

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MODA: MODULATION ADAPTER FOR FINE-GRAINED VISUAL UNDERSTANDING IN INSTRUCTIONAL MLLMs

Anonymous authors

Paper under double-blind review

ABSTRACT

Multimodal Large Language Models (MLLMs) have achieved remarkable success in instruction-following tasks by integrating pretrained visual encoders with large language models (LLMs). However, existing approaches often struggle with fine-grained visual grounding due to semantic entanglement in visual patch representations, where individual patches blend multiple distinct visual elements, making it difficult for models to focus on instruction-relevant details. To address this challenge, we propose MoDA (Modulation Adapter), a lightweight module that enhances visual grounding through instruction-guided channel-wise modulation. Following the standard LLaVA training protocol, MoDA operates in the second stage by applying cross-attention between language instructions and pre-aligned visual features, generating dynamic modulation masks that emphasize semantically relevant embedding dimensions while de-emphasizing irrelevant information. This targeted refinement enables more precise visual-language alignment without architectural modifications or additional supervision. We conduct comprehensive evaluation across 13 diverse benchmarks spanning visual question answering, vision-centric reasoning, and hallucination detection. MoDA demonstrates substantial improvements, achieving notable gains of +12.0 points on MMVP hallucination detection and +4.8 points on ScienceQA reasoning, while consistently outperforming baselines on 12 out of 13 benchmarks with minimal computational overhead (< 1% FLOPs). Our results establish MoDA as an effective, general-purpose enhancement for improving fine-grained visual grounding in instruction-tuned MLLMs.

1 INTRODUCTION

The rapid progress of Large Language Models (LLMs) has led to impressive zero-shot performance across a broad spectrum of natural language processing benchmarks (Wang et al., 2024; Chung et al., 2024; Liang et al., 2023; Llama Team, AI @ Meta, 2024; Yang et al., 2024; Team, 2025). The success of instruction-tuned LLMs has driven computer vision research in a similar direction, ultimately leading to the development of Multimodal Large Language Models (MLLMs). MLLMs integrate pretrained visual encoders with large language models via lightweight adapter modules, enabling efficient cross-modal alignment and strong performance across diverse multimodal tasks, including Visual Question Answering (VQA), Image Captioning, Image Reasoning, and Image Classification.

Despite their success, state-of-the-art MLLMs frequently struggle with fine-grained visual understanding, particularly when answering queries that require precise localization and detailed reasoning about specific visual elements. This limitation manifests as hallucinations, where model outputs contradict actual image semantics, undermining reliability in real-world applications. Prior analyses have identified the CLIP-based visual encoder as a key bottleneck: its patch-based representations often fail to capture localized details due to semantic entanglement within individual patches (Villa et al., 2024; Tong et al., 2024b; Kar et al., 2024). While some works incorporate multiple specialized visual encoders (Tong et al., 2024b; Kar et al., 2024) or fine-tune CLIP for better local structure preservation (Villa et al., 2025), these approaches often introduce substantial computational overhead or require large-scale retraining.

(a) Image patches for ViT input representation

(b) Modulation Adapter (MoDA) Architecture

Figure 1: **ViT patch representation and our proposed Modulation Adapter (MoDA).** (a) ViT splits images into fixed-size patches, each projected into high-dimensional embeddings. This partitioning blends semantically distinct elements (e.g., dog, toy, floor within a single patch), creating entangled representations. (b) MoDA is a lightweight module that modulates visual embeddings via cross-attention using language tokens as guidance, enabling selective attention without architectural modifications or additional supervision.

We illustrate this semantic entanglement problem through a practical example. Figure 1a shows a 3×3 grid over a sleeping French bulldog with a plush toy, simulating CLIP’s visual tokenization with enlarged patches for visualization. Crucially, none of the patches contain uniform visual elements. Patch 5 blends the dog’s torso, stuffed toy, and cushioned bed; patch 6 mixes the dog’s head, ear, and hardwood floor. This forces the visual encoder to combine distinct shapes, textures, and semantic concepts into single embeddings, where individual feature dimensions encode multiple unrelated meanings (Oquab et al., 2024; Ma et al., 2022; Zhou et al., 2024; Shi et al., 2024). Consequently, when processing language queries like “*What color is the dog’s ear?*” or “*Is the toy lying on the bed or the floor?*”, the model must disentangle mixed visual representations to provide reliable answers, often failing to focus on instruction-relevant details.

Existing approaches to address this challenge fall into several categories. Some works apply attention masking techniques adapted from NLP (Fan et al., 2021; Tang et al., 2021; Lin & Joe, 2023; Rende et al., 2024), but these typically operate on token-level sparsity rather than channel-wise feature refinement. Others employ layer-wise adaptive masking (Barrios & Jin, 2024), which introduces substantial overhead when applied to deep models. Most critically, these approaches lack instruction-guided conditioning, missing the opportunity to dynamically adapt visual attention based on specific language queries. This leads to our central question: *How can we enable MLLMs to dynamically focus on instruction-relevant visual details for better visual understanding without architectural modifications or computational overhead?*

We address this challenge through the **Modulation Adapter (MoDA)**, a lightweight module that performs instruction-guided channel-wise modulation of pre-aligned visual features. Unlike prior masking approaches (Barrios & Jin, 2024; Lin et al., 2022) that operate on attention weights or token-level sparsity, MoDA applies targeted modulation to visual embedding dimensions, emphasizing channels relevant to the current language instruction while de-emphasizing irrelevant information. Our approach employs cross-attention between language instructions and visual features to generate dynamic modulation masks, enabling precise visual-language alignment without modifying the underlying MLLM architecture. Crucially, MoDA’s effectiveness scales with visual encoder quality: while providing modest improvements with standard CLIP encoders, it achieves substantial gains when paired with richer representations like SigLIP-S2, demonstrating that instruction-guided modulation becomes increasingly valuable for fine-grained visual understanding. MoDA integrates seamlessly into existing two-stage instruction-tuning pipelines, requires no additional supervision or training data, and introduces minimal computational overhead (< 1% FLOPs, 3.7% parameters).

We validate MoDA across 13 diverse benchmarks spanning visual question answering, vision-centric reasoning, and hallucination detection using strong MLLM baselines (LLaVA-1.5 (Liu et al., 2024) and LLaVA-MoRE (Cocchi et al., 2025)). MoDA achieves substantial improvements in fine-

108 grained visual understanding, with **+12.0 points** on MMVP hallucination detection and **+4.8 points**
 109 on ScienceQA reasoning, outperforming baselines on **12 out of 13 benchmarks**. Ablation studies
 110 confirm these gains stem from architectural design rather than parameter scaling, with strongest im-
 111 provements on fine-grained visual tasks. Our main contributions are: **(i)** identifying semantic entan-
 112 glement in visual patch representations and proposing MoDA, a novel instruction-guided channel-
 113 wise modulation approach that addresses this limitation; **(ii)** demonstrating substantial performance
 114 improvements with minimal computational overhead, adding only < 1% FLOPs while achieving
 115 consistent gains across diverse benchmarks; and **(iii)** comprehensive evaluation showing MoDA’s
 116 effectiveness stems from architectural innovation rather than capacity increases.

117 2 RELATED WORK

119 **Multimodal Instruction Tuning.** Instruction-tuning has become the standard approach for enhanc-
 120 ing MLLMs by incorporating task-specific natural language commands that improve generalization
 121 across vision-language tasks. The typical pipeline involves two stages: first, cross-modal alignment
 122 projects visual features from encoders like CLIP (Liu et al., 2023a; 2024; Cocchi et al., 2025; Chen
 123 et al., 2024a) or Q-Former (Li et al., 2023a; Dai et al., 2023) into the language embedding space;
 124 second, instruction-following fine-tuning enhances task generalization. Our approach builds upon
 125 the second stage, assuming well-aligned multimodal representations and focusing on instruction-
 126 conditioned refinement of visual features.

127 **Cross-Modal Attention and Feature Aggregation.** Modern MLLMs increasingly leverage cross-
 128 attention mechanisms for multimodal integration. InstructBLIP (Dai et al., 2023) pioneered injecting
 129 language queries directly into Q-Former architecture for selective visual attention, while Cambrian-
 130 1 (Tong et al., 2024a) employs cross-attention at the token level for multimodal reasoning. Other
 131 approaches explore multiple visual encoders with cross-attention fusion (Kar et al., 2024) or learn-
 132 able query tokens for task-relevant information extraction. However, these methods primarily oper-
 133 ate on discrete token interactions. MoDA differs by introducing channel-wise modulation through
 134 cross-attention, where language instructions guide the re-weighting of continuous feature dimen-
 135 sions rather than discrete tokens, enabling fine-grained semantic control while preserving the spatial
 136 structure of visual representations.

