
Statistical Inference for Gradient Boosting Regression∗

Haimo Fang1, Kevin Tan2†, Giles Hooker2

1School of Economics, Fudan University
2Department of Statistics and Data Science, The Wharton School, University of Pennsylvania

Abstract

Gradient boosting is widely popular due to its flexibility and predictive accuracy.
However, statistical inference and uncertainty quantification for gradient boost-
ing remain challenging and under-explored. We propose a unified framework for
statistical inference in gradient boosting regression. Our framework integrates
dropout or parallel training with a recently proposed regularization procedure
called Boulevard that allows for a central limit theorem (CLT) for boosting. With
these enhancements, we surprisingly find that increasing the dropout rate and the
number of trees grown in parallel at each iteration substantially enhances signal
recovery and overall performance. Our resulting algorithms enjoy similar CLTs,
which we use to construct built-in confidence intervals, prediction intervals, and
rigorous hypothesis tests for assessing variable importance in only O(nd2) time
with the Nyström method. Numerical experiments verify the asymptotic normal-
ity and demonstrate that our algorithms perform well, do not require early stop-
ping, interpolate between regularized boosting and random forests, and confirm
the validity of their built-in statistical inference procedures.

1 Introduction
Gradient boosting (Friedman, 2000), particularly through widely used implementations such as XG-
Boost (Chen and Guestrin, 2016), LightGBM (Ke et al., 2017), and CatBoost (Prokhorenkova et al.,
2018), has become one of the most powerful and widely adopted methods for supervised learning,
especially on tabular data. However, this flexibility and predictive accuracy come at a cost. Unlike
their base learners – such as decision trees or linear models – boosting methods are typically far
less interpretable, and uncertainty quantification for their predictions is far from straightforward.
While point estimates may suffice for ad hoc prediction tasks, they overlook randomness inherent in
both the data and the algorithm itself. Uncertainty quantification therefore asks a central question:
if a new dataset were collected and models retrained, how different would the resulting predictions
be? This is a central ingredient in propagating uncertainty through forecast models, prioritizing data
collection and a host of other downstream tasks.

In this light, various methods have been proposed for uncertainty quantification in boosting. These
include Langevin boosting (Tan et al., 2023; Ustimenko and Prokhorenkova, 2022; Malinin et al.,
2021), k-nearest neighbors-based techniques (Brophy and Lowd, 2022), Gaussian graphical mod-
els (Chen and Wang, 2023), quantile regression approaches (Yin et al., 2023), and probabilistic
prediction via natural gradients (Duan et al., 2020). However, most of these methods lack formal
theoretical guarantees, with many relying primarily on heuristic justifications.

A principled route to uncertainty quantification is through statistical inference, e.g. via prediction
intervals. However, this remains limited. In the Bayesian setting, Ustimenko et al. (2023) show
randomized boosting converges to a kernel ridge regression and approximate Gaussian process pos-
terior. Yet, they re-run the entire boosting procedure to generate even a single posterior sample.
Malinin et al. (2021) suggest a virtual ensemble method, but do not provide formal guarantees.
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In the frequentist setting, Zhou and Hooker (2022) propose a regularization scheme yielding a central
limit theorem for boosting via convergence to kernel ridge regression. However, they do not provide
proper confidence or prediction intervals, and their method recovers at most half the true signal
(rescaling is suggested, but this amplifies errors). Despite these limitations, their framework remains
the only foundation for frequentist inference in boosting, which we extend here.

Other literature. Recent advances for random forests yield principled statistical methods for
uncertainty quantification via the construction of valid confidence intervals (Wager et al., 2014;
Wager and Athey, 2017; Athey et al., 2018; Mentch and Hooker, 2016b), and interpretability via
hypothesis tests for variable importance (Mentch and Hooker, 2016a; Coleman et al., 2022). Much
of this is achieved through viewing a random forest as an adaptive kernel method (Friedberg et al.,
2021; Athey et al., 2018). This also holds for various incarnations of boosting (Zhou and Hooker,
2022; Ustimenko et al., 2023). Despite these findings, the literature on uncertainty quantification
and statistical inference for boosting is far sparser – a gap we fill by exploiting this equivalence.

Motivated by this gap, we study frequentist inference for uncertainty quantification in boosting under
supervised nonparametric regression: y = f(x) + ϵ, with subgaussian noise with variance σ2. Our
goal is to develop principled, statistically sound procedures for uncertainty quantification, outlined
below.
Methodological contributions. In detail, we provide the following methodological contributions:
1. Improvements via dropout: We incorporate random dropout (Rashmi and Gilad-Bachrach, 2015)

into the regularization procedure of Zhou and Hooker (2022). This yields an improved procedure
(Algorithm 1) that achieves provably better performance by up to a factor of 4 in the asymp-
totic relative efficiency (ARE), and increased signal recovery by up to a factor of 2. By tuning
the dropout rate in Algorithm 1, we smoothly bridge the vanilla Boulevard method (Zhou and
Hooker, 2022) and a modified Random Forest (Breiman, 2001) that draws observation subsam-
ples without replacement and considers the full covariate space at each split.

2. Parallel boosting: We construct a novel leave-one-out procedure for parallel boosting (Algorithm
2) that, when coupled with the above regularization procedure, improves the ARE by at least a
factor of 4, and enjoys increased signal recovery by at least a factor of 2.

3. Prediction, confidence, and reproduction intervals: We leverage the central limit theorems our
procedures enjoy to construct a variety of procedures for statistical inference. First, we conduct
predictive inference via constructing prediction intervals on (potentially unseen) labels y. We
then construct confidence intervals for the underlying ground truth function f . Lastly, to quantify
uncertainty within the learning algorithm, we provide reproduction intervals (Zhou and Hooker,
2022) for another booster f̂ trained on an independent realization of the training set.

4. Hypothesis testing: We construct a chi-squared hypothesis test for variable importance, extend-
ing the work of Mentch and Hooker (2016b) for random forests to the boosting setting.

5. Computational efficiency: Unlike prior approaches to statistical inference for random forests and
boosting, we utilize the Nyström approximation of Musco and Musco (2017). This allows our
tests and intervals to scale linearly with the number of data points.

Figure 1: Demonstration of confidence, prediction, and reproduction intervals on f(x) = sin 2πx+
1
2x

2. Conformal baseline. 200 trees, learning rate 0.6, depth 8, subsampling and dropout 0.6.

Theoretical contributions. Our primary theoretical contributions are central limit theorems (CLTs)
for boosting with dropout (Algorithm 1) and parallel training (Algorithm 2) – the first such results
for these settings to our knowledge. These extend the theoretical arguments of Zhou and Hooker
(2022). In analyzing boosting with dropout, the stochasticity introduced into ensemble construc-
tion must be accounted for – in addition to randomness from data subsampling. To address this,
we establish a weak law for finite-sample convergence in the stochastic contraction framework of
Almudevar (2022). The arguments for parallel boosting are more challenging. Inspired by classical
backfitting methods (Breiman and Friedman, 1985), we develop a delayed averaging scheme that
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enables parallelism while preserving convergence guarantees. To achieve central limit theorems that
hold unconditionally on the data X, we show a bound on the maximal leaf size is sufficient to limit
the influence of distant points and promote balanced splits, enabling rigorous distributional results.

Numerical experiments. We establish the efficacy of our methods on both a simulation study
and real-world datasets. Our numerical experiments showcase that our algorithms can be tuned to
interpolate between regularized boosting and random forests, and are highly competitive in terms
of MSE. These also demonstrate the correctness, coverage, and computational efficiency of the
statistical procedures we construct via the central limit theorems our algorithms enjoy.

2 Setup
Consider boosting for nonparametric regression with squared error loss. Given random features
x ∈ [0, 1]d, labels y ∈ R, and noise ϵ ∼ SubG(0, σ2), say there exists some function f such that
y = f(x) + ϵ. The learner is given a training set (Xtrain,ytrain) of size n, and learns an estimate f̂

of f by minimizing the mean squared error (MSE) 1
n

∑n
i=1(f̂(xi) − yi)

2 over the training set. It
is customary to analyze how f̂ converges to f , or in other words, the generalization error of f̂ on
a test set (Xtest,ytest). Subscripts f̂ (b)

n indicate the estimated predictor trained on n datapoints for b
boosting rounds, where we omit dependencies on b and n whenever possible.

Regularized stochastic gradient boosting. Zhou and Hooker (2022) propose a regularization pro-
cedure called Boulevard that recovers a central limit theorem for boosting. They do so by showing
that the resulting regularized procedure converges to a kernel ridge regression. At each iteration

b = 1, ..., B − 1, instead of f̂ (b+1) ← f̂ (b) + λt(b), they update f̂ (b+1) ← b−1
b f̂ (b) + λ

b t
(b)

for the current function estimate f̂ (b), built tree t(b), and learning rate λ ∈ [0, 1). As this is equiv-
alent to updating f̂ (b+1) ← λ

b

∑b
i=1 t

(i), the resulting ensemble is an average of trees. This obser-
vation, along with assumptions on tree adaptivity, allows them to prove that Boulevard predictions
are asymptotically normal, though they do not construct confidence or prediction intervals. Addi-
tionally, this regularization comes at a cost. It turns out that f̂ (b)

n converges only to λ
1+λf ≤ f/2 as

n, b→∞, and so Boulevard recovers at most half the signal. Still, this is the only method available
for frequentist inference for gradient boosting, and so we seek to improve upon it in this paper.

Figure 2: An added benefit of Boulevard regularization is that it renders early stopping unnecessary.
Because the procedure converges to a fixed point, one can (in theory) boost indefinitely without
encountering overfitting. It also produces asymptotically normal predictions (see the Q-Q plot).

Regression trees and tree structure. We are primarily concerned with boosting algorithms where
we use regression trees as weak learners. We introduce a formulation of a regression tree below.

Definition 1 (Regression trees). A regression tree tn trained on n datapoints segments the covariate
space [0, 1]d into a partition of hyper-rectangles {Ai}mi=1. When A(x) for the rectangle containing
x, and sn,j(x) is the frequency at which training point xj and test point x share a leaf:

sn,j(x) =
1(xj∈A(x))∑n

k=1 1(xk∈A(x)) , the regression tree tn predicts tn(x) =
∑n

j=1 sn,j(x) · yj .

As such, a tree can be thought of as an adaptive nearest neighbor method (Athey et al., 2018; Fried-
berg et al., 2021), where sn,j(x) yields the influence of datapoint xj on the tree’s prediction at test
point x. This motivates the definition of a structure vector and matrix from Zhou and Hooker (2022):
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Definition 2 (Structure vectors and matrices). Let tn be a tree trained on the input (Xn,yn). For
an arbitrary point x, let sn(x) = (sn,1(x), ..., sn,n(x))

⊤ be the structure vector of x. As such, we
say that the matrix Sn = (sn,j(xi))

n
i,j=1 with rows sn(xi)

⊤ is the structure matrix of tn.

The structure matrix is a kernel matrix. A natural idea is to perform kernel ridge regression (KRR):

f̂n(x) = ⟨rn(x),yn⟩, kn(x) = E[sn(x)], Kn = E[Sn], and rn(x)
⊤ = kn(x)

⊤(λ−1I+Kn)
−1.

Zhou and Hooker (2022) show Boulevard regularization converges to a kernel ridge regression
f̂n(x) = ⟨rn(x),yn⟩ as b → ∞. However, as λ ∈ (0, 1], this converges to at most half the
signal. We later propose two algorithms in Algorithms 1 and 2, that converge to ⟨rDn (x),yn⟩ =
kn(x)

⊤(λ−1I + qKn)
−1yn and ⟨rPn (x),yn⟩ = kn(x)

⊤(I + (K − 1)Kn)
−1Kyn respectively,

achieving increased signal recovery. As a final note, to accommodate training tn(x,G) on a sub-
sample G ⊆ {1, ..., n}, we write sn,j(x;G) = 1(xj ∈ A, j ∈ G)/

∑n
k=1 1(xk ∈ A, k ∈ G), and

tn(x;G) =
∑n

j=1 sn,j(x;G) · yj . We suppress the dependence on subsamples when possible.

Integrity & adaptivity. We inherit the following two assumptions from Boulevard regularization:

Assumption 1 (Structure-value isolation). (t
(b)
n )Bb=1 has s(b)n (x) ⊥⊥ yn for all b = 1, ..., B.

Assumption 2 (Non-adaptivity). There exists a probability measure Qn on the space of tree struc-
tures and some b′ so the tree structure at iteration b = b′, ..., B is an independent draw from Qn.

These are required for theoretical guarantees. In practice, the first can be implemented via a stronger
form of honesty (Wager and Athey, 2017) that we call integrity, refitting leaf values on an indepen-
dent dataset after boosting. One can also randomly sample splits, or get them from a random forest
trained on an independent sample. The second only requires non-adaptivity after a finite number
of iterations, which may occur naturally (Zhou and Hooker, 2022). To enforce it, one can boost
normally for a fixed number of steps and then sample tree structures from earlier iterations. Still,
numerical experiments indicate that our algorithms perform well even without these adjustments.
Our assumptions are given in a colleted format in the supplement.

