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Abstract

The classification of mathematical relations has become a new area of research in deep
learning. A major focus lies on determining mathematical equivalence, as this problem is
expensive to solve with rule-based systems due to the large search space. While previous
work has simply approached the task as a binary classification without providing further
insight into the underlying decision, we aim to iteratively find a sequence of necessary steps
to transform a mathematical expression into an arbitrary equivalent form. Each step in
this sequence is specified by an axiom together with its position of application. We denote
this task as Stepwise Equation Transformation Identification (SETI) task. To solve the
task efficiently, we further propose TreePointerNet, a novel architecture which exploits the
inherent tree structure of mathematical equations and consists of three key building blocks:
(i) a transformer model tailored to work on hierarchically tree-structured equations, making
use of (ii) a copy-pointer mechanism to extract the exact location of a transformation in the
tree and finally (iii) custom embeddings that map distinguishable occurrences of the same
token type to a common embedding. In addition, we introduce new datasets of equations for
the SETI task. We benchmark our model against various baselines and perform an ablation
study to quantify the influence of our custom embeddings and the copy-pointer component.
Furthermore, we test the robustness of our model on data of unseen complexity. Our results
clearly show that incorporating the hierarchical structure, embeddings and copy-pointer into
a single model is highly beneficial for solving the SETI task.

1 Introduction

Deep learning has surpassed traditional machine-learning methods in multiple domains such as computer
vision, natural-language processing, speech recognition and many more (Wang et al., 2020; González-Carvajal
& Garrido-Merchán, 2021; O’Mahony et al., 2020). Also the field of symbolic mathematics has seen deep
learning models applied to various objectives (Lu et al., 2023), such as recognizing equivalent mathematical
expressions (Wankerl et al., 2021; Arabshahi et al., 2019; Mali et al., 2021; Wankerl et al., 2023) or performing
symbolic computations for, e.g., integration (Lample & Charton, 2019), linear algebra (Charton, 2022),
and solving recurrent equations (D’Ascoli et al., 2022). In addition, neural networks proved to be useful
for generating step-by-step solutions to word problems (i.e. mathematical problems where the problem is
partly formulated using natural language) and mathematical proofs (Azerbayev et al., 2024; Yu et al., 2024;
Hendrycks et al., 2021).

The above-mentioned tasks of recognizing two equivalent mathematical expressions and of generating step-
by-step solutions provide an inspiration for our work. Precisely, we want to find a sequence of verifiable
axiomatic steps that is needed to transform a mathematical expression into another given equivalent form.
We denote this task as Stepwise Equation Transformation Identification (SETI) task. As an introductory
example, consider the following pair of equivalent expressions: x · (y · x) and x2y. For humans, it is easy
to see that the right expression can be derived from the left by first applying the commutative law on the
multiplication in the parentheses, yielding x · (x · y), then applying the associative law, yielding (x · x) · y,
and finally rewriting x · x as x2, yielding x2 · y.
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Figure 1: Overview of our SETI task: Given an input equation, the left side should be transformed into the
right side by repeated application of TreePointerNet. At each step, the net predicts a suitable axiom and
the root node of the subtree to apply the axiom. Note that for disambiguation of the mathematical tokens
every node in the left subtree is combined with its incremental count to make it unique.

Above example illustrates that any method that solves the SETI task (be it a human, a rule-based system
or a neural network) has to iteratively solve two problems. First, it has to identify the required axiom (e.g.
commutative law). Second, it has to find the exact position where the axiom must be applied (e.g. the second
multiplication) since in most cases there exists more than one possible application of the selected axiom.
Exemplifying, in the first step of above transformation, the law of commutativity might also be applied to
the outer multiplication, yielding (y ·x) ·x. If the prediction is applicable, meaning that the expression can be
transformed accordingly without violating the rules of mathematics, a new pair of expressions is constructed
on which these steps are then repeated. Thus, our task describes an iterative process that terminates if the
left and the right side of the equation are syntactically identical. Figure 1 provides a visualization of this
setting. Note that the nodes of the left subtree (orange) are enumerated by a consecutive index. However,
its only purpose is to make the nodes distinguishable to the network. It does not denote a different meaning
regarding the mathematical interpretation, i.e. both x0 and x1 signify the same variable x, but at a different
position.

In theory, the SETI task can be solved by a rule-based search over the available axioms and all their possible
applications on the equation. In practice, however, given a large enough equation and set of axioms, this
quickly becomes computationally infeasible. Empirically, deep learning proved to be beneficial for a wide
range of problems with large search spaces (Silver et al., 2016; Vinyals et al., 2015). Hence, we think
that neural networks can be a useful heuristic to select a set of reasonable transformation steps. However,
there are multiple hurdles when applying existing models to our task. So far, previous research has either
treated equivalence as a mere classification task without generating intermediate steps (Wankerl et al., 2021;
Arabshahi et al., 2019; Mali et al., 2021; Wankerl et al., 2023). Moreover, in remotely related settings like
step-by-step solutions to word problems, only the final answer is checked, but not the predicted intermediate
steps (Azerbayev et al., 2024; Yu et al., 2024). Thus, the models used so far do not provide any means
of verifying their predictions. Besides, the latter task is generally approached using large language models
(LLMs) which are trained for multiple purposes and consequently consist of billions of trainable parameters,
making them computationally demanding for both fine-tuning and inference.

To solve the SETI task more efficiently than rule-based systems or LLMs, we introduce a new neural network
architecture, TreePointerNet, designed specifically to solve both parts of our SETI task. It combines a tree-
structured transformer encoder (Nguyen et al., 2020) with a pointer augmented decoder (Vinyals et al.,
2015) and a custom many-to-one embedding layer that captures the semantic of the tokens independent of
the position while making them still distinguishable for the pointer decoder. Furthermore, we create and
release a new dataset, consisting of equations and axiomatic steps needed to show their equivalence. This
is necessary since to the best of our knowledge no well-suited dataset for the SETI task exists in literature.
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Our dataset contains a wide range of mathematical functions like polynomials, logarithms, exponentiation,
and trigonometric functions. In addition, it contains equations of varying complexity measured by the depth
of the parse tree and the number of axiomatic steps needed to show the equivalence.

Our contributions can be summarized as follows: (i) We introduce the SETI task in deep learning on symbolic
mathematics aiming at explaining the relation of two equivalent mathematical expressions using axiomatic
steps (ii) We design a novel neural network architecture to solve the proposed task efficiently and compare
it to various neural networks known from literature (iii) We create a well-suited dataset for this task with
varying complexity (iv) We make our code and dataset publicly available for future research (after acceptance
of the paper).

2 TreePointerNet Architecture

As stated in the introduction, our goal is to identify mathematical transformations as depicted in fig. 1. A
sequence of such steps describes the transformation from one expression into the other. It can be obtained
after iteratively applying the network on the input equation and its intermediate predictions. Thus, for a
given pair of mathematical expressions we want to predict which axiom applied at which position of the
expression tree yields a suitable step towards transforming the left-hand equation into the right-hand one.

To inherently capture the structure of mathematical expressions, we base our TreePointerNet on the tree-
structured transformer model by Nguyen et al. (2020) (further denoted as TreeTransformer). It consists of
an encoder which in contrast to a standard transformer (Vaswani et al., 2017) working on flat, i.e. sequential
input, allows to input a tree which explicitly encodes the hierarchy of mathematical operators and the link
between operators and operands. Moreover, it is also equipped with a decoder that can be used to predict
the applied axiom.

To identify the particular root node of the subtree that should be transformed, we propose a tree-copy-
pointer mechanism. This approach has the advantage that it can be trained to directly extract any arbitrary
node occurring in the input tree, whereas a model without a copy-pointer component would be restricted
to predicting nodes observed during training. We merge the tree-copy-pointer distribution with the decoder
output of the TreeTransformer using a gating layer which learns to switch between copying nodes from the
input tree and predicting axioms at each decoding step.

As with all deep learning architectures working on categorical data, the first step of the model is to project
the input tokens to an embedding. Generally, an individual embedding is learned for every distinct token.
However, we represent each occurrence of a mathematical token as a token on its own. Consequently, this
would lead to different and independently learned embeddings, although they actually represent the same
mathematical entity. Thus, we incorporate a custom embedding layer which allows identical mathematical
tokens to share one embedding over all their occurrences while still being unambiguously identifiable.

