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ABSTRACT

In unsupervised domain adaptation (UDA), aligning source and target domains
improves the predictive performance of learned models on the target domain. A
common methodological improvement in alignment methods is to divide the do-
mains and align sub-domains instead. These sub-domain-based algorithms have
demonstrated great empirical success but lack theoretical support. In this work,
we establish a rigorous theoretical understanding of the advantages of these meth-
ods that have the potential to enhance their overall impact on the field. Our the-
ory uncovers that sub-domain-based methods optimize an error bound that is at
least as strong as non-sub-domain-based error bounds and is empirically verified
to be much stronger. Furthermore, our analysis indicates that when the marginal
weights of sub-domains shift between source and target tasks, the performance
of these methods may be compromised. We therefore implement an algorithm
to robustify sub-domain alignment for domain adaptation under sub-domain shift,
offering a valuable adaptation strategy for future sub-domain-based methods. Em-
pirical experiments across various benchmarks validate our theoretical insights,
prove the necessity for the proposed adaptation strategy, and demonstrate the al-
gorithm’s competitiveness in handling label shift.

1 INTRODUCTION

Supervised deep learning has achieved unprecedented success in a wide range of real-world appli-
cations. However, obtaining labeled data may be costly, labor-intensive, and/or time-consuming in
certain applications, particularly in medical and biological domains (Lu et al., 2017; Li et al., 2020).
To this end, unsupervised domain adaptation (UDA) transfers knowledge from a labeled source do-
main to a different but related unlabeled target domain (Farahani et al., 2021). However, efficient
UDA is challenging due to the statistical discrepancies between two domains, hereafter referred to
as domain shift (Wang & Deng, 2018; Sankaranarayanan et al., 2018; Deng et al., 2019). To address
this challenge, much of the UDA research has focused on reducing the distributional gap between
the source and target domains (Shen et al., 2018; Liu et al., 2016; Isola et al., 2017; Tzeng et al.,
2015; 2017; 2020; Ganin & Lempitsky, 2015; Ganin et al., 2016; Peng et al., 2018). Recent methods
further partition the data into sub-domains and align the sub-domains instead (Pinheiro, 2018; Long
et al., 2018; Deng et al., 2019). One straightforward definition of the sub-domains is the conditional
distributions based on the classification label. Other strategies for defining sub-domains include
cross-domain adaptive clustering (Li et al., 2021b), classifier-based backprop-induced weighting
(Westfechtel et al., 2023), domain consensus clustering (Li et al., 2021a), joint learning of domain-
invariant features and classifiers (Shi & Sha, 2012), and the use of deep clustering (Gao et al., 2020).
These sub-domain-based algorithms have shown substantial empirical success. However, the bene-
fits of sub-domain alignments have not been rigorously justified.

In this work, we present a theoretical analysis to establish that the sub-domain based methods are in
fact optimizing a generalization bound that is at least as strong as (and empirically much stronger
than) the full-domain-based objective functions. Our analysis further reveals that when the marginal
weights of the sub-domains shift between source and target, the sub-domain based methods can
fail. We then present a novel UDA algorithm, Domain Adaptation via Rebalanced Sub-domain
Alignment (DARSA), that is motivated by our analysis and addresses the case when marginal sub-
domain weights shift. DARSA optimizes reweighted classification error and discrepancy between
sub-domains of the source and target tasks. The reweighting scheme follows a simple intuition:
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(a) One-dimensional space

(b) Sub-domain 1 (c) Sub-domain 2

(d) Visualization of high-dimensional space

(e) DARSA illustration

Figure 1: Conceptual overview of our motivation. Listed distances are Wasserstein-1 distances. (a):
Representation of data prior to training. The source domain DS (coral) consists of two Gaussian
centered at−1.5 and 1.5 with weights 0.7 and 0.3, respectively. The target domainDT (darkblue) is
a mixture of two Gaussians centered at−1.4 and 1.6 with inverse weights. We split into subdomains
at x = 0. (b-c): Representation of data after training. The sub-domain distances are trivial compared
to the domain distance in (a). (d) MNIST to MNIST-M UDA task. The features are projected to
2-D with UMAP. The legend indicates distances between corresponding sub-domains (with red sub-
domain indices labeled in the figure), and the sub-figure title shows the overall distance. These sub-
domain distances are small compared to the overall distance given at the top. (e) DARSA illustration
with wk

T indicating target sub-domain weights, showing DARSA’s applicability under label shifting.

important sub-domains in the target domain need more attention. To illustrate the concept visually,
Figure 1 highlights the strengths of sub-domain alignment, providing insight into how our method
operates and the benefits it brings. The contribution of our work is two-fold:

• Theoretical Contribution: Our work analyzes and provides a theoretical foundation for sub-
domain based methods in domain adaptation, addressing their previous lack of rigorous under-
standing. Our theoretical framework not only supports our algorithm but can be extended to other
methods, contributing to broader impact and value in the field.

• Algorithmic Contribution: Our theoretical analysis leads to our algorithm DARSA. DARSA
addresses shifted marginal sub-domain weights, which adversely impact existing sub-domain-
based methods. We empirically verify its competitive performance under label shifting on various
benchmarks, confirming our theoretical insights and validating the proposed adaptation strategy.

2 RELATED WORK

We review the most relevant work below and provide a comprehensive discussion in Appendix A.

Sub-domain-based Domain Adaptation. Sub-domain alignment has been proven effective in
aligning multi-modal distributions and enhancing performance across various tasks (Deng et al.,
2019; Long et al., 2018; Pinheiro, 2018; Shi & Sha, 2012; Jiang et al., 2020; Snell et al., 2017).
While these methods have demonstrated empirical success, a detailed theoretical perspective on the
benefits of incorporating sub-domain structures has yet to be fully explored. Our work complements
these existing methodologies by providing a comprehensive theoretical understanding of their inher-
ent advantages. Our theory has the potential to further enhance their overall impact on the field.

Discrepancy-based Domain Adaptation. UDA commonly tries to reduce the distribution gap be-
tween the source and target domains. One approach to achieve this is discrepancy-based methods in
the feature space (Tzeng et al., 2014; Long et al., 2015; Sun et al., 2016), which often use maximum
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mean discrepancy (MMD) (Borgwardt et al., 2006). While MMD is a well-known Reproducing
Kernel Hilbert Space (RKHS) metric, it is weaker than the Wasserstein-1 distance (Lu & Lu, 2020).
Therefore, we use Wasserstein-1 distance in our work.

Theoretical Analysis of Domain Adaptation. Many existing domain adaptation methods are in-
spired by the generalization bounds based on the H-divergence (Ben-David et al., 2006) which
is a modified version of the total variation distance that restricts the hypothesis to a given class.
These generalization bounds can be estimated by learning a domain classifier with a finite Vap-
nik–Chervonenkis (VC) dimension. However, this results in a loose bound for most neural net-
works (Li et al., 2018). In this work, we use the Wasserstein distance for two reasons. First, the
Wasserstein-1 distance is upper bounded by the total variation distance (Ben-David et al., 2010),
leading to stronger generalization bounds. Additionally, the Wasserstein-1 distance is bounded
above by the Kullback-Leibler divergence (a special case of the Rényi divergence when α goes
to 1 (Fournier & Guillin, 2015)), giving stronger bounds than those presented by Redko et al (Redko
et al., 2017) and Mansour et al (Mansour et al., 2012). Additionally, the Wasserstein distance has
stable gradients even when the compared distributions are far apart (Gulrajani et al., 2017).

3 PRELIMINARIES

Assume a labeled source dataset {(xi
S , y

i
S)}

NS
i=1 from a source domain XS with distribution PS and

an unlabeled target dataset {xi
T }

NT
i=1 from a target domain XT with distribution PT . The source

dataset has NS labeled samples, and the target dataset has NT unlabeled samples. We assume
that the samples xi

S ∈ X ⊆ Rd and xi
T ∈ X ⊆ Rd are independently drawn from PS and PT ,

respectively. The goal is to learn a classifier f(x) that predicts labels {yiT }
NT
i=1 for the target dataset.

We further assume that PS and PT are probability densities of Borel probability measures in the
Wasserstein space P1(Rd), i.e., the space of probability measures with finite first moment.

Sub-domains. We assume that both XS and XT are mixtures of K sub-domains. In other words,
we have PS =

∑K
k=1 w

k
SP

k
S and PT =

∑K
k=1 w

k
TP

k
T where we use P k

S and P k
T to respectively

represent the distribution of the k-th sub-domain of the source domain and that of the target do-
main, and wk

S /wk
T correspond to the weights of each sub-domain. Note that wS

.
= [w1

S , . . . , w
K
S ]

and wT
.
= [w1

T , . . . , w
K
T ] belong to ∆K (the K − 1 probability simplex). It is straightforward

to define sub-domains as conditional distributions, such that the k-th sub-domain is represented as
P k
S = P (XS |YS = k) and P k

T = P (XT |YT = k), where YS and YT are the source and target la-
bels, respectively. However, we note that the framework presented in this work is applicable across
various sub-domain methods.

Probabilistic Classifier Discrepancy. For a distribution D, we define the discrepancy between two
functions f and g as:

γD(f, g) = Ex∼D [|f(x)− g(x)|] .
We use gT and gS to represent the true labeling functions of the target and source domains, respec-
tively. We use γS(f)

.
= γPS

(f, gS) and γT (f)
.
= γPT

(f, gT ) to respectively denote the discrepan-
cies of a hypothesis f to the true labeling function for the source and target domains.