3 Algorithms

To address the limitations of Boulevard regularization while retaining its statistical guarantees, we
propose two improvements that achieve enhanced signal recovery and improved sample complexity:

Alg. 1: By incorporating random dropout (Rashmi and Gilad-Bachrach, 2015) in the ensemble.
Alg. 2: By growing trees in parallel within each round with a leave-one-out procedure.

The intuition is as follows. Surprisingly, increasing the dropout probability allows one to recover
more of the signal. This is because each tree in the current ensemble is effectively downweighted
during residual construction, and the new tree is fit on more of the signal. On the other hand, as
the number of trees grown in parallel within each round grows, the resulting ensemble increasingly
resembles the procedure of boosting random forests in sequence – allowing each round to recover
more signal than a single tree can. We present both algorithms and explain them in detail below.

Algorithm 1 Boulevard Regularized Additive re-
gression Trees – Dropout (BRAT-D)

1: Input: Features X, labels y, dropout rate
p = 1 − q, subsample rate ξ, learning rate
λ, boosting rounds B. Set f̂ (0), t(0) ← 0.

2: for b = 1, ..., B − 1 do
3: Subsample Sb ⊆ {0, ..., b− 1} w.p. q.
4: Subsample data Gb ⊆ {1, ..., n} w.p. ξ.
5: zi ← yi − λ

b

∑
s∈Sb

t(s)(xi).
6: Construct tree t(b) on (xi, zi)i∈Gb

.
7: f̂ (b+1) ← b−1

b f̂ (b)+ λ
b t

(b) = λ
b

∑b
i=1 t

(i).
8: end for
9: Return final predictor 1+λq

λ f̂ (B).

Algorithm 2 BRAT - Parallel (BRAT-P)

1: Input: Features X, labels y, subsample ξ,
trees/round K, rounds B. f̂ (0), t(0,k) ← 0.

2: Fit f̂ (1), (t(1,k))Kk=1 with K boosting steps.
3: for b = 2, ..., B − 1 do
4: for k = 1, ...,K in parallel do
5: Subsample Gb,k ⊆ {1, ..., n} w.p. ξ.
6: zi,k ← yi− 1

b−1

∑b−1
s=1

∑
l ̸=k t

(s,l)(xi)

7: Construct tree t(b,k) on (xi, zi,k)i∈Gb,k
.

8: end for
9: Define f̂ (b+1) ← 1

b

∑b
s=1

∑K
k=1 t

(s,k).
10: end for
11: Return final predictor f̂ (B).
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Random dropout. Unlike vanilla boosting, Algorithm 1 computes residuals with both data (Fried-
man, 2002) and ensemble subsampling (Rashmi and Gilad-Bachrach, 2015). At each round
b = 1, ..., B − 1, each tree is subsampled with a dropout rate of p ∈ [0, 1) (equivalently, with
probability q = 1− p). We write Sb ⊆ {0, ..., b− 1} for the collection of subsampled tree indices at
each round b. Likewise, data indices Gb ⊆ {1, ..., n} are subsampled with probability ξ ∈ (0, 1].

As a result, each tree t(b) is trained on the dataset (xi, zi)i∈Gb
, where the residuals are given by

zi = yi− 1
b

∑
s∈S t(s)(xi). Within the residual computation, we intentionally divide the sum of the

subsampled ensemble’s predictions by b instead of |S|. This is done so each new tree is fit on more
of the signal, allowing for increased signal recovery when applying Boulevard regularization.

We later show in Section 5 that the predictions of Algorithm 1 converge to a kernel ridge regression
that enjoys a central limit theorem. Informally, for any test point x, we have that:

ŷ
(b)
n

a.s.−→
b→∞

(
λ−1I+ qE [Sn]

)−1 E [Sn]yn, ∥rDn (x)∥−1
2

(
f̂D
n (x)− λ

1+λqf(x)
)

d−→
n→∞

N (0, σ2),

for a kernel matrix induced by the tree ensemble Kn = E[Sn], and limit f̂D
n = limb→∞ f̂

(b)
n

where f̂D
n (x) = ⟨rDn (x),yn⟩ = kn(x)

⊤(λ−1I+ qKn)
−1yn. ∥rn∥2 is the norm of kernel weights.

Algorithm 1 encompasses two important special cases. When λ = 1 and p → 1, this yields a
random forest. When p = 0, Algorithm 1 corresponds to the original Boulevard algorithm (Zhou
and Hooker, 2022). Tuning the dropout parameter p allows the user to interpolate between the two,
while improving over Zhou and Hooker (2022) by up to a factor of 1+λ

1+λq ∈ (1, 2] in signal recovery.

Parallel boosting. Algorithm 2 integrates a novel leave-one-out procedure and Boulevard regular-
ization into the parallel boosting framework (Long and Servedio, 2011; Karbasi and Larsen, 2023;
da Cunha et al., 2024). The algorithm is warm-started by performing K vanilla boosting iterations
in the first round. At each subsequent round b = 2, ..., B − 1, we grow K trees (t(b,k))Kk=1 in paral-
lel on the K datasets ((xi, zi,k)i∈Gb,k

)Kk=1. These consist of independently subsampled data indices
Gb,k ⊆ {1, ..., n}, and residuals that are computed by leaving one “column” out (or alternatively,
one tree out per round): zi,k = yi − 1

b−1

∑b−1
s=1

∑
l ̸=k t

(s,l)(xi). The resulting predictor is given by

the regularized boosting update: f̂ (b+1) ← b−1
b f̂ (b) + 1

b

∑K
k=1 t

(b,k) = 1
b

∑b
s=1

∑K
k=1 t

(s,k).

Likewise, we later show in Section 5 that the predictions of Algorithm 2 also converge to a kernel
ridge regression that enjoys a central limit theorem. Informally, for any test point x:

ŷ(b)
n

a.s.−→
b→∞

(I+ (K − 1)E [Sn])
−1

KE [Sn]yn, ∥rPn (x)∥−1
2

(
f̂P
n (x)− f(x)

)
d−→

n→∞
N (0, σ2),

with limit f̂P
n = limb→∞ f̂

(b)
n given by f̂P

n (x) = ⟨rPn (x),yn⟩ = kn(x)
⊤(I+(K−1)Kn)

−1Kyn.
Algorithm 2 can be viewed as boosting a modified parallel backfitting algorithm (Breiman and Fried-
man, 1985)3 that is warm-started with K vanilla boosting iterations.4 When K = 1, B → ∞, Al-
gorithm 2 reduces to a random forest E [Sn]yn. On the other hand, Algorithm 2 reduces to vanilla
boosting when B = 1,K →∞. Note that the CLT only holds for 1 < K <∞.

The attentive reader may observe that we do not divide the final predictions by K. This is because
the combination of leaving one column out when fitting a tree and Boulevard averaging is sufficient
to allow our procedure to stabilize.5 Still, dividing by K yields a viable algorithm (deferred to future
work) that can be thought of as boosting random forests each of K trees over B rounds, using the
natural strategy of averaging all trees but the left-out column to form predictions.

4 Statistical Inference and Uncertainty Quantification for Boosting
We now introduce our methods for conducting statistical inference for boosting; the theoretical basis
for these procedures is provided below. Our methods rest on the aforementioned convergence to a
kernel ridge regression and central limit theorems that we formally prove later in Theorems 1 and 2.
In the meantime, we provide the following asymptotically valid procedures.

3This can be thought of as a structured variant of dropout (Zhao et al., 2022; Xin et al., 2020; Fan et al.,
2019). Dropping one out of every K trees allows the regularization to scale in 1/K.

4The initial K boosting iterations yield better convergence in practice, and do not hinder our theoretical
arguments as the impact of the vanilla boosting iterations washes out when we take B → ∞.

5Parallelized backfitting can be thought of as parallelized coordinate descent. Averaging over the coordinate
updates is sufficient for convergence. Dividing by b, as in Boulevard averaging, is sufficient when b ≥ K.
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Estimation of asymptotic variance. The CLTs for Algorithms 1 and 2 imply that one can con-
struct confidence intervals for f with the following normal approximations:

λ−1(1+λq)f̂D
n (x)

d
≈ N

(
f(x), λ−2(1 + λq)2∥rDn (x)σ2∥22

)
, f̂P

n (x)
d
≈ N

(
f(x), σ2∥rPn (x)∥22

)
.

As such, it remains to estimate rDn , rPn , and σ2. We first estimate kn(x) by the sample averages

k̂D
n (x) = 1

B

∑B
b=1 s

(b)
n,i(x,Gb), k̂P

n (x) =
1

BK

∑B
b=1

∑K
k=1 s

(b,k)
n,i (x,Gb,k), (1)

where s
(b)
n,i(x;Gb) is the fraction of subsampled datapoints in the same leaf A(b)

j as x over the trees.
Likewise, we estimate (Kn)i,j , the fraction of trees where datapoints i and j fall in the same leaf:

(K̂D
n )i,j =

1
B

∑B
b=1 s

(b)
n,j(xi;Gb), (K̂P

n )i,j =
1
B

∑B
b=1 s

(b,k)
n,j (xi;Gb,k), (2)

Our estimates of r̂n are then given by plugging the above into the formula for rn:

r̂Dn (x)⊤ = k̂D
n (x)⊤(λ−1I+ qK̂D

n )−1, r̂Pn (x)
⊤ = k̂P

n (x)
⊤(I+ (K − 1)K̂P

n )
−1K.

Lastly, we estimate σ2 with the residuals σ̂2 = 1
ncal

∑ncal
i=1(yi − ŷi)

2 on a hold-out calibration set.
We describe a tweak later in Section 6 that uses the calibration set for increased robustness.

Confidence intervals for f . Putting everything together yields 1 − α confidence intervals for f
(where z1−α/2 is the (1− α/2)-quantile of the standard normal distribution):

λ−1(1 + λq)f̂D
n (x)± z1−α/2λ

−1(1 + λq)σ̂∥r̂Dn (x)∥2, f̂P
n (x)± z1−α/2σ̂∥r̂Pn (x)∥2. (3)

Prediction intervals for y. We can construct prediction intervals for y|x as follows:

λ−1(1+λq)f̂D
n (x)± z1−α/2λ

−1(1+λq)σ̂
√

1 + ∥r̂Dn (x)∥22, f̂P
n (x)± z1−α/2σ̂

√
1 + ∥r̂Pn (x)∥22.

These prediction intervals have asymptotic pointwise coverage, conditional on the test point x. That
is, P(y ∈ PI(x)|x) → 1 − α as n → ∞, which holds as a corollary of the CLTs we present in
the following section. Note that this conditional coverage guarantee is a stronger guarantee than
is typically possible with conformal inference (Barber et al., 2020). We compare our prediction
intervals to conformal prediction intervals within our numerical experiments later in this paper.

Reproduction intervals for f̂ . We now turn our attention towards computing reproduction in-
tervals. That is, a confidence interval for another realization of f̂ trained on another independent
realization of the data. To do so, as Zhou and Hooker (2022) suggest, it suffices to scale the width of
the above confidence intervals for f by

√
2 as X1, X2

i.i.d.∼ N (0, σ2) =⇒ X1 −X2 ∼ N (0, 2σ2).
Note that one can invert the above confidence, prediction, or reproduction intervals in order to test
if the underlying function, another realization of the response, or average learner is equal to a given
constant. This amounts to checking if the constant is contained in the interval of choice.

Variable importance tests. Suppose we wish to test for variable importance. Consider the possi-
bility that there exists some subset of the feature space [0, 1]d containing only qd < d features, and
let g : [0, 1]

qd → R be the projection of f onto L2([0, 1]
qd). We test the possibility that f(x) = g(x)

by proxy. Consider a split of the training dataset (Xn,yn) into (Xn,1,yn,1), (Xn,2,yn,2), where
Xn,1 ∈ Rn/2,d,Xn,2 ∈ Rn/2, qd. Let f̂n,1 be the boosting learner trained on (Xn,yn), and f̂n,2 be
the same trained on (Xn,2,yn,2). Given a hold-out dataset (Xm,ym), we test the null:

H0 : f(xj) = g(xj) for all j = 1, ...,m against H1 : f(xj) ̸= g(xj) for some j

by comparing f̂n,1(xj) and f̂n,2(xj). We exploit the CLTs our algorithms enjoy to do so. Write
r̂D,P
n (Xm)⊤ ∈ Rm×n for the matrix with rows (r̂D,P

n (xl)
⊤)ml=1, where we write D,P within the

superscript if the formula holds for both Algorithms 1 and 2. The difference in predictions

d̂m = (r̂D,P
n,1 (Xm)− r̂D,P

n,2 (Xm))⊤y
d→ Nm(0, σ2Ξ̂n) is multivariate normal under the null,

with covariance matrix σ2Ξ̂n = σ2(r̂D,P
n,1 (Xm) − r̂D,P

n,2 (Xm))⊤(r̂D,P
n,1 (Xm) − r̂D,P

n,2 (Xm)) esti-
mated by plugging in σ̂2. As such, we can conduct a chi-squared test with test statistic

σ̂−2d̂⊤
mΞ̂−1

n d̂m ∼ χ2
m under the null, rejecting the null if σ̂−2d̂⊤

mΞ̂−1
n d̂m > χ2

m,1−α.