137 **Attention Masking and Multimodal Efficiency.** Attention masking strategies in multimodal
 138 models can be categorized into three main paradigms. Token-level sparsity methods like Swin-
 139 BERT (Lin et al., 2022) generate fixed sparse masks at input, trading adaptability for efficiency.
 140 Layer-wise adaptive approaches such as LAM (Barrios & Jin, 2024) recompute learnable masks
 141 at each transformer layer, enabling dynamic attention but introducing computational overhead that
 142 scales problematically with network depth. Visual-only mechanisms like MST (Li et al., 2021)
 143 perform attention-guided masking within the vision encoder without language interaction. MoDA
 144 introduces a distinct fourth paradigm through single-pass channel-wise modulation that operates on
 145 continuous feature dimensions rather than discrete tokens, performs modulation only once after the
 146 adapter stage to avoid scaling issues, and explicitly incorporates language guidance for instruction-
 147 conditioned refinement.

148 **Adapter Architectures.** Adapter modules serve as crucial interfaces between visual encoders and
 149 language models in MLLMs. While LLaVA-family models (Liu et al., 2023a; Cocchi et al., 2025;
 150 Chen et al., 2024a) employ lightweight adapters for efficient CLIP-to-language mapping, recent in-
 151 novations include attention pooling and multi-scale feature aggregation. However, these approaches
 152 primarily focus on initial cross-modal alignment rather than dynamic, instruction-conditioned refine-
 153 ment. MoDA complements existing adapter architectures by operating as a post-processing module
 154 that refines already-aligned features based on specific language instructions, maintaining compati-
 155 bility with standard MLLM designs while providing targeted improvements in fine-grained visual
 156 grounding.

157 **Visual Feature Refinement Across the Pipeline.** Recent work has explored visual feature refine-
 158 ment at different stages of the MLLM pipeline. At the encoder level, EAGLE (Villa et al., 2025) fine-
 159 tunes CLIP to better preserve local structure, requiring additional pre-training. Instruction-Guided
 160 Fusion (Li, 2025) addresses layer selection by dynamically weighting features from different en-
 161 coder depths based on task requirements. At the decoder level, MoReS (Bi et al., 2024) applies
 162 linear transformations at each LLM layer to address modality imbalance where text dominates vi-
 163 sual representations. AdaLink (Wang et al., 2023) introduces input-centric parameter-efficient fine-

162 tuning through non-intrusive adaptation mechanisms. These methods operate at distinct pipeline
 163 stages: encoder pre-training, layer selection, or per-layer LLM transformations. In contrast, MoDA
 164 operates at the adapter-to-LLM interface, performing channel-wise modulation on already-aligned
 165 features before they enter the language model. This positioning makes MoDA potentially comple-
 166 mentary to the above approaches, as improved encoder features or layer selection could provide
 167 higher-quality inputs for MoDA’s channel-wise refinement, while MoDA’s instruction-conditioned
 168 modulation could enhance the features before downstream processing by methods operating within
 169 the LLM.

171 3 VISUAL FEATURE MODULATION

173 MoDA (MODulation Adapter) is a lightweight module designed to post-process visual embeddings
 174 from an MLLM’s adapter. MoDA leverages the alignment of visual and language embedding spaces,
 175 and selects the most relevant visual features based on the input language query. Our module assigns
 176 individual weights to these visual features through cross-attention with the language embedding,
 177 these weights are encoded in a soft modulation mask. This mask promotes relevant visual embedding
 178 dimensions while de-emphasizing less relevant ones. The resulting re-weighted features are then
 179 passed to the LLM for decoding.

180 Within a MLLM, the MoDA component is integrated after the pre-trained adapter. Given a pre-
 181 aligned visual feature map V_{aligned} , our objective is to learn a function $F(\cdot)$ that estimates a modula-
 182 tion operator based on the current text query T . This operator is then applied element-wise across
 183 the embedding dimensions of the visual features, as follows:

$$185 \tilde{V}_{\text{aligned}} = V_{\text{aligned}} \odot F(T, V_{\text{aligned}}) \quad (1)$$

187 Where \odot denotes the Hadamard product along the embedding dimension. The function $F(T, V_{\text{aligned}})$ is dependent on the text prompt, therefore, it modulates the attention of the MLLM
 188 towards the more informative embeddings according to the current text prompt. As a consequence,
 189 the re-weighted feature map $\tilde{V}_{\text{aligned}}$ provides refined visual cues, which improve the MLLM’s ability
 190 to resolve the complex natural language instructions in modern MLLM benchmarks.

207 **Figure 2: Training Framework.** MoDA follows a two-stage process: **(1) Pre-training** the adapter
 208 for visual–language alignment, and **(2) Instruction Tuning** where the adapter and MoDA are fine-
 209 tuned with a pretrained LLM. MoDA refines adapter outputs by emphasizing language-relevant
 210 visual features.

212 3.1 MODULATION ADAPTER (MODA) DESIGN

214 Let $V_{\text{aligned}} \in \mathbb{R}^{B \times N \times E}$ denote the language aligned visual features obtained from the adapter the
 215 module of the MLLM, where B is the batch size, N is the number of image tokens, and E is the
 embedding dimension. Let $T \in \mathbb{R}^{B \times M \times E}$ represent the language token embeddings, where M is

216 the number of text tokens. The T embeddings are obtained directly from the initial layers of the
 217 LLM component. MoDA learns a modulation function $F(\cdot) \in [0, 1]^E$ conditioned on the multi-
 218 modal feature embedding $\{V_{\text{aligned}}, T\}$, followed by a linear projection and sigmoid activation. The
 219 re-weighted visual features $\tilde{V}_{\text{aligned}}$ are computed as:
 220

$$\tilde{V}_{\text{aligned}} = V_{\text{aligned}} \odot \sigma(W \cdot F(T, V_{\text{aligned}})) \quad (2)$$

223 The modulation function $F(\cdot)$ is implemented using a stack of Transformer Layers that takes the
 224 language-aligned visual features V_{aligned} as the target sequence and the language token embeddings T
 225 as the memory input. The matrix $W \in \mathbb{R}^{E \times E}$ is a learnable linear projection, and $\sigma(\cdot)$ is the sigmoid
 226 activation function applied element-wise to constrain the mask values in the range $[0, 1]$. In practice,
 227 the output of $\sigma(W \cdot F(T, V_{\text{aligned}}))$ can be interpreted as a channel-wise mask that independent re-
 228 weights each feature channel in the visual embedding.

229 The MoDA module consists of multiple cross-attention Transformer layers, each composed of three
 230 main components: (i) a multi-head cross-attention mechanism that allows each visual token to attend
 231 to relevant parts of the language input, (ii) a feed-forward network that refines the representation
 232 at each layer, and (iii) residual connections and layer normalization to facilitate training stability
 233 and convergence. After passing through this stack, the output is projected and passed through the
 234 sigmoid non linearity to generate the final modulation mask \mathcal{M} . This mask is applied following
 235 equation 1 to obtain the refined visual representation $\tilde{V}_{\text{aligned}}$.
 236

237 3.2 MODA MLLM ARCHITECTURE AND TRAINING DETAILS

238 MLLMs incorporating with MoDA adopt the architecture and two-stage training protocol introduced
 239 in LLaVA Liu et al. (2023a), which ensembles a vision encoder with a large language model (LLM).
 240 As illustrated in Figure 2, our enhanced MLLM retains the three fundamental components of Liu
 241 et al. (2023a): a vision encoder, an adapter module for visual-language alignment, and a pretrained
 242 LLM. However, MoDA (Modulation Adapter) is introduced as a novel component that operates as an
 243 interface between the pre-trained vision-language adapter and the LLM. Following this integration,
 244 the vision encoder extracts patch-level visual features from the input image, which are then projected
 245 into the language embedding space by the standard adapter module. MoDA then takes these aligned
 246 visual features, estimates channel-wise modulation weights, and passes the modulated features to
 247 the LLM for language decoding.

