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ABSTRACT

Multimodal Large Language Models (MLLMs) have achieved remarkable suc-
cess in instruction-following tasks by integrating pretrained visual encoders with
large language models (LLMs). However, existing approaches often struggle with
fine-grained visual grounding due to semantic entanglement in visual patch repre-
sentations, where individual patches blend multiple distinct visual elements, mak-
ing it difficult for models to focus on instruction-relevant details. To address this
challenge, we propose MoDA (Modulation Adapter), a lightweight module that
enhances visual grounding through instruction-guided channel-wise modulation.
Following the standard LLaVA training protocol, MoDA operates in the second
stage by applying cross-attention between language instructions and pre-aligned
visual features, generating dynamic modulation masks that emphasize semanti-
cally relevant embedding dimensions while de-emphasizing irrelevant informa-
tion. This targeted refinement enables more precise visual-language alignment
without architectural modifications or additional supervision. We conduct com-
prehensive evaluation across 13 diverse benchmarks spanning visual question an-
swering, vision-centric reasoning, and hallucination detection. MoDA demon-
strates substantial improvements, achieving notable gains of +12.0 points on
MMVP hallucination detection and +4.8 points on ScienceQA reasoning, while
consistently outperforming baselines on 12 out of 13 benchmarks with minimal
computational overhead (< 1% FLOPs). Our results establish MoDA as an effec-
tive, general-purpose enhancement for improving fine-grained visual grounding in
instruction-tuned MLLMs.

1 INTRODUCTION

The rapid progress of Large Language Models (LLMs) has led to impressive zero-shot performance
across a broad spectrum of natural language processing benchmarks (Wang et al., 2024; Chung et al.,
2024; Liang et al., 2023; Llama Team, AI @ Meta, 2024; Yang et al., 2024; Team, 2025). The suc-
cess of instruction-tuned LLMs has driven computer vision research in a similar direction, ultimately
leading to the development of Multimodal Large Language Models (MLLMs). MLLMs integrate
pretrained visual encoders with large language models via lightweight adapter modules, enabling
efficient cross-modal alignment and strong performance across diverse multimodal tasks, including
Visual Question Answering (VQA), Image Captioning, Image Reasoning, and Image Classification.

Despite their success, state-of-the-art MLLMs frequently struggle with fine-grained visual under-
standing, particularly when answering queries that require precise localization and detailed reason-
ing about specific visual elements. This limitation manifests as hallucinations, where model outputs
contradict actual image semantics, undermining reliability in real-world applications. Prior analyses
have identified the CLIP-based visual encoder as a key bottleneck: its patch-based representations
often fail to capture localized details due to semantic entanglement within individual patches (Villa
et al., 2024; Tong et al., 2024b; Kar et al., 2024). While some works incorporate multiple special-
ized visual encoders (Tong et al., 2024b; Kar et al., 2024) or fine-tune CLIP for better local structure
preservation (Villa et al., 2025), these approaches often introduce substantial computational over-
head or require large-scale retraining.
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(a) Image patches for ViT input representation

Cross-Attention Block 

Linear Projection

Sigmoid Act

Visual Tokens Language Tokens

MoDA Tokens

(b) Modulation Adapter (MoDA) Ar-
chitecture

Figure 1: ViT patch representation and our proposed Modulation Adapter (MoDA). (a) ViT
splits images into fixed-size patches, each projected into high-dimensional embeddings. This par-
titioning blends semantically distinct elements (e.g., dog, toy, floor within a single patch), creating
entangled representations. (b) MoDA is a lightweight module that modulates visual embeddings via
cross-attention using language tokens as guidance, enabling selective attention without architectural
modifications or additional supervision.

We illustrate this semantic entanglement problem through a practical example. Figure 1a shows a
3×3 grid over a sleeping French bulldog with a plush toy, simulating CLIP’s visual tokenization with
enlarged patches for visualization. Crucially, none of the patches contain uniform visual elements.
Patch 5 blends the dog’s torso, stuffed toy, and cushioned bed; patch 6 mixes the dog’s head, ear, and
hardwood floor. This forces the visual encoder to combine distinct shapes, textures, and semantic
concepts into single embeddings, where individual feature dimensions encode multiple unrelated
meanings (Oquab et al., 2024; Ma et al., 2022; Zhou et al., 2024; Shi et al., 2024). Consequently,
when processing language queries like “What color is the dog’s ear?” or “Is the toy lying on the bed
or the floor?”, the model must disentangle mixed visual representations to provide reliable answers,
often failing to focus on instruction-relevant details.

Existing approaches to address this challenge fall into several categories. Some works apply at-
tention masking techniques adapted from NLP (Fan et al., 2021; Tang et al., 2021; Lin & Joe,
2023; Rende et al., 2024), but these typically operate on token-level sparsity rather than channel-
wise feature refinement. Others employ layer-wise adaptive masking (Barrios & Jin, 2024), which
introduces substantial overhead when applied to deep models. Most critically, these approaches
lack instruction-guided conditioning, missing the opportunity to dynamically adapt visual attention
based on specific language queries. This leads to our central question: How can we enable MLLMs
to dynamically focus on instruction-relevant visual details for better visual understanding without
architectural modifications or computational overhead?

We address this challenge through the Modulation Adapter (MoDA), a lightweight module that
performs instruction-guided channel-wise modulation of pre-aligned visual features. Unlike prior
masking approaches (Barrios & Jin, 2024; Lin et al., 2022) that operate on attention weights or
token-level sparsity, MoDA applies targeted modulation to visual embedding dimensions, empha-
sizing channels relevant to the current language instruction while de-emphasizing irrelevant infor-
mation. Our approach employs cross-attention between language instructions and visual features to
generate dynamic modulation masks, enabling precise visual-language alignment without modify-
ing the underlying MLLM architecture. Crucially, MoDA’s effectiveness scales with visual encoder
quality: while providing modest improvements with standard CLIP encoders, it achieves substantial
gains when paired with richer representations like SigLIP-S2, demonstrating that instruction-guided
modulation becomes increasingly valuable for fine-grained visual understanding. MoDA integrates
seamlessly into existing two-stage instruction-tuning pipelines, requires no additional supervision or
training data, and introduces minimal computational overhead (< 1% FLOPs, 3.7% parameters).