The test as presented runs in O(n3) time. In Appendix A, we present an accelerated version of the
test that runs in O(ns(r + s) + r3) time, where s is the number of points subsampled for Nyström
approximation and r is the number of test points subsampled.
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Matrix sketching. Although the CLT reduces the problem of inference to kernel ridge regression
(with the right kernel), computing K̂n is an O(n3) problem – intractable for large n. This is the
chief difficulty that Zhou and Hooker (2022) face when constructing replication intervals for vanilla
Boulevard. We bypass this issue, making our procedures practical and tractable via matrix sketching.

We approximate K̂n using the Nyström method (Williams and Seeger, 2000), via either uniform
subsampling or the recursive approach of Musco and Musco (2017), producing an approximation
K̃n ≈ K̂nS(S

⊤K̂nS)
†S⊤K̂n, where S ∈ Rn×s is a random subsampling matrix. With the Nys-

trom method of Musco and Musco (2017), we can choose s to be near-linear in the effective di-
mension dµeff of a ridge regression problem with regularization parameter µ on the kernel matrix:
s = Õ(dµeff). This requires only O(ns2) time to precompute the kernel, and only O(s2) time for
inference – yielding practical statistical inference in near-linear time in the number of datapoints n.
We adopt this approach in our experiments, allowing our procedures to run in linear time and remain
practical, in contrast to previous work (Zhou and Hooker, 2022; Mentch and Hooker, 2016b). See
Appendix A.

5 Theoretical Guarantees
We now formally present guarantees for convergence and asymptotic normality for Algorithms 1
and 2. Consider the (Lipschitz) nonparametric regression model introduced below:
Assumption 3 (Lipschitz Nonparametric Regression). Let y = f(x) + ϵ, where x has density µ
satisfying 0 < c1 ≤ µ(x) ≤ c2 <∞ on its support. Further assume f is α-Lipschitz continuous on
supp(µ), and noise ϵ is sub-Gaussian with variance proxy σ2.

Finite-sample convergence to KRR. We now show that our algorithms achieve finite-sample con-
vergence to kernel ridge regression as the number of boosting rounds increases. At first glance, this
is surprising – greedy split selection and sequential ensemble construction create a highly nonlinear
and time-dependent mapping. Fortunately, the regularization procedure of Zhou and Hooker (2022)
provides a way forward. For the special case of p = 0 within Algorithm 1, they show convergence
to a kernel ridge regression via the stochastic contraction framework of Almudevar (2022), utiliz-
ing Assumptions 1 (structure–value isolation) and 2 (non-adaptivity) to ensure stagewise stability.
A key novelty within our analysis lies in showing that this convergence extends to Algorithms 1
and 2, even with the added complexity introduced by dropout and parallelism respectively. Despite
these added sources of stochasticity and dependence, our use of the same regularization mechanism
ensures that both algorithms inherit the stability required for convergence:
Theorem 1 (Finite Sample Convergence to KRR). For fixed X,y, under Assumptions 1, 2, and 3,

ŷb
a.s.→
(
λ−1I+ qE [Sn]

)−1 E [Sn]y for Alg. 1, ŷb
a.s.→ (I + (K − 1)E [Sn])

−1
KE [Sn]y for Alg. 2,

as b→∞, where q = 1− p is one minus the dropout probability, K is the number of trees grown in
parallel, and Sn is the kernel matrix induced by the tree structures within the ensemble.

The proof, deferred to Appendix C, departs from Zhou and Hooker (2022) in two crucial ways.
Within Algorithm 1, dropout injects unbounded variance into the ensemble updates. To control
this, we introduce the hard truncation function ΓM (y) = sign(y)min{M, |y|} into each residual
update, ŷb = b−1

b ŷb−1 + λ
b Sb

(
y − ΓM (ỹb)

)
, and then show that the probability of the partial

ensemble escaping this cap vanishes as b → ∞. Within Algorithm 2, truncating ỹb,k = ŷb−1,K −
ΓM ( 1

b−1

∑b−1
g=1 t̂b,k) alone is insufficient. We further introduce a delay mechanism, requiring that

tb,k does not rely on tb,k−1, allowing us to apply Theorem 3 and parallelize tree training.

A central limit theorem. Having established almost-sure convergence to fixed points, we now
examine the asymptotic distribution of our estimators to justify the statistical procedures introduced
in Section 4. We seek a central limit theorem for the learner f̂D,P

n , trained on random Xn,yn,
demonstrating that the predictions f̂D,P

n (x) are asymptotically normal with mean f(x) as n→∞.
To do so, we inherit the following assumptions from Zhou and Hooker (2022): two on the leaves to
control the norm of the KRR weight vector rD,P

n , and a restriction on the tree distribution space:
Assumption 4 (Bounded Leaf Diameter). Write diam(A) = supx,y∈A ∥x− y∥. For any leaf A in
a tree with structure q ∈ Qn, we need supA∈q diam(A) = O(dn), where dn = O(n−1/(d+1)).
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Assumption 5 (Increased Minimal Leaf Size). For any ν > 0, vn = n− d+1
d+2+ν < n− d

d+1 = O(ddn).

Assumption 6 (Restricted Tree Support). The cardinality of the tree space Qn is bounded by
O(n−1 exp(0.5n1/(d+2)−ν − nα)), for some small α > 0.

Intuitively, Assumption 5 prevents leaves from becoming too small too quickly, which in turn con-
trols the maximal coordinate of the weight vectors across random samples. Assumption 6, guaran-
tees that the complexity of possible tree partitions does not explode with n. We also make assump-
tions on the regularity of tree splits in line with the notion of α-regularity in Athey et al. (2018):

Assumption 7 (Median Splitting Rules). The trees in Algorithm 2 are split at the medians.

We defer the details to Definition 3. Under this splitting rule, the point-to-point collision probability
is well-controlled, i.e. to say none of the leaves are big enough to contain most of the points. These
conditions allow for uniform control over both leaf sizes and tree complexity, yielding the result:

Theorem 2 (Central Limit Theorem for Predictions). Let x ∈ [0, 1]d, q ∈ (0, 1], K > 1. As n→∞,∥∥rDn ∥∥−1

2

(
f̂D
n (x)− λ−1(1 + λq)f(x)

)
d−→ N (0, σ2),

∥∥rPn ∥∥−1

2

(
f̂P
n (x)− f(x)

)
d−→ N (0, σ2).

We prove this in two stages. In the first, with proof deferred to Appendix D, we show asymp-
totic normality of the predictions around the noiseless KRR predictions ⟨rD,P

n (x),f(Xn)⟩, con-
ditional on the training data Xn,yn and test point x, by applying the Lindeberg-Feller CLT to
⟨rD,P

n (x), ε⟩. Next, we show that ⟨rD,P
n (x),f(Xn)⟩ converges to the underlying ground truth

function at a sufficiently fast rate in Appendices E and F. For Algorithm 1, although rDn now in-
volves [ 1λI + qKn]

−1, this still preserves the rate ∥rn∥2 ≍ n−1/(2(d+1)), allowing us to show
⟨rn, f(Xn)⟩ − λq

1+λqf(x) = op(∥rn∥2). The Lindeberg–Feller verification then proceeds identi-
cally to the non-dropout case. However, to give a CLT for Algorithm 2, controlling the influence
from distant training points is challenging, though we show that Assumption 7 is sufficient to do so.

Understanding the result. The rate of convergence of the CLT in Theorem 2 depends on the norm
of rD,P

n . This is controlled as follows, yielding generalization bounds for Algorithms 1 and 2:

Lemma 1 (Rate of Convergence). Let Bn := {i : ∥x− xi∥ ≤ dn} be the points within distance dn
from test point x. If |Bn| = Ω

(
n · ddn

)
, then ∥kn∥2 = Θ(n− 1

2
1

d+1 ),
∥∥rD,P

n

∥∥
2
= Θ(n− 1

2
1

d+1 ).

Corollary 1. E[( 1+λq
λ f̂D

n (x)−f(x))2] ≲ ( 1+λq
λ )2σ2n− 1

d+1 and E[(f̂P
n (x)−f(x))2] ≲ σ2n− 1

d+1 .

Corollary 2. If n ≥ Ω
(

log(1/δ)
ϵ2d+2

)
, b ≥ Ω

(
nλ2M2

ϵ2δ

)
, then w.p. at least 1− δ, |f̂ (b)

n (x)− f(x)| ≤ ϵ.

The first is an asymptotic risk bound, while the second is a nonasymptotic PAC guarantee. Recall that
M is the truncation level. The results above recover the minimax rate for nonparametric regression
on 1/2-Holder smooth functions (Stone, 1982) – quadratically worse than the rate for Lipschitz
functions (the setting we are in). We believe this can be improved – trees should inherit adaptivity
to the intrinsic dimension as an adaptive nearest neighbor method, but we leave this for future work.

Furthermore, Theorem 2 yields asymptotic coverage of our intervals constructed in Section 4:

Corollary 3. The CIs, PIs and RIs achieve 1− α almost sure pointwise coverage as n, b→∞.

We show in Lemma 1 that the rate at which ∥rD,P
n ∥2 grows is the same for Algorithms 1 and 2.

This shows that our methods achieve an asymptotic relative efficiency relative to Zhou and Hooker
(2022) by up to a factor of 4 for Algorithm 1, and at least a factor of 4 for Algorithm 2:

Corollary 4 (Asymptotic Relative Efficiency). Write f̂B for the scaled predictions made by vanilla
Boulevard (Zhou and Hooker, 2022) with the same learning rate λ ∈ (0, 1] as Algorithm 1. Then,

Var( 1+λ
λ f̂B)/Var( 1+λq

λ f̂D) = ( 1+λ
1+λq )

2 ∈ [1, 4], Var( 1+λ
λ f̂B)/Var(f̂P ) =

(
1+λ
λ

)2 ∈ [4,∞).

This has the implication that Algorithms 1 and 2 achieve increased signal recovery in the square
root of the ARE relative to vanilla Boulevard. The intuition for this improvement is as follows.
For any choice of λ within vanilla Boulevard, there exists a choice of p within Algorithm 1 that
requires a smaller rescaling. On the other hand, as Algorithm 2 requires no rescaling, it can achieve
an unbounded improvement in relative efficiency over vanilla Boulevard as we take λ→ 0.
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Figure 3: Left: Type I and Type II error of the hypothesis test for variable importance against train-
ing set size. Test set is of the same size. Error rates computed over 30 trials. Right: Comparison of
MSE achieved by various machine learning algorithms on different datasets, with hyperparameters
tuned for each by Optuna. Shaded area depicts two standard deviations over 5 trials.

6 Numerical Experiments
The previous section presents a rich theory; alongside convergence to kernel ridge regression and
a central limit theorem for predictions, we provide asymptotic risk bounds and nonasymptotic PAC
guarantees, and show asymptotic coverage for our intervals. In light of this, we present a series of
numerical experiments to empirically justify our algorithms and methods.
Predictive accuracy. The first, and most natural, thing to do is to examine the performance of our
algorithms against a handful of competitors in terms of test MSE on nine datasets from the UCI
Machine Learning Repository in Figure 3 and Figure 6 in the supplement. Our competitors include
popular methods such as XGBoost (Chen and Guestrin, 2016), LightGBM (Ke et al., 2017), as well
as random forests and vanilla boosting. We also compare to vanilla Boulevard (Zhou and Hooker,
2022), and an elastic net regression as a baseline. All hyperparameters were tuned with Optuna
(Akiba et al., 2019), reported in Appendix I. There is no clear winner in general, but XGBoost is
a consistently strong performer, and random forests are clearly more suited to some datasets than
others. Neither Algorithm 1 nor Algorithm 2 consistently outperform each other, but Algorithm
2 occasionally exhibits instability on some datasets. Regardless, both of our algorithms are com-
petitive in terms of final MSE and rate of convergence, and exhibit the ability to be tuned to be
closer to boosting (Wine Quality) or random forests (Air Quality), providing increased flexibility by
interpolating between the two.