248 Following the standard practice in LLaVA models, the enhanced visual embeddings are then used
 249 as prefix tokens for the LLM. Then, LLM mixes the modulated visual tokens with the input query
 250 tokens, and autoregressively generates a natural language response.
 251

252 **Training Procedure.** The training of MoDA follows the two-stage approach of Liu et al. (2023a).
 253 In the first stage, only the original visual adapter is trained following the LLaVA protocol Liu et al.
 254 (2023a; 2024). The vision encoder and the LLM remain frozen during this phase, and the training
 255 is supervised using an autoregressive language modeling objective. The LLM is prompted with
 256 language-aligned image features (via the adapter) and a language instruction, and it learns to predict
 257 the target output sequence using standard cross-entropy loss over the predicted tokens.

258 In the second stage, we introduce the MoDA module to enhance the model’s grounding capabilities.
 259 MoDA is initialized using Xavier initialization, while the visual adapter retains the weights learned
 260 on the initial stage. During this phase, we finetune both MoDA and the LLM jointly, enabling
 261 the model to better attend to semantically relevant visual cues through MoDA while improving its
 262 overall conversational ability.

263 The learning objective across both stages remains the same: given a sequence of input tokens and
 264 visual embeddings, the model is trained to minimize the autoregressive cross-entropy loss:
 265

$$\mathcal{L}_{\text{CE}} = - \sum_{t=1}^T \log P(y_t | y_{<t}, \tilde{V}_{\text{aligned}}, T) \quad (3)$$

266 where y_t is the ground-truth token at time step t , $y_{<t}$ denotes the previously generated tokens, $\tilde{V}_{\text{aligned}}$
 267 are the modulated visual features produced by MoDA, and T represents the tokenized instruction.
 268

270

4 EXPERIMENTS

271
 272 Our experimental evaluation strategically targets the semantic entanglement problem identified in
 273 Figure 1 through 13 benchmarks spanning three categories: hallucination detection where models
 274 must distinguish visual evidence from learned priors, complex reasoning requiring precise visual-
 275 language coordination, and fine-grained visual analysis demanding detailed instruction-following
 276 capabilities.

277 **Experimental Setup.** We evaluate MoDA across 13 benchmarks spanning visual question answering
 278 (GQA, ScienceQA, MMBench variants, RealWorldQA, ChartQA), vision-centric tasks (LLaVA-
 279 Wild, MMVet, MMStar, V*Bench, CV-Bench), and hallucination detection (POPE, MMVP). These
 280 benchmarks require strong language capabilities for instruction following and precise visual
 281 processing. Our model follows the standard LLaVA architecture with MoDA integrated as a lightweight
 282 cross-attention module between the adapter and language model. We adopt the two-stage training
 283 protocol of LLaVA-1.5, using the same hyperparameters and training data to ensure fair comparison.
 284 More details in Appendix section (Section A.1).

285
 286 **Table 1: Performance on Visual Question Answering benchmarks.** We evaluate on GQA, Sci-
 287 enceQA, MMBench (En/Cn), RealWorldQA, and ChartQA. **Bold underlined** values indicate high-
 288 est scores per benchmark. **Bold** values show best performance within each baseline comparison.
 289 Gray text indicates models trained on different larger data distributions. All metrics are percentages;
 290 higher is better.

Method	LLM	GQA	ScienceQA	MMBench-En	MMBench-Cn	RealWorldQA	ChartQA
BLIP-2 (Li et al., 2023a)	FLAN-T5	41.0	61.0	-	-	22.4	-
InstructBLIP (Dai et al., 2023)	Vicuna-7B	42.9	60.5	36.0	23.7	1.0	0.2
Qwen-VL-Chat (Bai et al., 2023)	Qwen-7B	57.5	68.2	60.6	56.7	-	-
LLaVA (Liu et al., 2023a)	Vicuna-7B	-	38.5	34.1	14.1	11.0	-
LLaVA-1.5 (Liu et al., 2024)	Vicuna-13B	63.3	71.6	67.7	63.6	45.8	17.1
ShareGPT-4V (Chen et al., 2024a)	Vicuna-7B	63.3	68.4	68.8	62.2	52.0	16.8
LLaVA-1.5 (Liu et al., 2024)	Vicuna-7B	62.4	69.0	64.3	58.3	44.3	17.0
LLaVA-1.5 + MoDA (ours)	Vicuna-7B	62.5	71.0	64.8	58.6	53.4	13.2
LLaVA-More OpenAI CLIP (Cocchi et al., 2025)	LLaMA 3.1-8B	63.6	76.3	72.3	68.2	57.1	15.5
LLaVA-More OpenAI CLIP + MoDA (ours)	LLaMA 3.1-8B	64.4	77.8	72.0	66.1	58.0	15.6
LLaVA-More SigLIP-S2 (Cocchi et al., 2025)	LLaMA 3.1-8B	64.9	77.1	71.8	68.0	57.2	17.3
LLaVA-More SigLIP-S2+ MoDA (ours)	LLaMA 3.1-8B	65.4	81.9	72.4	63.6	58.2	18.1

300
 301 **Table 2: Performance on vision-centric benchmarks requiring fine-grained visual understand-**
 302 **ing.** We evaluate on LLaVA-Wild, MMVet, MMStar, V*Bench, and CV-Bench. **Bold underlined**
 303 values indicate highest scores per benchmark. **Bold** values show best performance within each base-
 304 line comparison. Gray text indicates models trained on different data distributions. All metrics are
 305 percentages; higher is better.

Method	LLM	LLaVA-Wild	MMVet	MMStar	V*Bench	CV-Bench
BLIP-2 (Li et al., 2023a)	FLAN-T5	38.1	-	37.6	-	-
InstructBLIP (Dai et al., 2023)	Vicuna-7B	60.9	26.2	1.0	34.0	-
Qwen-VL-Chat (Bai et al., 2023)	Qwen-7B	-	-	37.7	-	-
LLaVA (Liu et al., 2023a)	Vicuna-7B	62.8	23.8	-	35.5	-
LLaVA-1.5 (Liu et al., 2024)	Vicuna-13B	72.5	-	-	-	60.9
ShareGPT-4V (Chen et al., 2024a)	Vicuna-7B	72.6	-	33.0	-	61.8
LLaVA-1.5 (Liu et al., 2024)	Vicuna-7B	65.4	28.1	27.6	42.9	59.0
LLaVA-1.5 + MoDA (ours)	Vicuna-7B	68.0	29.9	32.9	44.5	58.2
LLaVA-More OpenAI CLIP (Cocchi et al., 2025)	LLaMA 3.1-8B	71.2	25.2	35.7	42.8	59.9
LLaVA-More OpenAI CLIP + MoDA (ours)	LLaMA 3.1-8B	73.9	26.6	36.7	44.0	61.0
LLaVA-More SigLIP-S2 (Cocchi et al., 2025)	LLaMA 3.1-8B	72.0	27.7	35.8	44.4	61.2
LLaVA-More SigLIP-S2+ MoDA (ours)	LLaMA 3.1-8B	67.6	28.3	38.5	44.8	62.2

317
 318

4.1 RESULTS

319
 320 We evaluate MoDA across 13 benchmarks spanning visual question answering, vision-centric rea-
 321 soning, and hallucination detection. The overall trend aligns with our motivation (Section 1 and
 322 Section 3): by applying cross-attentive channel modulation, MoDA directs information flow toward
 323 instruction-relevant features and enables high-capacity encoders to produce more precise and well-
 324 grounded outputs.

324 **Table 3: Performance on hallucination detection benchmarks.** **Bold underlined** values indicate
 325 highest scores per benchmark. **Bold** values show best performance within each baseline comparison.
 326 Models marked with * use Gemma 3 (Team, 2025) as grader. All metrics are percentages; higher is
 327 better.