Wasserstein Distance. The Kantorovich-Rubenstein dual representation of the Wasserstein-1 dis-
tance (Villani, 2009) between two distributions PS and PT is defined as

W1(PS , PT ) = sup||f ||L≤1 Ex∼PS
[f(x)]− Ex∼PT

[f(x)],

where the supremum is over the set of 1-Lipschitz functions (all Lipschitz functions f with Lipschitz
constant L ≤ 1. For notational simplicity, we use D(X1, X2) to denote a distance between the
distributions of any pair of random variables X1 and X2. For instance, W1(Φ(XS),Φ(XT )) denotes
the Wasserstein-1 distance between the distributions of the random variables Φ(XS) and Φ(XT ) for
any transformation Φ.

4 UNDERSTANDING SUB-DOMAIN-BASED METHODS

We now present our theoretical analysis of sub-domain-based methods, with all proofs deferred
to the Appendix B. We first present a generalization bound for domain adaptation that is closely
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related to existing work, and then establish a novel generalization bound for sub-domain-based
methods, aligning with the objectives used by these existing methods. Furthermore, we demonstrate
that the sub-domain-based generalization bound is at least as strong as the non-sub-domain-based
generalization bound, which establishes a rigorous theoretical understanding of the advantages of
these methods. Our analysis also uncovers that when the marginal weights of sub-domains shift
between the source and the target task, sub-domain methods can potentially fail.

4.1 GENERALIZATION BOUNDS FOR DOMAIN ADAPTATION

Before presenting our novel theoretical results about sub-domain-based domain adaptation, we first
present an upper bound closely related to Ben-David et al. (2010) and Li et al. (2018) Theorem A.8.
It is worth noting that we use the Wasserstein-1 distance in our analysis, as it provides a stronger
bound than the total variation distance Redko et al. (2017) employed by Ben-David et al. (2010).
Theorem 4.1 (Full Domain Generalization Bound). For a hypothesis f : X → [0, 1],

γT (f) ≤ γS(f) + (λ+ λH)W1(PS , PT ) + γ⋆, (1)

where γ⋆ = min
f∈H

γS(f)+γT (f), H is a hypothesis class included in the set of λH -Lipschitz functions,

and the true functions gT and gS are both λ-Lipschitz functions (as defined in Appendix B.1).
Remark 4.2. The upper bound in Theorem 4.1 consists of three components: (i) γS(f) is the perfor-
mance of the hypothesis on the source domain, (ii) W1(PS , PT ) is the distance between the source
and the target domains, and (iii) γ⋆ is a constant related to the difference between the source and the
target problems that cannot be addressed by domain adaptation. For succinctness and clarity of the
following analysis, we assume without loss of generality that λ+ λH ≤ 1, simplifying the bound to

γT (f) ≤ γS(f) +W1(PS , PT ) + γ⋆. (2)

Numerous works attempt to solve the domain adaptation problem by designing algorithms that min-
imize similar generalization bounds to the one in equation 2, e.g., Theorem 1 in Ben-David et al.
(2010). These approaches consist of two components: (i) a mapping Φ : X → H that transforms
the original problem by embedding XS and XT into a shared hidden space H, and (ii) a hypothe-
sis h : H → [0, 1] for prediction. Since γT (h ◦ Φ) = γΦ(XT )(h), with Theorem 4.1, we have a
generalization bound of the function h ◦ Φ : X → [0, 1] on the original target problem:

γT (h ◦ Φ) = γΦ(XT )(h) ≤ γΦ(XS)(h) +W1(Φ(XS),Φ(XT )) + γ⋆
Φ. (3)

If the distance between Φ(XS) and Φ(XT ), i.e., W1(Φ(XS),Φ(XT )), is close and the classification
error of h on the transformed source problem, i.e., γΦ(XS)(h), remains low, then the performance of
the hypothesis h ◦ Φ on the original target problem can be guaranteed. This motivation has led to a
variety of domain adaptation frameworks with objectives of the following format:

min Φ:X→H
h:H→[0,1]

γΦ(XS)(h) + α D(Φ(XS),Φ(XT )), (4)

where γΦ(XS)(h) is the classification error of h on the transformed source problem, D is a distance
between distributions and α is the balancing weight. In this work, we use Wasserstein-1 distance.

4.2 ANALYSIS OF SUB-DOMAIN-BASED METHODS

We first present several results that will be used to build the main theorem. These results themselves
may be of interest. First of all, Theorem 4.1 directly leads to the following proposition:
Proposition 4.3 (Individual Sub-domain Generalization Bound). For k ∈ {1, . . . ,K}, where K
represents the total number of distinct sub-domains, for sub-domain Xk

S with distribution P k
S and

Xk
T with distribution P k

T , it holds any f ∈ H that

γk
T (f) ≤ γk

S(f) +W1(P
k
S , P

k
T ) + (γk)⋆, (5)

where (γk)⋆ = minf∈H γk
S(f) + γk

T (f), H is a hypothesis class included in the set of λH -Lipschitz
functions, the true functions gT and gS are both λ-Lipschitz functions, and λ+ λH ≤ 1.

The second result below shows that the classification error of any hypothesis f on a domain can be
decomposed into a weighted sum of the classification errors of f on its sub-domains.

4



Under review as a conference paper at ICLR 2024

Lemma 4.4 (Decomposition of the Classification Error). For any hypothesis f ∈ H,

γS(f) =
∑K

k=1 w
k
Sγ

k
S(f), γT (f) =

∑K
k=1 w

k
T γ

k
T (f). (6)

With above results, we present a generalization bound with sub-domain information:
Theorem 4.5 (Sub-domain-based Generalization Bound).

γT (f) ≤
∑K

k=1 w
k
T γ

k
S(f) +

∑K
k=1 w

k
TW1(P

k
S , P

k
T ) +

∑K
k=1 w

k
T (γ

k)⋆. (7)

In particular, in a balanced domain adaptation setting where for all k, wk
S = wk

T , we have that

γT (f) ≤ γS(f) +
∑K

k=1 w
k
SW1(P

k
S , P

k
T ) +

∑K
k=1 w

k
S(γ

k)⋆. (8)

Remark 4.6. Note that the format of the RHS of equation 8 is reminiscent of the objectives used by
the majority of the sub-domain-based methods.

We next show that, under reasonable assumptions, the weighted sum of distances between corre-
sponding sub-domains of the source and target domains is at most as large as the distance between
the marginal distribution of the source domain and that of the target domain.
Theorem 4.7 (Benefits of Sub-domain Alignment). Under the following assumptions:

A1. For all k, P k
S / P k

T are Gaussian distributions with mean mk
S / mk

T and covariance Σk
S / Σk

T .
A2. Distance between the paired source-target sub-domain is less or equal to distance between the
non-paired source-target sub-domain, i.e., W1(P

k
S , P

k
T ) ≤W1(P

k
S , P

k′

T ) for k ̸= k′.
A3. There exists a small constant ϵ > 0, such that max

1≤k≤K
(tr(Σk

S)) ≤ ϵ and max
1≤k≤K

(tr(Σk′

T )) ≤ ϵ.

Then the following inequality holds:∑K
k=1 w

k
TW1(P

k
S , P

k
T ) ≤W1(PS , PT ) + δc, (9)

where δc is 4
√
ϵ. In particular, when wk

S = wk
T for all k,∑K

k=1 w
k
SW1(P

k
S , P

k
T ) ≤W1(PS , PT ) + δc. (10)

Remark 4.8. In Appendix C, we provide empirical evidence to verify that these assumptions are
satisfied on real-world datasets. We note that the assumption of a Gaussian distribution for Xk is
not unreasonable since it is often the result of a complex transformation, Φ, and the Central Limit
Theorem indicates that the outcome of such a transformation is approximately normally distributed
under regularity assumptions (please see Appendix C.1 for empirical evidence).
Remark 4.9. δc is a constant dependent only on the variance of the features but not the covariance
between features in different dimensions. Moreover, the inequality holds empirically without δc as
demonstrated in Figure 3, as well as Figure 7 and Figure 8 in Appendix G.2.

Theorem 4.7 shows that the objective function of sub-domain methods is at least as strong as the
objective function of domain alignment methods, explaining its improved performance. However, if
the marginal weights of the sub-domain shifts, i.e., wk

S ̸= wk
T , the inequality in equation 10 is not

likely to hold and the framework can collapse. One such example is the scenario of shifted label
distributions where wk

T and wk
S (class weights for target and source domains) can be vastly different.

To overcome this, we propose to minimize an objective with the simple intuition that important sub-
domains in the target domain need more attention. With this motivation, we propose the following
objective function for UDA with shifted label distribution:

L(f) =
∑K

k=1 w
k
T γ

k
S(f). (11)

In other words, L reweights the losses of sub-domains so that the sub-domain with more weight
in the target domain can be emphasized more. We next prove that through the proposed approach,
we can again obtain a sub-domain-based generalization bound that is at least as strong as the full
domain generalization bound without the sub-domain information.
Theorem 4.10. Let H .

= {f |f : X → [0, 1]} denote a hypothesis space. Under the assumptions in
Theorem 4.7, for any f ∈ H such that:∑K

k=1 w
k
T γ

k
S(f) ≤

∑K
k=1 w

k
Sγ

k
S(f), (12)
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then we have
∑K

k=1 w
k
T (γ

k)⋆ ≤ γ⋆. Further, let

ϵc(f)
.
=
∑K

k=1 w
k
T γ

k
S(f) +

∑K
k=1 w

k
TW1(P

k
S , P

k
T ) +

∑K
k=1 w

k
T (γ

k)⋆

denote the sub-domain-based generalization bound and let

ϵg(f)
.
= γS(f) +W1(PS , PT ) + γ⋆

denote the generalization bound without any sub-domain information, we have,

ϵc(f) ≤ ϵg(f) + δc.