Our results in Figure 3 are somewhat unfair to Algorithm 2, as the x-axis is in the ensemble size and
not the number of boosting rounds. The number of boosting rounds that Algorithm 2 encounters can
be as few as 31 on Abalone, in contrast to the 500 boosting rounds all other algorithms enjoy. Given
the same number of boosting rounds, we would certainly expect an improvement.
Variable importance tests. We examine their performance by conducting a simulation study, test-
ing the null H0 : w = 0 on data from f(x) = 4x1−x2

2+wbx3. We fit Algorithm 1 on data generated
from f(x) and g(x) = 4x1 − x2

2, with 100 trees, λ = 1, subsampling rate 1, dropout rate 0.95, and
a max depth of 6. The size and power of our test presented in Section 4 are depicted in the left panel
within Figure 3. Our test performs very well, maintaining appropriate size control throughout while
the Type II error decreases quickly. Empirically, increasing the dropout rate increases power.
Coverage of intervals. Other than the Nyström approximations for fast and practical interval com-
putation in Appendix A, there is one more tweak that we encourage users to make in practice. We
demonstrate in Corollary 3 that our intervals have asymptotic coverage, but this says nothing about
its finite sample properties. Fortunately, Romano et al. (2020) yields a simple enhancement. Since
we estimate σ̂ through computing the residuals on a hold-out calibration set, we reuse the calibration
set to adaptively grow or shrink our intervals according to the empirical prediction interval coverage
on the calibration set. This procedure converges quickly (amounting to a doubling trick and binary
search), and empirically is very helpful in increasing robustness and finite-sample performance.

To examine the empirical performance of our intervals, we consider the Friedman function f(x) =
10 sin(πx1x2)+20(x3−0.5)2+5x5−10 (Friedman, 2000). This is depicted as a raincloud plot in
Figure 4. Importantly, we consider two notions of coverage: marginal coverage, where coverage is
averaged over test points, and conditional coverage, where the coverage is conditional on a test point.
The first two rows depict the former, while the last two depict the latter. Our intervals perform rea-
sonably well, attaining nominal coverage with the exception of the reproduction interval’s coverage
and the confidence interval’s conditional coverage. In particular, the prediction interval performs
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Figure 4: Points in the first two rows represent one of 30 models, depicting the fraction of test points
that fell inside the interval generated by the model (marginal coverage) and average width for each
model. Points in the last two represent one of 100 test points, depicting the fraction of models with
intervals containing the test point (conditional coverage) and average width for each point. Results
from Algorithm 1 with 200 trees, learning rate 0.6, subsampling 0.8, dropout 0.3, max depth 4.

very well after the adaptive coverage adjustment. Importantly, unlike the conformal benchmark
that has a constant width at each point, our prediction intervals have different interval widths at each
point, allowing users to identify ‘hard” examples. See Appendix J for other hyperparameter choices.

CI tuning. Reducing subsample rate ξ inflates variance proportionally, while deeper trees yield
narrower intervals as finer splits yield sparser kn(x) and smaller ∥rn∥. Variance grows with shrink-
age 1/λ and falls as dropout p increases. Choosing moderate λ and increasing p yields stabler CIs.
Setting p→ 0 empirically leads to wider intervals and less power in the hypothesis test for variable
importance. This can be seen in Figure 5.

Figure 5: Comparison of size and power of statistical inference procedures against dropout
probability. Conformal adjustment is not performed (for clearer benchmarking, hence the un-
der/overcoverage), and we plot the coverage and width across all datapoints and repetitions.

7 Conclusions and Further Work
We incorporate dropout and parallel boosting into the regularization procedure of Zhou and Hooker
(2022), allowing for increased signal recovery and improved asymptotic variance. With the CLTs our
algorithms enjoy, we construct confidence and prediction intervals, and hypothesis tests for variable
importance. Numerical experiments empirically validate our algorithms and statistical procedures.

Our theoretical guarantees depend on structure–value isolation, non-adaptivity, and tree regularity
assumptions. Relaxing these – e.g., via honesty-based splitting or quantifying mild adaptivity –
would broaden applicability. Extending inference beyond regression (to classification, survival, or
structured outputs) also poses new challenges: non-quadratic losses, different tree behavior, and the
need for new CLTs. Doing so under weaker assumptions is a welcome direction for future work.
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A Matrix Sketching

We first sketch the kernel inversion where we approximate K̂D
n ≈ K̃D

n = K̂D
n S(S⊤K̂D

n S)†S⊤K̂D
n :

r̂Dn (x)⊤yn = k̂D
n (x)⊤(λ−1I+ qK̂D

n )−1yn

≈ k̂D
n (x)⊤(λ−1I+ qK̃D

n )−1yn

= k̂D
n (x)⊤(λ−1I+ qK̂D

n S(S⊤K̂D
n S)†S⊤K̂D

n )−1yn

= k̂D
n (x)⊤

(
λI− λ2K̂D

n S(q−1S⊤K̂D
n S+ λ(K̂D

n S)⊤K̂D
n S)−1S⊤K̂D

n

)
yn

= k̂D
n (x)⊤Λ̂D

n yn = k̂D
n (x)⊤α̂n,

where we define the n-dimensional coefficient vector

α̂n =
(
λI− λ2K̂D

n S(q−1S⊤K̂D
n S+ λ(K̂D

n S)⊤K̂D
n S)−1S⊤K̂D

n

)
yn,

and write

Λ̂D
n =

(
λI− λ2K̂D

n S(q−1S⊤K̂D
n S+ λ(K̂D

n S)⊤K̂D
n S)−1S⊤K̂D

n

)
∈ Rn×n

for our sketched estimate of the inverse kernel matrix. Computing this takes O(ns2) time when S is
a subsampling matrix (Musco and Musco, 2017).

Now we further sketch the coefficients α̃n = (S⊤K̂D
n S)†S⊤K̂D

n α̂n ∈ Rs, in line with Appendix C
of Musco and Musco (2017):

k̂D
n (x)⊤α̂n ≈

〈
S⊤k̂D

n (x), (S⊤K̂D
n S)†S⊤K̂D

n α̂n

〉
=
〈
k̃D
n (x), α̃n

〉
.

When α̃n = (S⊤K̂D
n S)†S⊤K̂D

n α̂n is precomputed, we can make a new KRR point predic-
tion in only O(s) time. This is because we only need to compute the s coordinates of the
vector k̃D

n (x) = S⊤k̂D
n (x) ∈ Rs, taking s kernel evaluations, and multiplication with α̃n =

(S⊤K̂D
n S)†S⊤K̂D

n α̂n ∈ Rs can be done in O(s) time.

O(s2) time inference. So in order to perform inference in sublinear time, we first precompute in
O(ns2) time:

Λ̃D
n = Λ̂D

n K̂D
n S(S⊤K̂D

n S)† ∈ Rn×s, Σ̂D
n =

(
Λ̃D

n

)⊤
Λ̃D

n ∈ Rs×s.

To obtain a sketched estimate of ∥rDn (x)∥2 on a new test point x, we compute the s coordinates of
the vector k̃D

n (x) = S⊤k̂D
n (x) ∈ Rs, and obtain an estimate

∥r̃Dn (x)∥2 =

√
k̃D
n (x)⊤Σ̂D

n k̃D
n (x)

in O(s2) time. The equivalent expression ∥r̃Dn (x)∥2 = ∥Λ̃D
n k̃D

n (x)∥2 takes O(n) time.

Sketched hypothesis testing. Given a hold-out dataset (Xm,ym), we test the null hypothesis:

H0 : f(xj) = g(xj) for all j = 1, ...,m against H1 : f(xj) ̸= gn(xj) for some j

by comparing f̂n,1(xj), f̂n,2(xj). However, given m test points on a test dataset (Xm,ym), we
can subsample r points with a new subsampling matrix r to compute the doubly subsampled kernel
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No. Condition Use How Satisfied
1 Tree structure s

(b)
n (x) ⊥⊥

yn for all b = 1, ..., B
Theorem 1; allows kernel
ridge regression representa-
tion

Random tree structures,
sample splitting

2 Trees eventually i.i.d. sbn
∼Qn

Theorem 1; ensures aver-
aging tree structures has a
limit

Random tree structures,
draw from library of trees.

3 f α-Lipschitz, µ(x)
bounded away from 0

Theorem 2; controls ability
to approximate f by kernel
ridge regression

Structural assumption
about data generating pro-
cess

4 Shrinking maxi-
mum leaf diameter
supA∈Qn

diam(A)

bounded by O(n−1/(d+1))

Theorem 2; controls within-
leaf bias

Minimum probability of
splitting each feature

5 Growing observations per
leaf vn = n

d+1
d+1+ν <

n
d

d+1 = O(ddn)

Theorem 2; controls vari-
ance within leaves

Minimum leaf size

6 Cardinality of tree
space |Qn| bounded by
O(n−1 exp(0.5n1/(d+2)−ν−
nα))

Theorem 2; restricts vari-
ance of models

Restrict tree depth, choose
library of trees

7 Trees Split on Medians Theorem 2; Alg 2 only;
controls bias and variance

Restrict candidate splits

Table 1: Table of assumptions required for our theory and their use.

matrix κ̃D
n,1(Xm) = S⊤k̂D

n (Xm)r ∈ Rs×r, which we only need to perform s× r kernel operations
to compute. So the difference statistic is then given by

d̃m = κ̃n,1(Xm)⊤α̃n,1 − κ̃n,2(Xm)⊤α̃n,2 =
(
Λ̃D

n,1κ̃n,1(Xm)− Λ̃D
n,2κ̃n,2(Xm)

)⊤
y ∈ Rr.

Modulo subsampling and Nyström approximation error, this is multivariate normal under the null:
d̃D
m ∼ Nr

(
0, σ2Ξ̃D

n

)
, with covariance matrix

Ξ̃D
n =

(
Λ̃D

n,1κ̃n,1(Xm)⊤ − Λ̃D
n,2κ̃n,2(Xm)⊤

)⊤ (
Λ̃D

n,1κ̃n,1(Xm)⊤ − Λ̃D
n,2κ̃n,2(Xm)⊤

)
∈ Rr×r.

We then have the test statistic:
σ̂−2d̃D⊤

m (Ξ̃D
n )−1d̃D

m ∼ χ2
r.

The runtime of the test is as follows. It takes O(ns2) precomputation time to form Λ̃D
n,1, Λ̃

D
n,2 ∈

Rn×s, O(nsr) time for the multiplication with κ̃n,1(Xm), κ̃n,2(Xm), and O(n) time for multipli-
cation with y. Once one has the noise estimate, inverting the covariance matrix and computing the
test points takes O(r3) time.

B Table of Assumptions

Table 1 provides a summary of the assumptions we require, a brief explanation of how they are used
and conditions under which they are satisfied.

C Finite Sample Convergence

C.1 Stochastic Contraction Mapping Theorem

To show convergence for both algorithms, we will show both of them are a stochastically contracted
process. The criteria of deciding such process can be found in Almudevar (2022), and we introduce
the theorem below.
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Theorem 3. Given Rd-valued stochastic process {zt}t∈N, a sequence of 0 < λt ≤ 1, define

F0 = ∅,Ft = σ(z1, . . . , zt),

ϵt = zt − E[zt|Ft−1].

We call zt a stochastic contraction if the following properties hold

1. Vanishing coefficients
∞∑
t=1

(1− λt) =∞, which implies
∞∏
t=1

λt = 0.

2. Mean contraction
||E[zt|Ft−1]|| ≤ λt ∥zt−1∥ , a.s..

3. Bounded deviation

sup ∥ϵt∥ → 0,

∞∑
t=1

E[∥ϵt∥2] <∞.

In particular, a multidimensional stochastic contraction exhibits the following behavior

1. Contraction
zt

a.s.−−→ 0.

2. Kolmogorov inequality

P

(
sup
t≥T
∥zt∥ ≤ ∥zT ∥+ δ

)
≥ 1−

4
√
d
∑∞

t=T+1 E[ϵ2t ]
min{δ2, β2}

(4)

holds for all T, δ > 0 s.t. β = ∥zT ∥+ δ −
√
d supt>T ∥ϵt∥ > 0.

In the following proof we benefit from the a.s. convergence of the difference vector to 0. And the
Kolmogorov inequality gives us a PAC argument in 5.

C.2 Subsampling

We will also introduce a lemma to regularize the expected tree kernel in a finite sample case with
respect to subsampling rate.
Lemma 2. Considering a subsampled regression tree. Assume that each leaf contains no fewer than
n

1
d+2 sample points before subsampling. If we are subsampling at rate at least ξ = n− 1

d+2 logn, then
the expected structure vector’s norm follows the rate below:

∥kn∥1 = 1−O

(
1

n

)
Proof. By Zhou and Hooker (2022), we know that ∥Eq,w[Sn]∥ ≤ 1. By this we know that at least
∥kn∥1 ≤ 1. The task remained is to give the distance between ∥kn∥1 and 1.

Define the subsampling index set as w. To see clearly why a rate containing n would exists, recall
the definition of a structure vector with subsampling,for any x ∈ Aj ,

sn,k(x) = sn,k(x;w) =
1(xk ∈ Aj)1(k ∈ w)∑n
i=1 1(xi ∈ Aj)1(i ∈ w)

=
1(xk ∈ Aj)1(k ∈ w)∑

xi∈Aj
1(i ∈ w)

.