We validate MoDA across 13 diverse benchmarks spanning visual question answering, vision-
centric reasoning, and hallucination detection using strong MLLM baselines (LLaVA-1.5 (Liu et al.,
2024) and LLaVA-MoRE (Cocchi et al., 2025)). MoDA achieves substantial improvements in fine-
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grained visual understanding, with +12.0 points on MMVP hallucination detection and +4.8 points
on ScienceQA reasoning, outperforming baselines on 12 out of 13 benchmarks. Ablation studies
confirm these gains stem from architectural design rather than parameter scaling, with strongest im-
provements on fine-grained visual tasks. Our main contributions are: (i) identifying semantic entan-
glement in visual patch representations and proposing MoDA, a novel instruction-guided channel-
wise modulation approach that addresses this limitation; (ii) demonstrating substantial performance
improvements with minimal computational overhead, adding only < 1% FLOPs while achieving
consistent gains across diverse benchmarks; and (iii) comprehensive evaluation showing MoDA’s
effectiveness stems from architectural innovation rather than capacity increases.

2 RELATED WORK

Multimodal Instruction Tuning. Instruction-tuning has become the standard approach for enhanc-
ing MLLMs by incorporating task-specific natural language commands that improve generalization
across vision-language tasks. The typical pipeline involves two stages: first, cross-modal alignment
projects visual features from encoders like CLIP (Liu et al., 2023a; 2024; Cocchi et al., 2025; Chen
et al., 2024a) or Q-Former (Li et al., 2023a; Dai et al., 2023) into the language embedding space;
second, instruction-following fine-tuning enhances task generalization. Our approach builds upon
the second stage, assuming well-aligned multimodal representations and focusing on instruction-
conditioned refinement of visual features.

Cross-Modal Attention and Feature Aggregation. Modern MLLMs increasingly leverage cross-
attention mechanisms for multimodal integration. InstructBLIP (Dai et al., 2023) pioneered injecting
language queries directly into Q-Former architecture for selective visual attention, while Cambrian-
1 (Tong et al., 2024a) employs cross-attention at the token level for multimodal reasoning. Other
approaches explore multiple visual encoders with cross-attention fusion (Kar et al., 2024) or learn-
able query tokens for task-relevant information extraction. However, these methods primarily oper-
ate on discrete token interactions. MoDA differs by introducing channel-wise modulation through
cross-attention, where language instructions guide the re-weighting of continuous feature dimen-
sions rather than discrete tokens, enabling fine-grained semantic control while preserving the spatial
structure of visual representations.

Attention Masking and Multimodal Efficiency. Attention masking strategies in multimodal
models can be categorized into three main paradigms. Token-level sparsity methods like Swin-
BERT (Lin et al., 2022) generate fixed sparse masks at input, trading adaptability for efficiency.
Layer-wise adaptive approaches such as LAM (Barrios & Jin, 2024) recompute learnable masks
at each transformer layer, enabling dynamic attention but introducing computational overhead that
scales problematically with network depth. Visual-only mechanisms like MST (Li et al., 2021)
perform attention-guided masking within the vision encoder without language interaction. MoDA
introduces a distinct fourth paradigm through single-pass channel-wise modulation that operates on
continuous feature dimensions rather than discrete tokens, performs modulation only once after the
adapter stage to avoid scaling issues, and explicitly incorporates language guidance for instruction-
conditioned refinement.

Adapter Architectures. Adapter modules serve as crucial interfaces between visual encoders and
language models in MLLMs. While LLaVA-family models (Liu et al., 2023a; Cocchi et al., 2025;
Chen et al., 2024a) employ lightweight adapters for efficient CLIP-to-language mapping, recent in-
novations include attention pooling and multi-scale feature aggregation. However, these approaches
primarily focus on initial cross-modal alignment rather than dynamic, instruction-conditioned refine-
ment. MoDA complements existing adapter architectures by operating as a post-processing module
that refines already-aligned features based on specific language instructions, maintaining compati-
bility with standard MLLM designs while providing targeted improvements in fine-grained visual
grounding.

3 VISUAL FEATURE MODULATION

MoDA (MODulation Adapter) is a lightweight module designed to post-process visual embeddings
from an MLLM’s adapter. MoDA leverages the alignment of visual and language embedding spaces,
and selects the most relevant visual features based on the input language query. Our module assigns
individual weights to these visual features through cross-attention with the language embedding,
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these weights are encoded in a soft modulation mask. This mask promotes relevant visual embedding
dimensions while de-emphasizing less relevant ones. The resulting re-weighted features are then
passed to the LLM for decoding.

Within a MLLM, the MoDA component is integrated after the pre-trained adapter. Given a pre-
aligned visual feature map Valigned, our objective is to learn a function F (·) that estimates a modula-
tion operator based on the current text query T . This operator is then applied element-wise across
the embedding dimensions of the visual features, as follows:

Ṽaligned = Valigned ⊙ F (T, Valigned) (1)

Where ⊙ denotes the Hadamard product along the embedding dimension. The function
F (T, Valigned) is dependent on the text prompt, therefore, it modulates the attention of the MLLM
towards the more informative embeddings according to the current text prompt. As a consequence,
the re-weighted feature map Ṽaligned provides refined visual cues, which improve the MLLM’s ability
to resolve the complex natural language instructions in modern MLLM benchmarks.

Visual
Encoder Adapter

Language Model (LLM)

“A cat is sleeping on a chair”

🔥❄

❄

Stage 1 – Pre-training 

Visually adapted 
tokens

(a) Stage 1 - Pre-Training

Visual
Encoder Adapter

Language Model (LLM)

“There are two cats in this photo.”

🔥❄

Stage 2 – Instruction Tuning 

MoDA

How many cats are in 
the photo?

🔥

🔥

MoDA tokens
(Language aligned)

Language 
tokens

(b) Stage 2 - Instruction Tuning

Figure 2: Training Framework. MoDA follows a two-stage process: (1) Pre-training the adapter
for visual–language alignment, and (2) Instruction Tuning where the adapter and MoDA are fine-
tuned with a pretrained LLM. MoDA refines adapter outputs by emphasizing language-relevant
visual features.