In the rest of this section, we describe our architecture TreePointerNet as we designed it for our task in
detail. A visualization of the model is given in appendix A.

2.1 Background: TreeTransformer

Nguyen et al. (2020) propose an extension of the transformer that is incorporating tree-structured input
into the attention mechanism. Precisely, their architecture receives a tree as input (encoder) and outputs a
sequence of tokens (decoder). In this section, we give a short overview of the architecture. For more details,
we refer to the original work.

Given a tree T specified as a set of a leaves L = {xL
0 . . . xL

a }, b non-terminal nodes N = {xN
0 . . . xN

b } and a
relation R(x), mapping each node x to the set of all nodes that are successors of x in T , including x itself.

The tree is first decomposed into two tensors corresponding to the embeddings of its a ordered leaves
[l1 . . . la] = L ∈ Ra×d, and b non-terminal nodes [n1 . . . nb] = N ∈ Rb×d, where d denotes the size of the
embedding.

Following this, a new tensor S ∈ R(b+1)×a×d is constructed from L and N as
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Si,j = F(L, N , R)i,j =


lj if i = 1
ni−1 else if xL

j ∈ R(xN
i−1)

0 otherwise.
(1)

Each column S·j contains the hidden representations for all nodes on the path from the root of the tree to
the j-th leaf xL

j . Row Si contains representations of the i-th node xN
i in every column j if it is on the path

from the root node to the j-th leaf xL
j , otherwise zero.

As a next step, the bottom-up cumulative average Ŝij = [U(S)]ij = 1
i (S0,j + · · · + Si,j) is calculated,

assigning to Sij the average over all values below itself. Finally, branch-level embeddings n̄i representing
each subtree rooted in non-terminal node xN

i are obtained, resulting in tensor N̄ = [n̄1, . . . , n̄b] ∈ Rb×d.
Each n̄i is calculated as the weighted average of the i-th row over all non-zero columns using V as

n̄i = V(Ŝ, w)i =
∑a

j=0 wj ⊙ Ŝi,j

L ∩ R(xN
i )

. (2)

Above described process is called hierarchical accumulation. Furthermore, since N̄ is a tensor consisting of
all possible subtree embeddings, it is able to capture the global tree structure but not the local neighborhood
of nodes and their relative positioning. To alleviate this limitation, hierarchical positional embeddings E
are added to each non-terminal node xN

i . They can be interpreted as a generalization of the positional
embeddings on the sequential input of a transformer to the tree-structured input. They capture the absolute
position of each non-terminal node xN

i through a concatenation of two separate embeddings: The first
embedding captures the number of nodes in the subtree spanned by xN

i . The second embedding captures
the number of nodes on the same level as xN

i , lying to the left of it.

Analogously to the transformer, the model consists of an encoder and a decoder component (see fig. 6 left and
middle), but instead of the self-attention on sequential input, the encoder calculates the attention between
all possible pairings of the leaves’ L and non-terminal nodes’ N representations. Then, the decoder calculates
the cross-attention between both. Given a decoder-side query Q ∈ Rt×d and the leaf and node embeddings
L and N , the affinity scores AQL ∈ Rt×a and AQN ∈ Rt×b are computed as follows:

AQL = (QWQ)(LWK)T /
√

d (3)

AQN = (QWQ)(N WK)T /
√

d (4)

where WQ and WK denote the trainable key and query weights.

Then, to obtain the value representation of the leaves L, they are multiplied with the weights LWV whereas
the non-terminal nodes are encoded as described above: N̄ ′ = V(U(F(LWV , N WV , R) + E), Luc) where
Luc is the learnable weight w for the sum in eq. (2). Thereby the embedding of the terminating leaf for each
path influences its weight in the sum.

The final cross-attention is then given as AQ = softmax([AQN ; AQL])[N̄ ′; LWV ]. The subsequent FFN and
Add&Norm layers work analogously to those in a regular transformer model (Vaswani et al., 2017).

2.2 Pointer Network for Copying Parts of the Tree

To identify the position where an axiom was applied, we construct a model that incorporates a pointing
mechanism. Pointer networks have the benefit that parts of the input can be directly copied to the output,
which is not possible using a regular transformer decoder architecture like it is used in the TreeTransformer.
Given the nature of our input data and our task, the pointer component must be equally able to point to
the leaf as well as the non-terminal nodes.

In the standard transformer architecture, the queries of the attention heads of the encoder-decoder attention
layers are passed through from the previous decoder layer, whereas the keys and values are obtained from
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the output of the encoder. Consequently, these layers capture the importance of every token in the input
with regard to each token in the output sequence (Vaswani et al., 2017; Enarvi et al., 2020). Hence, the
thereby emerging distribution can be interpreted as pointers to the elements of the input, i.e. those that
receive a high attention are good candidates for transfer to the output.

In the TreeTransformer, the importance of each element of the tree with regard to the currently decoded
token in the output sequence is read out from the cross-attention layer. However, unlike to the full scaled
dot-product attention used in transformers, it is sufficient for us to obtain the alignment scores1 between the
currently decoded element on the target side and the nodes in the input tree. To enable this, we concatenate
the affinity scores AQL and AQN as defined in eqs. (3) and (4) to a new tensor A = [AQL; AQN ] ∈ Rt×(a+b).
These scores capture the importance of each node similar to the encoder-decoder attention of the standard
transformer because they are obtained by multiplying the target-side query Q, i.e. the sequence the model
has already decoded, with the keys of the nodes and leaves. Hence, A contains the alignment for each element
of the tree at each decoding step t.

The pointer distribution P t
point(x) is then given by the sum over the alignment scores of each occurrence of

each symbol in the input. Hence, we calculate P t
point(x) such that we iterate over both the input leaves xL

and non-terminal nodes xN while summing up their respective alignment scores from A as

P t
point(x) =

∑
i:[L;N]i=x

[AQL; AQN ]ti =
∑

i:[L;N]i=x

At
i . (5)

The pointer distribution is calculated in addition to the regular distribution over the full vocabulary from
the TreeTransformer’s normal output. To subsequently decide if the model should copy from the input or
generate new tokens, a generation probability pgen ∈ [0, 1] (See et al., 2017) is learnt. In practice, to calculate
pgen for timestep t a gating layer is used which is defined as

pt
gen = σ (W [xt; yt] + b) , (6)

where xt is the embedded decoder input, yt the decoder output at timestep t and W are learnable weights
with a bias b (compare the right part of fig. 6).

The final output distribution is then given by employing pt
gen as a soft switch between the input attention

distribution and the vocabulary distribution from the decoder output. Mathematically, the final output
probability distribution of the model for each token w at time step t is defined as

P t(w) = pt
genP t

vocab(w) + (1 − pt
gen)P t

point(w) . (7)

Thus, a value close to one for pgen prefers the token predicted by the TreeTransformer decoder while a value
close to zero leads to copying of a node from the input tree.

2.3 Many-To-One Embedding Layer

We need to be able to represent arbitrarily many occurrences of an operator, variable or constant in a
distinguishable way while allowing them to share their embedding. To this end, we introduce many-to-one
embeddings. They enable us to include every occurrence as an individual symbol in the vocabulary while
mapping all identical node types to the same shared embedding.

Let V denote a vocabulary of size |V| representing a set of tokens v0, v1, . . . , v|V| and S denote an input
sequence consisting of tokens s1 . . . sn. In the traditional setting, an embedding layer maps all occurrences
of each element si ∈ S corresponding to the same token vj ∈ V to the same dense embedding ej ∈ Rd, where
d denotes the embedding dimension.

This approach assumes all tokens v ∈ V to have a unique meaning and a large overlap of tokens between the
vocabulary and the input data. However, this assumption is not justified in our setting for two reasons. If
all occurrences of the same symbol would be mapped to the same token, e.g. v0 = ‘∗’ for the multiplication,

1Defined as the dot product between decoder-queries and encoder-keys.
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v1 = ‘+’ for the addition, the pointer could not be used to unambiguously output the position in the tree. If
instead all occurrences would be added as individual embeddings—e.g. v0 = ‘∗0’ for the first multiplication,
v1 = ‘∗1’ for the second and so on—the network would need to learn representations for all occurrences of
the same symbol independently.