The structure vector is given by

sn(x) = [sn,1(x), sn,2(x), · · · , sn,n(x)]T

Taking expectation we have the kernel vector

k⊤
n =

[P(xk ∈ Aj)P(k ∈ w)∑
xi∈Aj

P(i ∈ w)

]
i,j

Notice the expectation is taken with respect to both structure distribution and the subsampling dis-
tribution. And this vector is not defined if one leaf is empty, since the denominator would be 0. Let
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the indicator IA denote whether the leaf of interest is empty. It values on 0 if the leaf is empty and
it values on 1 if the value is not empty. The L1 norm is given by:

∥kn∥1 =

n∑
k=1

Eq,w[sn,k(x)]

=

n∑
k=1

(Eq,w[sn,k(x)|1A = 0]P(1A = 0) + Eq,w[sn,k(x)|1A = 1]P(1A = 1))

If the leaf is empty, then we will have to define Eq,w[sn,k(x)|1A = 0] = 0, otherwise the denomi-
nator would be 0 and the whole structure vector is undefined. If the leaf is not empty, we would then
want to define the conditional expectation such that it sums up to 1:

n∑
k=1

E[sn,k(x)|IA = 1] = 1

Hence the L1 norm above simplifies to:

∥kn∥1 =

n∑
k=1

E[sn,k(x)|1A = 1]P(1A = 1) = 1− P(1A = 0)

Hence the problem is reduced to finding the probability of missing all subsampled points in a leaf of
interest.

By assertion, the subsample size should be ξn = n
d+1
d+2 log n. Consider the probability that one leaf

misses all sample points p(n, ξ). That is, all the subsampled points sampled are points that are in

this particular leaf. Thus we are only choosing with choice
(
n−n

1
d+2

θn

)
.

P(n, ξ) =

(
n−n

1
d+2

ξn

)(
n
ξn

)
=

(n− ξn)(n− ξn− 1)(n− ξn− 2) · · · (n− ξn− n
1

d+2 + 1)

n(n− 1)(n− 2) · · · (n− n
1

d+2 + 1)

≤
(

n− ξn

n− n
1

d+2

)n
1

d+2

=

(
1− ξ

1− n− d+1
d+2

)n
1

d+2

=

(
1− n− 1

d+2 log n

1− n− d+1
d+2

)n
1

d+2

=

(
1

1− n− d+1
d+2

)n
1

d+2

·
(
1− n− 1

d+2 log n
)n 1

d+2

Notice that (
1

1− n− d+1
d+2

)n
1

d+2

≤

(
1 + n− d+1

d+2

1− n− d+1
d+2 + n− d+1

d+2

)n
1

d+2

=
(
1 + n− d+1

d+2

)n 1
d+2

≤
(
1 + n− 1

d+2

)n 1
d+2
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≤ e

And meanwhile we recognize(
1− n− 1

d+2 log n
)n 1

d+2

=

[(
1− n− 1

d+2 log n
)n 1

d+2 1
log n

]logn

≤
(
1

e

)logn

=
1

elogn

=
1

n

Hence we have (
1

1− n− d+1
d+2

)n
1

d+2

·
(
1− n− 1

d+2 log n
)n 1

d+2

≤ e ·
(
1− n− 1

d+2 logn
)n 1

d+2

= O

(
1

n

)
Hence the probability of a single leaf missing all subsampled points is of rate O

(
1
n

)
. And hence

∥kn∥1 = 1−O
(
1
n

)
.

C.3 Proof for Theorem 1

Combining all the results above, the proof for Theorem 1 is as follow.

Proof. To show Algorithm 1 is a stochastic contraction mapping, we aim to show the conditions
1-3 are satisfied. Define the difference zt := ŷt+1 − ŷ∗. And define the partial ensemble ỹb :=
1
b

∑b
k=1 Xk t̂k, Xk

i.i.d.∼ Ber(q). To check mean contraction, first notice as b→∞, tr(Var(ỹb)) ≤
q(1−q)nM

b → 0. Hence with b large enough, we can get rid of the truncation.

∥E[zb|Fb−1]∥ =
∥∥∥∥E [b− 1

b
ŷb−1 +

λ

b
Sn(y − ΓM (ỹb−1))− ŷ∗

∣∣∣Fb−1

]∥∥∥∥
=

∥∥∥∥b− 1

b
(ŷb−1 − ŷ∗) +

λ

b
E[Sn](y − E[ΓM (ỹb−1)|Fb−1])−

1

b
ŷ∗
∥∥∥∥

≤ b− 1

b
∥ŷb−1 − ŷ∗∥+

∥∥∥∥λbE[Sn](y − E[ΓM (ỹb−1)|Fb−1])−
λ

b
E[Sn](y − qŷ∗)

∥∥∥∥
=

b− 1

b
∥zb−1∥+

∥∥∥∥λbE[Sn](qŷ
∗ − E[ΓM (ỹb−1)|Fb−1])

∥∥∥∥
=

b− 1

b
∥zb−1∥+

∥∥∥∥λbE[Sn](qŷ
∗ − E[ỹb−1|Fb−1])

∥∥∥∥
≤ b− 1 + λq

b
∥ŷb−1 − ŷ∗∥ ≤ ∥ŷb−1 − ŷ∗∥

Next we check for bounded deviations.

∥ϵb∥ = ∥zb − E[zb|Fb−1]∥
= ∥(ŷb − ŷ∗)− (E[ŷb − ŷ∗|Fb−1])∥

=
∥∥∥Ŷb − E[Ŷb|Fb−1]

∥∥∥
=

∥∥∥∥λb (E[Sn]− Sn)(y − ΓM (ỹb−1) + E[ΓM (ỹb−1)|Fb−1])

∥∥∥∥
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≤ λ

b
∥E[Sn]− Sn∥ ∥Y − ΓM (ỹb−1) + E[ΓM (ỹb−1)|Fb−1]∥

Now, by Zhou and Hooker (2022), we know E[Sn] has both row sum and column sum no greater
than 1, hence we see that∥E[Sn]∥ ≤

√
∥E[Sn]∥1 · ∥E[Sn]∥∞ ≤

√
1× n =

√
n. Then, it can be

seen that

∥ϵb∥ ≤
λ

b
· (1 +

√
n) · 2M

Then we can show that
∑∞

b=1 ∥ϵb∥
2
=
∑∞

b=1 O( 1
b2 ) <∞.

Similarly we can show both conditions for Algorithm 2. Replacing the stepwise difference according
to the new update rule gives:
∥E[zb+1 | Fb]∥ = ∥E[ŷb+1,K − ŷ∗

K | Fb]∥

=

∥∥∥∥∥ b

b+ 1
ŷb,K +

1

b+ 1
E[Sn]

K∑
k=1

(
y − ỹb,k−1

)
− ŷ∗

K

∥∥∥∥∥
=

∥∥∥∥∥ b

b+ 1
ŷb,K +

1

b+ 1
E[Sn]

K∑
k=1

(
y −

(
ŷb,K − ΓM

(
1
b

b∑
g=1

t̂g,k
)))
− ŷ∗

K

∥∥∥∥∥
=

∥∥∥∥∥ b

b+ 1
ŷb,K +

K

b+ 1
E[Sn]y −

K

b+ 1
E[Sn] ŷb,K +

1

b+ 1
E[Sn]

K∑
k=1

ΓM

(
1
b

b∑
g=1

t̂g,k
)
− ŷ∗

K

∥∥∥∥∥
=

∥∥∥∥∥ 1

b+ 1

(
bI −K E[Sn]

)(
ŷb,K − ŷ∗

K

)
+

1

b+ 1
E[Sn]

( K∑
k=1

ΓM

(
1
b

b∑
g=1

t̂g,k
)
− ŷ∗

K

)∥∥∥∥∥
≤ 1

b+ 1
∥bI−K E[Sn]∥ ∥ŷb,K − ŷ∗

K∥+
1

b+ 1
∥E[Sn]∥

∥∥∥∥∥
K∑

k=1

ΓM

(
1
b

b∑
g=1

t̂g,k
)
− ŷ∗

K

∥∥∥∥∥
≤ 1

b+ 1
∥bI−K E[Sn]∥ ∥ŷb,K − ŷ∗

K∥+
1

b+ 1
∥E[Sn]∥

∥∥∥∥∥ΓKM

( K∑
k=1

1
b

b∑
g=1

t̂g,k
)
− ŷ∗

K

∥∥∥∥∥
≤ 1

b+ 1
(∥bI−K E[Sn]∥+ ∥E[Sn]∥) ∥ŷb,K − ŷ∗

K∥

≤ 1

b+ 1
(b+ 1−O(

1

n
)) ∥ŷb,K − ŷ∗

K∥

< ∥zb∥
Hence we have checked the mean contraction condition. Checking the bounded deviation condition
works in a similar way for Algorithm 2 since it shares the same expected tree kernel with Algorithm
1 and the tree signal is also bounded by M . Hence the stochastic contraction mapping follows.

D Conditional CLT Around KRR Predictions

Doing so requires control on the weighting vectors rn(x). And we will begin such analysis on giving
the rate of the expected structure vector kn(x) first. This is because recall that in both algorithms
our final weight vector rn(x) is a linear map of the voting vector kn(x).To begin with, we will first
notice that Lemma 2 implies Lemma 3.

D.1 Bounding the weights

Lemma 3. Suppose the assumptions for Lemma 2 are satisfied. We have
∣∣∣∑n

i=1 r
D
n,i − λ

1+λq

∣∣∣ =
O
(
1
n

)
,
∣∣∑n

i=1 r
P
n,i − 1

∣∣ = O
(
1
n

)
.

Proof. We begin with the analysis on Algorithm 1. Consider the expansion[
1

λ
I + qKn

]−1

= λ

∞∑
i=0

(
(λq)2iK2i

n − (λq)2i+1K2i+1
n

)
.
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We examine the column sums of each of the matrix powers. Start with K2
n,∑

i=1

(K2
n)i,1 =

n∑
i=1

n∑
j=1

(Kn)i,j(Kn)j,1 =

n∑
j=1

(Kn)j,1

n∑
i=1

(Kn)i,j .

Take subsampling in to consideration, since Kn consists of structure vectors of sample points, hence
for some c > 0, we can bound the row sum:

1− c

n
≤

n∑
i=1

(Kn)i,j ≤ 1, i = 1, . . . , n.

which also hold true for

1− c

n
≤

n∑
j=1

(Kn)j,1 ≤ 1, i = 1, . . . , n.

Given Kn is nonnegative, multiply the inequalities above and notice it is actually the row sum of
K2

n, we have (
1− c

n

)2
≤
∑
i=1

(K2
n)i,1 =

n∑
j=1

(Kn)j,1

n∑
i=1

(Kn)i,j ≤ 1.

Repeating the same procedure above yields(
1− c

n

)m
≤
∑
i=1

(Km
n )i,1 ≤ 1.

Therefore,

λ

(
1

1− λ2q2(1− c
n )

2
− λq

1− λ2q2

)
≤

n∑
j=1

[
1

λ
I + qKn

]−1

j,1

= λ

( ∞∑
i=0

(λq)2i(K2i
n )j,1 − (λq)2i+1(K2i+1

n )j,1

)

≤ λ

(
1

1− λ2q2
− λq

1− λ2q2(1− c
n )

2

)
,

where both the LHS and RHS reduce to λ
1+λq + O

(
1
n

)
. So is true for any column sum of[

1
λI + qKn

]−1
.And we know that kn is nonnegative and 1 − ∥kn∥1 = O

(
1
n

)
and kn simply

reweights the columns. Hence we prove the convergence of weights
∑n

i=1 rn,i for Algorithm 1.

The analysis for Algorithm 2 is similar. We simply substitute λ = K, q = K−1
K . This will give the

bound:

K

(
1

1− (K − 1)2(1− c
n )

2
− K − 1

1− (K − 1)2

)
≤

n∑
j=1

[
1

K
I +

K − 1

K
Kn

]−1

j,1

= K

( ∞∑
i=0

(K − 1)2i(K2i
n )j,1 − (K − 1)2i+1(K2i+1

n )j,1

)

≤ K

(
1

1− (K − 1)2
− K − 1

1− (K − 1)2(1− c
n )

2

)
,

We can reduce both sides of the inequalities to 1 + O
(
1
n

)
similarly. That proves the converging

weight of Algorithm 2.

Intuitively, knowing that the weights sum to (almost) a constant tells us the total “mass” of our
weighting vector is fixed. If we have leaf size assumptions such that no single weight can be too
large, the mass must be spread out over many small pieces. Whenever you distribute a fixed amount
of weight across many entries, the Euclidean length of the vector necessarily shrinks. In other words,
a near-unit ℓ1 norm plus a bound on the largest coordinate forces the ℓ2 norm to be small. We control
the rate of rD,P

n in Lemma 1. To do so, we need to both upper bound and lower bound ∥kn∥, which
is helped by Assumption 5, implying infA∈q∈Qn

∑n
i=1 1(xi ∈ A) = Ω

(
n

1
d+1

)
.
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D.2 Proof for Lemma 1

We will make use of the Ω
(
n

1
d+1

)
in Assumption 7 to control ∥kn∥ and ∥rn∥. The first bound in

the max operator is vital for our unconditional CLT analysis Lemma 7. We will first show Lemma
1 which is sufficient for us to get a conditional CLT.