Method	LLM	POPE	MMVP*
BLIP-2 (Li et al., 2023a)	FLAN-T5	-	-
InstructBLIP (Dai et al., 2023)	Vicuna-7B	85.0	16.9
LLaVA (Liu et al., 2023a)	Vicuna-7B	-	6.6
LLaVA-1.5 (Liu et al., 2024)	Vicuna-13B	85.9	24.7
LLaVA-1.5 (Liu et al., 2024)	Vicuna-7B	85.6	24.0
LLaVA-1.5 + MoDA (ours)	Vicuna-7B	87.1	36.0
LLaVA-More OpenAI CLIP (Cocchi et al., 2025)	LLaMA 3.1-8B	85.1	27.3
LLaVA-More OpenAI CLIP + MoDA (ours)	LLaMA 3.1-8B	86.3	28.7
LLaVA-More SigLIP-S2 (Cocchi et al., 2025)	LLaMA 3.1-8B	86.0	39.3
LLaVA-More SigLIP-S2 + MoDA (ours)	LLaMA 3.1-8B	87.7	42.7

341 **VQA Performance.** As shown in Table 1, MoDA improves VQA by transforming the instruction
 342 into a soft, channel wise mask over visual embeddings. The gains scale with encoder quality. With
 343 SigLIP S2, ScienceQA increases by 4.8 points, from 77.1 to 81.9, and MoDA attains the highest
 344 scores on five of six VQA benchmarks: GQA at 65.4, ScienceQA at 81.9, MMBench En at 72.4,
 345 RealWorldQA at 58.2, and ChartQA at 18.1. An unexpected outcome appears on MMBench Cn.
 346 Vicuna 7B benefits slightly, moving from 58.3 to 58.6, while OpenAI CLIP and SigLIP S2 regress,
 347 moving from 68.2 to 66.1 and from 68.0 to 63.6. This behavior is consistent with a training mix
 348 dominated by English instructions and suggests that multilingual instruction tuning should recover
 349 the advantage without modifying the mechanism. Importantly, this limitation also supports our
 350 design. The decrease indicates that MoDA relies on instruction language conditioning rather than on
 351 parameter count, since a pure capacity increase would likely raise scores across languages uniformly.
 352 This is straightforward to address by adding multilingual instructions during tuning, so we view it
 353 as a data coverage issue rather than a weakness of our method. On ChartQA, our scores were lower
 354 because the LLaVA-1.5 tuning set lacked plot/chart data, limiting exposure to visual chart reasoning.

355 **Vision Centric Tasks.** On the benchmarks that require careful visual discrimination, shown in
 356 Table 2, architectural precision outperforms parameter count and follows our motivation. Patch
 357 tokenization mixes multiple semantics inside each token. MoDA applies cross attentive, instruc-
 358 tion conditioned channel modulation that separates useful signals from unrelated content and routes
 359 them more effectively to the decoder. This converts the representational headroom in stronger en-
 360 coders into measurable accuracy. OpenAI CLIP with MoDA reaches the best LLaVA Wild score
 361 at 73.9. The peak on MMVet is achieved by the compact Vicuna 7B with MoDA at 29.9. SigLIP
 362 S2 with MoDA attains the strongest results on MMStar at 38.5, on V*Bench at 44.8, and on CV
 363 Bench at 62.2. These datasets emphasize different skills such as recognition, reading, and spatial
 364 reasoning, yet the pattern is consistent. The largest gains appear when MoDA is paired with SigLIP
 365 S2, which provides richer features that MoDA can selectively emphasize. Importantly, MoDA also
 366 competes with models trained on larger and different data distributions. ShareGPT 4V, reported in
 367 gray, records 72.6 on LLaVA Wild, 33.0 on MMStar, and 61.8 on CV Bench. MoDA surpasses these
 368 results with 73.9 on LLaVA Wild, 38.5 on MMStar, and 62.2 on CV Bench. Comparisons to 13B
 369 baselines, including ShareGPT 4V, indicate that an 8B class model with MoDA can meet or exceed
 370 larger systems where direct comparisons exist. This favors design choices that direct information
 flow over simply adding parameters and matches the behavior predicted by the method.

371 **Hallucination Detection.** MoDA’s design intent is most evident on hallucination benchmarks, as
 372 summarized in Table 3. By emphasizing instruction relevant channels and attenuating distractors,
 373 the model reduces reliance on priors and keeps outputs consistent with the visible content. With
 374 Vicuna 7B, MMVP improves by 12.0 points, from 24.0 to 36.0. With SigLIP S2, MoDA attains the
 375 top scores on both tasks, reaching 87.7 on POPE and 42.7 on MMVP, and surpasses the 13B LLaVA
 376 1.5 baseline, which records 85.9 on POPE and 24.7 on MMVP. Taken together, the results confirm
 377 three discoveries. First, MoDA scales with stronger encoders, most clearly with SigLIP S2. Second,
 378 architectural refinement yields larger benefits than parameter growth in multiple settings. Third,

378 **Table 4: Ablation Study of MoDA Components.** We systematically evaluate MoDA architecture
 379 variants (Linear MLP vs. Cross-Attention vs. Self-Attention), auxiliary supervision (L_1 vs. None),
 380 LLM backbones (Vicuna-7B vs. LLaMA 3.1-8B), and vision encoders (CLIP vs. SigLIP-S2).
 381 Cross-Attention without auxiliary loss consistently outperforms alternatives, with benefits amplified
 382 by stronger visual encoders. Bold values indicate best performance per column.

384 MoDA Type	384 Supp. Loss	384 LLM	384 Vision Encoder	384 POPE	384 GQA	384 SQA	384 MMVP	384 Avg.
<i>Baseline Models (No MoDA)</i>								
386 -	386 -	386 Vicuna-7B	386 CLIP ViT-L/14@336	386 85.6	386 62.4	386 69.0	386 24.0	386 60.3
387 -	387 -	387 LLaMA 3.1-8B	387 CLIP ViT-L/14@336	387 85.1	387 63.6	387 76.3	387 27.3	387 63.1
388 -	388 -	388 LLaMA 3.1-8B	388 SigLIP-S2	388 86.0	388 64.9	388 77.1	388 39.3	388 66.8
<i>CLIP ViT-L/14@336 Ablations</i>								
390 Linear (MLP)	390 L_1	390 LLaMA 3.1-8B	390 CLIP ViT-L/14@336	390 87.2	390 64.3	390 76.7	390 28.7	390 64.2
391 Linear (MLP)	391 None	391 LLaMA 3.1-8B	391 CLIP ViT-L/14@336	391 86.6	391 64.4	391 77.8	391 28.1	391 64.2
392 Cross-Attention	392 L_1	392 LLaMA 3.1-8B	392 CLIP ViT-L/14@336	392 87.6	392 64.2	392 76.8	392 20.2	392 62.2
393 Self-Attention	393 None	393 LLaMA 3.1-8B	393 CLIP ViT-L/14@336	393 86.5	393 64.2	393 77.3	393 27.9	393 64.0
394 Cross-Attention	394 None	394 LLaMA 3.1-8B	394 CLIP ViT-L/14@336	394 86.3	394 64.4	394 77.8	394 28.7	394 64.3
<i>LLM Backbone Comparison</i>								
395 Cross-Attention	395 None	395 Vicuna-7B	395 CLIP ViT-L/14@336	395 87.1	395 62.5	395 71.0	395 36.0	395 64.2
<i>SigLIP-S2 Ablations</i>								
397 Linear (MLP)	397 L_1	397 LLaMA 3.1-8B	397 SigLIP-S2	397 85.8	397 65.2	397 77.9	397 39.6	397 67.1
398 Linear (MLP)	398 None	398 LLaMA 3.1-8B	398 SigLIP-S2	398 86.6	398 64.8	398 77.8	398 40.0	398 67.3
399 Cross-Attention	399 L_1	399 LLaMA 3.1-8B	399 SigLIP-S2	399 87.0	399 65.1	399 79.2	399 41.1	399 68.1
400 Self-Attention	400 None	400 LLaMA 3.1-8B	400 SigLIP-S2	400 87.9	400 64.9	400 79.9	400 39.5	400 68.0
401 Cross-Attention	401 None	401 LLaMA 3.1-8B	401 SigLIP-S2	401 87.7	401 65.4	401 81.9	401 42.7	401 69.4

402
 403
 404 hallucination detection is where MoDA delivers its most decisive gains. Across all three categories,
 405 MoDA achieves the best result on 12 of the 13 benchmarks. These gains are consistent with the
 406 mechanism described in Section 3, where instruction conditioned channel modulation reduces the
 407 influence of mixed patch semantics. The improvements require no additional supervision or changes
 408 to the training protocol, indicating that MoDA improves how existing evidence is used rather than
 409 expanding data or labels.

410 411 4.2 ABLATION STUDIES 412

413 We conduct systematic ablations to address key reviewer concerns: **(i)** Why Cross-Attention outper-
 414 forms linear modulation, **(ii)** Whether improvements stem from architecture vs. added capacity, **(iii)**
 415 Component synergy effects across different encoders and LLMs.