In addition, our model should be able to generalize to trees with a larger depth than used during training.
For this it has to be able to properly deal with trees where the number of occurrences of a symbol is higher
than seen during training. Therefore it is mandatory that our input embedding supports this setting and is
able to generalize to this increased symbol count as well.

Consequently we define our many-to-one embeddings. Let M = {+, ∗, . . . , sin, cos, . . . , 0, 1, . . . , x, y, z} de-
scribe the set of mathematical entities we use for constructing our input and let c ∈ N be a counter associated
with each token describing its index in the input (c.f. fig. 1 (left subtree)). Then, each token in our input
can be considered as a tuple vi = (mi, ci), mi ∈ M, ci ∈ N. Our many-to-one embedding layer me then
has to fulfill the following properties: Given two tokens va = (ma, ca), vb = (mb, cb), va, vb ∈ V, we want
me(va) = me(vb) ⇔ ma = mb. Hence

∀i ∈ N : me(vk) = me((mk, i)) = W · h(mk)

with h(mk) being the one-hot vector associated with mk ∈ M and W ∈ R|M|×d is a trainable weight matrix.

3 Experiments

In this section, we describe our experimental setup including baselines for comparison, how the target
sequence is structured, the data generation, and our used hyperparameters.

3.1 Data Set Generation

To generate data for our SETI task, we extend the generator introduced by Wankerl et al. (2023). They
generate pairs of mathematical expressions with several different types of relations, such as pairs of equal
expressions, pairs where one expression is the derivative of the other, or expressions which have a constant
offset. For our task, we only use and modify the part of the generator which creates pairs of equal expressions
(equations). Every equation can be built of up to three free variables x, y, z ∈ R+ \{0}, the integer constants
−4 . . . 4, the real constants π and e, the binary operators +, −, ·, /, ˆ, and the functions ln, sin, cos, tan.

To obtain the equations, the generator works in two steps. It starts with a set of 112 axioms2, covering
mathematical subjects like polynomials, exponentiation, logarithms, and trigonometry. An axiom can be
considered as an elementary mathematical rewrite rule. Exemplary axioms are α + 0 → α, α + β = β + α,
(α + β) + γ → α + (β + γ), or ln(α · β) → ln(α) + ln(β). Here, the arrow indicates the direction of rewriting,
e.g., α + 0 can be rewritten as α and ln(α · β) can be rewritten as ln(α) + ln(β).

As a first step, the generator creates a set of increasingly complex expressions by iteratively substituting
already obtained expressions into the free variables of randomly sampled axioms. For example, assuming that
the generator already created the expressions (x+x) and (x ·y), it can substitute them into the commutative
law (α · β → β · α) yielding (x + x) · (x · y) = (x · y) · (x + x).

Although this first step is helpful to create a basic set of mathematical expressions, the data cannot be used
for our SETI task itself since the transformations are not of an axiomatic nature. Hence, further axiomatic
transformation steps are performed, meaning that an expression is modified according to some randomly
selected axiom from all matching axioms. In this step, the generator can substitute variables with parts of
the expressions. For example, the generator can match the associative law α · (β · γ) → (α · β) · γ with the
expression (x + x) · (x · y) yielding ((x + x) · x) · y. Then, the modified expression and its original form are
added as a sample to the dataset: ((x + x) · x) · y = (x + x) · (x · y). While the generator by Wankerl et al.
(2023) applies this step on a random side of each equation for an undefined number of times, we instead
keep track of the number of substitutions already performed and modify the left side of each expression only.

2We use the same set of axioms as Wankerl et al. (2023), the full list is given in appendix B.

6



Under review as submission to TMLR

For example, we record that ((x + x) · x) · y = (x + x) · (x · y) is derived in one step. Subsequently, we can
apply another transformation on the expression, yielding an equation that is transformed in two steps, e.g.,
(((x + x) + 0) · x) · y = (x + x) · (x · y), by using the axiom α → α + 0.

The generator as described so far might generate redundant samples where an axiomatic transformation is
immediately reversed in the next step. Above example might be reversed to ((x + x) · x) · y = (x + x) · (x · y)
by applying the reverse axiom from before (α + 0 → α). To prevent the generator from creating such loops,
we forbid the usage of axioms which would reverse the previously generated expression. Furthermore, to
ensure a more uniform distribution of the axioms, we count how many times each matching axiom has been
used in the pairs generated so far, and use the inverse of that count as probabilities for sampling.

After creating the equations, to make the occurrences of the mathematical tokens inside an expression
uniquely identifiable, we enumerate the tokens of the left side of each equation by adding a counter to each
type of token. Above example is therefore represented as ((20 ·0 x0) ·1 x1) ·2 y0 = (x + x) · (x · y).

In summary, every sample can be described as a 3-tuple (lhsi = rhsi, ai, pi). Here, lhsi = rhsi denotes
a mathematical equation and ai denotes an axiom that, when applied at position pi, describes a step for
transforming lhsi towards rhsi. The position pi matches the root node of the subtree inside the parse tree of
lhsi that should be modified when applying the axiom ai (c.f. fig. 1). However, it is important to note that
every sample describes just one possible step and not the whole chain of transformations between the left and
the right side. Above example thus corresponds to the following tuple: (((20 ·0 x0) ·1 x1) ·2 y0 = (x+x) ·(x ·y),
2 · x → x + x, ·0).

We create about 8.5 million samples for training, 400,000 samples for validation and 14,000 samples for
testing. In the training set, we set the maximum distance between two expressions to five, meaning that
the left side of all equations can be transformed into the corresponding right side in at most five steps.
Moreover, in our training set we only include equations whose parse trees have a maximum depth of 7.
Detailed statistics of the data can be found in appendix B.

3.2 Baselines

We employ three additional baselines: a transformer (Vaswani et al., 2017), a pointer network by Enarvi
et al. (2020) to which we refer as SeqPointer and a recurrent seq2seq model that makes use of an LSTM
(Hochreiter & Schmidhuber, 1997) encoder and decoder with Bahdanau attention (Bahdanau et al., 2015).
We add the last model to allow an ancillary comparison with a recurrent neural network architecture besides
all the other transformer-based models. For brevity, we refer to this model as LSTM.

All three models receive the prefix representation of each input equation, tokenized such that each operator,
variable, or constant is a single token. Again, we enumerate the occurrences of each token in the left subtree
as previously described. For example, the equation ln(1)/1 = 0 is tokenized to [=, /_0, ln_0, 1_0, 1_1,
0] for the sequential baselines. This prefix notation has the advantage that it is more compact than the
human-readable infix notation since it does not require parentheses. It has also been used by various previous
research employing sequential models for symbolic mathematics (Lample & Charton, 2019; D’Ascoli et al.,
2022; Wankerl et al., 2023).

3.3 Modelling the Target Sequence

All target sequences for all models consists of two tokens: a class token for the applied axiom and the root
node of the modified subtree in the expression tree. As commonly done when training seq2seq models, we
explicitly terminate each sequence with an end-of-sequence token. An exemplary target sequence might
hence be: ax_1, y_2, EOS.

3.4 Evaluation Strategy

As previously defined, the input to the models is an equation that is either given as a parse tree (c.f. fig. 1)
or as a sequence as described in section 3.2. The output of the models are two tokens (axiom and position)
as described in section 3.3. To find a sequence of axiomatic steps for transforming the left side of an equation
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into the right side, we repeat below procedure for up to n = 5 step. We use greedy decoding, i.e. in every
step, we chose the most likely pair of axiom and position.

Let âi denote the predicted axiom and p̂i denote the predicted position within equation lhsi = rhsi. We use
a custom rule-based algorithm to verify if âi can be applied at node p̂i. Precisely, we check if p̂i exists within
lhsi and if it spans a subtree where âi matches. If this is not the case, we terminate the process and count
the equation as unsolved. Otherwise, we construct lhs∗

i by applying the axiom in lhsi. Then, we check if lhs∗
i

and rhsi are syntactically identical. If this is the case we count the equation as solved. Otherwise, we feed it
into the neural network again, obtaining the next transformation step. If we did not obtain a syntactically
equal equation after n steps, it also counts as unsolved.