Proof. To bound ∥kn∥, recall:

knj = E[sn,j(x)] = E

[
1(xj ∈ A)∑n
j=1 1(xj ∈ A)

]
, x ∈ A

encodes the expected influence of point xj on a point of interest x among other n points. Then the
condition

inf
A∈q∈Qn

n∑
i=1

1(xi ∈ A) ≥ Ω
(
n

1
d+1

)
implies that knj = O

(
n− 1

d+1

)
, since we can’t have total weights of more than O(1) in a leaf. By

Lemma 2, ∥kn∥1 ≤ 1,

∥kn∥ ≤
√
∥kn∥1 ∥kn∥∞ = O

(
n− 1

2
1

d+1

)
.

By assetion |Bn| = Ω
(
n · ddn

)
, there are at most

Ω
(
n · ddn

)
= Ω

(
n

1
d+1

)
knj’s that are positive. Equivalently, we can have the magnitude of each non-zero knj is lower

bounded by Ω
(
n− 1

d+1

)
. This holds also because the total weights can’t be larger than O(1). Since

∥kn∥1 = 1−O(n−1),

∥kn∥ = Ω

(√(
n− 1

d+1

)2
· n

1
d+1

)
= Ω

(
n− 1

2
1

d+1

)
.

To check the rate of ∥rn∥, since rn is a mapped from kn by the KRR matrix. For Algorithm 1 it’s
[ 1λI+ qKn] and for Algorithm 2 is [ 1K I + K−1

K Kn]
−1 and we know

λ

1 + λq
≤ eigen

([
1

λ
I+ qKn

]−1
)
≤ λ, 1 ≤ eigen

([
1

K
I+

K − 1

K
Kn

]−1
)
≤ K

Since we can fix K to be a constant, ∥rn∥ will enjoy similar rates as ∥kn∥.

This rate complies with the Lindeberg-Feller conditions, hence we can establish the conditional CLT.

D.3 Conditional Asymptotic Normality on Training Set

Theorem 4 (Conditional Asymptotic Normality for BRAT-D and BRAT-P Predictions). For any
x ∈ [0, 1]d, write f(Xn) = (f(x1), . . . , f(xn))

⊤. Then under Assumptions 1, 2, 4 and assumptions
in Lemma 1, we have

f̂D,P
n (x)− ⟨rD,P

n ,f(Xn)⟩∥∥∥rD,P
n

∥∥∥ d−−→ N (0, σ2).

Proof. For notational convenience, since ∥rn∥ yielded by both Algorithm 1 and Algorithm 2 shares
the same rate in n, we will suppress the notation of D,P in this proof, and denote the kernel ridge
regression matrix respectively with KRRD and KRRP . Also define cD = λ

1+λq , c
P = 1.

Write

f̂n(x)− rTnf(Xn) = rTn ϵ⃗n.
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To establish the CLT, we verify the Lindeberg–Feller condition for the triangular array rTn ϵ⃗n, i.e. for
any δ > 0,

lim
n

1

∥rn∥2 σ2

n∑
i=1

E
[
(rniϵi)

2
1(|rniϵi| > δ ∥rn∥σ)

]
= 0.

Since ∥kn∥∞ = O
(
n− 1

d+2

)
and KRRD,P having row sums of CD,P +O

(
n−1

)
, we have

∥rn∥∞ ≤ ∥kn∥∞ ·
∥∥∥KRRD,P

∥∥∥
1
= O

(
n− 1

d+1

)
.

Furthermore, since ∥rn∥ = Θ(n− 1
2

1
d+1 ), we get

∥rn∥∞
∥rn∥

= O
(
n− 1

2
1

d+1

)
,

This allows us to check out the Lindeberg-Feller conditions:
n∑

i=1

E
[
(rniϵi)

2
1(|rniϵi| > δ ∥rn∥σ)

]
≤

n∑
i=1

r2ni

√
E[ϵ4i ] · E[1(|rniϵi| > δ ∥rn∥σ2]

≤
n∑

i=1

r2ni

√
E[ϵ4i ] ·

√
P

(
|ϵi| ≥

δ∥rn∥σ
rni

)

≤
n∑

i=1

r2ni

√
E[ϵ4i ]

√√√√2 exp

(
− 1

2σ2
·
(
δ∥rn∥σ
rni

)2
)

≤ ∥rn∥2 exp
(
−O

(
n

1
d+1

))
−→ 0,

Since ϵ is sub-Gaussian noise, the concentration bound holds by definition of ϵ. This concludes the
proof for Theorem 4.

E Extension to Random Design and Exponential Locality

Now we move on to the discussions in which our input to the model is no longer restricted only
to the training set Xn, but to any x ∈ [0, 1]d. To do so, we begin by defining a new probability
space and, of course, a new probability measure. This can be uniquely designed by a Kolmogorov’s
extension theorem.

Write the coordinate projection Πn = (πn(X), πn(⃗ϵ)) as the finite-dimensional projection contain-
ing the first n samples. Under this framework, we can obtain the corresponding expected struc-
ture vector kn, expected structure matrix (kernel matrix) Kn and the standardized prediction error
ρn(X, ϵ⃗), given by

ρn(X, ϵ) =
f̂D,P
n (x; Πn)− ⟨k⊤

n (x; Πn)KRR
D,P (Πn),f(Πn)⟩∥∥∥kn(x; Πn)⊤KRR

D,PΠn

∥∥∥
Here, ρn denotes the prediction error after using n random samples incorporating both the dropout
mechanism and the sample randomness.

To prove our desired CLT under random design, we need to first introduce a lemma that allows us to
propagate the normality from fixed sample to random sample cases. This is taken care of by Lemma
8, which allows us to claim our CLTs if we verify it being correct for a.s.∀x ∈ [0, 1]d. Then, we
seek an almost sure validation of the assumptions of Theorem 4 under the random sample sequence
Πn = (πn(X), πn(⃗ϵ)), which is helped by our Assumption 6. Formally, it is as shown below:

Lemma 4. Suppose we have random sample {(xi,yi)}ni=1 ⊂ [0, 1]d × R for each n. If for any
small α, ν > 0 s.t.

|Qn| = O

(
1

n
exp

(
1

2
n

1
d+2−ν − nα

))
,
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then
f̂D,P
n (x)− ⟨rD,P

n ,f(Xn)⟩∥∥∥rD,P
n

∥∥∥ d−−→ N (0, σ2).

Proof. We will direct the reader to Zhou and Hooker (2022). Despite the introduction of stochastic-
ity in dropout, extending the CLT of 4 does not require additional effort. The intuition for the proof
is as follows: By restricting the tree space, one bounds the probability of the assumptions being vi-
olated to be summable, and per Borel-Cantelli will take place almost surely. Tree space cardinality
here gives a nice union probability bound to achieve that.

We define the following notation for later use: For any n-vector v and an index set D, denote

v
∣∣
D

=

v1 · 1(1 ∈ D)
...

vn · 1(n ∈ D)

 .

This implies the decomposition that v = v
∣∣
D
+ v
∣∣
Dc .

We are now almost ready to prove the main theorem. However, to check Lindeberg-Feller conditions
under random design, one needs to establish exponential decay of points that sit far away from the
point of interest. That is, ∥rn|Dc∥ for a well chosen ball centered at x needs to vanish to 0 rather
quickly. And we prove it in the following lemma. To control this for Algorithm 1, we have the
following lemma:

Lemma 5. Given sample {(xi,yi)}ni=1 and a point of interest x, set ln = logn
− log λq = c1 log n, c1 =

log 1
λq and define index set Dn = {i : |xi − x| ≤ ln · dn}, then∥∥∥rDn ∣∣Dc

n

∥∥∥
1
= O

(
1

n

)
.

Proof. Let’s first write out the expression of the desired peripheral points:∥∥∥rDn ∣∣Dc
n

∥∥∥
1
=

∑
|x−xi|>ln·dn

|rDni|

Recall:

kT
n = E[sn(x)]→ knj = E[sn,j(x)] = E[

1(xj ∈ A)∑n
j=1 1(xj ∈ A)

],x ∈ A

This term would be zero if two points are not even in the same leaf, i.e. |x − xj | > dn. Hence the
sum inside would be simplified to

∑
|x−xi|>ln·dn

∣∣∣∣∣∣
∑

|xj−x|≤dn

knj

[
1

λ
I+ qKn

]−1

j,i

∣∣∣∣∣∣
And also notice, by decreasing lndn to (ln − 1)dn, we are actually allowing more peripheral points
outside the local region Dn and hence we have the inequality at line 4 below. Completely. it is given
as: ∥∥∥rDn ∣∣Dc

n

∥∥∥
1
=

∑
|x−xi|>ln·dn

|rDni| =
∑

|x−xi|>ln·dn

∣∣∣∣∣∣
∑
j

knj

[
1

λ
I+ qKn

]−1

j,i

∣∣∣∣∣∣
=

∑
|x−xi|>ln·dn

∣∣∣∣∣∣
∑

|x−xj |≤dn

knj

[
1

λ
I+ qKn

]−1

j,i

∣∣∣∣∣∣
≤

∑
|x−xj |≤dn

knj

∑
|x−xi|>ln·dn

∣∣∣∣∣
[
1

λ
I+ qKn

]−1

j,i

∣∣∣∣∣
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≤
∑

|x−xj |≤dn

knj

∑
|xi−xj |>(ln−1)·dn

∣∣∣∣∣
[
1

λ
I+ qKn

]−1

j,i

∣∣∣∣∣
≤

∑
|x−xj |≤dn

knj

∑
|xi−xj |>(ln−1)·dn

λ

∞∑
l=ln

(λq)l[Kl
n]j,i

≤
∑

|x−xj |≤dn

knj

∞∑
l=ln

(λq)l+1

≤λ
∞∑

l=ln

(λq)l =
λ

1− λq

1

n
.

The lower bound in the sum of the powers of Kn follows this argument. To compute higher powers
of Kn, consider how entries of Kl

n are calculated:

Kl
n[i, j] =

∑
k1,k2,...,kl−1

Kn[i, k1]Kn[k1, k2] . . .Kn[kl−1, j].

For Kl
n[i, j] ̸= 0, there must exist a chain of intermediate points {k1, k2, . . . , kl−1} such that:

|xi − xk1
| ≤ dn, |xk1

− xk2
| ≤ dn, . . . , |xkl−1

− xj | ≤ dn.

By summing the distances and by a triangular inequality, the locality condition propagates:

|xi − xj | ≤ l · dn,

where l is the number of steps (or multiplications) required to connect xi and xj through the inter-
mediate points. Now notice the summing condition |xi − xj | > (ln − 1)dn requires us to have such
chain that is longer than ln−1 at least. Hence the kernel’s power Kl

n would be 0 for any l ≤ ln−1,
since such chain doesn’t exist at all.

To control weights from distant points for Algorithm 2 is a bit more complicated. We need to make
use of Assumption 7. This assumption is inspired by the definition in Athey et al. (2018), where we
state below.
Definition 3 (α-regular tree predictor). A tree predictor grown by recursive partitioning is called
α-regular for some α > 0 if either

1. (Standard case) each split leaves at least a fraction α of the available training examples on
each side of the split, and furthermore the trees are fully grown to depth k for some k ∈ N.
Equivalently, every terminal node contains between k and 2k − 1 observations;

2. (SVI case) It satisfies part (a) when applied to the sample used to fit the leaf value. In this
case this will be our response vector Y .

Lemma 6. If a tree is 1
2 -regular with the terminal leaf size being lower bounded by k, where k is a

constant, then the operator norm of P is O (1).

Proof. Define α∗ = max{α, 1 − α}. By definition of α-regularity, the probability of point i, j
falling into the same leaf after one split would be upper bounded by α∗. And since we have the
minimal terminal leaf size requirement, for any leaf with depth d, it should comply with:{

k ≤ αd
∗n ≤ 2k − 1,

k ≤ (1− α∗)
dn ≤ 2k − 1.

which translates into 1
ln(1−α∗)

ln( 2k−1
n ) ≤ d ≤ 1

ln(α∗)
ln( kn ).

Notice that the probability of two points sharing a leaf is the probability that they survive all splits
down the tree. Then we can bound the collision probability by:

pi,j ≤ αdmin
∗

= α
1

ln(1−α∗)
ln( 2k−1

n )
∗
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= (
2k − 1

n
)

lnα∗
ln(1−α∗)

= (
2k − 1

n
)log1−α∗ α∗

=
2k − 1

n

Then
∑

i pi,j = O (1)

Well-behaved leaves exclude non-decaying distant weights. Formally, we can prove the lemma
below:
Lemma 7. Given sample {(xi,yi)}ni=1 and a point of interest x, set ln = − lnn

ln(ξ/2) = c lnn and
define index set Dn = {i : |xi − x| ≤ ln · dn}. then∥∥∥rPn ∣∣Dc

n

∥∥∥
1
= O

(
1

n

)
.