Remark 4.11. In Section 6.1 and Appendix G.2, we provide extensive empirical evidence to establish
that equation 12 can easily hold, as the left hand side is the optimization objective. Moreover, in
these sections, we offer empirical evidence to further verify the value of this theoretical result by
showing that our proposed bound is empirically much stronger than the existing one.

Inspired by our analysis, we propose a framework, Domain Adaptation with Rebalanced Sub-domain
Alignment (DARSA), for imbalanced UDA, a special case of the sub-domain weight shifting sce-
nario where the class weights of the target domain shifts from that of the source domain.

5 METHODS

In DARSA, we divide the source domains into sub-domains based on class labels, and divide target
domains into sub-domains using predicted class labels (serving as pseudo labels, which have shown
success in previous research (Deng et al., 2019; Lee et al., 2013)) for unlabeled target domains.
Motivated by Theorem 4.10, the framework of DARSA, shown in Figure 2, is composed of a source
encoder fS

E parameterized by θSE , a target encoder fT
E parameterized by θTE , and a classifier fY

parameterized by θY . The pseudo-code for DARSA can be found in Appendix D.

The objective function of DARSA is defined as follows:

minθY ,θS
E ,θT

E
λY LY + λDLD + LC , (13)

where LY , LD, LC are losses described below with relative weights given by λY and λD.

Weighted source domain classification error LY . The weighted source domain classification error
in Theorem 4.10 can be further expressed as:∑K

k=1 w
k
T γ

k
S(f) =

∑K
k=1 w

k
T

∫
PS(x|c = k)|f(x)− gS(x)|dx

=
∑K

k=1 w
k
T

∫ PS(c=k|x)PS(x)
PS(c=k) |f(x)− gS(x)|dx =

∑K
k=1

wk
T

wk
S

Ex∼Ds
wk

S(x)|f(x)− gS(x)|,
(14)

where variable c represents class, wk
T = PT (c = k), wk

S = PS(c = k), wk
S(x) = PS(c = k|x). We

set PS(c = k|x) = 1 only when data point x is in class k, otherwise PS(c = k|x) = 0. wk
S can be

set to the marginal source label distribution, and wk
T can be estimated from the target predictions.

From equation 14, LY (θY , θ
S
E) is defined as:

LY (θY , θ
S
E) =

1
NS

∑
xi∈XS

1yi=k
wk

T

wk
S

ℓ(ŷi, yi),

where ŷi = fY (f
S
E(x

i)) is the predicted label and ℓ can be any non-negative loss function (e.g.,
cross-entropy loss for classification tasks).

Weighted source-target subdomain discrepancyLD. The weighted source-target domain discrep-
ancy in Theorem 4.10 can be further expressed as:

LD(θSE , θ
T
E , θY ) =

∑K
k=1 w

k
TW1(P

k
S , P

k
T ) =

∑K
k=1 w

k
TW1(f

S
E(x

k
S), f

T
E (xk

T )), (15)

where xk
S are source samples with labels yS = k, and xk

T are target samples with predicted labels
ŷT = k. We leverage the Sinkhorn algorithm (Cuturi, 2013) to approximate the Wasserstein metric.

Clustering loss LC . The clustering loss LC = λcLintra + λaLinter is comprised of two com-
ponents: the intra-clustering loss, Lintra, and the inter-clustering loss, Linter. The role of Lintra

is to satisfy the assumption A.3 in Theorem 4.7. It encourages embeddings of the same label to
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Figure 2: The DARSA framework. Orange lines representing the clustering loss LC , green lines
indicating domain discrepancy LD, and purple lines indicating source classification loss LY .

cluster tightly together, while also pushing embeddings of different labels to separate by at least a
user-specified distance, m (Luo et al., 2018). The inter-clustering loss Linter further enhances sub-
domain alignment by aligning the centroids of source sub-domains with those of their corresponding
target sub-domains in the representation space. We define Lintra and Linter as follows:

Lintra(θ
S
E , θ

T
E , θY ) = Lintra(f

S
E(XS)) + Lintra(f

T
E (XT )), (16)

Lintra(f
S
E(X )) = 1

N2

∑N
i,j=1

[
δijDij + (1− δij)max (0,m−Dij)

]
;

Linter(θ
S
E , θ

T
E , θY ) =

1
K

∑K
k=1 ∥C

(
fS
E(x

k
T )
)
− C(

(
fT
E (xk

T )
)
∥2, (17)

where N represents the number of samples in the domain X and C(·) calculates the centroids of the
sub-domains, δij = 1 only if xi and xj have the same label; otherwise, δij = 0. We use the ground
truth label or the predicted label if x is in source domain or target domain, respectively. m is a pre-
defined distance controlling how separated each sub-domain should be. Dij = ∥fE(xi)−fE(xj)∥2
represents distance between xi and xj .

6 EXPERIMENTS

In this section, we verify our theoretical results and assess DARSA’s efficacy through real-world
experiments. We begin by empirically confirming the superiority of the sub-domain-based general-
ization bound (Theorem 4.10) in Section 6.1. Then, we verify that the assumptions for Theorem 4.10
are empirically satisfied on real-world datasets (details in Appendix C). Next, we demonstrate the
vital role of subdomain weight re-balancing in Section 6.2 and show DARSA’s robustness to minor
weight estimation discrepancies. Lastly, given that our theoretical analysis guarantees that DARSA
should have competitive performance in scenarios where the number of classes is not overwhelming,
we evaluate DARSA on real-world datasets with this property. Comparing with other state-of-the-art
UDA baselines, we verify the correctness of our analysis as well as an advantage of DARSA that its
strong performance can be guaranteed on particular real-world applications such as those in medical
and operations research. We base the following confirmatory experiments on two sets of datasets.

Experiments on the Digits Datasets. In our Digits datasets experiments, we evaluate our perfor-
mance across four datasets: MNIST (M) (LeCun et al., 1998), MNIST-M (MM) (Ganin et al., 2016),
USPS (U), and SVHN (S), all modified to induce label distribution shifts. Here, the parameter α de-
notes the class imbalance rate, representing a ratio such as 1:α and α:1 for the odd:even distribution
in the source and target datasets, respectively. Weak and strong imbalance correspond to α = 3 and
α = 8. For comprehensive details, refer to Appendix G.

Experiments on the TST Dataset. We use the Tail Suspension Test (TST) dataset (Gallagher et al.,
2017) of local field potentials (LFPs) from 26 mice with two genetic backgrounds: Clock-∆19 (a
bipolar disorder model) and wildtype. This dataset is publicly available (Carlson et al., 2023). Our

1The code to replicate all experiments is available at: https://anonymous.4open.science/r/
DARSA/
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(a) Domain Discrepancy (b) Source Classification Loss

Figure 3: For MNIST to MNIST-M task under weak imbalance. (a) Compare the domain discrep-
ancy term (LD) in our proposed bound to that in Theorem 4.1. (b) Compare the source classification
term (LY ) in our proposed bound to that in Theorem 4.1

study involves two domain adaptation tasks, predicting the current condition - home cage (HC), open
field (OF), or tail-suspension (TS) - from one genotype to the other. We subsample datasets to induce
label distribution shifts with imbalance rate = 2. For comprehensive details, refer to Appendix H.

6.1 EMPIRICAL ANALYSIS OF OUR PROPOSED GENERALIZATION BOUND

We first verify the pivotal result in Theorem 4.10 that the sub-domain based generalization bound is
at least as tight as the the non-sub-domain bound. We empirically evaluate the proposed bound on
the Digits datasets under weak imbalance. As shown in Figure 3, our empirical results demonstrate
that the sub-domain-based generalization bound in Theorem 4.5 is empirically much stronger than
the non-sub-domain-based bound in Theorem 4.1, corroborating our insights for the effectiveness of
sub-domain based methods. Additional experiments on the other UDA tasks in the Digits datasets
under weak and strong imbalance also support this claim, and full results are in Appendix G.2.

6.2 IMPORTANCE OF RE-WEIGHTING

Here, we experiment on the Digits datasets under weak imbalance to demonstrate the importance of
(i) weights re-weighting and (ii) the accuracy of target sub-domain weights estimation. We compare
DARSA with one variation of DARSA which employs uniform weights for all sub-domains and
another variation which swaps sub-domain weights estimation of source with target. We also include
two other baselines where the weights of the target domain are chosen to be deviating from the truth.
Specifically, we compare DARSA with the following configurations:

• DARSA: Full algorithm where weights are inferred.
• DARSA Oracle: Utilizing true values of wk

T .
• DARSA Small Divergence: Setting wk

T to be 20% divergent from true values.
• DARSA Large Divergence: Setting wk

T to be 50% divergent from true values.
• DARSA Flip: Swapping wk

T with wk
S , effectively flipping importance weighting.

• DARSA Uniform: Assigning uniform weights for all sub-domains.

The results of these experiments are in Table 1. We verify the importance of subdomain weights re-
balancing by showing that the performance of DARSA degrades significantly without the weights re-
balancing or wrong sub-domain weights, further corroborating the value of our insights. Aditionally,
while the oracle case provides the best performance, inferring the weights in the DARSA algorithm
provides nearly the same quality of predictions. In addition, we found our method, DARSA is robust
to minor divergence in weights estimation and varying imbalance rates.

6.3 DARSA ON REAL-WORLD DATASETS

We now compare DARSA with many competing algorithms on these two datasets. Full details on
the experiments, the rationale for competing algorithms choices, and their settings are in Appendix
G and Appendix H for the Digits and TST datasets, respectively.

