7%

Table 2: Cross-lingual transfer results showing the impact of language mixing on model performance across
different addition tasks.

Language Pair Dataset Size Lang 1 Accuracy Lang 2 Accuracy
Lang 1 Lang 2 Alone Mixed Alone Mixed

Diff. Vocab 2048 256 97.26% 99.32% ± 0.9% 23.9% 57.32% ± 4.2%
Diff. Grammar 2048 256 98.34% 98.93% ± 1.1% 23.9% 98.05% ± 1.8%
Diff. Grammar and Vocab 2048 256 98.34% 98.83% ± 1.2% 23.8% 47.56% ± 3.6%
Diff. Vocab 2048 512 97.26% 98.34% ± 1.6% 64.45% 82.62% ± 2.9%
Diff. Grammar 2048 512 98.34% 99.41% ± 0.8% 64.45% 97.17% ± 1.7%
Diff. Grammar and Vocab 2048 512 98.34% 99.51% ± 0.7% 68.37% 85.16% ± 3.1%

Table 3: Cross-lingual transfer results showing the impact of language mixing on model performance across
different graph navigation trace formats. This table examines three types of cross-lingual differences: (1) Diff.
Grammar mixes sequential node lists (1 , 2 , 3 , 4) with consecutive node pairs (( 1 , 2 ) , ( 2 , 3 ));
(2) Diff. Vocab mixes consecutive node pairs with numerical offset (( 10001 , 10002 ), ( 10002 , 10003
)) with standard indices (( 1 , 2 ), ( 2 , 3 )); and (3) Diff. Grammar and Vocab mixes sequential node
lists with offset consecutive pairs, combining both grammatical and vocabulary differences. Results show grammar
differences enable strongest transfer while vocabulary differences show moderate transfer.

Training Configuration Data Composition Test Perplexity Transfer
Czech English - Improvement

*English-only 0% 100% 3.94 –
Czech-only (Limited) 10% 0% 28.67 ± 1.3 –
Czech-only (Full) 100% 0% 5.65 –
Mixed Training 10% 90% 8.72 ± 1.2 +69.6%

Table 4: Cross-lingual transfer results for TinyStories language modeling. Mixed training with 10% Czech and 90%
English data significantly improves Czech language performance compared to Czech-only training with limited
data.
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challenging test case, as these languages differ sub-431

stantially in morphology, syntax, and vocabulary.432

The observed transfer indicates that models can433

leverage common semantic concepts and patterns434

even across typologically distant languages.435

5 Discussion436

Our experiments provide compelling evidence437

that cross-lingual ability transfer is a robust phe-438

nomenon that occurs across fundamentally differ-439

ent types of tasks. The consistent positive trans-440

fer we observe suggests that this phenomenon ex-441

tends beyond surface-level linguistic similarities442

and leverages computational mechanisms within443

transformer architectures. The experimental re-444

sults provided several interesting observations. The445

asymmetric transfer patterns we observe, particu-446

larly in arithmetic tasks where standard notation447

transfers effectively to Roman numerals but not448

vice versa, suggest that transfer effectiveness de-449

pends on the computational complexity and learn-450

ability of the underlying algorithms. This asymme-451

try indicates that transfer is not merely about shared452

semantic concepts but involves the transferability453

of learned computational procedures. The graph454

navigation experiments reveal that grammatical dif-455

ferences facilitate stronger transfer than vocabu-456

lary differences alone. The near-perfect transfer457

(98.05% accuracy) when mixing sequential node458

lists with edge representations suggests that mod-459

els can effectively learn to map between different460

grammatical encodings of the same underlying re-461

lational structure.462

6 Conclusion463

This work provides systematic empirical evidence464

for cross-lingual ability transfer in language mod-465

els through controlled experiments across three dis-466

tinct problem domains. Our findings demonstrate467

that models can effectively transfer capabilities468

from high-resource languages to low-resource ones,469

even when the linguistic representations differ sub-470

stantially in vocabulary, grammar, and underlying471

algorithms.472

Unlike previous work that primarily studied473

transfer in natural language tasks, our synthetic474

problem domains enable precise measurement of475

transfer effectiveness and isolation of contribut-476

ing factors. We demonstrate that language mixing477

consistently improves performance on target low-478

resource languages across problem-solving tasks479

(addition, graph navigation) and language model- 480

ing (TinyStories). In arithmetic tasks, we observed 481

improvements from 0 % to 100% accuracy, while in 482

language modeling, we achieved a 69.6% perplex- 483

ity reduction for Czech when mixed with English 484

training data. 485

Limitations 486

Despite the compelling evidence for cross-lingual 487

ability transfer, our study has several important lim- 488

itations that should be considered when interpreting 489

these results. Our experiments focus on controlled 490

synthetic tasks that may not fully capture the com- 491

plexity of real-world language use. The synthetic 492

datasets have uniform difficulty distributions and 493

balanced complexity within each language. Real- 494

world multilingual datasets exhibit significant vari- 495

ation in domain coverage, text quality, and com- 496

plexity across languages. These factors could sub- 497

stantially influence transfer effectiveness in prac- 498

tical applications. Furthermore, our experiments 499

use relatively small transformer models compared 500

to contemporary large language models. Transfer 501

mechanisms may behave differently at scale, and 502

larger models might exhibit more robust transfer 503

across greater linguistic distances. Additionally, 504

we focus exclusively on decoder-only transformer 505

architectures, and other architectures might show 506

different transfer characteristics. 507

References 508

Lightning AI. 2023. Litgpt. https://github.com/ 509
Lightning-AI/litgpt. 510

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and 511
Stella Biderman. 2021. Gpt-neo: Large scale autore- 512
gressive language modeling with mesh-tensorflow. 513

Nuo Chen, Zinan Zheng, Ning Wu, Ming Gong, Dong- 514
mei Zhang, and Jia Li. 2024. Breaking language 515
barriers in multilingual mathematical reasoning: In- 516
sights and observations. Preprint, arXiv:2310.20246. 517

Zhipeng Chen, Kun Zhou, Liang Song, Wayne Xin 518
Zhao, Bingning Wang, Weipeng Chen, and Ji-Rong 519
Wen. 2025. Extracting and transferring abilities 520
for building multi-lingual ability-enhanced large lan- 521
guage models. Preprint, arXiv:2410.07825. 522

Ronen Eldan and Yuanzhi Li. 2023. TinyStories: How 523
small can language models be and still speak coherent 524
english? Preprint, arxiv:2305.07759 [cs]. 525

Petr Hyner, Petr Marek, David Adamczyk, Jan Hůla, 526
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