Proof. We will use the same matrix expansion technique we used in Lemma5. By analogy,∥∥∥rPn ∣∣Dc
n

∥∥∥
1
=

∑
|x−xi|>ln·dn

|rPni| =
∑

|x−xi|>ln·dn

∣∣∣∣∣∣
∑
j

knj

[
1

K
I+

K − 1

K
Kn

]−1

j,i

∣∣∣∣∣∣
=

∑
|x−xi|>ln·dn

∣∣∣∣∣∣
∑

|x−xj |≤dn

knj

[
1

K
I+

K − 1

K
Kn

]−1

j,i

∣∣∣∣∣∣
≤

∑
|x−xj |≤dn

knj

∑
|x−xi|>ln·dn

∣∣∣∣∣
[
1

K
I+

K − 1

K
Kn

]−1

j,i

∣∣∣∣∣
≤

∑
|x−xj |≤dn

knj

∑
|xi−xj |>(ln−1)·dn

∣∣∣∣∣
[
1

K
I+

K − 1

K
Kn

]−1

j,i

∣∣∣∣∣
=

∑
|x−xj |≤dn

knj

∑
|xi−xj |>(ln−1)·dn

K
∣∣∣ ∞∑
l=ln

(−1)l(K − 1)l[Kl
n]j,i

∣∣∣
≤

∑
|x−xj |≤dn

knjK
∑
l≥ln

(K − 1)l
∑

|xi−xj |>(ln−1)·dn

|[Kl
n]i,j |

≤
∑

|x−xj |≤dn

knjK
∑
l≥ln

(K − 1)l
n∑

i=1

|[Kl
n]i,j |

≤
∑

|x−xj |≤dn

knjK
∑
l≥ln

(K − 1)l
∥∥Kl

n

∥∥
∞

≤
∑

|x−xj |≤dn

knjK
∑
l≥ln

(K − 1)l ∥Kn∥l∞

Denote the probability of any point xi,xj sharing the same leaf as pij . By definition of the kernel
matrix, we can write each element as:

[Kn]i,j = Eq,w

[
[Sn]i,j

]
= Ew

[
[Sn]i,j

∣∣∣xi,xj are in the same leaf
]
pij

= E[
1

X
]pi,j

where X ∼ Binomial([m,M ], ξ), with m being the minimal number of points in a leaf and M being
the maximal number of points within a leaf. Since X = m, · · · ,M , it follows that 1

X ≤
1
m almost
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surely and hence E[ 1X ] ≤ 1
mξ . Then by assumption m = max{Ω

(
n

1
d+2

)
, K−1

ξ }, it follows that

E[ 1X ] ≤ ξ
K−1 . Hence we have∥∥∥rPn ∣∣Dc

n

∥∥∥
1
≤

∑
|x−xj |≤dn

knjK
∑
l≥ln

(K − 1)l ∥Kn∥l∞

≤
∑

|x−xj |≤dn

knjK
∑
l≥ln

(K − 1)l
ξl

2l(K − 1)l
∥P∥∞

≤
∑

|x−xj |≤dn

knjK
∑
l≥ln

ξl

2l
o (1)

≤(ξ
2
)lno (1)

=o

(
1

n

)

F Proof for Theorem 2

Combining all discussions above, we present the main result Theorem 2 of this paper.

Proof. Define cD = λ
1+λq and cP = 1. To begin with, we will show that for ∀x ∈ [0, 1]d,

⟨rD,P
n , f(Xn)⟩ − cD,Pf(x)∥∥∥rD,P

n

∥∥∥ P−−→ 0.

Let ∆D,P = cD,P −
∑n

i=1 r
D,P
n,i = O

(
n−1

)
and f̃(x) = (f(x), . . . ,f(x))⊤ an n-vector. We

consider the following decomposition:

⟨rD,P
n , f(Xn)⟩ − cD,Pf(x)∥∥∥rD,P

n

∥∥∥ =
⟨rD,P

n ,f(Xn)− f̃(x)⟩∥∥∥rD,P
n

∥∥∥ − ∆D,P · f(x)∥∥∥rD,P
n

∥∥∥
=− ∆ · f(x)∥∥∥rD,P

n

∥∥∥ +
⟨rD,P

n

∣∣
Dn

, [f(Xn)− f̃(x)]
∣∣
Dn
⟩∥∥∥rD,P

n

∥∥∥ +
⟨rD,P

n

∣∣
Dc

n
, [f(Xn)− f̃(x)]

∣∣
Dc

n
⟩∥∥∥rD,P

n

∥∥∥ .

By 4, we have
∥kn∥ = Θp(n

− 1
d+1 ),

∥∥rD,P
n

∥∥ = Θp(n
− 1

2
1

d+1 ).

Notice that∣∣∣⟨rD,P
n

∣∣
Dc

n
, [f(Xn)− f̃(x)]

∣∣
Dc

n
⟩
∣∣∣ ≤ ∥∥∥rD,P

n

∣∣
Dc

n

∥∥∥
1
·
∥∥∥[f(Xn)− f̃(x)]

∣∣
Dc

n

∥∥∥
∞

= Op

(
1

n
· 2Mf

)
= Op

(
n−1

)
.

Hence we have the second term
⟨rD,P

n

∣∣
Dn

, [f(Xn)− f̃(x)]
∣∣
Dn
⟩∥∥∥rD,P

n

∥∥∥ P−−→ 0.

And by an argument earlier |∆D,P | = O
(
n−1

)
, thus

∆ · f(x)
∥rn∥

P−−→ 0.

Meanwhile, we can show similarly |Dn| = Ωp

(
n · (ln · dn)d)

)
a.s.. And recall our underlying

function is α-Lipischitz, therefore

⟨rD,P
n

∣∣
Dc

n
, [f(Xn)− f̃(x)]

∣∣
Dc

n
⟩∥∥∥rD,P

n

∥∥∥ ≤

∥∥∥rD,P
n

∣∣
Dn

∥∥∥ · ∥∥∥[f(Xn)− f̃(x)]
∣∣
Dn

∥∥∥∥∥∥rD,P
n

∥∥∥
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≤
∥∥∥[f(Xn)− f̃(x)]

∣∣
Dn

∥∥∥
= Op

(√
n · (lndn)d · (lndn · α)2

)
= Op

(√
n · (log n)d+2 · dd+2

n

)
= Op

(√
n · (log n)d+2 · n− d+2

d+1

)
= Op

(
(log n)

d+2
2 n− 1

2
1

d+1

)
.

Therefore
⟨rD,P

n ,f(Xn)⟩ − cD,Pf(x)∥∥∥rD,P
n

∥∥∥ P−−→ 0.

Slutsky’s Theorem then yields

f̂D,P
n (x)− cD,Pf(x)∥∥∥rD,P

n

∥∥∥ =
f̂n(x)− ⟨rD,P

n ,f(Xn)⟩∥∥∥rD,P
n

∥∥∥ +
⟨rD,P

n ,f(Xn)⟩ − cD,Pf(x)∥∥∥rD,P
n

∥∥∥ d−−→ N (0, σ2
ϵ ).

G Coverage Rates and Risk Bounds Guarantees

In this section we provide the proofs for coverage rates and risk bounds guarantees we gave in 5.

G.1 Proof for Corollary 1

Proof. The corollary holds by noticing that the variance of the scaled prediction of Algorithm 1 is
( 1+λq

λ )2
∥∥rDn ∥∥2 σ2. Plugging in the rate of

∥∥rDn ∥∥ by lemma 1 yields the risk bound. Similarly this
can be shown for Algorithm 2.

G.2 Proof for Corollary 3

Proof. We will show this convergence for the confidence interval Algorithm 1. For Algorithm 2,
replacing the asymptotic variance and the final rescale constant will follow the same proof.

Denote the staged empirical coverage rate of the built-in confidence interval at any point x ∈ [0, 1]d

as

1− α̂CI
n,b(x) =

1

n

n∑
i=1

1

[
f(x) ∈

[
(cDf̂b(x)− cD

∥∥rDn ∥∥ z1−α/2σ, c
Df̂b(x) + cD

∥∥rDn ∥∥ z1−α/2σ
]]

Notice that with b→∞ we have f̂b
a.s.→ f̂∞. Hence, sending b to infinity and we drop the subscript

for b to denote the coverage at infinite epoch.

1− α̂CI
n (x) =

1

n

n∑
i=1

1

[
f(x) ∈

[
(cDf̂∞(x)− cD

∥∥rDn ∥∥ z1−α/2σ, c
Df̂∞(x) + cD

∥∥rDn ∥∥ z1−α/2σ
]]

which is equivalent to

1− α̂CI
n (x) =

1

n

n∑
i=1

1

[ f̂∞(x)− cDf(x)

∥rDn ∥σ
∈
[
− z1−α/2, z1−α/2

]]
Since the indicator function is always finite, by SLLN:

1− α̂CI
n (x)

a.s.→ E
[
1

[ f̂∞(x)− cDf(x)

∥rDn ∥σ
∈
[
− z1−α/2, z1−α/2

]]]
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= P
[ f̂∞(x)− cDf(x)

∥rDn ∥σ
∈
[
− z1−α/2, z1−α/2

]]
= 1− α

For prediction intervals, we observe data according to the model

y = f(x) + ε, ε ∼ N (0, σ2),

and our infinite-epoch estimator satisfies the CLT

f̂∞(x) ∼ N
(
cD f(x), ∥rDn ∥2 σ2

)
as b→∞.

Since f̂∞(x) and the new noise ε are independent Gaussians, their sum

y = f(x)− cDf̂∞(x) + cDf̂∞(x) + ϵ

= N (cDf̂∞(x), (cD
∥∥rDn ∥∥)2σ2 + σ2)

And we produce prediction interval with the empirical coverage rate evaluated at:

1− α̂PI
n,b(x)

=
1

n

n∑
i=1

1

[
f(x) ∈

[
(cDf̂b(x)−

√
(cD ∥rDn ∥)2 + 1 · z1−α/2σ, c

Df̂b(x) +
√
(cD ∥rDn ∥)2 + 1 · z1−α/2σ

]]
By similar argument above, sending n, b→∞ gives us almost sure convergence.

Regarding the reproduction interval, since we will have two independent model following the CLT
in Theorem 2, their difference will also follow a CLT centered at zero with a variance inflated by a
factor of 2 by independence. So we construct the reproduction interval as such:

1− α̂RI
n,b(x)

=
1

n

n∑
i=1

1

[
f̂
(2)
b (x) ∈

[
f̂
(1)
b (x)−

√
2(cD

∥∥rDn ∥∥)z1−α/2σ, f̂
(1)
b (x) +

√
2(cD

∥∥rDn ∥∥)z1−α/2σ
]]

And by a similar argument we can prove almost sure convergence.

G.3 Proof for Corollary 2

Proof. To give a PAC argument, we decompose our error into statistical error f̂∗(x) − f(x) and
algorithmic error f̂b(x)− f̂∗(x).

From the Theorem 2, Pr
(
|f̂∗(x)−f(x)| > ε

)
≤ 2 exp

(
− ε2

2(cD,P )2
n1/(d+1)

)
. Under the stated lower

bound on n this probability is ≤ δ/2.

To quantify the algorithmic error, we wish to make use of the Komolgorov inequality in Theorem 3.

For ∀x ∈ [0, 1]d, let f̂b(x) be the stage-b predictor, let f̂∗(x) be the fixed point defined in Theorem
1, and write

zb(x) = f̂b(x)− f̂∗(x), ϵb = zb − E[zb | Fb−1],

It holds that the process zb(x) is eventually also a stochastic contraction mapping by the exact same
argument we made in proving Theorem 1, only replacing Kn with kn(x) which still have row sum
smaller than 1. And even we only have in probability guarantee of the staged mean contraction
condition hold, since we are doing truncations and we can get rid off it after sufficiently large b,
we can still check out the mean contraction condition

∑∞
b=1(1 − λb) = ∞. Hence we invoke the

Kolmogorov Inequality given in 3.

Consider the decomposition:

Pr
(
sup
t≥b
|zt| > ε

)
≤ Pr

(
|zb| > ε

2

)
+ Pr

(
sup
t≥b
|zt| > |zb|+ ε

2

)
Because the SCM conditions are satisfied from b onward and

∑
t>b E[ϵ2t ] ≤ C2/b, , where

C = 2λM(1 +
√
n). Theorem 3 gives the Kolmogorov’s inequality below. Specifically, we can
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choose b such that the numerator min{ ϵ2 , β ϵ
2
} ≥ ϵ

2 for suffieciently b′, where β ϵ
2
= ϵ

2 + ∥zt∥ −√
d supt>s ∥ϵs∥, when b = Ω

(
nλ2m2

ϵ2δ

)
. Hence

Pr
(
sup
t≥b
|zt| > |zb|+ ε

2

)
≤ 4 · 1 · (C2/b)

min{ ϵ2 , β ϵ
2
}2
≤ 4 · 1 · (C2/b)

(ε/2)2
=

16C2

ε2b
.

Since |ϵk| ≤ C, Vb =

b∑
k=1

E[ϵ2k] ≤ C2π2/6 < 2C2.

Set the martingale sum Sb =
∑b

k=1 ϵk. Because |zt| ≤ |zt−1|+ |ϵt|, telescoping gives
|zb| ≤ |z0|+ |Sb| ≤ M + |Sb|.