3.1 MODULATION ADAPTER (MODA) DESIGN

Let Valigned ∈ RB×N×E denote the language aligned visual features obtained from the adapter the
module of the MLLM, where B is the batch size, N is the number of image tokens, and E is the
embedding dimension. Let T ∈ RB×M×E represent the language token embeddings, where M is
the number of text tokens. The T embeddings are obtained directly from the initial layers of the
LLM component. MoDA learns a modulation function F (·) ∈ [0, 1]E conditioned on the multi-
modal feature embedding {Valigned, T}, followed by a linear projection and sigmoid activation. The
re-weighted visual features Ṽaligned are computed as:

Ṽaligned = Valigned ⊙ σ (W · F (T, Valigned)) (2)

The modulation function F (·) is implemented using a stack of Transformer Layers that takes the
language-aligned visual features Valigned as the target sequence and the language token embeddings T
as the memory input. The matrix W ∈ RE×E is a learnable linear projection, and σ(·) is the sigmoid
activation function applied element-wise to constrain the mask values in the range [0, 1]. In practice,
the output of σ(W · F (T, Valigned)) can be interpreted as a channel-wise mask that independent re-
weights each feature channel in the visual embedding.

The MoDA module consists of multiple cross-attention Transformer layers, each composed of three
main components: (i) a multi-head cross-attention mechanism that allows each visual token to attend
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to relevant parts of the language input, (ii) a feed-forward network that refines the representation
at each layer, and (iii) residual connections and layer normalization to facilitate training stability
and convergence. After passing through this stack, the output is projected and passed through the
sigmoid non linearity to generate the final modulation mask M. This mask is applied following
equation 1 to obtain the refined visual representation Ṽaligned.

3.2 MODA MLLM ARCHITECTURE AND TRAINING DETAILS

MLLMs incorporating with MoDA adopt the architecture and two-stage training protocol introduced
in LLaVA Liu et al. (2023a), which ensembles a vision encoder with a large language model (LLM).
As illustrated in Figure 2, our enhanced MLLM retains the three fundamental components of Liu
et al. (2023a): a vision encoder, an adapter module for visual-language alignment, and a pretrained
LLM. However, MoDA (Modulation Adapter) is introduced as a novel component that operates as an
interface between the pre-trained vision-language adapter and the LLM. Following this integration,
the vision encoder extracts patch-level visual features from the input image, which are then projected
into the language embedding space by the standard adapter module. MoDA then takes these aligned
visual features, estimates channel-wise modulation weights, and passes the modulated features to
the LLM for language decoding.

Following the standard practice in LLaVA models, the enhanced visual embeddings are then used
as prefix tokens for the LLM. Then, LLM mixes the modulated visual tokens with the input query
tokens, and autoregressively generates a natural language response.

Training Procedure. The training of MoDA follows the two-stage approach of Liu et al. (2023a).
In the first stage, only the original visual adapter is trained following the LLaVA protocol Liu et al.
(2023a; 2024). The vision encoder and the LLM remain frozen during this phase, and the training
is supervised using an autoregressive language modeling objective. The LLM is prompted with
language-aligned image features (via the adapter) and a language instruction, and it learns to predict
the target output sequence using standard cross-entropy loss over the predicted tokens.

In the second stage, we introduce the MoDA module to enhance the model’s grounding capabilities.
MoDA is initialized using Xavier initialization, while the visual adapter retains the weights learned
on the initial stage. During this phase, we finetune both MoDA and the LLM jointly, enabling
the model to better attend to semantically relevant visual cues through MoDA while improving its
overall conversational ability.

The learning objective across both stages reamains the same: given a sequence of input tokens and
visual embeddings, the model is trained to minimize the autoregressive cross-entropy loss:

LCE = −
T∑

t=1

logP (yt | y<t, Ṽaligned, T ) (3)

where yt is the ground-truth token at time step t, y<t denotes the previously generated tokens, Ṽaligned
are the modulated visual features produced by MoDA, and T represents the tokenized instruction.

4 EXPERIMENTS

Our experimental evaluation strategically targets the semantic entanglement problem identified in
Figure 1 through 13 benchmarks spanning three categories: hallucination detection where models
must distinguish visual evidence from learned priors, complex reasoning requiring precise visual-
language coordination, and fine-grained visual analysis demanding detailed instruction-following
capabilities.

Experimental Setup. We evaluate MoDA across 13 benchmarks spanning visual question answer-
ing (GQA, ScienceQA, MMBench variants, RealWorldQA, ChartQA), vision-centric tasks (LLaVA-
Wild, MMVet, MMStar, V*Bench, CV-Bench), and hallucination detection (POPE, MMVP). These
benchmarks require strong language capabilities for instruction following and precise visual pro-
cessing. Our model follows the standard LLaVA architecture with MoDA integrated as a lightweight
cross-attention module between the adapter and language model. We adopt the two-stage training
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protocol of LLaVA-1.5, using the same hyperparameters and training data to ensure fair comparison.
More details in Appendix section (Section A.1).

Table 1: Performance on Visual Question Answering benchmarks. We evaluate on GQA, Sci-
enceQA, MMBench (En/Cn), RealWorldQA, and ChartQA. Bold underlined values indicate high-
est scores per benchmark. Bold values show best performance within each baseline comparison.
Gray text indicates models trained on different larger data distributions. All metrics are percentages;
higher is better.