8
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Table 1: Evaluation of the importance of re-weighting on Digits datasets under weak imbalance.
Performance is measured by prediction accuracy (%) on the target domain.

M→MM MM→M U→M S→M
DARSA Oracle 96.2 98.4 92.7 92.6

DARSA Uniform 67.9 96.6 75.9 71.7
DARSA Small Divergence 95.6 98.3 91.4 92.4
DARSA Large Divergence 85.0 98.2 86.1 85.2

DARSA Flip 55.7 65.7 57.4 65.7
DARSA 96.0 98.8 92.6 90.1

Table 2: Summary of UDA results on the Digits datasets with shifted label distribution, measured in
terms of prediction accuracy (%) on the target domain.

M→MM
α = 3

MM→M
α = 3

U→M
α = 3

S→M
α = 3

M→MM
α = 8

MM→M
α = 8

U→M
α = 8

S→M
α = 8

DANN (Ganin et al., 2016) 63.1 93.0 59.8 64.9 61.1 90.2 49.1 57.3
DSN (Bousmalis et al., 2016) 62.3 98.4 59.9 15.2 57.5 95.3 30.3 17.8
ADDA (Tzeng et al., 2017) 88.2 90.7 44.8 42.4 47.9 89.4 45.7 45.3

pixelDA(Bousmalis et al., 2017) 95.0 96.0 72.0 68.0 81.0 95.6 29.2 60.4
CDAN (Long et al., 2018) 58.7 96.0 42.0 38.3 37.1 90.6 34.8 32.5

WDGRL (Shen et al., 2018) 60.4 93.6 63.9 64.3 22.3 91.4 46.7 52.2
MCD (Saito et al., 2018) 58.1 98.2 74.6 75.5 37.4 97.5 76.1 66.7
CAT (Deng et al., 2019) 54.1 95.4 81.0 65.8 48.9 93.8 61.3 62.2

MDD (Zhang et al., 2019) 48.7 97.7 82.3 62.4 47.6 93.6 83.2 64.5
DRANet (Lee et al., 2021) 95.2 97.8 86.5 40.2 63.3 96.1 54.2 31.3

Source Only 47.9 91.5 40.8 53.7 39.6 88.4 27.8 47.2
DARSA 96.0 98.8 92.6 90.1 78.8 97.3 87.9 83.5

Digits. Results shown in Table 2 demonstrates DARSA’s competitiveness in handling label shifting.
Additionally, DARSA performs well with varying imbalance rates (Appendix Table 5) and competes
favorably in scenarios without label distribution shifts (Appendix Table 7).

TST. As demonstrated in Table 3, DARSA achieves competitive performance on this biologically
relevant task. For comprehensive experimental details, refer to Appendix H.

Table 3: Summary of UDA results on the TST datasets with shifted label distribution, measured in
terms of prediction accuracy (%) on the target domain.

DANN WDGRL DSN ADDA CAT CDAN Source only DARSA
Clock-∆19 to Wildtype 79.9 79.6 79.4 75.1 77.3 75.0 73.8 86.6
Wildtype to Clock-∆19 81.5 79.5 80.9 72.6 78.6 73.6 70.4 84.8

Ablation. To assess the impact of each component within our objective function (Section 5), we
conduct an ablation study under weak imbalance. Due to space constraint, the results of this inves-
tigation are detailed in Appendix G.6. The ablation analysis confirms that each component in our
objective function contributes to the overall performance. Therefore, we recommend the use of all
components for optimal results. In addition, we have included feature space visualizations in Ap-
pendix E and Appendix Figure 9 which demonstrate that the learned representation of DARSA has
improved separation when using all the components, supporting the effectiveness of the proposed
objective function.

7 CONCLUSION

Sub-domain-based algorithms have demonstrated considerable empirical success across various ap-
plications in domain adaptation. However, a comprehensive theoretical understanding of their ad-
vantages had been elusive. This work addresses this gap and presents a substantial contribution by
providing a rigorous theoretical perspective on the benefits of sub-domain-based methods, thereby
potentially enhancing their overall impact in the field. Moreover, our analysis leads to an algorithm
DARSA with improved robustness to the shift of sub-domain weights and label distributions.

9
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REPRODUCIBILITY STATEMENT

Rigorous definitions and complete proofs of our theoretical analysis are included in the Appendix
B, with empirical evidence to verify assumptions in Appendix C. The code to replicate all exper-
iments is available at: https://anonymous.4open.science/r/DARSA/. Full details on
the experiments, competing algorithms, and their settings are in Appendix G and Appendix H for
the Digits and TST dataset, respectively. The MNIST, BSDS500, USPS, and SVHN datasets are
publicly available with an open-access license. The Tail Suspension Test (TST) dataset (Gallagher
et al., 2017) is available to download at https://research.repository.duke.edu/
concern/datasets/zc77sr31x?locale=en for free under a Creative Commons BY-NC
Attribution-NonCommercial 4.0 International license. The experiments are conducted on a com-
puter cluster equipped with a NVIDIA GeForce RTX 2080 Ti that has a memory capacity of
11019MiB.
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APPENDIX

A RELATED WORK

Discrepancy-based Domain Adaptation. UDA commonly tries to reduce the distribution gap be-
tween the source and target domains. One approach to achieve this is discrepancy-based methods in
the extract feature space (Tzeng et al., 2014; Long et al., 2015; Sun et al., 2016), which often use
maximum mean discrepancy (MMD) (Borgwardt et al., 2006). While MMD is a well-known Repro-
ducing Kernel Hilbert Space (RKHS) metric, it is weaker than the Wasserstein-1 distance (Lu & Lu,
2020). Therefore, we use Wasserstein-1 distance in our work. Futhermore, many discrepancy-based
methods enforce the sharing of the first few layers of the networks between the source and target do-
mains (HassanPour Zonoozi & Seydi, 2022). In contrast, our method allows a more flexible feature
space.

Adversarial-based Domain Adaptation. Adversarial-based domain adaptation methods aim to en-
courage domain similarity through adversarial learning (Shen et al., 2018; Liu et al., 2016; Isola
et al., 2017; Tzeng et al., 2015; 2017; 2020; Ganin & Lempitsky, 2015; Ganin et al., 2016; Peng
et al., 2018; Hoffman et al., 2018). These methods are divided into generative methods, which
combine discriminative models with a generating process, and non-generative methods, which use
a domain confusion loss to learn domain-invariant discriminative features (Wang & Deng, 2018).
However, many existing algorithms fail to align multi-modal distributions under label shifting sce-
narios. Additionally, training adversarial networks can be challenging due to mode collapse and
oscillations (Liang et al., 2018).

Sub-domain-based Domain Adaptation. The use of sub-domain adaptation has proven effective in
aligning multi-modal distributions, enhancing performance across various tasks (Deng et al., 2019;
Long et al., 2018; Pinheiro, 2018; Shi & Sha, 2012; Jiang et al., 2020; Snell et al., 2017). (Deng et al.,
2019) introduces the Cluster Alignment with a Teacher (CAT) approach that aligns class-conditional
structures across domains. (Long et al., 2018) offers conditional adversarial domain adaptation, en-
hancing alignment through classifier predictions. (Pinheiro, 2018) proposes an unsupervised domain
adaptation approach based on similarity learning, wherein classification is conducted by computing
similarities between target domain images and prototype representations of each category. On the
other hand, (Shi & Sha, 2012) introduces a method that concurrently learns domain-invariant fea-
tures and classifiers. (Jiang et al., 2020) elucidates a sampling-based implicit alignment technique,
addressing concerns of class imbalance. (Snell et al., 2017) presents prototypical networks designed
for few-shot classification, employing distances to class prototype representations for the process.
While these methods have demonstrated empirical success, a detailed theoretical perspective on the
benefits of incorporating sub-domain structures has yet to be fully explored. Our work aims to com-
plement these existing methodologies by providing a comprehensive theoretical understanding of
the advantages inherent in these structures. We believe that such a theoretical perspective, when
coupled with the already proven practical success of these methods, holds the potential to further
enhance their overall impact on the field.

Theoretical Analysis of Domain Adaptation. Many existing domain adaptation methods are in-
spired by generalization bounds based on the H-divergence (Ben-David et al., 2006). The H-
divergence (Ben-David et al., 2006) is a modified version of the total variation distance (L1) that
restricts the hypothesis to a given class. These generalization bounds can be estimated by learning
a domain classifier with a finite Vapnik–Chervonenkis (VC) dimension. However, this results in
a loose bound for most neural networks (Li et al., 2018). In our method, we use the Wasserstein
distance for two reasons. First, the Wasserstein-1 distance is bounded above by the total variation
distance (Ben-David et al., 2010). Additionally, the Wasserstein-1 distance is bounded above by the
Kullback-Leibler divergence (a special case of the Rényi divergence when α goes to 1 (Fournier &
Guillin, 2015)), giving stronger bounds than those presented by Redko et al (Redko et al., 2017) and
Mansour et al (Mansour et al., 2012). Additionally, the Wasserstein distance has stable gradients
even when the compared distributions are far apart (Gulrajani et al., 2017).

Additional Theoretical Analysis of Domain Adaptation. Our work contributes to the understand-
ing and improvement of sub-domain alignment methods, a type of popular but yet to be rigorously
investigated domain adaptation method. In contrast to our work, (Mansour et al., 2009) studies
the adaptation performance of various loss functions and models; (Dhouib et al., 2020) focuses on
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the margin violation rate; (Wang et al., 2022) addresses the problem of learning features that align
with human understanding of data; (Zhang et al., 2019) proposes generalization theory for classi-
fiers with scoring function and margin loss; (Germain et al., 2016) studies the generalization theory
for the weighted majority vote framework; (Blanchard et al., 2021; Albuquerque et al., 2019; Zhao
et al., 2018) focus on the setting with multiple source domain.