3.5 Ablation Study and Generalization Ability

In addition to the baselines, we perform an ablation study on our TreePointerNet. Precisely, we remove the
pointer-copy mechanism and the many-to-one embedding, respectively, to quantify their benefit for the task
at hand. Thus, we retrain the model without one of these components while leaving all other hyperparameters
unchanged to rule out their potential influence on the obtained results.

In addition, we test the model on deeper trees (depth 8–12) than seen during training (depth up to 7).
Furthermore, we test on equations that require more steps to transform (6–9 steps) than those seen during
training (1–5 steps). In doing so, we explicitly test how well our model generalizes to trees which lie outside
the training distribution and represent mathematical expressions of higher compositionality.

3.6 Implementation and Training

All our experiments are implemented using the Fairseq (Ott et al., 2019) toolkit. We train all models using
the Adam optimizer (Kingma & Ba, 2015) on batches of 16 samples for up to 100 epochs or until the loss
stagnates or deteriorates over a period of 10 epochs. We ran a hyper-parameter search using the Optuna
framework (Akiba et al., 2019), exploring 100 configurations each for our model and the baselines. Our
search space included the number of layers in the encoder and decoder, the number of attention heads used
per layer, the number of attention heads used for pointing (where applicable), the size of embeddings and the
hidden representations in the encoder and decoder, the dropout rates and the learning rate of the optimizer.
The exact parameters and search spaces are given in appendix C.

Due to the hyperparameter optimization, our TreePointerNet has only 2,649,901 trainable parameters. Thus,
this model requires a much lower number of parameters for achieving optimal results compared to SeqPointer
and Transformer (22,768,644) and LSTM (6,496,256). Hence, it is particularly efficient with regard to the
number of parameters, as it is very well tailored to our SETI task. On a modern multi-core CPU, evaluating
TreePointerNet averages to 21 equations per second.

4 Results and Analysis

In this section we present and discuss our obtained results. Figures 2 to 5 show the average accuracy (±
standard deviation over five model runs, each time initialized with a different random seed), i.e. the fraction
of correctly transformed equations grouped by the number of required transformation steps. The detailed
numeric results are given in appendix D.

4.1 Model Performance

As can be seen in fig. 2, TreePointerNet outperforms all baselines by a large extent, achieving an overall
accuracy of 74.09%, whereas the SeqPointer only achieves 59.47% and the transformer is even weaker with
59.28%. The LSTM achieves an accuracy of 59.47%. All models prove to be stable (stdev below 2%).

Considering the equations where only one transformation step is required, it is noticeable that the per-
formance of all models is very similar. Here, TreePointerNet is on par with a transformer, both reaching
an accuracy of 88.43%, and SeqPointer (88.41%). Only the LSTM (85.49%) performs slightly worse. It is
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Figure 2: Results for all Models on Equations of
up to 5 Required Transformation Steps
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Figure 3: Ablation Study on TreePointerNet

therefore standing to reason that, given an adequate number of trainable parameters, all tested neural archi-
tectures can comparably recognize elementary axiomatic differences between two mathematical expressions.

When analyzing the equations requiring between two and five transformation steps, a clear decline in the
accuracy of all models can be observed with each additional transformation step. Yet, the TreePointerNet
outperforms the baselines to a large extend since it looses much less accuracy per step than all baselines.
For example, when going from one to two transformation steps, the best baseline (SeqPointer) already looses
17.58 percentage points, whereas TreePointerNet only looses 6.41 percentage points. Thus, TreePointerNet
preserves an accuracy of 82.02% on theses equations, whereas SeqPointer reaches only 70.83%. This trend
continues. On the equations requiring five steps, TreePointerNet achieves a total accuracy of 59.05% which
is only 29.38 percentage points below the accuracy on equations of one step. However, the other models loose
on average 50.51 percentage points, with the LSTM being the most robust model achieving an accuracy of
37.4%.

Predicting transformation steps for equations which are more than one step apart require the networks
to identify more complex mathematical patterns than the mere axiomatic differences that are equally well
recognized by all models. Understandably, models which capture those patterns with less certainty quickly
loose more overall accuracy with each step, since each step corresponds to an independent classification.

Summarizing above results, our TreePointerNet model clearly outperforms the baselines and proves to be
stable and efficient. At the same time it is noticeably more robust to changes in the number of required
transformation steps where it can generalize with significantly smaller performance loss. For illustrative
purposes, we present a few exemplary equations as they were transformed by TreePointerNet in appendix E.

4.2 Ablation Study

We further analyze the influence of the many-to-one embedding and the copy-pointer on the TreePointerNet’s
performance by removing one of these components a time. The results are presented in fig. 3. For brevity,
we abbreviated many-to-one embeddings with ME.

Removing the many-to-one embeddings, the model’s performance drops to an average accuracy of 57.31%
making it comparable to the performance of the baseline models. In particular, the model reveals the
same decline in accuracy on the equations with more transformation steps like the baseline models. This
supports our motivation from section 2.3 for introducing the many-to-one embeddings. First, without these
embeddings the model now has to learn a single representation for each occurrence of a mathematical token
instead of sharing them. This likely decreases the performance as there is less training data available to
learn the mathematical meaning of each symbol. Second, several symbols are potentially mapped to an
untrained embedding since they did not occur in the training data. Hence, the model can not understand
their semantics which leads to a stronger decline in prediction performance.
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Figure 4: Robustness Study for all Models on
Equations of Deeper Parse Trees
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Figure 5: Robustness Study for all Models on
Equations of up to 9 Transformation Steps

Removing the pointer component causes the performance of the model to drop to an average accuracy of
1.53%. This behavior can be understood when considering the many-to-one embeddings. Since all occur-
rences of the same symbol are mapped to the same embedding, the generative part of the network can no
longer distinguish between them and hence the model can not identify the position where the axiom should be
applied. Hence, the pointer component which directly extracts them from the alignment between the output
tokens and the nodes (cf. section 2.2) is necessary to benefit from using the many-to-one embeddings. When
removing both components at the same time, the average accuracy drops to 57.14%, marginally worse than
when only removing the many-to-one embeddings. Hence, we conclude that having a pointer component is
slightly beneficial for our task, even without our many-to-one embeddings.

4.3 Robustness on Data of Higher Complexity

We perform two further experiments to evaluate the robustness of our model on data of unseen complexity.
First, we increase the complexity of the equations themselves. In line with previous research (Arabshahi
et al., 2019; Mali et al., 2021; Wankerl et al., 2023), we use the depth of the parse tree as the measure of
complexity. The results are presented in fig. 4. All models clearly loose accuracy on this data, but on average
TreePointerNet (42.48%) still outperforms all baselines (27.18% - 29.63%). Beyond that, this experiment
reveals a similar overall trend as it can be observed on the shallow trees in that the performance of all models
declines with the number of transformation steps. Yet, in contrary to the latter, TreePointerNet already
outperforms the baselines on the equations of one transformation step by at least 7.99 percentage points.
Thus, TreePointerNet identifies the mathematical patterns in data of unseen complexity more robustly than
the standard models.

Second, we evaluate the models on equations which require more transformation steps than seen during
training. The results are presented in fig. 5. Again, we observe a continuation of the previous trend, with
TreePointerNet still outperforming the baselines. On our tested maximum of nine required transformation
steps, TreePointerNet still reaches an accuracy of 49.14% which is at least 20.4 percentage points above the
baselines.