416
 417 **Cross-Attention vs. Alternatives:** To understand why Cross-Attention outperforms alternatives,
 418 we analyze how each approach handles queries requiring disentangling mixed visual semantics
 419 within individual patches. The three approaches differ fundamentally: Linear MLP applies the
 420 same transformation regardless of instruction, Self-Attention concatenates features without explicit
 421 cross-modal conditioning, while Cross-Attention uses visual features as queries and instruction to-
 422 kens as memory, enabling selective channel emphasis based on instruction semantics. This architec-
 423 tural difference becomes crucial when processing patches containing multiple semantic elements,
 424 as Cross-Attention can dynamically weight channels corresponding to instruction-relevant concepts
 425 while suppressing irrelevant information. With SigLIP-S2, Cross-Attention achieves the highest
 426 performance (69.4 vs Self-Attention 68.0 vs Linear 67.3) with substantial gains on reasoning tasks:
 427 ScienceQA shows Cross-Attention at 81.9 compared to Self-Attention 79.9 and Linear 77.8, while
 428 MMVP demonstrates Cross-Attention’s 42.7 versus Self-Attention’s 39.5 and Linear’s 40.0.

429
 430 **Architecture vs. Capacity:** The performance patterns argue against pure capacity effects: task-
 431 specific rather than uniform improvements (MMVP shows large gains while other tasks show
 432 smaller improvements), consistent improvement patterns across different LLM backbones, and ar-
 433 chitectural choice matters more with stronger components (differences are minimal with CLIP but
 434 substantial with SigLIP-S2).

432 **Component Synergy:** L_1 regularization consistently degrades Cross-Attention performance across
 433 both encoders, while Linear MLP remains largely unaffected. The degradation is particularly severe
 434 for fine-grained reasoning. LLaMA 3.1-8B provides modest improvements over Vicuna-7B, while
 435 SigLIP-S2 dramatically amplifies MoDA’s effectiveness (+5.1 points over CLIP), confirming that
 436 instruction-guided modulation becomes increasingly valuable with richer visual representations.

437 **Additional Analysis.** Appendix ablations validate MoDA’s depth (A.3.1), placement (A.3.2), and
 438 qualitative performance (A.4), highlighting its fine-grained understanding. See Appendix for details.
 439

440 **Table 5: Comparison with masking approaches.** We compare MoDA against token-level masking
 441 methods using identical conditions (LLaMA 3.1-8B + SigLIP-S2). **Bold** values indicate best perfor-
 442 mance per column.

Strategy	POPE	GQA	SQA	MMVP	Avg
Baseline	86.0	64.9	77.1	39.3	66.8
Learnable Masking (Barrios & Jin, 2024)	86.9	65.1	79.9	41.9	68.5
Sparse Masking (Lin et al., 2022)	85.8	64.7	76.7	38.8	66.5
MoDA (ours)	87.7	65.4	81.9	42.7	69.4

450 4.3 COMPARISON WITH MASKING APPROACHES

451 Table 5 validates our core hypothesis by comparing MoDA against token-level masking methods
 452 under identical conditions. MoDA achieves the highest performance across all benchmarks, estab-
 453 lishing clear superiority with 69.4 average performance compared to 68.5 for Learnable Masking
 454 and 66.5 for Sparse Masking. Most importantly, MoDA reaches the strongest results on fine-grained
 455 tasks: 42.7 on MMVP and 81.9 on ScienceQA. While token-level masking operates on discrete
 456 attention weights and requires layer-wise computation scaling with model depth, MoDA’s channel-
 457 wise modulation provides continuous, instruction-guided refinement with single-pass efficiency, en-
 458 abling more effective visual-language understanding without computational overhead that increases
 459 linearly with the number of transformer layers.

460 **Table 6: Computational overhead of MoDA relative to LLaVA-MoRE.** MoDA introduces min-
 461 imal overhead with only 3.7% of total parameters and less than 1% of computational operations
 462 (MACs and FLOPs), showing that performance gains stem from architectural innovation rather than
 463 scaling.

Metric	MoDA	LLaVA-MoRE (8B)	Ratio (%)
Parameters	0.302B	8.0B	3.7
MACs	45.1G	\approx 5,246G	0.86
FLOPs	90.2G	\approx 10,492G	0.86

470 4.4 COMPUTATIONAL EFFICIENCY ANALYSIS

471 MoDA introduces minimal overhead, adding only 3.7% parameters and <1% MACs/FLOPs com-
 472 pared to LLaVA-MoRE (8B) (Table 6), confirming gains stem from architectural design rather than
 473 scaling. MoDA’s strategic placement after the adapter and before the LLM enables instruction-
 474 guided modulation with optimal efficiency-performance tradeoffs, as validated by our ablation
 475 studies comparing different placement strategies (Appendix A.3.2). This positioning allows MoDA to
 476 operate on pre-aligned visual features while maintaining computational efficiency. In multi-turn
 477 scenarios, visual features are cached once, with subsequent queries requiring only modulation re-
 478 computation (<1% computation).

482 4.5 ATTENTION MAP VISUALIZATION

483 To provide insight into how MoDA improves visual grounding, we visualize attention maps derived
 484 from the LLM’s self-attention layers. In MLLMs, visual tokens are concatenated with language to-
 485 kens and processed jointly through the transformer layers. We extract the attention weights from the

Figure 3: **Attention map visualization on ScienceQA.** Given the question “*Which sample has the higher temperature?*”, the baseline model (b) exhibits diffuse attention across both containers and irrelevant regions, leading to an incorrect response. In contrast, MoDA (c) concentrates attention on Sample A’s particles and motion indicators, enabling the model to correctly identify Sample A as having higher temperature.

output token positions attending to the visual token positions, then spatially reshape these weights to match the original image resolution. Figure 3 presents a representative example from ScienceQA, where the task requires comparing the average kinetic energies of gas particles across two containers to determine which sample exhibits higher temperature. The baseline model produces a diffuse attention distribution across both containers and irrelevant background regions, indicating that the LLM struggles to focus on task-relevant visual tokens, leading to an incorrect prediction. In contrast, when visual features are pre-processed through MoDA’s channel-wise modulation, the attention maps exhibit concentrated activation patterns localized on Sample A’s particles and their associated velocity indicators, which are directly relevant to solving the task. This demonstrates that MoDA’s instruction-guided modulation effectively refines visual token representations, enabling the LLM to allocate attention more precisely to task-relevant regions. These visualizations provide interpretable evidence that channel-wise feature modulation enhances visual-language alignment, facilitating accurate fine-grained visual reasoning.

5 CONCLUSIONS

We have introduced MoDA a novel modulation adapter for MLLMs that works as an ad-hoc module. At its core, MoDA re-weights the contribution of each individual visual feature channel based on the early language embeddings of the language prompt. The re-weighted set of features acts as an implicit feature selector promoting the relevant visual features which are more relevant for each individual query, thus improving the performance of MLLMs. Across multiple benchmarks and multiple MLLM architectures MoDA shows consistent performance improvements over the baselines. MoDA does not require any additional pre-training or supervision. By simply appending MoDA to the MLLM during the instructional tuning phase, we observe direct improvements across diverse benchmarks.

Limitations. MoDA works by directly modulating the channels in the input, but it can not achieve explicit sparsity in the channel dimension. That is, MoDA re-weights the channel dimension but only occasionally it would set a channel’s weight to 0. Such property could be desirable to make a stronger feature selection and effectively guide the attention of the LLM towards the more semantically relevant features.

Reproducibility Statement. We place the highest priority on reproducibility. Upon acceptance, we will release the MoDA MLLM model weights, along with the training pipeline, including all hyperparameter configurations. During experimentation we fixed the random seeds and explicitly set key parameters that control the variability of the underlying LLMs, for example, setting `do_sample=False`, to eliminate sources of stochasticity.

540 REFERENCES
541

542 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
543 Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
544 *arXiv preprint arXiv:2308.12966*, 2023.

545 Wayner Barrios and SouYoung Jin. Multi-layer learnable attention mask for multimodal tasks, 2024.
546 URL <https://arxiv.org/abs/2406.02761>.

547 Jinhe Bi et al. Llava steering: Visual instruction tuning with 500x fewer parameters through modality
548 linear representation-steering. *arXiv preprint arXiv:2412.12359*, 2024.