B DEFINITIONS AND PROOFS

Definition B.1. For some K ≥ 0, the set of K-Lipschitz functions denotes the set of functions f
that verify:

∥f(x)− f(x′)∥ ≤ K∥x− x′∥, ∀x, x′ ∈ X

In the coming proofs, we assume that the hypothesis class H is a subset of λH -Lipschitz functions,
where λH is a positive constant, and we assume that the true labeling functions are λ-Lipschitz for
some positive real number λ.
Definition B.2. For a distribution D, we define the discrepancy between two functions f and g as:

γD(f, g) = Ex∼D [|f(x)− g(x)|]
We use gT and gS to represent the true labeling functions of the target and source domains, respec-
tively. We use γS(f)

.
= γPS

(f, gS) and γT (f)
.
= γPT

(f, gT ) to respectively denote the discrepan-
cies of a hypothesis f to the true labeling function for the source and target domains.
Definition B.3. For a distribution D that can be represented as mixture of K sub-distribution, we
define the discrepancy between two functions f and g as:

γk
D(f, g) = Ex∼Dk [|f(x)− g(x)|]

where we use Dk to represent the distribution of the k-th sub-distribution.

We use P k
S /P k

T to represent the distribution of the k-th subdomain of the source domain/target do-
main respectively. Thus we can use γk

S(f)
.
= γPk

S
(f, gS) and γk

T (f)
.
= γPk

T
(f, gT ) to respectively

denote the discrepancies of a hypothesis f to the true labeling function of the k-th subdomain of the
source domain and that of the target domain.
Theorem B.4 (Overall Generalization Bound, extending Li et al. (2018) Theorem A.8). For a hy-
pothesis f : X → [0, 1],

γT (f) ≤ γS(f) + (λ+ λH)W1(PS , PT ) + γ⋆ (18)
where γ⋆ = min

f∈H
γS(f)+γT (f), H is a hypothesis class included in the set of λH -Lipschitz functions,

and the true functions gT and gS are both λ-Lipschitz functions (as defined in Definition B.1).

Proof. For a hypothesis f : X → [0, 1] with f ∈ H, we have that
γPT

(f, gT ) = γPT
(f, gT ) + γPS

(f, gS)− γPS
(f, gS) + γPS

(f, gT )− γPS
(f, gT ) (19)

And then bound the RHS by taking the absolute value of differences:
γPT

(f, gT ) ≤ γPS
(f, gS) + |γPS

(f, gT )− γPS
(f, gS)|+ |γPT

(f, gT )− γPS
(f, gT )|

≤ γPS
(f, gS) + Ex∼PS [|gS(x)− gT (x)|] + |γPT

(f, gT )− γPS
(f, gT )|

(20)

As stated in Li et al. (2018), the first two terms proceed exactly as in Ben-David et al. (2010); further
derivations are not provided here. We next provide an upper bound for the last term. Let PS and PT

be the densities of XS and XT , respectively.

|γPT
(f, gT )− γPS

(f, gT )| ≤
∣∣∣∣∫ (PT (x)− PS(x))|f(x)− gT (x)|dx

∣∣∣∣ (21)

Since our hypothesis class H is assumed to be λH -Lipschitz and the true labeling functions are λ-
Lipschitz, we have that for every function f ∈ H, h : x 7→ |f(x)− gT (x)| is λ+ λH -Lipschitz and
it takes its values in [0, 1]. Therefore,

|γPT
(f, gT )− γPS

(f, gT )| ≤ sup
h:X→[0,1],||h||≤λ+λH

∣∣∣∣∫ (PT (x)− PS(x))h(x)dx

∣∣∣∣
= sup

h:X→[0,1],||h||≤λ+λH

|Ex∼PT
[h(x)]− Ex∼PS

[h(x)]|
(22)
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Note that due to the symmetric nature of the function space, i.e., if h is K-Lipschitz then −h is
K-Lipschitz, we can just pick either side to lead with and drop the absolute value, yielding

|γPT
(f, gT )− γPS

(f, gT )| ≤ (λ+ λH)W1(PS , PT ) (23)

Following the Theorem 2 of Ben-David et al. (2010), we can also easily bound the target error
γPT

(f, gT ) by:
γPT

(f, gT ) ≤ γPS
(f, gS) + (λ+ λH)W1(PS , PT ) + γ⋆ (24)

where γ⋆ = minf∈H γPS
(f, gS) + γPT

(f, gT ).

For succinctness and clarity of the following analysis in this work, as defined in Definition B.2, we
express equation 18 as:

γT (f) ≤ γS(f) + (λ+ λH)W1(PS , PT ) + γ⋆ (25)

where γ⋆ = min
f∈H

γS(f) + γT (f)

Lemma B.5 (Decomposition of the Classification Error). For any hypothesis f ∈ H,

γS(f) =

K∑
k=1

wk
Sγ

k
S(f)

γT (f) =

K∑
k=1

wk
T γ

k
T (f)

(26)

Proof. As stated in Section 3, we assume that both XS and XT are mixtures of K sub-domains.
In other words, we have PS =

∑K
k=1 w

k
SP

k
S and PT =

∑K
k=1 w

k
TP

k
T where we use P k

S and P k
T

to represent the distribution of the k-th subdomain of the source domain and that of the target do-
main respectively and wk

S and wk
T correspond to the weights of each sub-domain in the respective

domains.

We can write out γS(f) = γPS
(f, gS) as sub-domain specific component.

γS(f) = γPS
(f, gS)

= Ex∼PS [|f(x)− gS(x)|]

=

∫
PS(x)|f(x)− gS(x)|dx

=

∫ K∑
k=1

wk
SP

k
S |f(x)− gS(x)|dx

=
K∑

k=1

wk
S

∫
P k
S |f(x)− gS(x)|dx

=

K∑
k=1

wk
SEx∼Pk

S
[|f(x)− gS(x)|]

=

K∑
k=1

wk
SγPk

S
(f, gS)

Def.B.3
=

K∑
k=1

wk
Sγ

k
S(f)

(27)

With similar proof, we have:

γT (f) = γPT
(f, gT ) =

K∑
k=1

wk
T γPk

T
(f, gT ) =

K∑
k=1

wk
T γ

k
T (f) (28)
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Theorem B.6 (Sub-domain-based Generalization Bound).

γT (f) ≤
K∑

k=1

wk
T γ

k
S(f) +

K∑
k=1

wk
TW1(P

k
S , P

k
T ) +

K∑
k=1

wk
T (γ

k)⋆ (29)

Proof.

γT (f)
LemmaB.5
=

K∑
k=1

wk
T γ

k
T (f)

Proposition4.3

≤
K∑

k=1

wk
T {γk

S(f, gS) +W1(P
k
S , P

k
T ) + (γk)⋆}

(30)

We next show that, under reasonable assumptions, the weighted sum of distances between corre-
sponding sub-domains of the source and target domains is at most as large as the distance between
the marginal distribution of the source domain and that of the target domain.

First we define a Wasserstein-like distance between Gaussian Mixture Models in Definition B.7,
which uses Wasserstein-1 distance that extends the Proposition 4 of Delon & Desolneux (2020).

Definition B.7. (Wasserstein-like distance between Gaussian Mixture Models) Assume that both
XS and XT are mixtures of K sub-domains. In other words, we have PS =

∑K
k=1 w

k
SP

k
S and

PT =
∑K

k=1 w
k
TP

k
T where we use P k

S and P k
T to represent the distribution of the k-th subdomain

of the source domain and that of the target domain respectively and wk
S and wk

T correspond to the
weights of each sub-domain in the respective domains. We define:

MW1(PS , PT ) = min
w∈Π(wS,wT)

K∑
k=1

K∑
k′=1

wk,k′W1(P
k
S , P

k′

T ) (31)

where wS
.
= [w1

S , . . . , w
K
S ] and wT

.
= [w1

T , . . . , w
K
T ] belong to ∆K (the K−1 probability simplex).

Π(wS , wT ) represents the simplex ∆K×K with marginals wS and wT.

To demonstrate that MW1 is less or equal to the sum of W1 and a term that is dependent on the
trace of the covariance matrices of two Gaussian mixtures (extend the proof of Delon & Desolneux
(2020)), we start with a lemma. This lemma makes more explicit the distance MW1 between a
Gaussian mixture and a mixture of Dirac distributions.

Lemma B.8 (Extension to Lemma 4.1 of Delon & Desolneux (2020)). Let µ0 =
∑K0

k=1 π
k
0µ

k
0 with

µk
0 = N (mk

0 ,Σ
k
0) and µ1 =

∑K1

k=1 π
k
1δmk

1
. Let µ̃0 =

∑K0

k=1 π
k
0δmk

0
(µ̃0 only retains the means of

µ0). Then,

MW1(µ0, µ1) ≤W1(µ̃0, µ1) +

K0∑
k=1

πk
0

√
tr (Σk

0)

where π0
.
= [π1

0 , . . . , π
k
0 ] and π1

.
= [π1

1 , . . . , π
k
1 ] belong to ∆K (the K − 1 probability simplex)
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Proof.