4.4 Interpreting the Model’s Predictions

To make the results of our model more illustrative, we want to discuss prominent patterns in our model’s
predictions. Precisely, we want to identify axioms which are commonly confused and analyze the influence
of the depth of the whole equation tree as well as the level of the root node where the axiom has to be
applied. However, due to the nature of the SETI task, labels the prediction of the network can be compared
to, only exist for the subset of equations that can be derived in one step. Thus, the analysis in this section
is performed on the subset of equations that can be derived in one step only.
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Table 1: Accuracy by Depth of Equation Tree and Level of Application of Axiom

Depth of Tree Level of Transformation Root Average
1 2 3 4 5 6

3 97.0% 90.9% - - - - 94.0%
4 98.3% 96.4% 92.2% - - - 95.6%
5 98.4% 91.8% 91.8% 90.5% - - 93.1%
6 98.6% 91.0% 82.7% 84.1% 84.3% - 88.1%
7 99.5% 88.4% 81.5% 76.5% 78.1% 77.7% 83.6%

Table 2: Most Frequently Misclassified Axioms and their Counterparts

Axiom Confused with
(α · β)γ → (αγ) · (βγ) (α · β) · γ → α · (β · γ)
cos(α) → cos(−1 · α) 0 → α · 0
α · β−1 → α/β (α · γ)/β → α/(β/γ)
(α + β) + γ → α + (β + γ) (α · β) · γ → α · (β · γ)
α − β → α + (−1 · β) cos(π − α) → −1 · cos(α)
α · β → β · α α + β → β + α

We start with evaluating the performance of TreePointerNet with regard to the depth of the tree and the
level of the root node of the applied transformation. The results are presented in table 1. We find an overall
decline in the accuracy the deeper the input tree. On shallow trees with a depth of 3-5, the transformations
are identified with an accuracy of at least 93.1%. The accuracy drops to 88.1% on trees of depth 6 and 83.6%
on trees of depth 7. However, this result seems natural since deeper trees generally correspond to longer and
more complex equations making the correct transformation harder to identify.

Considering the level of the root node of the transformation within the equation, by tendency we observe the
accuracy to decline the deeper the level of the root node is within the tree. This is true independent of the
overall depth of the tree. Descriptively, the deeper the level of the transformation the closer it is to the leaf
nodes. Thus, a transformation applied close to the leaf nodes corresponds to a more local change within the
equation. While transformations which occur directly under the root node (level 1) are recognized with an
accuracy of at least 97%, those which are on the deepest possible level are only recognized with an accuracy
between 92.2% (tree of depth 3) and 77.7% (trees of depth 7). So overall the deeper, i.e., more local and
hence smaller, the change is, the worse it is recognized by the model.

Finally, we analyze the model’s ability to recognize the applied axiom. We found that from the 112 axioms
we use in our data set, the vast majority is classified correctly in nearly all cases. Overall, there are only six
axioms where the model has larger difficulties and which could only be identified correctly in 70%–90% of all
cases. They are listed in table 2 together with the axiom they are most likely confused with in descending
order, i.e., the topmost axiom is the one which is most likely misclassified. Keep in mind that only the left
side of the axioms are matched with the expression tree.

The misclassified axioms reveal the prominent patterns that they always match very similar trees like the
axioms they are confused with. The axioms cos(α) → cos(−1 · α) that is confused with 0 → α · 0 and
α − β → α + (−1 · β) that is confused with cos(π − α) → −1 · cos(α) are structurally identical apart from
the cos function (corresponding to a unary node). All other axioms correspond to structurally identical
trees which only differ in the operators or constants. For example α · β → β · α and α + β → β + α only
differ in the in the binary operator node (multiplication vs addition). Similarly, (α · β)γ → (αγ) · (βγ) and
(α · β) · γ → α · (β · γ) only differ in the rightmost binary operator node (power vs multiplication). We
therefore conclude that TreePointerNet has minor difficulties when it comes to distinguishing structurally
very similar trees and trees which essentially only differ in the specific values of the nodes.

11



Under review as submission to TMLR

5 Related Work

In this work, we introduce the SETI task. To the best o f our knowledge, there exits no closely related work
that addresses this kind of problem. Yet, there is loosely connected work we want to discuss in this section.

Pointer Networks Pointer networks describe a class of neural network architectures which learn to predict
the conditional probability over positions or indices of the input sequence instead of tokens from e.g. a fixed
vocabulary. They were originally introduced to approximate NP-hard geometrical problems by Vinyals et al.
(2015). The approach was adopted for various tasks where the extraction of parts of the input is required
or helpful, e.g. summarization (Gu et al., 2016; Miao & Blunsom, 2016; See et al., 2017; Enarvi et al., 2020;
Gulcehre et al., 2016), sentiment analysis (Yan et al., 2021; Pfister et al., 2022), relation extraction (Nayak
& Ng, 2020) and signal analysis (Moussa et al., 2023). Of particular interest for our research is the work
by Enarvi et al. (2020) who augmented a transformer encoder-decoder architecture with a pointer network.
This enables the model to copy out-of-vocabulary tokens from the input sequence to the output sequence,
along with generating tokens using the decoder like in a regular sequence-to-sequence model.

Deep Learning for Symbolic Mathematics Recent research explored the capabilities of deep learning
architectures on various tasks from the realm of symbolic mathematics. Arabshahi et al. (2019) aimed
to explore if neural networks can learn the equivalence of mathematical expressions. To this end, they
introduced a synthetically generated data set (Arabshahi et al., 2018) for mathematical equations from the
field of elementary algebra and trigonometry. Mali et al. (2021) improved the state on this dataset by
developing more complex, higher-order models. Wankerl et al. (2021; 2023) introduced new datasets that
overcame various biases (Davis, 2021) and added more mathematical relations and neural architectures.

Apart from classifying mathematical relations, seq2seq models were used for various symbolic and arith-
metic math problems (Saxton et al., 2018), for example integration and differential equations (Lample &
Charton, 2019) and linear algebra (Charton, 2022). Other researchers combine natural language with formal
mathematics to solve word problems (Hendrycks et al., 2021; Azerbayev et al., 2024; Yu et al., 2024). All
these models are trained end-to-end to output the solution of the given input expression. Here, only the final
answer of the LLM is evaluated making it possible that intermediate steps are incorrect. In addition, it could
be shown that transformers do not reliably generalize to numerical tasks like addition or multiplication with
specific numbers (Welleck et al., 2022) and frequently make mistakes on non-axiomatic transformations as
required for calculating integrals. Hence, we focus on a mostly symbolic task and include specific numbers
only peripherally. Furthermore, we want to output single steps where each step can be verified.

Finally, there is recent research on proving mathematical theorems (Azerbayev et al., 2024; Song et al., 2023)
by combining LLMs with external prove assistants like Lean (De Moura et al., 2015) using a framework like
Welleck (2023). Here, the LLM is given the current state of the theorem prover and its goal is to propose or
select a next prove step, i.e. axiom. However, this differs from our approach, as we use the neural network to
simultaneously predict both the axiom and the position at which it is applied. Moreover, their focus lies on
verifying or disproving the equality of given expression rather than finding paths to transform one expression
into another equal expression. Hence, we did not integrate our research into this setting.

6 Summary

In this work, we introduce the new Stepwise Equation Transformation Identification (SETI) task of fine-
grained prediction for axiomatic mathematical transformations. Given two equivalent mathematical expres-
sions, the task is to iteratively predict a sequence of steps for transforming one expression into the other.
Each step consists of both the axiom and the position where it must be applied to transfer the first expression
towards the second. To this end, we generate a new equation data set consisting of pairs of mathematical
equivalent expressions represented by expression trees. We then solve the task using TreePointerNet, a
new architecture combining a pointer generator network with a hierarchical-accumulation model for tree-
structured input and a novel embedding strategy. We show that our model is able to consistently outperform
even strong baselines and conclude that our network benefits from the ability to make use of the inherent
hierarchical structure of expression trees, the pointer component and the many-to-one embeddings.
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A Visualization of the TreePointerNet Architecture

Figure 6 provides a visualization of our TreePointerNet as described in section 2. The left and middle parts
show the TreeTransformer architecture introduced in section 2.1. The equations are input as trees (bottom
left). The right part shows the pointer generator network (section 2.2) which outputs a mix of generated and
copied tokens sampled from the vocabulary distribution and the pointer distribution (weighted by pgen). The
many-to-one embeddings (section 2.3) are input to both the encoder and the decoder part of the network as
visualized in fig. 6 (left and middle, bottom).
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Figure 6: Overview over our architecture. Both the transformer encoder (left) and decoder (middle) make
use of the tree-structured attention. From the last decoder layer the decoder output as well as the cross-
attention is fed together with the embedded input tokens to the pointer network (right).