Thus the event {|zb| > ε/2} implies |Sb| > (ε− 2M)/2.

Freedman’s maximal inequality for increments bounded by C and quadratic variation ≤ 2C2 yields

Pr
(
|zb| > ε

2

)
≤ Pr

(
|Sb| > ε−2M

2

)
≤ 2 exp

(
−
(ε− 2M)2+

16C2

)
.

Then the non-asymptotic algorithmic error bound:

Pr
(
|zb(x)| > ε

)
≤ 2 exp

(
−
(ε− 4M)2+

16C2

)
+

16C2

ε2b
, C = 2λM(1 +

√
n).

With the stated lower bound on b this is ≤ δ/2.

H Miscellanious Lemmas

Theorem 5 (Kolmogorov’s Extension Theorem). Define the random variables:

• X = (x1,x2, ...) ∈ [0, 1]d×N

• ϵ⃗ = (ϵ1, ϵ2, · · · ) ∈ RN

The probability measure on [0, 1]d×N and RN are uniquely determined by their product measures
on the cylinder spaces, reflecting the i.i.d. sampling of X and ϵ⃗, such that

yi = f(xi) + ϵi, i ∈ N
Lemma 8. Let X : Ω1 → S and ϵ : Ω2 → S be independent random variables. Assume {fn :
S × S → R} is a sequence of measurable functions. Suppose that for almost surely x ∈ Ω1 and
ϵ ∈ Ω2,

fn(x, ϵ)
d−→ N(0, 1).

Then:
fn(X, ϵ)

d−→ N(0, 1).

Or equivalently
lim

n→∞
P(fn(X, ϵ⃗)) = Φ(t)

Proof.

lim
n

P(fn(X, ϵ) ≤ t) = lim
n

∫ ∫
1{fn(x,ϵ)≤t} dµx dµϵ (5)

= lim
n

∫
P(fn(x, ϵ) ≤ t) dµx (6)

=

∫
lim
n

P(fn(x, ϵ) ≤ t) dµx (7)

=

∫
Φ(t) dµx = Φ(t). (8)

(8) is justified by the Fubini theorem since the indicator function is always non-negative. And (9)
is guaranteed by Dominated Convergence Theorem since the integrand is always bounded (with
assumption of it being a sub-Gaussian density of ϵ).
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I Mean Squared Error on UCI Machine Learning Repository

We provide further results for the MSE of our methods, benchmarks, and competitors on six addi-
tional UCI datasets. The dataset we are using in this work are from: Nash et al. (1994), Vito (2008),
Schlimmer (1985), est (2019), Cortez (2008), Cortez et al. (2009), Redmond (2002).

The hyperparameters chosen by Optuna are listed below:

Table 2: Abalone
Hyperparameter GBT XGBoost LightGBM RF BRAT-D Boulevard BRAT-P ElasticNet

n estimators 500 500 500 500 500 500 500 —
learning rate 0.0213 0.0249 0.0108 — 0.5476 0.5750 0.2724 —
max depth 3 3 9 11 10 16 3 —
subsample — 0.6332 — — — — — —
num leaves — — 37 — — — — —
alpha — — — — — — — 0.1299
l1 ratio — — — — — — — 0.3753
min samples split — — — — 43 42 5 —
subsample rate — — — — 0.5071 0.5133 0.6266 —
dropout rate — — — — 0.4766 0.0000 — —
n trees per group — — — — — — 16 —

Table 3: Automobile
Hyperparameter GBT XGBoost LightGBM RF BRAT-D Boulevard BRAT-P ElasticNet

n estimators 500 500 500 500 500 500 500 —
learning rate 0.2019 0.2153 0.2341 — 0.9411 0.1416 0.5671 —
max depth 3 3 8 14 6 11 3 —
subsample — 0.9850 — — — — — —
num leaves — — 37 — — — — —
alpha — — — — — — — 0.3634
l1 ratio — — — — — — — 0.1386
min samples split — — — — 23 9 30 —
subsample rate — — — — 0.9368 0.9899 0.7344 —
dropout rate — — — — 0.2145 0.0000 — —
n trees per group — — — — — — 16 —

Table 4: Communities and Crime
Hyperparameter GBT XGBoost LightGBM RF BRAT-D Boulevard BRAT-P ElasticNet

n estimators 500 500 500 500 500 500 500 —
learning rate 0.0224 0.0379 0.0215 — 0.6904 0.5772 0.3578 —
max depth 6 3 5 16 15 16 4 —
subsample — 0.5375 — — — — — —
num leaves — — 20 — — — — —
alpha — — — — — — — 3.8079
l1 ratio — — — — — — — 0.9556
min samples split — — — — 35 49 5 —
subsample rate — — — — 0.7385 0.7209 0.5148 —
dropout rate — — — — 0.1903 0.0000 — —
n trees per group — — — — — — 11 —
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Table 5: Wine Quality
Hyperparameter GBT XGBoost LightGBM RF BRAT-D Boulevard BRAT-P ElasticNet

n estimators 500 500 500 500 500 500 500 —
learning rate 0.0731 0.1139 0.1186 — 0.8396 0.8905 0.8200 —
max depth 10 10 16 20 15 15 16 —
subsample — 0.6980 — — — — — —
num leaves — — 42 — — — — —
alpha — — — — — — — 3.8079
l1 ratio — — — — — — — 0.9556
min samples split — — — — 4 2 13 —
subsample rate — — — — 0.7317 0.7431 0.6669 —
dropout rate — — — — 0.2762 0.0000 — —
n trees per group — — — — — — 10 —

Table 6: Student Performance
Hyperparameter GBT XGBoost LightGBM RF BRAT-D Boulevard BRAT-P ElasticNet

n estimators 500 500 500 500 500 500 500 —
learning rate 0.0177 0.1836 0.0218 — 0.9256 0.8698 0.9824 —
max depth 3 5 5 11 3 9 3 —
subsample — 0.5780 — — — — — —
num leaves — — 38 — — — — —
alpha — — — — — — — 0.4855
l1 ratio — — — — — — — 0.1373
min samples split — — — — 39 32 48 —
subsample rate — — — — 0.8418 0.5249 0.5964 —
dropout rate — — — — 0.1230 0.0000 — —
n trees per group — — — — — — 13 —

Table 7: Obesity Level
Hyperparameter GBT XGBoost LightGBM RF BRAT-D Boulevard BRAT-P ElasticNet

n estimators 500 500 500 500 500 500 500 —
learning rate 0.1905 0.0916 0.0834 — 0.2487 0.5382 0.3643 —
max depth 7 7 16 16 16 16 11 —
subsample — 0.8121 — — — — — —
num leaves — — 25 — — — — —
alpha — — — — — — — 0.2182
l1 ratio — — — — — — — 0.1200
min samples split — — — — 3 3 4 —
subsample rate — — — — 0.6466 0.7153 0.5595 —
dropout rate — — — — 0.8079 0.0000 — —
n trees per group — — — — — — 4 —
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Table 8: AIDS Clinical Trials Group Study 175
Hyperparameter GBT XGBoost LightGBM RF BRAT-D Boulevard BRAT-P ElasticNet

n estimators 500 500 500 500 500 500 500 —
learning rate 0.0177 0.0226 0.0108 — 0.8519 0.9137 0.3010 —
max depth 3 3 9 5 4 4 4 —
subsample — 0.7530 — — — — — —
num leaves — — 37 — — — — —
alpha — — — — — — — 3.8079
l1 ratio — — — — — — — 0.9556
min samples split — — — — 12 27 46 —
subsample rate — — — — 0.5335 0.7374 0.5342 —
dropout rate — — — — 0.3421 0.0000 — —
n trees per group — — — — — — 3 —

Table 9: Infrared Thermography Temperature
Hyperparameter GBT XGBoost LightGBM RF BRAT-D Boulevard BRAT-P ElasticNet

n estimators 500 500 500 500 500 500 500 —
learning rate 0.0289 0.0167 0.1836 — 0.7616 0.6558 0.9864 —
max depth 5 3 1 20 3 3 3 —
subsample — 0.6988 — — — — — —
num leaves — — 24 — — — — —
alpha — — — — — — — 3.8079
l1 ratio — — — — — — — 0.9556
min samples split — — — — 4 4 9 —
subsample rate — — — — 0.5055 0.5438 0.6371 —
dropout rate — — — — 0.2395 0.0000 — —
n trees per group — — — — — — 2 —

The learning rate for BRAT-P is only valid in the first vanilla boosting round. After that, all trees are
fixed with learning rate 1.
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J Rainclouds for Interval Coverage

Following the discussion in Section 6, we present more raincloud plots below:

Figure 7: Moderate coverage, where there is neither overfitting nor underfitting.

(a) Test size: 200; Model Replications: 30; Ensemble Size: 200; Learning Rate: 0.6; Subsampling Rate: 0.8;
Dropout Rate: 0.3; Maximum Depth: 4; Nystrom subsampling rate: 0.1.

Figure 8: Wide coverage, when there is overfitting.

(a) Test size: 200; Model Replications: 30; Ensemble Size: 200; Learning Rate: 0.3; Subsampling Rate: 0.8;
Dropout Rate: 0.3; Maximum Depth: 6; Nystrom subsampling rate: 0.1.
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Figure 9: Narrow coverage, when there is underfitting.

(a) Test size: 200; Model Replications: 30; Ensemble Size: 200; Learning Rate: 1.0; Subsampling Rate: 0.8;
Dropout Rate: 0.9; Maximum Depth: 4; Nystrom subsampling rate: 0.1.
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K Visualizations of Interval Coverage on a 1D Signal

As an extension of Section 6, we display more visualizations of our intervals on a 1D interval.

Figure 10: Moderate coverage, neither overfitting nor underfitting.

(a) Ensemble Size: 300; Learning Rate: 1.0; Maximum Depth: 8; Subsampling Rate: 0.9; Dropout rate: 0.6

Figure 11: Low coverage, overfitting.

(a) Ensemble Size: 100; Learning Rate: 0.3; Maximum Depth: 12; Subsampling Rate: 0.6; Dropout rate: 0.3

Figure 12: High coverage, underfitting.

(a) Ensemble Size: 100; Learning Rate: 0.3; Maximum Depth: 4; Subsampling Rate: 0.6; Dropout rate: 0.6
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction state that we (1) propose both random-dropout
and structured-dropout boosting algorithms, (2) derive their asymptotic normality via a
CLT, and (3) establish finite-sample statistical rates. These claims correspond directly to
algorithms definitions and CLT statement in Section 3 (proof in Appendix E). Statistical
rates are given in Section 4 (proofs in Appendix G).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explicitly acknowledge in Section 7 that our theoretical guarantees rest
on strong assumptions (structure–value isolation, non-adaptivity, and tree regularity) which
may not hold in practice, and we outline the need to relax these; we also note that our meth-
ods are currently limited to regression and discuss challenges in extending to classification,
survival analysis, and structured outputs.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The paper mainly introduced two modified boosting algorithms: Algorithm 1
and Algorithm 2. In Section 2 and 5 we introduced all assumptions needed for our follow-
ing results to hold. Both algorithms are shown to converge to a fixed point in Appendix C.
And the corresponding derivations of CLTs are provided in Appendix E.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All parameters used to produce the presented results are either provided in
Section 6, or provided in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We include all data-processing scripts, model training and evaluation code,
and a README with exact commands and environment specifications in the supplemen-
tary materials. All UCI datasets used are public and instructions for download and prepro-
cessing are provided.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe our train/test splits, evaluation protocol, and Optuna-based hy-
perparameter optimization in Section 6, with full model settings tabulated in Appendix I.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In MSE races, we run models for 5 replications and fill the mean MSE trajec-
tories +/− 2ŝ.d.. In coverage rate simulations we provide kernel density estimations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All experiments were run on an Apple MacBook Pro (2022, Apple M2, 8 GB
RAM); individual runs took under 2 hours and the full suite under 6 hours. These modest
requirements mean the results can be reproduced on any modern laptop.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All authors have reviewed the NeurIPS Code of Ethics and will preserve
anonymity.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work develops statistical inference tools for gradient boosting in tabular
regression—a foundational methodological advance without a specific application domain
or direct deployment context. As such, there is no clear pathway to societal harms or
benefits tied exclusively to our contributions.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work focuses on statistical inference for gradient boosting on tabular
regression tasks, involving no pretrained networks, scraped media, or high-risk generative
models, and thus does not pose significant misuse risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite each UCI dataset by name and reference (all are publicly available
under the UCI Machine Learning Repository terms), and we reference the original papers
for all libraries and methods used (e.g., XGBoost, LightGBM).
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
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Justification: We do not introduce or release any new datasets, codebases, or pre-trained
models—our experiments use publicly available UCI datasets and standard libraries.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: All experiments are done on sythetic dataset or existing dataset from UCI
repository.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: All core methodological components were designed and implemented by the
authors. Any use of LLMs was limited to writing, editing, or formatting and did not influ-
ence the scientific content or originality of the work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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