549 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua
550 Lin. Sharegpt4v: Improving large multi-modal models with better captions. In *Computer Vi-
551 sion – ECCV 2024: 18th European Conference, Milan, Italy, September 29–October 4, 2024,
552 Proceedings, Part XVII*, pp. 370–387, Berlin, Heidelberg, 2024a. Springer-Verlag. ISBN 978-
553 3-031-72642-2. doi: 10.1007/978-3-031-72643-9_22. URL https://doi.org/10.1007/978-3-031-72643-9_22.

554 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
555 Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
556 models? *arXiv preprint arXiv:2403.20330*, 2024b.

557 Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tai, William Fedus, Yunxuan
558 Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
559 Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pel-
560 lat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
561 Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin,
562 Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned language
563 models. *J. Mach. Learn. Res.*, 25(1), January 2024. ISSN 1532-4435.

564 Federico Cocchi, Nicholas Moratelli, Davide Caffagni, Sara Sarto, Lorenzo Baraldi, Marcella Cor-
565 nia, and Rita Cucchiara. Llava-more: A comparative study of llms and visual backbones for
566 enhanced visual instruction tuning, 2025. URL <https://arxiv.org/abs/2503.15621>.

567 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
568 Boyang Albert Li, Pascale Fung, and Steven C. H. Hoi. Instructblip: Towards general-purpose
569 vision-language models with instruction tuning. *ArXiv*, abs/2305.06500, 2023. URL <https://api.semanticscholar.org/CorpusID:258615266>.

570 Zhihao Fan, Yeyun Gong, Dayiheng Liu, Zhongyu Wei, Siyuan Wang, Jian Jiao, Nan Duan,
571 Ruofei Zhang, and Xuanjing Huang. Mask attention networks: Rethinking and strengthen trans-
572 former. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Belt-
573 agy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), *Proceed-
574 ings of the 2021 Conference of the North American Chapter of the Association for Compu-
575 tational Linguistics: Human Language Technologies*, pp. 1692–1701, Online, June 2021. Asso-
576 ciation for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.135. URL <https://aclanthology.org/2021.naacl-main.135>.

577 Drew A. Hudson and Christopher D. Manning. Gqa: A new dataset for real-world visual reasoning
578 and compositional question answering. In *2019 IEEE/CVF Conference on Computer Vision and
579 Pattern Recognition (CVPR)*, pp. 6693–6702, 2019. doi: 10.1109/CVPR.2019.00686.

580 Ouguzhan Fatih Kar, Alessio Tonioni, Petra Poklukar, Achin Kulshrestha, Amir Zamir, and Fed-
581 erico Tombari. Brave: Broadening the visual encoding of vision-language models. In *European
582 Conference on Computer Vision*, 2024. URL <https://api.semanticscholar.org/CorpusID:269033274>.

583 Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H. Hoi. Blip-2: Bootstrapping language-
584 image pre-training with frozen image encoders and large language models. In *International
585 Conference on Machine Learning*, 2023a. URL <https://api.semanticscholar.org/CorpusID:256390509>.

594 others Li. Instruction-guided fusion of multi-layer visual features in large vision-language models.
 595 *arXiv preprint arXiv:2501.08443*, 2025.
 596

597 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji rong Wen. Evaluating
 598 object hallucination in large vision-language models. In *Conference on Empirical Methods*
 599 in *Natural Language Processing*, 2023b. URL <https://api.semanticscholar.org/CorpusID:258740697>.
 600

601 Zhaowen Li, Zhiyang Chen, Fan Yang, Wei Li, Yousong Zhu, Chaoyang Zhao, Rui Deng, Liwei Wu,
 602 Rui Zhao, Ming Tang, and Jinqiao Wang. Mst: Masked self-supervised transformer for visual rep-
 603 resentation. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
 604 (eds.), *Advances in Neural Information Processing Systems*, volume 34, pp. 13165–13176. Cur-
 605 ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/6dbbe6abe5f14af882ff977fc3f35501-Paper.pdf.
 606

607 Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga,
 608 Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan,
 609 Bobby Yan, Ce Zhang, Christian Cosgrove, Christopher D. Manning, Christopher Ré, Diana
 610 Acosta-Navas, Drew A. Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong,
 611 Hongyu Ren, Huaxiu Yao, Jue Wang, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert Yuk-
 612 sekgonul, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri Chatterji, Omar Khattab, Peter Hen-
 613 derson, Qian Huang, Ryan Chi, Sang Michael Xie, Shibani Santurkar, Surya Ganguli, Tatsunori
 614 Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang, Xuechen Li, Yi-
 615 fan Mai, Yuhui Zhang, and Yuta Koreeda. Holistic evaluation of language models, 2023. URL
 616 <https://arxiv.org/abs/2211.09110>.
 617

618 Kevin Lin, Linjie Li, Chung-Ching Lin, Faisal Ahmed, Zhe Gan, Zicheng Liu, Yumao Lu, and
 619 Lijuan Wang. Swinbert: End-to-end transformers with sparse attention for video captioning. In
 620 *CVPR*, 2022.

621 Te Lin and Inwhee Joe. An adaptive masked attention mechanism to act on the local text in a
 622 global context for aspect-based sentiment analysis. *IEEE Access*, 11:43055–43066, 2023. doi:
 623 10.1109/ACCESS.2023.3270927.

624 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *Thirty-
 625 seventh Conference on Neural Information Processing Systems*, 2023a.

626 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 627 tuning. In *2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 628 26286–26296, 2024. doi: 10.1109/CVPR52733.2024.02484.
 629

630 Yuanzhan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 631 Jiaqi Wang, Conghui He, Ziwei Liu, Kai Chen, and Dahua Lin. Mmbench: Is your multi-modal
 632 model an all-around player? In *European Conference on Computer Vision*, 2023b. URL <https://api.semanticscholar.org/CorpusID:259837088>.
 633

634 Llama Team, AI @ Meta. The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.
 635

637 Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
 638 Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
 639 science question answering. In *The 36th Conference on Neural Information Processing Systems
 640 (NeurIPS)*, 2022.

641 Jie Ma, Yalong Bai, Bineng Zhong, Wei Zhang, Ting Yao, and Tao Mei. Visualizing and under-
 642 standing patch interactions in vision transformer. *IEEE Transactions on Neural Networks and
 643 Learning Systems*, 35:13671–13680, 2022. URL <https://api.semanticscholar.org/CorpusID:247410956>.
 644

646 Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A
 647 benchmark for question answering about charts with visual and logical reasoning, 2022. URL
 648 <https://arxiv.org/abs/2203.10244>.

648 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khali-
 649 dov, Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran,
 650 Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra,
 651 Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick
 652 Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features with-
 653 out supervision. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL
 654 <https://openreview.net/forum?id=a68SUt6zFt>. Featured Certification.

655 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 656 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 657 Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
 658 <https://arxiv.org/abs/2103.00020>.

659 Riccardo Rende, Federica Gerace, Alessandro Laio, and Sebastian Goldt. What does self-attention
 660 learn from masked language modelling?, 2024.

661 Rui Shi, Tianxing Li, Liguo Zhang, and Yasushi Yamaguchi. Visualization comparison of vision
 662 transformers and convolutional neural networks. *IEEE Transactions on Multimedia*, 26:2327–
 663 2339, 2024. doi: 10.1109/TMM.2023.3294805.

664 Jingfan Tang, Xinqiang Wu, Min Zhang, Xiujie Zhang, and Ming Jiang. Multiway dynamic mask
 665 attention networks for natural language inference. *J. Comp. Methods in Sci. and Eng.*, 21(1):
 666 151–162, jan 2021. ISSN 1472-7978. doi: 10.3233/JCM-204451. URL <https://doi.org/10.3233/JCM-204451>.

667 Gemma Team. Gemma 3 technical report, 2025. URL <https://arxiv.org/abs/2503.19786>.

668 Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha
 669 Akula, Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, Austin Wang, Rob Fergus, Yann
 670 LeCun, and Saining Xie. Cambrian-1: A fully open, vision-centric exploration of multimodal
 671 llms. *arXiv preprint arXiv:2406.16860*, 2024a.

672 Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
 673 shut? exploring the visual shortcomings of multimodal llms, 2024b. URL <https://arxiv.org/abs/2401.06209>.

674 Andrés Villa, Juan Carlos León Alcázar, Alvaro Soto, and Bernard Ghanem. Behind the magic,
 675 merlim: Multi-modal evaluation benchmark for large image-language models, 2024. URL
 676 <https://arxiv.org/abs/2312.02219>.