Method LLM GQA ScienceQA MMBench-En MMBench-Cn RealWorldQA ChartQA
BLIP-2 (Li et al., 2023a) FLAN-T5 41.0 61.0 - - 22.4 -
InstructBLIP (Dai et al., 2023) Vicuna-7B 42.9 60.5 36.0 23.7 1.0 0.2
Qwen-VL-Chat (Bai et al., 2023) Qwen-7B 57.5 68.2 60.6 56.7 - -
LLaVA (Liu et al., 2023a) Vicuna-7B - 38.5 34.1 14.1 11.0 -
LLaVA-1.5 (Liu et al., 2024) Vicuna-13B 63.3 71.6 67.7 63.6 45.8 17.1
ShareGPT-4V (Chen et al., 2024a) Vicuna-7B 63.3 68.4 68.8 62.2 52.0 16.8

LLaVA-1.5 (Liu et al., 2024) Vicuna-7B 62.4 69.0 64.3 58.3 44.3 17.0
LLaVA-1.5 + MoDA (ours) Vicuna-7B 62.5 71.0 64.8 58.6 53.4 13.2

LLaVA-More OpenAI CLIP (Cocchi et al., 2025) LLaMA 3.1-8B 63.6 76.3 72.3 68.2 57.1 15.5
LLaVA-More OpenAI CLIP + MoDA (ours) LLaMA 3.1-8B 64.4 77.8 72.0 66.1 58.0 15.6
LLaVA-More SigLIP-S2 (Cocchi et al., 2025) LLaMA 3.1-8B 64.9 77.1 71.8 68.0 57.2 17.3
LLaVA-More SigLIP-S2+ MoDA (ours) LLaMA 3.1-8B 65.4 81.9 72.4 63.6 58.2 18.1

Table 2: Performance on vision-centric benchmarks requiring fine-grained visual understand-
ing. We evaluate on LLaVA-Wild, MMVet, MMStar, V*Bench, and CV-Bench. Bold underlined
values indicate highest scores per benchmark. Bold values show best performance within each base-
line comparison. Gray text indicates models trained on different data distributions. All metrics are
percentages; higher is better.

Method LLM LLaVA-Wild MMVet MMStar V*Bench CV-Bench
BLIP-2 (Li et al., 2023a) FLAN-T5 38.1 - 37.6 - -
InstructBLIP (Dai et al., 2023) Vicuna-7B 60.9 26.2 1.0 34.0 -
Qwen-VL-Chat (Bai et al., 2023) Qwen-7B - - 37.7 - -
LLaVA (Liu et al., 2023a) Vicuna-7B 62.8 23.8 - 35.5 -
LLaVA-1.5 (Liu et al., 2024) Vicuna-13B 72.5 - - - 60.9
ShareGPT-4V (Chen et al., 2024a) Vicuna-7B 72.6 - 33.0 - 61.8

LLaVA-1.5 (Liu et al., 2024) Vicuna-7B 65.4 28.1 27.6 42.9 59.0
LLaVA-1.5 + MoDA (ours) Vicuna-7B 68.0 29.9 32.9 44.5 58.2

LLaVA-More OpenAI CLIP (Cocchi et al., 2025) LLaMA 3.1-8B 71.2 25.2 35.7 42.8 59.9
LLaVA-More OpenAI CLIP + MoDA (ours) LLaMA 3.1-8B 73.9 26.6 36.7 44.0 61.0
LLaVA-More SigLIP-S2 (Cocchi et al., 2025) LLaMA 3.1-8B 72.0 27.7 35.8 44.4 61.2
LLaVA-More SigLIP-S2 + MoDA (ours) LLaMA 3.1-8B 67.6 28.3 38.5 44.8 62.2

Table 3: Performance on hallucination detection benchmarks. Bold underlined values indicate
highest scores per benchmark. Bold values show best performance within each baseline comparison.
Models marked with * use Gemma 3 (Team, 2025) as grader. All metrics are percentages; higher is
better.

Method LLM POPE MMVP*

BLIP-2 (Li et al., 2023a) FLAN-T5 - -
InstructBLIP (Dai et al., 2023) Vicuna-7B 85.0 16.9
LLaVA (Liu et al., 2023a) Vicuna-7B - 6.6
LLaVA-1.5 (Liu et al., 2024) Vicuna-13B 85.9 24.7

LLaVA-1.5 (Liu et al., 2024) Vicuna-7B 85.6 24.0
LLaVA-1.5 + MoDA (ours) Vicuna-7B 87.1 36.0

LLaVA-More OpenAI CLIP (Cocchi et al., 2025) LLaMA 3.1-8B 85.1 27.3
LLaVA-More OpenAI CLIP + MoDA (ours) LLaMA 3.1-8B 86.3 28.7

LLaVA-More SigLIP-S2 (Cocchi et al., 2025) LLaMA 3.1-8B 86.0 39.3
LLaVA-More SigLIP-S2 + MoDA (ours) LLaMA 3.1-8B 87.7 42.7

4.1 RESULTS

We evaluate MoDA across 13 benchmarks spanning visual question answering, vision-centric rea-
soning, and hallucination detection. The overall trend aligns with our motivation (Section 1 and
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Section 3): by applying cross-attentive channel modulation, MoDA directs information flow toward
instruction-relevant features and enables high-capacity encoders to produce more precise and well-
grounded outputs.

VQA Performance. As shown in Table 1, MoDA improves VQA by transforming the instruction
into a soft, channel wise mask over visual embeddings. The gains scale with encoder quality. With
SigLIP S2, ScienceQA increases by 4.8 points, from 77.1 to 81.9, and MoDA attains the highest
scores on five of six VQA benchmarks: GQA at 65.4, ScienceQA at 81.9, MMBench En at 72.4,
RealWorldQA at 58.2, and ChartQA at 18.1. An unexpected outcome appears on MMBench Cn.
Vicuna 7B benefits slightly, moving from 58.3 to 58.6, while OpenAI CLIP and SigLIP S2 regress,
moving from 68.2 to 66.1 and from 68.0 to 63.6. This behavior is consistent with a training mix
dominated by English instructions and suggests that multilingual instruction tuning should recover
the advantage without modifying the mechanism. Importantly, this limitation also supports our
design. The decrease indicates that MoDA relies on instruction language conditioning rather than on
parameter count, since a pure capacity increase would likely raise scores across languages uniformly.
This is straightforward to address by adding multilingual instructions during tuning, so we view it
as a data coverage issue rather than a weakness of our method. On ChartQA, our scores were lower
because the LLaVA-1.5 tuning set lacked plot/chart data, limiting exposure to visual chart reasoning.