B Dataset Axioms and Statistics

B.1 Axioms

Table 6 lists all 112 axioms we used for creating our datasets. The axioms are taken from Wankerl et al.
(2023). For brevity, the axioms are listed as equivalences. However, in practice every equivalence corresponds
to two axioms, one for each direction of application. For example, α/β ↔ α · β−1 represents α/β → α · β−1

and α · β−1 → α/β, where the arrow indicates the direction of application, i.e. the left side is replaced with
the right side.

The only exceptions are the commutative law for the addition (α+β → β+α) and the multiplication (α·β →
β · α). These two axioms are not applied from right-to-left because the result would be indistinguishable
from applying them left-to-right.
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Table 3: Count of Samples by Depth of Tree and Level of Transformation Root

Depth of Tree Level of Transformation Root Sum
1 2 3 4 5 6

3 0.65% 1.51% 0.00% 0.00% 0.00% 0.00% 2.16%
4 2.17% 3.20% 3.91% 0.00% 0.00% 0.00% 9.28%
5 3.47% 4.69% 5.59% 6.46% 0.00% 0.00% 20.22%
6 4.43% 5.31% 7.68% 6.33% 7.39% 0.00% 31.13%
7 4.31% 4.81% 7.42% 8.17% 6.19% 6.30% 37.21%
Sum 15.03% 19.51% 24.60% 20.97% 13.58% 6.30%

Table 4: Count of Samples by Depth of Tree and Level of Transformation Root for Nine Steps

Depth of Tree Level of Transformation Root Sum
1 2 3 4 5 6

3 0.22% 0.33% 0.00% 0.00% 0.00% 0.00% 0.55%
4 0.84% 1.65% 1.59% 0.00% 0.00% 0.00% 4.08%
5 2.12% 3.39% 4.49% 3.99% 0.00% 0.00% 13.99%
6 3.64% 5.62% 8.66% 8.20% 6.46% 0.00% 32.56%
7 4.21% 6.04% 8.79% 11.39% 10.29% 8.11% 48.82%
Sum 11.02% 17.03% 23.53% 23.57% 16.74% 8.11%

B.2 Dataset Statistics

Our training dataset contains around about 8.5 million samples consisting of trees having a depth up to
7. The test dataset for our main experiments (cf. section 4.1) contains 13, 641 samples and comes from the
same distribution as the training data. In table 3 we show the distribution of depth of the trees and the
level of the transformation root node within the trees of our test dataset.

It clearly visible that the number of samples in the dataset increases with the depth of the tree. This is
caused by the fact that more possible equations exist the deeper the tree. Especially in the realm of very
shallow trees of depth 3–4, the number of possible equations is very limited and hence we decided not to
balance the dataset with regard to the depth.

Considering the level of the root node of the transformation, we observe a light tendency towards the nodes
on a middle level and below. This is standing to reason since (on average) more nodes exist at the deeper
levels and hence there are more positions where axioms could be applied. Furthermore, some axioms require
their root node to be several nodes above the leafs of the equation tree because of the depth of the subtree
they modify. An example for this is (tan(α) − tan(β))/(1 + tan(α) · tan(β)) → tan(α − β) which enforces the
root node to be at most three levels above the leafs.

For our robustness experiments, we additionally created a dataset whose equations require more than five
steps to transform the left side into the right side. Its distribution of depth and level of transformation root
is given in table 4. It reveals similar patterns to the test dataset of our main experiments, although it shifts
the data towards deeper trees. This can be explained by the fact that deeper trees allow for more complex
equations which consequently allow to derive equal expressions in more steps than the shallow trees.

For our second robustness experiment, we create a dataset that consists of deeper trees than seen during
training. Its distribution is shown in table 5. Since there are are enough possible expressions for each
considered depth, we decided to keep the dataset balanced with regard to the depth. Considering the level
of the root node, the dataset shows a similar trend as the dataset for the main experiments before which
can be explained by the same underlying patterns.
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Table 5: Count of Samples by Depth of Tree and Level of Transformation Root on Deep Trees

Depth of Tree Level of Transformation Root Sum
1 2 3 4 5 6 7 8 9 10 11

8 2.11% 2.11% 3.27% 3.27% 4.26% 2.70% 3.27% 0.00% 0.00% 0.00% 0.00% 20.99%
9 1.67% 1.98% 2.61% 3.27% 3.14% 4.17% 2.39% 2.17% 0.00% 0.00% 0.00% 21.41%
10 1.32% 1.71% 2.15% 2.52% 2.46% 2.77% 2.66% 1.67% 1.87% 0.00% 0.00% 19.12%
11 1.51% 1.19% 1.80% 2.06% 2.72% 2.55% 2.79% 2.92% 1.62% 1.43% 0.00% 20.59%
12 0.83% 0.68% 1.56% 1.93% 2.06% 2.06% 2.22% 1.82% 2.35% 1.30% 1.08% 17.89%
Sum 7.44% 7.66% 11.39% 13.06% 14.64% 14.25% 13.33% 8.58% 5.84% 2.72% 1.08%
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Figure 7: Distribution of Axioms in the Dataset

Figure 7 visualizes the distribution of the axioms in our dataset. It is clearly visible that only a small
fraction of about 25 axioms appear in more than 1.5% of the samples while the vast majority appears much
less frequent, with 35 axioms appearing in less than 0.25% of all samples. While creating the dataset, we
balance the probabilities for selecting axioms as described in section 3.1. Yet, it is standing to reason that
in the generated data the axioms are not equally distributed because the number of expressions where each
axiom can be applied differs largely between the axioms.

The most common axioms we identify in our dataset are simple identities which only depend on a single
variable and few functions or operators, for example α + 0 → α, α1 → α, α · 1 → α, or eln(α) → α. On
the other hand, there is a wide range of axioms being used much more seldom. Those axioms generally
depend on more variables, functions, and operators or do not have any variables at all. Examples include,
tan(α+β) → (tan(α)+tan(β))/(1− tan(α) · tan(β)), cos(α−β) → cos(α) ·cos(β)+sin(α) · sin(β), 2+1 → 3,
or 3 → (−1) · 3. It is easy to see that, compared to the axioms above, those axioms can only match a much
smaller subset of possible expressions. Consequently, there is a lower chance of sampling them during the
data generation process since the generator can only sample one of the matching axioms.

However, the influence of the frequency of an axiom on its prediction accuracy is negligible. Using the
predictions obtained from TreePointerNet, we only found a very weak correlation of ρ = 0.073 between
the fraction of correctly identified instances of an axiom and its share in the dataset. Thus, in line with
section 4.4, there are other factors influencing the chance of correctly identifying an axiom like the uniqueness
of its tree structure.
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Table 6: Axioms Used to Create the Data Sets

Arithmetic Exponential and Logarithm
(α + β) + γ ↔ α + (β + γ) α1 ↔ α
α + β → β + α α0 ↔ 1
(α · β) · γ ↔ α · (β · γ) α(β+γ) ↔ (αβ) · (αγ)
α · β → β · α (α · β)γ ↔ (αγ) · (βγ)
α · (β + γ) ↔ α · β + α · γ (αβ)γ ↔ α(β·γ)

α + 0 ↔ α 1−1 ↔ 1
α · 0 ↔ 0 α/β ↔ α · β−1

α · 1 ↔ α α/β ↔ (β/α)−1

1 + 1 ↔ 2 α/(β/γ) ↔ (α · γ)/β
2 + 1 ↔ 3 ln(αβ) ↔ β · ln(α)
3 + 1 ↔ 4 ln(α · β) ↔ ln(α) + ln(β)
−1 · 1 ↔ −1 ln(1) ↔ 0
−2 ↔ −1 · 2 ln(e) ↔ 1
−3 ↔ −1 · 3 eln(α) ↔ α
−4 ↔ −1 · 4
−1 · −1 ↔ 1
α − β ↔ α + (−1 · β)
α − α ↔ 0