677 Andrés Villa, Juan León Alcázar, Motasem Alfarras, Vladimir Araujo, Alvaro Soto, and Bernard
 678 Ghanem. Eagle: Enhanced visual grounding minimizes hallucinations in instructional multimodal
 679 models, 2025. URL <https://arxiv.org/abs/2501.02699>.

680 Yaqing Wang et al. Non-intrusive adaptation: Input-centric parameter-efficient fine-tuning for ver-
 681 satile multimodal modeling. *arXiv preprint arXiv:2310.12100*, 2023.

682 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 683 Ren, Aaran Arulraj, Xuan He, Ziyian Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
 684 Fan, Xiang Yue, and Wenhui Chen. Mmlu-pro: A more robust and challenging multi-task language
 685 understanding benchmark, 2024. URL <https://arxiv.org/abs/2406.01574>.

686 xAI. Grok-1.5 vision (grok-1.5v) preview: Connecting the digital and physical worlds with our
 687 first multimodal model. xAI News, April 2024. URL <https://x.ai/news/grok-1.5v>.
 688 Preview announcement.

689 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 690 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 691 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 692 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 693 Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 694 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint*
 695 *arXiv:2412.15115*, 2024.

702 Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
 703 and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities, 2024.
 704 URL <https://arxiv.org/abs/2308.02490>.

705 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 706 image pre-training, 2023. URL <https://arxiv.org/abs/2303.15343>.

708 Fan Zhang, Shulin Tian, Ziqi Huang, Yu Qiao, and Ziwei Liu. Evaluation agent: Efficient and
 709 promptable evaluation framework for visual generative models. *arXiv preprint arXiv:2412.09645*,
 710 2024.

712 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 713 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
 714 Judging LLM-as-a-judge with MT-bench and chatbot arena. In *Thirty-seventh Conference on*
 715 *Neural Information Processing Systems Datasets and Benchmarks Track*, 2023. URL <https://openreview.net/forum?id=uccHPGDlao>.

717 Tao Zhou, Yuxia Niu, Huiling Lu, Caiyue Peng, Yujie Guo, and Huiyu Zhou. Vision trans-
 718 former: To discover the “four secrets” of image patches. *Information Fusion*, 105:102248,
 719 2024. ISSN 1566-2535. doi: <https://doi.org/10.1016/j.inffus.2024.102248>. URL <https://www.sciencedirect.com/science/article/pii/S1566253524000265>.

723 A APPENDIX

725 A.1 EXPERIMENT SETUP

727 **Visual Question Answering Benchmarks.** These benchmarks evaluate models’ capability to accurately
 728 answer questions requiring visual reasoning and comprehension. **GQA** (Hudson & Manning,
 729 2019) builds upon Visual Genome’s scene graph annotations and contains 113k images with 22
 730 million questions emphasizing compositional reasoning and scene understanding. **ScienceQA** (Lu
 731 et al., 2022) assesses models using complex multimodal multiple-choice questions spanning three
 732 major subject areas (natural science, language science, and social science), encompassing 26 topics,
 733 127 categories, and 379 distinct skills across 4,241 test examples. **MMBench** (Liu et al.,
 734 2023b) consists of approximately 3,000 multiple-choice questions spanning 20 diverse domains, de-
 735 signed to rigorously assess MLLM capabilities across perception and reasoning paradigms through
 736 a structured hierarchical taxonomy. We evaluate on both English (MMBench-En) and Chinese
 737 (MMBench-Cn) versions to assess multilingual capabilities. **RealWorldQA** (xAI, 2024) contains
 738 over 700 real-world images captured from vehicles and other scenarios, each paired with spatial rea-
 739 soning questions that evaluate real-environment understanding and physical scene comprehensions.
 740 **ChartQA** (Masry et al., 2022) focuses on chart understanding with 9.6k human-written and 23k
 741 auto-generated questions across approximately 20k charts (bar, line, pie), requiring visual and log-
 742 ical reasoning such as comparing values, identifying trends, and performing arithmetic operations
 743 over chart data.

744 **Vision-Centric Benchmarks.** These benchmarks specifically target fine-grained visual understand-
 745 ing and detailed image analysis capabilities. **LLaVA-Wild** (Liu et al., 2023a) comprises 24 diverse
 746 images with 60 questions spanning indoor and outdoor scenes, memes, paintings, and sketches, with
 747 each image paired with detailed, manually curated descriptions and targeted questions categorized
 748 into conversation, detailed description, and complex reasoning. **MM-Vet** (Yu et al., 2024) includes
 749 200 test images with 218 questions covering six core vision-language capabilities: recognition,
 750 knowledge, optical character recognition (OCR), spatial awareness, language generation, and math-
 751 ematics, often requiring integration of multiple skills for accurate responses. **MMStar** (Chen et al.,
 752 2024b) presents 1,500 manually curated multimodal challenge items with minimal overlap, evaluat-
 753 ing six high-level capabilities across 18 fine-grained axes and targeting complex visual dependency
 754 and reasoning tasks where visual content is essential for answering. **V*Bench** (Zhang et al., 2024)
 755 evaluates detailed visual analysis using 191 high-resolution images from SAM with average reso-
 756 lution of 2246×1582, containing two sub-tasks: attribute recognition (115 samples requiring recog-
 757 nition of object attributes like color and material) and spatial relationship reasoning (76 samples
 758 asking for relative spatial relationships between objects). **CV-Bench** (Tong et al., 2024a) provides

756 a comprehensive evaluation framework with 2,638 manually-inspected examples, repurposing stan-
 757 dard vision benchmarks such as ADE20K, COCO, and Omni3D to assess both 2D understanding
 758 (spatial relationships, object counting) and 3D understanding (depth order, relative distance) within
 759 a multimodal context.

760 **Hallucination Detection Benchmarks.** These benchmarks specifically measure model tendency to
 761 generate false or inconsistent information not present in the visual input. **POPE** (Li et al., 2023b)
 762 evaluates object hallucination through 8,910 binary classification queries across three subsets (ran-
 763 dom, popular, and adversarial), each constructed via distinct sampling strategies to probe different
 764 aspects of hallucination phenomena in MLLMs. Following standard practice, we report average
 765 performance across all three subsets. **MMVP** (Tong et al., 2024b) measures hallucination through
 766 150 carefully constructed image pairs, each accompanied by two binary-choice questions. The im-
 767 age pairs are selected to have highly similar CLIP embeddings, and accurate performance requires
 768 both questions per pair to be answered correctly, making this benchmark particularly challenging
 769 for detecting subtle visual differences and avoiding spurious correlations.

771 A.2 IMPLEMENTATION DETAILS

773 Table S1 summarizes all optimization, hardware, and architectural specifications needed to repro-
 774 duce our results. We followed LLaVA’s (Liu et al., 2023a; 2024) established two-stage training
 775 curriculum. First, we train the adapters on 558K alt-text image-caption pairs, then fine-tune the net-
 776 work on high-quality visual instruction data. Both stages optimize the same next-token prediction
 777 objective, allowing us to maintain optimizer state and the cosine learning rate schedule with 3%
 778 warm-up across stages.

779 Table S1: **Training Configuration Summary.** This table details the full set of training and fine-
 780 tuning hyper-parameters used to replicate our experimental setup. “PT” refers to the pre-training
 781 stage using large-scale alt-text image-caption data, while “FT” denotes the fine-tuning stage on high-
 782 quality visual-instruction datasets. Parameters are organized across optimization settings, hardware,
 783 and model architecture components shared across both stages.

785 Hyper-parameter	786 PT	787 FT
788 Global batch size	789 256	790 128
791 Effective epochs	792 1	793 1
794 Learning rate	795 1×10^{-3}	796 2×10^{-5}
797 LR schedule	798 Cosine decay with 3 % warm-up	
799 Weight decay	800 0	
801 Optimiser	802 AdamW	
803 DeepSpeed stage	804 2	805 3
<i>806 Hardware</i>		
807 GPU type	808 A100/H100 (80 GB)	
809 Deployment	810 Multi-node cluster	
<i>811 Model components (shared across stages)</i>		
812 Language backbone	813 LLaMA-3.1-8B or Vicuna-7B	
814 Visual encoder	815 CLIP or SigLIP with S2 multiscale	
816 Adapter (MoDA)	817 2 × cross-attention; 16 heads	

805 To ensure direct comparability, we matched all hyper-parameters (batch sizes, learning rates, weight
 806 decay, and optimizer choice) exactly as reported in LLaVA-1.5. Training was distributed across
 807 multi-node clusters using 80 GB A100 or H100 GPUs with DeepSpeed ZeRO Stage-2 for pre-
 808 training and Stage-3 for fine-tuning. The model architecture combines either LLaMA-3.1-8B (Llama
 809 Team, AI @ Meta, 2024) or Vicuna-7B (Zheng et al., 2023) as the language backbone with
 CLIP (Radford et al., 2021) or SigLIP (Zhai et al., 2023) image encoders. Visual and textual in-

810
 811 **Table S2: Ablation on MoDA Depth.** Effect of increasing the number of layers in the MoDA
 812 adapter while keeping every other component fixed. Scores are reported on POPE, GQA, SQA and
 813 MMVP; the final column shows the mean across tasks.