Vision Centric Tasks. On the benchmarks that require careful visual discrimination, shown in
Table 2, architectural precision outperforms parameter count and follows our motivation. Patch
tokenization mixes multiple semantics inside each token. MoDA applies cross attentive, instruc-
tion conditioned channel modulation that separates useful signals from unrelated content and routes
them more effectively to the decoder. This converts the representational headroom in stronger en-
coders into measurable accuracy. OpenAI CLIP with MoDA reaches the best LLaVA Wild score
at 73.9. The peak on MMVet is achieved by the compact Vicuna 7B with MoDA at 29.9. SigLIP
S2 with MoDA attains the strongest results on MMStar at 38.5, on V*Bench at 44.8, and on CV
Bench at 62.2. These datasets emphasize different skills such as recognition, reading, and spatial
reasoning, yet the pattern is consistent. The largest gains appear when MoDA is paired with SigLIP
S2, which provides richer features that MoDA can selectively emphasize. Importantly, MoDA also
competes with models trained on larger and different data distributions. ShareGPT 4V, reported in
gray, records 72.6 on LLaVA Wild, 33.0 on MMStar, and 61.8 on CV Bench. MoDA surpasses these
results with 73.9 on LLaVA Wild, 38.5 on MMStar, and 62.2 on CV Bench. Comparisons to 13B
baselines, including ShareGPT 4V, indicate that an 8B class model with MoDA can meet or exceed
larger systems where direct comparisons exist. This favors design choices that direct information
flow over simply adding parameters and matches the behavior predicted by the method.

Hallucination Detection. MoDA’s design intent is most evident on hallucination benchmarks, as
summarized in Table 3. By emphasizing instruction relevant channels and attenuating distractors,
the model reduces reliance on priors and keeps outputs consistent with the visible content. With
Vicuna 7B, MMVP improves by 12.0 points, from 24.0 to 36.0. With SigLIP S2, MoDA attains the
top scores on both tasks, reaching 87.7 on POPE and 42.7 on MMVP, and surpasses the 13B LLaVA
1.5 baseline, which records 85.9 on POPE and 24.7 on MMVP. Taken together, the results confirm
three discoveries. First, MoDA scales with stronger encoders, most clearly with SigLIP S2. Second,
architectural refinement yields larger benefits than parameter growth in multiple settings. Third,
hallucination detection is where MoDA delivers its most decisive gains. Across all three categories,
MoDA achieves the best result on 12 of the 13 benchmarks. These gains are consistent with the
mechanism described in Section 3, where instruction conditioned channel modulation reduces the
influence of mixed patch semantics. The improvements require no additional supervision or changes
to the training protocol, indicating that MoDA improves how existing evidence is used rather than
expanding data or labels.

4.2 ABLATION STUDIES

We conduct systematic ablations to address key reviewer concerns: (i) Why Cross-Attention outper-
forms linear modulation, (ii) Whether improvements stem from architecture vs. added capacity, (iii)
Component synergy effects across different encoders and LLMs.

Cross-Attention vs. Alternatives: To understand why Cross-Attention outperforms alternatives,
we analyze how each approach handles queries requiring disentangling mixed visual semantics
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Table 4: Ablation Study of MoDA Components. We systematically evaluate MoDA architecture
variants (Linear MLP vs. Cross-Attention vs. Self-Attention), auxiliary supervision (L1 vs. None),
LLM backbones (Vicuna-7B vs. LLaMA 3.1-8B), and vision encoders (CLIP vs. SigLIP-S2).
Cross-Attention without auxiliary loss consistently outperforms alternatives, with benefits amplified
by stronger visual encoders. Bold values indicate best performance per column.

MoDA Type Supp. Loss LLM Vision Encoder POPE GQA SQA MMVP Avg.

Baseline Models (No MoDA)
- - Vicuna-7B CLIP ViT-L/14@336 85.6 62.4 69.0 24.0 60.3
- - LLaMA 3.1-8B CLIP ViT-L/14@336 85.1 63.6 76.3 27.3 63.1
- - LLaMA 3.1-8B SigLIP-S2 86.0 64.9 77.1 39.3 66.8

CLIP ViT-L/14@336 Ablations
Linear (MLP) L1 LLaMA 3.1-8B CLIP ViT-L/14@336 87.2 64.3 76.7 28.7 64.2
Linear (MLP) None LLaMA 3.1-8B CLIP ViT-L/14@336 86.6 64.4 77.8 28.1 64.2

Cross-Attention L1 LLaMA 3.1-8B CLIP ViT-L/14@336 87.6 64.2 76.8 20.2 62.2
Self-Attention None LLaMA 3.1-8B CLIP ViT-L/14@336 86.5 64.2 77.3 27.9 64.0

Cross-Attention None LLaMA 3.1-8B CLIP ViT-L/14@336 86.3 64.4 77.8 28.7 64.3

LLM Backbone Comparison
Cross-Attention None Vicuna-7B CLIP ViT-L/14@336 87.1 62.5 71.0 36.0 64.2

SigLIP-S2 Ablations
Linear (MLP) L1 LLaMA 3.1-8B SigLIP-S2 85.8 65.2 77.9 39.6 67.1
Linear (MLP) None LLaMA 3.1-8B SigLIP-S2 86.6 64.8 77.8 40.0 67.3

Cross-Attention L1 LLaMA 3.1-8B SigLIP-S2 87.0 65.1 79.2 41.1 68.1
Self-Attention None LLaMA 3.1-8B SigLIP-S2 87.9 64.9 79.9 39.5 68.0

Cross-Attention None LLaMA 3.1-8B SigLIP-S2 87.7 65.4 81.9 42.7 69.4

within individual patches. The three approaches differ fundamentally: Linear MLP applies the
same transformation regardless of instruction, Self-Attention concatenates features without explicit
cross-modal conditioning, while Cross-Attention uses visual features as queries and instruction to-
kens as memory, enabling selective channel emphasis based on instruction semantics. This architec-
tural difference becomes crucial when processing patches containing multiple semantic elements,
as Cross-Attention can dynamically weight channels corresponding to instruction-relevant concepts
while suppressing irrelevant information. With SigLIP-S2, Cross-Attention achieves the highest
performance (69.4 vs Self-Attention 68.0 vs Linear 67.3) with substantial gains on reasoning tasks:
ScienceQA shows Cross-Attention at 81.9 compared to Self-Attention 79.9 and Linear 77.8, while
MMVP demonstrates Cross-Attention’s 42.7 versus Self-Attention’s 39.5 and Linear’s 40.0.