MW1(µ0, µ1) = inf
w∈Π(π0,π1)

∑
k,l

wk,lW1(µ
k
0 , δml

1
)

≤ inf
w∈Π(π0,π1)

∑
k,l

wk,lW2(µ
k
0 , δml

1
)

= inf
w∈Π(π0,π1)

∑
k,l

wk,l

[√
||ml

1 −mk
0 ||2 + tr (Σk

0)

]
≤ inf

w∈Π(π0,π1)

∑
k,l

wk,l||ml
1 −mk

0 ||+
∑
k

πk
0

√
tr (Σk

0)

≤W1(µ̃0, µ1) +

K0∑
k=1

πk
0

√
tr (Σk

0)

(32)

Remark B.9. We use µ0, µ1, and µ̃0 to represent a general scenario for measuring the distance
between a Gaussian mixture and a mixture of Diract distributions. In the following proofs, we will
utilize the defined notation. For instance, µ0 can be denoted as PS , while µ̃0 corresponds to P̃S .
Theorem B.10 (Extension to Proposition 6 in (Delon & Desolneux, 2020)). Let PS and PT be
two Gaussian mixtures with PS =

∑K
k=1 w

k
SP

k
S and PT =

∑K
k=1 w

k
TP

k
T . For all k, P k

S / P k
T are

Gaussian distributions with mean mk
S / mk

T and covariance Σk
S / Σk

T . If for ∀ k, k′, we assume there
exists a small constant ϵ > 0, such that maxk(trace(Σk

S)) ≤ ϵ and maxk′(trace(Σk′

T )) ≤ ϵ. then:

MW1(PS , PT ) ≤W1(PS , PT ) + 4
√
ϵ (33)

Proof. Here, we follow the same structure of the proof for Wassertein-2 in Delon & Desolneux
(2020). Let (Pn

S )n and (Pn
T )n be two sequences of mixtures of Dirac masses respectively converging

to PS and PT in P1(Rd). Since MW1 is a distance,

MW1(PS , PT ) ≤MW1(P
n
S , P

n
T ) +MW1(PS , P

n
S ) +MW1(PT , P

n
T )

= W1(P
n
S , P

n
T ) +MW1(PS , P

n
S ) +MW1(PT , P

n
T )

We can study the limits of these three terms when n→ +∞
First, observe that MW1(P

n
S , P

n
T ) = W1(P

n
S , P

n
T ) →

n→+∞
W1(PS , PT ) since W1 is continuous on

P1(Rd).

Second, based on Lemma B.8, we have that

MW1(PS , P
n
S ) ≤W1(P̃S , P

n
S ) +

K∑
k=1

wk
S

√
tr(Σk

S) →
n→+∞

W1(P̃S , PS) +

K∑
k=1

wk
S

√
tr(Σk

S)

We observe that x 7→
√
x is a concave function, thus by Jensen’s inequality, we have that

K∑
k=1

wk
S

√
tr(Σk

S) ≤

√√√√ K∑
k=1

wk
S tr(Σk

S)

Also By Jensen’s inequality, we have that,

W1(P̃S , PS) ≤W2(P̃S , PS).

And from Proposition 6 in (Delon & Desolneux, 2020), we have

W2(P̃S , PS) ≤

√√√√ K∑
k=1

wk
S tr(Σk

S)
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Similarly for MW1(PT , P
n
T ) the same argument holds. Therefore we have,

lim
n→∞

MW1(PS , P
n
S ) ≤ 2

√√√√ K∑
k=1

wk
S tr(Σk

S)

And

lim
n→∞

MW1(PT , P
n
T ) ≤ 2

√√√√ K∑
k=1

wk
T tr(Σk

T )

We can conclude that:

MW1(PS , PT ) ≤ lim inf
n→∞

(W1(P
n
S , P

n
T ) +MW1(PS , P

n
S ) +MW1(PT , P

n
T ))

≤W1(PS , PT ) + 2

√√√√ K∑
k=1

wk
S tr(Σk

S) + 2

√√√√ K∑
k=1

wk
T tr(Σk

T )

≤W1(PS , PT ) + 4
√
ϵ

This concludes the proof.

Theorem B.11 (Sub-domain Alignment Can Improve Domain Alignment). If the following as-
sumptions hold:

A1. For all k, P k
S / P k

T are Gaussian distributions with mean mk
S / mk

T and covariance Σk
S / Σk

T .
A2. Distance between the paired source-target sub-domain is less or equal to distance between the
non-paired source-target sub-domain, i.e., W1(P

k
S , P

k
T ) ≤W1(P

k
S , P

k′

T ) for k ̸= k′.
A3. There exists a small constant ϵ > 0, such that max

1≤k≤K
(tr(Σk

S)) ≤ ϵ and max
1≤k≤K

(tr(Σk′

T )) ≤ ϵ.

Then the following inequality holds:∑K
k=1 w

k
TW1(P

k
S , P

k
T ) ≤W1(PS , PT ) + δc

where δc is 4
√
ϵ.

Proof. With w ∈ Π(wS,wT), we can write out wk
T as

∑K
k′=1 wk,k′ , then based on assumption A.2,

we have:
K∑

k=1

wk
TW1(P

k
S , P

k
T ) =

K∑
k=1

K∑
k′=1

wk,k′W1(P
k
S , P

k
T )

≤
K∑

k=1

K∑
k′=1

wk,k′W1(P
k
S , P

k′

T )

Thus we have,
K∑

k=1

wk
TW1(P

k
S , P

k
T ) ≤ min

w∈Π(wS,wT)

K∑
k=1

K∑
k′=1

wk,k′W1(P
k
S , P

k′

T )

= MW1(PS , PT )

(34)

Also we prove in Theorem B.10 that:

MW1(PS , PT ) ≤W1(PS , PT ) + 4
√
ϵ

Then we conclude our proof and show that:

K∑
k=1

wk
TW1(P

k
S , P

k
T ) ≤MW1(PS , PT ) ≤W1(PS , PT ) + 4

√
ϵ (35)
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Theorem B.12. Let H .
= {f |f : X → [0, 1]} denote a hypothesis space. Under the Assumptions in

Theorem 4.7(or Theorem B.11), if the following assumption hold for all f ∈ H:∑K
k=1 w

k
T γ

k
S(f) ≤

∑K
k=1 w

k
Sγ

k
S(f), (36)

then we have ∑K
k=1 w

k
T (γ

k)⋆ ≤ γ⋆.

Further, let

ϵc(f)
.
=
∑K

k=1 w
k
T γ

k
S(f) +

∑K
k=1 w

k
TW1(P

k
S , P

k
T ) +

∑K
k=1 w

k
T (γ

k)⋆

denote the sub-domain-based generalization bound, let
ϵg(f)

.
= γS(f) +W1(PS , PT ) + γ⋆

denote the general generalization bound without any sub-domain information. We have for all f ,
ϵc(f) ≤ ϵg(f) + δc

where δc is 4
√
ϵ.

Proof. We will proove that
∑K

k=1 w
k
T (γ

k)⋆ ≤ γ⋆, where γ⋆ = min
f∈H

γS(f)+γT (f), H, and (γk)⋆ =

minf∈H γk
S(f) + γk

T (f)

We have:
γ⋆ = min

f∈H
(γS(f) + γT (f))

= min
f∈H

(
K∑

k=1

wk
Sγ

k
S(f) +

K∑
k=1

wk
T γ

k
T (f)

)

= min
f∈H

(
K∑

k=1

wk
SγPk

S
(f, gS) +

K∑
k=1

wk
T γPk

T
(f, gT )

)

= min
f∈H

(
K∑

k=1

wk
T γPk

S
(f, gS) +

K∑
k=1

wk
T γPk

T
(f, gT ) +

K∑
k=1

wk
SγPk

S
(f, gS)−

K∑
k=1

wk
T γPk

S
(f, gS)

)

= min
f∈H

(
K∑

k=1

wk
T (γPk

S
(f, gS) + γPk

T
(f, gT )) +

K∑
k=1

(wk
S − wk

T )γPk
S
(f, gS)

)

≥ min
f∈H

(
K∑

k=1

wk
T (γPk

S
(f, gS) + γPk

T
(f, gT ))

)

≥
K∑

k=1

min
f∈H

(
γk
S(f) + γk

T (f)
)

=

K∑
k=1

wk
T (γ

k)⋆

(37)
where the first inequality (the 6th line in the equation) is based on the assumption that∑K

k=1 w
k
T γ

k
S(f) ≤

∑K
k=1 w

k
Sγ

k
S(f). The second inequality (the 7th line in the equation) is based

on min{f(x) + g(x)} ≥ min{f(x)}+min{g(x)}

C EMPIRICAL EVIDENCE FOR ASSUMPTIONS IN THEOREM 4.7

C.1 GAUSSIAN DISTRIBUTION

To affirm the Gaussian distribution assumption for latent representations of each sub-domain, we
include Figure 4. These plots, derived from the MNIST and MNIST-M datasets for all values of k,
reinforce our theorem’s practical realization.
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(a) MNIST (b) MNIST-M

Figure 4: Distributions of the learned representations
.

C.2 DISTANCE ASSUMPTION

We further present empirical evidence to support the distance relations between paired and non-
paired source-target sub-domains on the MNIST to MNIST-M task. Our methodology specifically
aims to minimize the distance between paired source-target sub-domains during the training pro-
cess. Table 4 illustrates that empirically the distance between the paired source-target sub-domain
is consistently less than the average distance between non-paired source-target sub-domains.

Table 4: Distance relations between paired and non-paired source-target sub-domains on the MNIST
to MNIST-M task. We use Wasserstein-1 (W1) distance as distance metric.