MoDA type	# layers	Supp. loss	LLM	Vision enc.	POPE	GQA	SQA	MMVP	Avg
Linear (MLP)	2	None	LLaMA 3.1-8B	CLIP ViT-L/14@336	86.6	64.4	77.8	28.1	64.2
Linear (MLP)	4	None	LLaMA 3.1-8B	CLIP ViT-L/14@336	82.0	57.7	42.1	27.3	52.3

814
 815 **Table S3: Impact of the spatial reach of MoDA.** Comparison of LLaVA-More 8B without MoDA,
 816 with MoDA injected at the beginning of the LLM module, and with MoDA applied to every block of
 817 the LLM module. Scores are reported on POPE and MMVP (hallucination robustness), ScienceQA
 818 (scientific reasoning), and GQA (real-world visual reasoning); the final column shows the mean
 819 across tasks.

Model	LLM size	LLM	MoDA position	Vision enc.	POPE	GQA	SQA	MMVP	Avg
LLaVA-More 8B	8B	LLaMA 3.1-8B	-	SigLIP-S2	86.0	64.9	77.1	39.3	66.8
LLaVA-More 8B + MoDA	8B	LLaMA 3.1-8B	All layers in LLM	SigLIP-S2	86.3	65.1	78.9	39.8	67.5
LLaVA-More 8B + MoDA	8B	LLaMA 3.1-8B	Beginning	SigLIP-S2	87.7	65.4	81.9	42.7	69.4

820
 821 formation merge through a two-layer MoDA cross-attention block where visual tokens query in-
 822 struction embeddings.

823
 824 **MMVP Benchmark.** To evaluate performance on the MMVP benchmark, we opted for an open-
 825 source and cost-effective alternative to proprietary language models. Instead of using GPT-4, we
 826 employed Gemma 3 (Team, 2025), as the grader (use only pure text). This model was deployed
 827 using Ollama, which ensures compatibility with the OpenAI API. This setup allowed us to main-
 828 tain seamless integration with our Python-based evaluation pipeline while significantly reducing
 829 operation costs without compromising evaluation consistency.

830 A.3 ADDITIONAL ABLATION STUDIES

831 A.3.1 EFFECT OF MODA ADAPTER DEPTH

832
 833 Table S2 showcases the impact of the adapter depth across four different evaluation protocols: POPE
 834 and MMVP, which target hallucination robustness; ScienceQA (SQA), which probes scientific
 835 reasoning; and GQA, a dataset for real world visual reasoning and compositional question answering.
 836 Not that the first row mirrors line 5 of Table 2 in the main paper. When we increase the MLP depth
 837 from two to four layers the average score falls by nearly twelve points with the largest drops on GQA
 838 and ScienceQA, suggesting that extra layers hinder the model’s ability to align visual evidence with
 839 language semantics. We also do not observe any improvement in hallucination tests using POPE and
 840 MMVP. This indicates that deeper adapters add complexity without strengthening actual grounding.
 841 In short, with the current data regime increasing depth does not improve understanding, and MoDA
 842 with two layers remains the clear choice for balancing multimodal alignment, reasoning precision
 843 and resistance to hallucination.

844 A.3.2 INFLUENCE OF MODA MODULATION DEPTH

845
 846 Table S3 indicates that increasing the depth of visual modulation does not invariably lead to superior
 847 performance. Introducing MoDA exclusively at the beginning of the language model raises the
 848 average score from 66.8 to 69.4, an improvement of +2.6 points. By comparison, extending MoDA
 849 to all transformer layers yields only +0.7 points, with the mean rising to 67.5.

850
 851 Examining individual benchmarks, the shallow configuration (at the beginning of the LLM module)
 852 attains the largest gains: +1.7 on POPE, +0.5 on GQA, +4.8 on ScienceQA, and +3.4 on MMVP
 853 relative to the baseline. The full-depth variant does not match these improvements across any task.
 854 The computational cost further accentuates this disparity. Employing MoDA at every transformer

864 block increases training time from approximately 20 hours to more than 50 hours. In contrast, the
 865 single-block alternative maintains the original computational budget.
 866

867 **Takeaway.** Deploying MoDA at the first transformer block yields the most favourable balance
 868 between effectiveness and efficiency. This shallow configuration raises the mean accuracy from
 869 66.8 to 69.4 (+2.6), while preserving the original training budget of roughly 20 hours. In contrast,
 870 distributing MoDA across all layers lifts the mean by only +0.7 points, yet extends training time
 871 beyond 50 hours. Hence, full-depth MoDA is justified only when marginal accuracy gains warrant
 872 a more than two-fold increase in computational cost; otherwise, a single MoDA layer remains the
 873 recommended default.

874 A.4 QUALITATIVE ANALYSIS

889 **Figure S1: Qualitative Analysis.** Qualitative comparison between the baseline LLaVA-More
 890 SigLIP-S2 (denoted LM) and LLaVA-More SigLIP-S2 + MoDA (denoted MoDA). Each column
 891 shows a multiple-choice VQA instance from the MMVP benchmark. **X** marks an incorrect prediction,
 892 whereas **✓** denotes a correct one. Although the baseline frequently produces lengthy free-form
 893 answers that do not match the question format, MoDA consistently selects the correct alternative,
 894 successfully addressing the task. From left to right, we observe: **(i & ii)** recognition of a specific
 895 keyboard key, **(iii & iv)** detection of subtle tongue–skin contact in a snake, and **(iv & v)** identification
 896 of printed text on a police vehicle’s light bar. Across all examples, MoDA demonstrates superior
 897 fine-grained grounding of visual cues.

898 Figure S1 presents a qualitative comparison between the baseline LLaVA-More using SigLIP-S2
 899 (denoted as LM) and our proposed MoDA, which augments the same baseline with a modulation
 900 adapter to enhance visual representation quality. The first two examples involve determining whether
 901 the letter *D* is present in a keyboard layout. In the first case, LM incorrectly identifies the presence
 902 of the letter *D* despite its absence in the image and fails to select a valid multiple-choice option,
 903 resulting in both an incorrect response and invalid output format. In the second case, LM correctly
 904 identifies the letter’s presence and selects the appropriate answer. In contrast, MoDA consistently
 905 selects the correct alternatives: “(a) Correct” for the first example and “(b) Incorrect” for the second,
 906 demonstrating its ability to produce concise outputs that comply with the required format while
 907 maintaining fine-grained visual understanding.

908 In the third example, both the baseline and MoDA produce correct answers but fail to follow the
 909 multiple-choice format. The fourth case involves identifying whether a snake’s tongue is touching its
 910 skin, a subtle perceptual task where the correct answer is “No”. LM misclassifies this contact while
 911 MoDA provides the correct answer, demonstrating greater sensitivity to localized visual features
 912 (fine-grained details).

913 The fifth and sixth examples test whether textual markings are present on a police van’s light bar.
 914 In the fifth case, both models provide correct answers, but only MoDA follows the required output
 915 format instructions. In the sixth example, the LM incorrectly predicts the presence of text, likely due
 916 to overgeneralized visual priors, which are assumptions (hallucinations) formed from pre-training
 917 data that cause the model to expect text in similar visual contexts even when none is present. In
 918 contrast, MoDA accurately identifies the absence of text and maintains proper formatting. These

918 results highlight MoDA’s improved grounding in visual evidence and its stronger compliance with
919 formatting requirements, closely following the user’s instructions.
920

921 **A.5 THE USE OF LARGE LANGUAGE MODELS (LLMs).**
922

923 We used commercial large language models (e.g., ChatGPT) only as editorial tools to improve the
924 manuscript’s readability. Their role was limited to language editing, such as correcting grammar,
925 improving clarity, and smoothing the flow of text, and they did not influence the research design,
926 data analysis, or the research conclusions.
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971