Architecture vs. Capacity: The performance patterns argue against pure capacity effects: task-
specific rather than uniform improvements (MMVP shows large gains while other tasks show
smaller improvements), consistent improvement patterns across different LLM backbones, and ar-
chitectural choice matters more with stronger components (differences are minimal with CLIP but
substantial with SigLIP-S2).

Component Synergy: L1 regularization consistently degrades Cross-Attention performance across
both encoders, while Linear MLP remains largely unaffected. The degradation is particularly severe
for fine-grained reasoning. LLaMA 3.1-8B provides modest improvements over Vicuna-7B, while
SigLIP-S2 dramatically amplifies MoDA’s effectiveness (+5.1 points over CLIP), confirming that
instruction-guided modulation becomes increasingly valuable with richer visual representations.

Additional Analysis. Appendix ablations validate MoDA’s depth (A.3.1), placement (A.3.2), and
qualitative performance (A.4), highlighting its fine-grained understanding. See Appendix for details.

4.3 COMPARISON WITH MASKING APPROACHES

Table 5 validates our core hypothesis by comparing MoDA against token-level masking methods
under identical conditions. MoDA achieves the highest performance across all benchmarks, estab-
lishing clear superiority with 69.4 average performance compared to 68.5 for Learnable Masking
and 66.5 for Sparse Masking. Most importantly, MoDA reaches the strongest results on fine-grained
tasks: 42.7 on MMVP and 81.9 on ScienceQA. While token-level masking operates on discrete
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Table 5: Comparison with masking approaches. We compare MoDA against token-level masking
methods using identical conditions (LLaMA 3.1-8B + SigLIP-S2). Bold values indicate best perfor-
mance per column.

Strategy POPE GQA SQA MMVP Avg

Baseline 86.0 64.9 77.1 39.3 66.8
Learnable Masking (Barrios & Jin, 2024) 86.9 65.1 79.9 41.9 68.5
Sparse Masking (Lin et al., 2022) 85.8 64.7 76.7 38.8 66.5

MoDA (ours) 87.7 65.4 81.9 42.7 69.4

attention weights and requires layer-wise computation scaling with model depth, MoDA’s channel-
wise modulation provides continuous, instruction-guided refinement with single-pass efficiency, en-
abling more effective visual-language understanding without computational overhead that increases
linearly with the number of transformer layers.

Table 6: Computational overhead of MoDA relative to LLaVA-MoRE. MoDA introduces min-
imal overhead with only 3.7% of total parameters and less than 1% of computational operations
(MACs and FLOPs), showing that performance gains stem from architectural innovation rather than
scaling.

Metric MoDA LLaVA-MoRE (8B) Ratio (%)

Parameters 0.302B 8.0B 3.7
MACs 45.1G ≈ 5,246G 0.86
FLOPs 90.2G ≈ 10,492G 0.86

4.4 COMPUTATIONAL EFFICIENCY ANALYSIS

MoDA introduces minimal overhead, adding only 3.7% parameters and <1% MACs/FLOPs com-
pared to LLaVA-MoRE (8B) (Table 6), confirming gains stem from architectural design rather than
scaling. MoDA’s strategic placement after the adapter and before the LLM enables instruction-
guided modulation with optimal efficiency-performance tradeoffs, as validated by our ablation stud-
ies comparing different placement strategies (Appendix A.3.2). This positioning allows MoDA to
operate on pre-aligned visual features while maintaining computational efficiency. In multi-turn
scenarios, visual features are cached once, with subsequent queries requiring only modulation re-
computation (<1% computation).

5 CONCLUSIONS

We have introduced MoDA a novel modulation adapter for MLLMs that works as an ad-hoc mod-
ule. At its core, MoDA re-weights the contribution of each individual visual feature channel based
on the early language embeddings of the language prompt. The re-weighted set of features acts as
an implicit feature selector promoting the relevant visual features which are more relevant for each
individual query, thus improving the performance of MLLMs. Across multiple benchmarks and
multiple MLLM architectures MoDA shows consistent performance improvements over the base-
lines. MoDA does not require any additional pre-training or supervision. By simply appending
MoDA to the MLLM during the instructional tuning phase, we observe direct improvements across
diverse benchmarks.

Limitations. MoDA works by directly modulating the channels in the input, but it can not achieve
explicit sparsity in the channel dimension. That is, MoDA re-weights the channel dimension but
only occasionally it would set a channel’s weight to 0. Such property could be desirable to make a
stronger feature selection and effectively guide the attention of the LLM towards the more semanti-
cally relevant features.
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Reproducibility Statement. We place the highest priority on reproducibility. Upon acceptance,
we will release the MoDA MLLM model weights, along with the training pipeline, including all
hyperparameter configurations. During experimentation we fixed the random seeds and explic-
itly set key parameters that control the variability of the underlying LLMs, for example, setting
do_sample=False, to eliminate sources of stochasticity.
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A APPENDIX

A.1 EXPERIMENT SETUP

Visual Question Answering Benchmarks. These benchmarks evaluate models’ capability to accu-
rately answer questions requiring visual reasoning and comprehension. GQA (Hudson & Manning,
2019) builds upon Visual Genome’s scene graph annotations and contains 113k images with 22
million questions emphasizing compositional reasoning and scene understanding. ScienceQA (Lu
et al., 2022) assesses models using complex multimodal multiple-choice questions spanning three
major subject areas (natural science, language science, and social science), encompassing 26 top-
ics, 127 categories, and 379 distinct skills across 4,241 test examples. MMBench (Liu et al.,
2023b) consists of approximately 3,000 multiple-choice questions spanning 20 diverse domains, de-
signed to rigorously assess MLLM capabilities across perception and reasoning paradigms through
a structured hierarchical taxonomy. We evaluate on both English (MMBench-En) and Chinese
(MMBench-Cn) versions to assess multilingual capabilities. RealWorldQA (xAI, 2024) contains
over 700 real-world images captured from vehicles and other scenarios, each paired with spatial rea-
soning questions that evaluate real-environment understanding and physical scene comprehension.
ChartQA (Masry et al., 2022) focuses on chart understanding with 9.6k human-written and 23k
auto-generated questions across approximately 20k charts (bar, line, pie), requiring visual and log-
ical reasoning such as comparing values, identifying trends, and performing arithmetic operations
over chart data.