Sub-domain Paired source-target sub-domain Non-paired source-target sub-domains
0 5.9 79.4
1 9.5 85.5
2 7.5 85.4
3 11.4 82.6
4 7.7 80.5
5 11.4 84.8
6 7.0 89.5
7 11.9 89.6
8 8.1 72.8
9 9.6 81.2

D ALGORITHM

Our framework is outlined in pseudo-code in Algorithm 1.

Algorithm 1 Domain Adaptation via Rebalanced Sub-domain Alignment(DARSA)

Input: Source data XS ; Source label yS , Target data XT ; coefficient λY , λD, λc, λa; learning
rate α;
Pretrain feature extractor and classifier with XS and yS , initialize θSE , θTE , and θY with pretrained
weights. Initialize wk

T and wk
T with 1/K for k = 1,2 ..., K

repeat
Sample minibatch from XS and XT

θY ← θY − α∇θY (λY LY + λDLD + λcLintra + λaLinter)
θSE ← θSE − α∇θS

E
(λY LY + λDLD + λcLintra + λaLinter)

θTE ← θTE − α∇θT
E
(λDLD + λcLintra + λaLinter)

until θSE , θTE , and θY converge

E ANALYSIS OF FEATURE SPACE

We visualize the feature spaces learned by DANN (Ganin et al., 2016), CAT (Deng et al., 2019) and
our method, DARSA, using UMAP (Sainburg et al., 2021). As shown in Figure 5, features learned
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with DARSA form stronger clusters when the labels are the same, and clusters with different labels
are more separated from one another. In contrast, both DANN and CAT fail to learn a good source-
target domain alignment in the feature space (shown in Figure 5 (b)(c)) in the presence of label
distribution shifts. This confirms that our method, DARSA, can learn a label-conditional feature
space that is discriminative and domain-invariant, which improves performance in target domain
prediction.

(a) DARSA

(b) DANN

(c) CAT

Figure 5: For MNIST to MNIST-M UDA task with label shifting (a) feature space learned by our
method, DARSA. (b) feature space learned by DANN. (c) feature space learned by CAT. Left panel:
colored by source/target; Right panel: colored by true label (digits). The features are projected to
2-D using UMAP.

F ANALYSIS OF WEIGHTS

In order to assess the accuracy of our target weight estimation in the DARSA algorithm, we con-
ducted an additional analysis. This analysis focused on the MNIST to MNIST-M experiment under
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Figure 6: Evolution of the absolute difference between the estimated target weight ŵT and the actual
ground truth wT across epochs.

conditions of weak imbalance. Specifically, we compared the difference between the actual ground
truth target weight (denoted as wT ) and our estimated target weight (denoted as ŵT ) across epochs.

As illustrated in the figure 6, our estimation aligns closely with the ground truth towards the end of
the training process. This proximity indicates the effectiveness of our weight estimation approach
within the DARSA algorithm.

G DETAILS OF EXPERIMENTAL SETUP: DIGITS DATASETS WITH LABEL
SHIFTING

In our Digits datasets experiments, we evaluate our performance across four datasets: MNIST (Le-
Cun et al., 1998), MNIST-M (Ganin et al., 2016), USPS, and SVHN, all modified to induce label
distribution shifts. Here, the parameter α denotes the class imbalance rate, representing a ratio such
as 1:α and α:1 for the odd:even distribution in the source and target datasets, respectively. Weak
and strong imbalance correspond to α = 3 and α = 8. A small subset of the target domain is
used for hyperparameter search, serving as an upper performance bound for UDA methods. Results
shown in Table 2 demonstrates DARSA’s competitiveness in handling label shifting. It is worth
noting that many state-of-the-art comparisons are not specifically tailored for shifted label distri-
bution scenarios, potentially affecting their performance. To ensure a fair comparison, we use the
Ax platform (Bakshy et al.; Letham et al., 2019) for automated hyperparameter tuning to maximize
domain-shifting performance (More details in G.8). Additionally, DARSA performs well with vary-
ing imbalance rates (Table 5) and competes favorably in scenarios without label distribution shifts
(Table 7).

G.1 DETAILS OF THE DIGITS DATASETS WITH LABEL DISTRIBUTION SHIFTS

G.1.1 WEAK IMBALANCE: α = 3

MNIST→MNIST-M: For source dataset, we randomly sample 36000 images from MNIST train-
ing set with odd digits three times the even digits. For target dataset, we randomly sample 6000
images from MNIST-M constructed from MNIST testing set, with even digits three times the odd
digits. To create MNIST-M dataset, we follow the procedure outlined in Ganin et al. (2016) to blend
digits from the MNIST over patches randomly extracted from color photos in the BSDS500 dataset
(Arbelaez et al., 2010).

MNIST-M → MNIST: For source dataset, we randomly sample 36000 images from MNIST-M
constructed from MNIST training set, with even digits three times the odd digits. For target dataset,
we randomly sample 5800 images from MNIST testing set, with odd digits three times the even
digits.
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USPS → MNIST: For source dataset, we randomly sample 3600 images from USPS training set,
with even digits three times the odd digits. For target dataset, we randomly sample 5800 images
from MNIST testing set, with odd digits three times the even digits.

SVHN→MNIST: For source dataset, we randomly sample 30000 images from SVHN training set,
with even digits three times the odd digits. For target dataset, we randomly sample 5800 images
from MNIST testing set, with odd digits three times the even digits.

G.1.2 STRONG IMBALANCE: α = 8

MNIST→MNIST-M: For source dataset, we randomly sample 27000 images from MNIST train-
ing set with odd digits eight times the even digits. For target dataset, we randomly sample 4500
images from MNIST-M constructed from MNIST testing set, with even digits eight times the odd
digits. To create MNIST-M dataset, we follow the procedure outlined in Ganin et al. (2016) to blend
digits from the MNIST over patches randomly extracted from color photos in the BSDS500 dataset
(Arbelaez et al., 2010).

MNIST-M → MNIST: For source dataset, we randomly sample 13500 images from MNIST-M
constructed from MNIST training set, with even digits eight times the odd digits. For target dataset,
we randomly sample 13500 images from MNIST testing set, with odd digits eight times the even
digits.

USPS → MNIST: For source dataset, we randomly sample 2700 images from USPS training set,
with even digits eight times the odd digits. For target dataset, we randomly sample 13500 images
from MNIST testing set, with odd digits eight times the even digits.

SVHN→MNIST: For source dataset, we randomly sample 27000 images from SVHN training set,
with even digits eight times the odd digits. For target dataset, we randomly sample 18000 images
from MNIST testing set, with odd digits eight times the even digits.

G.2 ADDITIONAL EMPIRICAL ANALYSIS OF OUR PROPOSED GENERALIZATION BOUND

Here we empirically evaluate the proposed generalization bound with weak imbalance (α = 3) and
strong imbalance (α = 8). As shown in Figure 7 and Figure 8, our empirical results demonstrate
that the sub-domain-based generalization bound in Theorem 4.5 is empirically much stronger than
the non-sub-domain-based bound in Theorem 4.1.
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(a) Domain Discrepancy (b) Source Clf Loss (c) Domain Discrepancy (d) Source Clf Loss

(e) Domain Discrepancy (f) Source Clf Loss (g) Domain Discrepancy (h) Source Clf Loss

Figure 7: For experiments with weak imbalance (α = 3), we compare the domain discrepancy term
(LD) and source classification term (LY ) in our proposed bound to that in Theorem 4.1, respectively.
Empirical results for each experiment are demonstrated in the subfigures: (a)(b) MNIST to MNIST-
M (c)(d) MNIST-M to MNIST, (e)(f) USPS to MNIST, (g)(h) SVHN to MNIST.

(a) Domain Discrepancy (b) Source Clf Loss (c) Domain Discrepancy (d) Source Clf Loss

(e) Domain Discrepancy (f) Source Clf Loss (g) Domain Discrepancy (h) Source Clf Loss

Figure 8: For tasks with strong imbalance (α = 8), we compare the domain discrepancy term (LD)
and source classification term (LY ) in our proposed bound to that in Theorem 4.1, respectively.
Empirical results for each experiment are demonstrated in the subfigures: (a)(b) MNIST to MNIST-
M (c)(d) MNIST-M to MNIST, (e)(f) USPS to MNIST, (g)(h) SVHN to MNIST.

G.3 EVALUATE DARSA ON VARYING IMBALANCE RATES

We have conducted a study on the USPS to MNIST adaptation to explore the effects of varying
imbalance rates. As can be seen from Table 5, the performance of our algorithm is stable across a
wide range of imbalance rates.
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Source: USPS - even : odd digit = 1:α
Target: MNIST - odd : even digit = α:1

Table 5: Summary of UDA results on USPS to MNIST adaptation with varying imbalance rates

α 1 2 3 4 5 6 7 8 9 10
Accuracy (%) 97.1 92.8 92.6 92.1 85.8 93.3 88.1 87.9 77.4 71.3

G.4 THE RATIONALE FOR COMPETING ALGORITHMS CHOICES

For benchmark methods, we have chosen methods that not only have theoretical underpinnings, but
also exhibit impressive performance in transfer learning on digit benchmarks as per the listings on
the public competition Papers with Code (2023). Furthermore, our selection includes methods that
contemplate sub-domain alignment to facilitate a direct comparison with our approach. It’s impor-
tant to note that our selection of benchmark methods may include some older models. However,
these models were chosen not just for their performance but for their theoretical relevance and their
ability to provide valuable insights into the effectiveness of our proposed method. Thus, while our
experiments primarily serve to validate our theory, the benchmarks also offer meaningful evaluation
of our theory’s practical impact.