Trigonometrical
tan(α − β) ↔ (tan(α) − tan(β))/(1 + tan(α) · tan(β))
tan(α + β) ↔ (tan(α) + tan(β))/(1 − tan(α) · tan(β))
sin(α + β) ↔ sin(α) · cos(β) + cos(α) · sin(β)
sin(α − β) ↔ sin(α) · cos(β) − cos(α) · sin(β)
cos(α + β) ↔ cos(α) · cos(β) − sin(α) · sin(β)
cos(α − β) ↔ cos(α) · cos(β) + sin(α) · sin(β)
tan(2 · α) ↔ 2 · tan(α)/(1 − tan(α)2)

tan(−1 · α) ↔ −1 · tan(α) cos(−1 · α) ↔ cos(α)
tan(α) ↔ sin(α)/ cos(α) cos(π − α) ↔ −1 · cos(α)
tan(α/2) ↔ sin(α)/(1 + cos(α)) sin(π + α) ↔ −1 · sin(α)
tan(π + α) ↔ tan(α) sin(π − α) ↔ sin(α)
tan(π − α) ↔ −1 · tan(α) cos((π/2) − α) ↔ sin(α)
sin(α)2 + cos(α)2 ↔ 1 cos(2 · α) ↔ cos(α)2 − sin(α)2

sin(−1 · α) ↔ −1 · sin(α) cos(2 · α) ↔ 2 · cos(α)2 − 1
sin((π/2) − α) ↔ cos(α) cos(2 · α) ↔ 1 − 2 · sin(α)2

sin(2 · α) ↔ 2 · sin(α) · cos(α) cos(π + α) ↔ −1 · cos(α)
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Table 7: Hyperparameters Used for our Models

Encoder

TreePointerNet SeqPointer Transformer
Layers 6 5 5
Attention Heads 4 4 4
Hidden Size 1024 512 512
Embedding Size 128 512 512
Layers 4 5 5
Attention Heads 4 16 16

Decoder Heads for Pointer 3 4 -
Hidden Size 64 1024 1024
Embedding Size 64 512 512

Parameters 2,649,901 22,768,644 22,768,644

C Hyperparameters

This section lists all relevant hyperparameters we used for training our models and the resulting number of
trainable parameters. The hyperparameters were found using Optuna (Akiba et al., 2019) with the TPE
sampler.

We use the identical search space for all models. For the size of embeddings, we search powers of two between
32 and 512. For the number of encoder and decoder layers we search values between 1 and 8. For the hidden
size of the encoder and decoder layers, we search powers of two between 32 and 1024. For the transformer
model, we search the number of attention heads for all power of two between 4 and 16. In TreePointerNet
and SeqPointer, we search the number of pointer heads between 1 and 3. For the LSTM, we check if we
should use a unidirectional or a bidirectional encoder. Also, we check if attention is beneficial. Finally, we
optimize the ordering of the target sequence to be either axiom position or position axiom.

In table table 7 we list the values of all transformer-based models. The LSTM networks consists of a one-layer
unidirectional LSTM encoder and decoder with an embedding size of 512 and a hidden size of 1024. It has
6,496,256 trainable parameters.

D Detailed Results

In this section, we show the detailed results as discussed in section 4. Tables 8 to 11 show the average
accuracy (± standard deviation over five model runs, each time initialized with a different random seed),
i.e. the fraction of correctly transformed equations grouped by the number of required transformations and
the macro average over all groups. For brevity, we abbreviated the many-to-one embeddings with ME. The
best results are indicated in bold.

Table 8 present the main results. The results for robustness experiments are presented in table 9 for the
experiments on deeper trees and table 10 for the experiments on equations requiring up to 9 transformation
steps. The results of the ablation study on TreePointerNet are given in table 11.

E Examples

For illustration, we present a few equations solved by our TreePointerNet in this section. Tables 12 to 15
show examples of equations that the model can derive in n = 5 steps. In tables 16 and 17, we show examples
on our out-of-distribution tests on equations that can be derived in n = 9 steps.

In each table, the first n rows correspond to a step of the iterative transformation process and the last row
shows the final result. For every step i ≤ n, the first column shows the input equation given to the network.
The second and third columns show the axiom and the position as they are predicted by the network. The
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Table 8: Results for all Models on Equations of up to 5 Required Transformation Steps

Model Number of Transformation Steps Average
1 2 3 4 5

TreePointerNet (ours) 88.43%±0.09% 82.02%±0.51% 74.43%±0.36% 66.53%±0.84% 59.05%±0.80% 74.09%
SeqPointer 88.41%±0.06% 70.83%±0.67% 55.84%±0.64% 45.52%±0.66% 36.74%±0.95% 59.47%
Transformer 88.43%±0.24% 70.27%±0.94% 55.76%±1.65% 45.29%±1.64% 36.65%±0.72% 59.28%
LSTM 85.49%±0.19% 70.57%±0.39% 57.29%±0.41% 46.61%±0.25% 37.40%±1.12% 59.47%

Table 9: Robustness Study for all Models on Equations of Deeper Parse Trees

Model Number of Transformation Steps Average
1 2 3 4 5

TreePointerNet (ours) 58.48%±0.77% 49.52%±1.23% 40.58%±1.37% 34.13%±1.70% 29.71%±1.09% 42.48%
SeqPointer 50.49%±1.48% 36.34%±0.74% 26.31%±0.30% 19.80%±0.70% 15.21%±0.38% 29.63%
Transformer 49.97%±0.70% 34.09%±0.88% 24.32%±1.00% 18.73%±0.73% 13.43%±0.81% 28.11%
LSTM 50.12%±0.85% 31.77%±0.52% 23.11%±1.39% 17.92%±0.58% 12.97%±0.79% 27.18%

Table 10: Robustness Study for all Models on Equations of up to 9 Required Transformation Steps

Model Number of Transformation Steps Average
6 7 8 9

TreePointerNet (ours) 58.49%±0.85% 54.63%±1.43% 51.34%±1.74% 49.14%±1.81% 53.40%
SeqPointer 34.47%±0.80% 32.78%±0.47% 30.15%±0.56% 27.95%±0.86% 31.34%
Transformer 33.16%±1.05% 32.80%±0.88% 29.42%±1.03% 27.64%±0.61% 30.75%
LSTM 36.18%±0.88% 32.26%±0.67% 29.95%±0.40% 28.74%±0.69% 31.78%

Table 11: Ablation Study for our TreePointerNet

Model Number of Transformation Steps Average
1 2 3 4 5

TreePointerNet (ours) 88.43%±0.09% 82.02%±0.51% 74.43%±0.36% 66.53%±0.84% 59.05%±0.80% 74.09%
w/o ME 87.82%±0.34% 69.01%±0.28% 52.59%±0.83% 42.84%±0.52% 34.31%±0.50% 57.31%
w/o pointer 6.76%±0.35% 0.60%±0.08% 0.16%±0.05% 0.07%±0.04% 0.05%±0.03% 1.53%
w/o pointer + ME 87.76%±0.19% 68.87%±0.42% 52.29%±0.79% 42.67%±0.51% 34.10%±0.42% 57.14%
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subsequent row i+1 presents the equation after applying the predicted axiom at the predicted position from
step i.

In each equation, we use the symbol ∧ to represent the power instead of the commonly used superscript.
For example, we write x ∧ 2 instead of x2. By doing so, we are able to indicate the position of the power as
predicted by the network in the same way we do it for the other binary operators (e.g. +0, ∧1).