Vision-Centric Benchmarks. These benchmarks specifically target fine-grained visual understand-
ing and detailed image analysis capabilities. LLaVA-Wild (Liu et al., 2023a) comprises 24 diverse
images with 60 questions spanning indoor and outdoor scenes, memes, paintings, and sketches, with
each image paired with detailed, manually curated descriptions and targeted questions categorized
into conversation, detailed description, and complex reasoning. MM-Vet (Yu et al., 2024) includes
200 test images with 218 questions covering six core vision-language capabilities: recognition,
knowledge, optical character recognition (OCR), spatial awareness, language generation, and math-
ematics, often requiring integration of multiple skills for accurate responses. MMStar (Chen et al.,
2024b) presents 1,500 manually curated multimodal challenge items with minimal overlap, evaluat-
ing six high-level capabilities across 18 fine-grained axes and targeting complex visual dependency
and reasoning tasks where visual content is essential for answering. V*Bench (Zhang et al., 2024)
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evaluates detailed visual analysis using 191 high-resolution images from SAM with average reso-
lution of 2246×1582, containing two sub-tasks: attribute recognition (115 samples requiring recog-
nition of object attributes like color and material) and spatial relationship reasoning (76 samples
asking for relative spatial relationships between objects). CV-Bench (Tong et al., 2024a) provides
a comprehensive evaluation framework with 2,638 manually-inspected examples, repurposing stan-
dard vision benchmarks such as ADE20K, COCO, and Omni3D to assess both 2D understanding
(spatial relationships, object counting) and 3D understanding (depth order, relative distance) within
a multimodal context.

Hallucination Detection Benchmarks. These benchmarks specifically measure model tendency to
generate false or inconsistent information not present in the visual input. POPE (Li et al., 2023b)
evaluates object hallucination through 8,910 binary classification queries across three subsets (ran-
dom, popular, and adversarial), each constructed via distinct sampling strategies to probe different
aspects of hallucination phenomena in MLLMs. Following standard practice, we report average
performance across all three subsets. MMVP (Tong et al., 2024b) measures hallucination through
150 carefully constructed image pairs, each accompanied by two binary-choice questions. The im-
age pairs are selected to have highly similar CLIP embeddings, and accurate performance requires
both questions per pair to be answered correctly, making this benchmark particularly challenging
for detecting subtle visual differences and avoiding spurious correlations.

A.2 IMPLEMENTATION DETAILS

Table S1 summarizes all optimization, hardware, and architectural specifications needed to repro-
duce our results. We followed LLaVA’s (Liu et al., 2023a; 2024) established two-stage training
curriculum. First, we train the adapters on 558K alt-text image-caption pairs, then fine-tune the net-
work on high-quality visual instruction data. Both stages optimize the same next-token prediction
objective, allowing us to maintain optimizer state and the cosine learning rate schedule with 3%
warm-up across stages.

Table S1: Training Configuration Summary. This table details the full set of training and fine-
tuning hyper-parameters used to replicate our experimental setup. “PT” refers to the pre-training
stage using large-scale alt-text image–caption data, while “FT” denotes the fine-tuning stage on high-
quality visual-instruction datasets. Parameters are organized across optimization settings, hardware,
and model architecture components shared across both stages.

Hyper-parameter PT FT

Global batch size 256 128
Effective epochs 1 1
Learning rate 1× 10−3 2× 10−5

LR schedule Cosine decay with 3 % warm-up
Weight decay 0
Optimiser AdamW
DeepSpeed stage 2 3

Hardware
GPU type A100/H100 (80 GB)
Deployment Multi-node cluster

Model components (shared across stages)
Language backbone LLaMA-3.1-8B or Vicuna-7B
Visual encoder CLIP or SigLIP with S2 multiscale
Adapter (MoDA) 2 × cross-attention; 16 heads

To ensure direct comparability, we matched all hyper-parameters (batch sizes, learning rates, weight
decay, and optimizer choice) exactly as reported in LLaVA-1.5. Training was distributed across
multi-node clusters using 80 GB A100 or H100 GPUs with DeepSpeed ZeRO Stage-2 for pre-
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Table S2: Ablation on MoDA Depth. Effect of increasing the number of layers in the MoDA
adapter while keeping every other component fixed. Scores are reported on POPE, GQA, SQA and
MMVP; the final column shows the mean across tasks.

MoDA type # layers Supp. loss LLM Vision enc. POPE GQA SQA MMVP Avg

Linear (MLP) 2 None LLaMA 3.1-8B CLIP ViT-L/14@336 86.6 64.4 77.8 28.1 64.2

Linear (MLP) 4 None LLaMA 3.1-8B CLIP ViT-L/14@336 82.0 57.7 42.1 27.3 52.3

Table S3: Impact of the spatial reach of MoDA. Comparison of LLaVA-More 8B without MoDA,
with MoDA injected at the beginning of the LLM module, and with MoDA applied to every block of
the LLM module. Scores are reported on POPE and MMVP (hallucination robustness), ScienceQA
(scientific reasoning), and GQA (real-world visual reasoning); the final column shows the mean
across tasks.

Model LLM size LLM MoDA position Vision enc. POPE GQA SQA MMVP Avg

LLaVA-More 8B 8B LLaMA 3.1-8B - SigLIP-S2 86.0 64.9 77.1 39.3 66.8

LLaVA-More 8B + MoDA 8B LLaMA 3.1-8B All layers in LLM SigLIP-S2 86.3 65.1 78.9 39.8 67.5

LLaVA-More 8B + MoDA 8B LLaMA 3.1-8B Beginning SigLIP-S2 87.7 65.4 81.9 42.7 69.4

training and Stage-3 for fine-tuning. The model architecture combines either LLaMA-3.1-8B (Llama
Team, AI @ Meta, 2024) or Vicuna-7B (Zheng et al., 2023) as the language backbone with
CLIP (Radford et al., 2021) or SigLIP (Zhai et al., 2023) image encoders. Visual and textual in-
formation merge through a two-layer MoDA cross-attention block where visual tokens query in-
struction embeddings.

MMVP Benchmark. To evaluate performance on the MMVP benchmark, we opted for an open-
source and cost-effective alternative to proprietary language models. Instead of using GPT-4, we
employed Gemma 3 (Team, 2025), as the grader (use only pure text). This model was deployed
using Ollama, which ensures compatibility with the OpenAI API. This setup allowed us to main-
tain seamless integration with our Python-based evaluation pipeline while significantly reducing
operation costs without compromising evaluation consistency.

A.3 ADDITIONAL ABLATION STUDIES

A.3.1 EFFECT OF MODA ADAPTER DEPTH

Table S2 showcases the impact of the adapter depth across four different evaluation protocols: POPE
and MMVP, which target hallucination robustness; ScienceQA (SQA), which probes scientific rea-
soning; and GQA, a dataset for real world visual reasoning and compositional question answering.
Not that the first row mirrors line 5 of Table 2 in the main paper. When we increase the MLP depth
from two to four layers the average score falls by nearly twelve points with the largest drops on GQA
and ScienceQA, suggesting that extra layers hinder the model’s ability to align visual evidence with
language semantics. We also do not observe any improvement in hallucination tests using POPE and
MMVP. This indicates that deeper adapters add complexity without strengthening actual grounding.
In short, with the current data regime increasing depth does not improve understanding, and MoDA
with two layers remains the clear choice for balancing multimodal alignment, reasoning precision
and resistance to hallucination.

A.3.2 INFLUENCE OF MODA MODULATION DEPTH

Table S3 indicates that increasing the depth of visual modulation does not invariably lead to superior
performance. Introducing MoDA exclusively at the beginning of the language model raises the
average score from 66.8 to 69.4, an improvement of +2.6 points. By comparison, extending MoDA
to all transformer layers yields only +0.7 points, with the mean rising to 67.5.

Examining individual benchmarks, the shallow configuration (at the beginning of the LLM module)
attains the largest gains: +1.7 on POPE, +0.5 on GQA, +4.8 on ScienceQA, and +3.4 on MMVP
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relative to the baseline. The full-depth variant does not match these improvements across any task.
The computational cost further accentuates this disparity. Employing MoDA at every transformer
block increases training time from approximately 20 hours to more than 50 hours. In contrast, the
single-block alternative maintains the original computational budget.

Takeaway. Deploying MoDA at the first transformer block yields the most favourable balance
between effectiveness and efficiency. This shallow configuration raises the mean accuracy from
66.8 to 69.4 (+2.6), while preserving the original training budget of roughly 20 hours. In contrast,
distributing MoDA across all layers lifts the mean by only +0.7 points, yet extends training time
beyond 50 hours. Hence, full-depth MoDA is justified only when marginal accuracy gains warrant
a more than two-fold increase in computational cost; otherwise, a single MoDA layer remains the
recommended default.

A.4 QUALITATIVE ANALYSIS

Figure S1: Qualitative Analysis. Qualitative comparison between the baseline LLaVA-More
SigLIP-S2 (denoted LM) and LLaVA-More SigLIP-S2 + MoDA (denoted MoDA). Each column
shows a multiple-choice VQA instance from the MMVP benchmark. ✗ marks an incorrect predic-
tion, whereas ✔ denotes a correct one. Although the baseline frequently produces lengthy free-form
answers that do not match the question format, MoDA consistently selects the correct alternative,
successfully addressing the task. From left to right, we observe: (i & ii) recognition of a specific
keyboard key, (iii & iv) detection of subtle tongue–skin contact in a snake, and (iv & v) identification
of printed text on a police vehicle’s light bar. Across all examples, MoDA demonstrates superior
fine-grained grounding of visual cues.

Figure S1 presents a qualitative comparison between the baseline LLaVA-More using SigLIP-S2
(denoted as LM) and our proposed MoDA, which augments the same baseline with a modulation
adapter to enhance visual representation quality. The first two examples involve determining whether
the letter D is present in a keyboard layout. In the first case, LM incorrectly identifies the presence
of the letter D despite its absence in the image and fails to select a valid multiple-choice option,
resulting in both an incorrect response and invalid output format. In the second case, LM correctly
identifies the letter’s presence and selects the appropriate answer. In contrast, MoDA consistently
selects the correct alternatives: “(a) Correct” for the first example and “(b) Incorrect” for the second,
demonstrating its ability to produce concise outputs that comply with the required format while
maintaining fine-grained visual understanding.

In the third example, both the baseline and MoDA produce correct answers but fail to follow the
multiple-choice format. The fourth case involves identifying whether a snake’s tongue is touching its
skin, a subtle perceptual task where the correct answer is “No”. LM misclassifies this contact while
MoDA provides the correct answer, demonstrating greater sensitivity to localized visual features
(fine-grained details).

The fifth and sixth examples test whether textual markings are present on a police van’s light bar.
In the fifth case, both models provide correct answers, but only MoDA follows the required output
format instructions. In the sixth example, the LM incorrectly predicts the presence of text, likely due
to overgeneralized visual priors, which are assumptions (hallucinations) formed from pre-training
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data that cause the model to expect text in similar visual contexts even when none is present. In
contrast, MoDA accurately identifies the absence of text and maintains proper formatting. These
results highlight MoDA’s improved grounding in visual evidence and its stronger compliance with
formatting requirements, closely following the user’s instructions.

A.5 THE USE OF LARGE LANGUAGE MODELS (LLMS).

We used commercial large language models (e.g., ChatGPT) only as editorial tools to improve the
manuscript’s readability. Their role was limited to language editing, such as correcting grammar,
improving clarity, and smoothing the flow of text, and they did not influence the research design,
data analysis, or the research conclusions.
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