Since a new expression tree is generated in each transformation step, the indices of the mathematical tokens
are reinitialized in each row of the tables. As a consequence, at any step a predicted position might refer to
another instance of the token as it did in the step before. For example, in table 12, the rightmost addition
summing the constants 2 and 1 is denoted as +1 in step 1 because another addition exists in the same
equation. However, in step 2 it becomes +0 since the other addition is eliminated by the axiom chosen in
step 1.
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Table 12: Transformations for eln(1)+ln(2+1) = 3

Step Equation Predicted Axiom Predicted Position
1 (e0 ∧0 (ln0(10) +0 ln1((20 +1 11)))) = 3 ln(α) + ln(β) → ln(α · β) +0
2 (e0 ∧0 ln0((10 ·0 (20 +0 11)))) = 3 2 + 1 → 3 +0
3 (e0 ∧0 ln0((10 ·0 30))) = 3 α · β → β · α ·0
4 (e0 ∧0 ln0((30 ·0 10))) = 3 α · 1 → α ·0
5 (e0 ∧0 ln0(30)) = 3 eln(α) → α ∧0
Final 30 = 3

Table 13: Transformations for tan(((ln(e) + z) · (x0))x0) = tan(1 + z)

Step Equation Predicted Axiom Predicted Position
1 tan0((((ln0(e0) +0 z0) ·0 (x0 ∧1 00)) ∧0 (x1 ∧2 01))) = tan((1 + z)) α0 → 1 ∧2
2 tan0((((ln0(e0) +0 z0) ·0 (x0 ∧1 00)) ∧0 10)) = tan((1 + z)) α1 → α ∧0
3 tan0(((ln0(e0) +0 z0) ·0 (x0 ∧0 00))) = tan((1 + z)) α0 → 1 ∧0
4 tan0(((ln0(e0) +0 z0) ·0 10)) = tan((1 + z)) x · 1 → x ·0
5 tan0((ln0(e0) +0 z0)) = tan((1 + z)) ln(e) → 1 ln0
Final tan0((10 +0 z0)) = tan((1 + z))

Table 14: Transformations for sin(π/2 − sin((−1) · z · 2)) = cos(2 · sin(z) · cos(z))

Step Equation Predicted Axiom Predicted Position
1 sin0(((π0/020) −0 sin1(((−10) ·0 (z0 ·1 21))))) = cos(((2 · sin(z)) · cos(z))) sin(−1 · α) → (−1) · sin(α) sin1
2 sin0(((π0/020) −0 ((−10) ·0 sin1((z0 ·1 21))))) = cos(((2 · sin(z)) · cos(z))) sin(π/2 − α) → cos(α) sin0
3 cos0(((−10) ·0 sin0((z0 ·1 20)))) = cos(((2 · sin(z)) · cos(z))) cos(−1 · α) → cos(α) cos0
4 cos0(sin0((z0 ·0 20))) = cos(((2 · sin(z)) · cos(z))) α · β → β · α ·0
5 cos0(sin0((20 ·0 z0))) = cos(((2 · sin(z)) · cos(z))) sin(2 · α) → 2 · sin(α) · cos(α) sin0
Final cos0(((20 ·1 sin0(z1)) ·0 cos1(z0))) = cos(((2 · sin(z)) · cos(z)))

Table 15: Transformations for 2 · cos(1−1 · x)2 − (sin(x)2 + cos(x)2) = cos(2 · x)

Step Equation Predicted Axiom Predicted Position
1 ((20 ·0 (cos0(((10 ∧3 (−10)) ·1 x2)) ∧0 21)) −0 ((sin0(x0) ∧1 22) +0 (cos1(x1) ∧2 23))) = cos((2 · x)) 1−1 → 1 ∧3
2 ((22 ·0 (cos1((10 ·1 x2)) ∧2 23)) −0 ((sin0(x0) ∧0 20) +0 (cos0(x1) ∧1 21))) = cos((2 · x)) sin(α)2 + cos(α)2 → 1 +0
3 ((20 ·0 (cos0((10 ·1 x0)) ∧0 21)) −0 11) = cos((2 · x)) 2 · (cos(α)2) − 1 → cos(2 · α) −0
4 cos0((20 ·0 (10 ·1 x0))) = cos((2 · x)) α · (β · γ) → (α · β) · γ ·0
5 cos0(((20 ·1 10) ·0 x0)) = cos((2 · x)) α · 1 → α ·1
Final cos0((20 ·0 x0)) = cos((2 · x))

Table 16: Transformations for (sin((π − ((−1) · (−1)))) · 1) · (1 + cos(xxln(1))(−1)1) = sin(1)/(1 + cos(1))

Step Equation Predicted Axiom Predicted Position
1 ((sin0((π0 −0 ((−10) ·2 (−11)))) ·1 10) ·0 ((11 +0 cos0(((x0 ∧2 x1) ∧1 ln0(12)))) ∧0 ((−12) ∧3 13))) = (sin(1)/(1 + cos(1))) sin(π − α) → sin(α) sin0
2 ((sin0(((−11) ·2 (−12))) ·1 13) ·0 ((10 +0 cos0(((x0 ∧2 x1) ∧1 ln0(11)))) ∧0 ((−10) ∧3 12))) = (sin(1)/(1 + cos(1))) ln(1) → 0 ln0
3 ((sin0(((−10) ·2 (−11))) ·1 10) ·0 ((11 +0 cos0(((x0 ∧2 x1) ∧1 00))) ∧0 ((−12) ∧3 12))) = (sin(1)/(1 + cos(1))) (αβ)γ → αβ·γ ∧1
4 ((sin0(((−10) ·2 (−11))) ·1 10) ·0 ((11 +0 cos0((x1 ∧2 (x0 ·3 00)))) ∧0 ((−12) ∧1 12))) = (sin(1)/(1 + cos(1))) α · 0 → 0 ·3
5 ((sin0(((−10) ·2 (−11))) ·1 10) ·0 ((11 +0 cos0((x0 ∧1 00))) ∧0 ((−12) ∧2 12))) = (sin(1)/(1 + cos(1))) (−1) · (−1) → 1 ·2
6 ((sin0(13) ·1 10) ·0 ((11 +0 cos0((x0 ∧1 00))) ∧0 ((−10) ∧2 12))) = (sin(1)/(1 + cos(1))) α1 → α ∧2
7 ((sin0(11) ·1 10) ·0 ((12 +0 cos0((x0 ∧1 00))) ∧0 (−10))) = (sin(1)/(1 + cos(1))) α · β−1 → α/β ·0
8 ((sin0(11) ·0 10)/0(12 +0 cos0((x0 ∧0 00)))) = (sin(1)/(1 + cos(1))) α0 → 1 ∧0
9 ((sin0(12) ·0 11)/0(10 +0 cos0(13))) = (sin(1)/(1 + cos(1))) α · 1 → α ·0
Final (sin0(10)/0(11 +0 cos0(12))) = (sin(1)/(1 + cos(1)))

Table 17: Transformations for (((sin(x)2) · (−1)) + ((−1) · (cos(x)2))) · cos((π · 2−1) − (π − y)) = (−1) · sin(y)

Step Equation Predicted Axiom Predicted Position
1 ((((sin0(x0) ∧0 20) ·1 (−10)) +0 ((−11) ·2 (cos0(x1) ∧1 21))) ·0 cos1(((π0 ·3 (22 ∧2 (−12))) −0 (π1 −1 y0)))) = ((−1) · sin(y)) α · β−1 → α/β ·3
2 ((((sin0(x0) ∧0 20) ·1 (−10)) +0 ((−11) ·2 (cos0(x1) ∧1 21))) ·0 cos1(((π0/022) −0 (π1 −1 y0)))) = ((−1) · sin(y)) cos((π/2) − α) → sin(α) cos1
3 ((((sin0(x0) ∧0 20) ·1 (−10)) +0 ((−11) ·2 (cos0(x1) ∧1 21))) ·0 sin1((π0 −0 y0))) = ((−1) · sin(y)) α + ((−1) · β) → α − β +0
4 ((((sin0(x0) ∧0 20) ·1 (−10)) −0 (cos0(x1) ∧1 21)) ·0 sin1((π0 −1 y0))) = ((−1) · sin(y)) β · α → α · β ·1
5 ((((−10) ·1 (sin1(x0) ∧0 20)) −1 (cos0(x1) ∧1 21)) ·0 sin0((π0 −0 y0))) = ((−1) · sin(y)) α − β → α + ((−1) · β) −1
6 ((((−10) ·1 (sin0(x0) ∧0 20)) +0 ((−11) ·2 (cos0(x1) ∧1 21))) ·0 sin1((π0 −0 y0))) = ((−1) · sin(y)) (α · β) + (α · γ) → α · (β + γ) +0
7 (((−10) ·1 ((sin0(x0) ∧0 20) +0 (cos0(x1) ∧1 21))) ·0 sin1((π0 −0 y0))) = ((−1) · sin(y)) sin(α)2 + cos(α)2 → 1 +0
8 (((−10) ·1 10) ·0 sin0((π0 −0 y0))) = ((−1) · sin(y)) sin(π − α) → sin(α) sin0
9 (((−10) ·1 10) ·0 sin0(y0)) = ((−1) · sin(y)) (−1) · 1 → (−1) ·1
Final ((−10) ∗0 sin0(y0)) = ((−1) ∗ sin(y))
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