G.5 MODEL STRUCTURES

For feature extractor, we employ a network structure similar to LeNet-5 ((LeCun et al., 1998)), but
with minor modifications: the first convolutional layer produces 10 feature maps, the second convo-
lutional layer produces 20 feature maps, and we use ReLU as an activation function for the hidden
layer. Our feature space has 128 dimensions. For benchmarks, we utilize the network structures
provided in the benchmark source code. In cases where experiments are not included in the source
code, we use the same network architecture as our model to ensure fair comparisons. For classifier,
we use a network structure with three fully connected layers with ReLU activation and a dropout
layer with a rate of 0.5. See the included code link for further details of each experiment.

G.6 ABLATION STUDY

To gain insight into the individual impact of each component within our objective function (Section
5), we performed an ablation study under conditions of weak imbalance. The outcomes of this
investigation are detailed in Table 6. The ablation analysis confirms that each component in our
objective function contributes to its overall performance. Therefore, we recommend the use of all
components for optimal results. In addition, we have included ablation study with feature space
visualization in Figure 9. As can be seen in Figure 9, the learned representation of DARSA has
improved separation when using all the components, supporting the effectiveness of the proposed
objective function.

G.7 EVALUATE DARSA ON BENCHMARKS WITHOUT ADDITIONAL LABEL DISTRIBUTION
SHIFTS

We conduct additional experiments to evaluate how DARSA performs in scenarios without label
distribution shifts. Results in Table 7 show DARSA’s performance is comparable with the most
competitive methods.

G.8 MODEL HYPERPARAMETERS

We use Adaptive Experimentation (Ax) platform (Bakshy et al.; Letham et al., 2019), an automatic
tuning approaches to select hyperparameters to maximize the performance of our method. We use
Bayesian optimization supported by Ax with 20 iterations to decide the hyperparameter choice. We
note that most of the SOTA comparisons are not specifically designed for shifted label distribution
scenarios, and this setting caused issues in several competing methods. We used Ax to maximize
their performance in label shifting scenarios. Details on the model hyperparameters used for the
Digits datasets with shifted label distribution are provided in Table 8 and Table 9 (If not explicitly

26



Under review as a conference paper at ICLR 2024

Table 6: Ablation study results. Each row represents a configuration with different λ values. The
last column reports the prediction accuracy (%) for each configuration.

Experiment λY λD λa λc Accuracy
M→MM 0.4 0.35 0.9 1 96.0
M→MM 0 0.35 0.9 1 61.3
M→MM 0.4 0 0.9 1 72.5
M→MM 0.4 0.35 0 1 61.9
M→MM 0.4 0.35 0.9 0 33.5
MM→M 1 0.5 1 1 98.8
MM→M 0 0.5 1 1 96.7
MM→M 1 0 1 1 98.4
MM→M 1 0.5 1 0 15
MM→M 1 0.5 0 1 98.2

U→M 1 0.5 1 1 92.60
U→M 0 0.5 1 1 65.90
U→M 1 0 1 1 85.80
U→M 1 0.5 0 1 76.20
U→M 1 0.5 1 0 58.40
S→M 0.95 0.11 0.11 0.3 90.1
S→M 0 0.11 0.11 0.3 77.9
S→M 0.95 0 0.11 0.3 86.1
S→M 0.95 0.11 0.11 0 64.3
S→M 0.95 0.11 0 0.3 84.9

(a) No LY (b) No LD

(c) No Lintra (d) No Linter

Figure 9: For MNIST to MNIST-M UDA task with shifted label distribution with representations
learnt by ablation study. Colored by 1) source/target; 2) predicted label (digit). The features are
projected to 2-D using UMAP.

.
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Table 7: Summary of UDA results on the Digits datasets without shifted label distribution, measured
in terms of prediction accuracy (%) on the target domain.

DANN WDGRL DSN ADDA CAT CDAN pixelDA DRANet DARSA
U→M 74.5 84.8 91.0 90.1 80.9 98.0 87.6 97.8 97.4
S→M 73.9 59.3 82.7 76.0 98.1 89.2 71.6 59.7 98.6

Table 8: Model hyperparameters used for Digits datasets with weak imbalance α = 3

MNIST to
MNIST-M

MNIST-M to
MNIST

USPS to
MNIST

SVHN to
MNIST

DARSA

batch size = 512,
α = 0.01, λY = 0.4,
λD = 0.35, λc = 1,

λa = 0.9,
m = 30

SGD, momentum = 0.5

batch size = 512,
α = 0.01, λY = 1,
λD = 0.5, λc = 1,

λa = 1,
m = 30

SGD, momentum = 0.4

batch size = 256,
, α = 0.01, λY = 1,
λD = 0.5, λc = 1,

λa = 1,
m = 30

SGD, momentum = 0.4

batch size = 256,
α = 0.05, λY = 0.95,
λD = 0.11, λc = 0.3,

λa = 0.11,
m = 50

SGD, momentum = 0.4

DANN
batch size = 32

Adam,
learning rate = 1e-4

batch size = 32
Adam,

learning rate = 1e-5

batch size = 32
Adam,

learning rate = 1e-4

batch size = 64
Adam,

learning rate = 1e-4

WDGRL

batch size = 32
Adam,

learning rate = 1e-5,
γ = 10,

critic training step: 1,
feature extractor
and discriminator
training step: 3

batch size = 64
Adam,

learning rate = 1e-4,
γ = 10,

critic training step: 5,
feature extractor
and discriminator
training step: 10

batch size = 32
Adam,

learning rate = 1e-4,
γ = 10,

critic training step: 1,
feature extractor
and discriminator
training step: 2

batch size = 32
Adam,

learning rate = 1e-5,
γ = 10,

critic training step: 1,
feature extractor
and discriminator
training step: 3

DSN

batch size = 32
SGD, momentum = 0.8,

learning rate = 1e-2,
α = 0.01,

β = 0.075, γ = 0.25

batch size = 32
SGD, momentum = 0.8,

learning rate = 0.01,
α = 0.01,

β = 0.075, γ = 0.25

batch size = 32
SGD, momentum = 0.8,

learning rate = 0.01,
α = 0.01,

β = 0.075, γ = 0.4

batch size = 512
SGD, momentum = 0.5,

learning rate = 1e-5,
α = 0.046,

β = 0.61, γ = 0.92

ADDA

batch size = 64
Adam,

learning rate = 1e-3,
critic training step: 1,

target model
training step: 10

batch size =64
Adam,

learning rate = 1e-5,
critic training step: 1,

target model
training step: 1

batch size = 64
Adam,

learning rate = 1e-3,
critic training step: 1,

target model
training step: 1

batch size = 64
Adam,

learning rate = 1e-3,
critic training step: 3,

target model
training step: 2

CAT

batch size = 512
SGD,

learning rate = 0.01
(1+10p)0.75 ,

momentum = 0.9,
p = 0.9,
m = 30

batch size = 128
SGD,

learning rate = 0.01
(1+10p)0.75 ,

momentum = 0.9,
p = 0.9,
m = 30

batch size = 128
SGD,

learning rate = 0.01
(1+10p)0.75 ,

momentum = 0.9,
p = 0.9,
m = 30

batch size = 256
SGD,

learning rate = 0.01
(1+10p)0.75 ,

momentum = 0.9,
p = 0.9,
m = 30

CDAN
batch size = 64

SGD, momentum = 0.9,
learning rate =0.01

batch size = 64
SGD, momentum = 0.9,

learning rate =0.01

batch size = 64
SGD, momentum = 0.9,

learning rate =0.01

batch size = 64
SGD, momentum = 0.9,

learning rate =0.1

pixelDA

batch size = 64
Adam

learning rate =0.0002,
dim of the

noise input: 10

batch size = 64
Adam

learning rate =0.0002,
dim of the

noise input: 10

batch size = 32
Adam,

learning rate =0.0001,
dim of the

noise input: 20

batch size = 32
Adam,

learning rate =0.0001,
dim of the

noise input: 20

DRANet batch size = 32
Adam

batch size = 32
Adam

batch size = 32
Adam

batch size = 32
Adam

MCD batch size = 128
learning rate = 0.01

batch size = 128
learning rate = 0.01

batch size = 128
learning rate = 0.01

batch size = 128
learning rate = 0.01

MDD batch size = 128
learning rate = 0.01

batch size = 128
learning rate = 0.01

batch size = 128
learning rate = 0.01

batch size = 128
learning rate = 0.01

stated, we resort to the default hyperparameters from the respective implementations of the bench-
mark.).
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Table 9: Model hyperparameters used for Digits datasets with strong imbalance α = 8

MNIST to
MNIST-M

MNIST-M to
MNIST

USPS to
MNIST

SVHN to
MNIST

DARSA

batch size = 1024,
α = 0.01, λY = 0.8,
λD = 0.4, λc = 0.9,

λa = 0.9,
m = 30

SGD, momentum = 0.5

batch size = 1024,
α = 0.01, λY = 1,
λD = 0.5, λc = 1,

λa = 0.5,
m = 30

SGD, momentum = 0.4

batch size = 1024,
, α = 0.01, λY = 1,
λD = 0.1, λc = 1,

λa = 1,
m = 30

SGD, momentum = 0.4

batch size = 1024,
α = 0.01, λY = 0.95,
λD = 0.11, λc = 1,

λa = 1,
m = 50

SGD, momentum = 0.4

DANN
batch size = 64

Adam,
learning rate = 1e-3

batch size = 256
Adam,

learning rate = 1e-6

batch size = 64
Adam,

learning rate = 1e-4

batch size = 128
Adam,

learning rate = 1e-3

WDGRL

batch size = 64
Adam,

learning rate = 1e-4,
γ = 10,

critic training step: 5,
feature extractor
and discriminator
training step: 10

batch size = 128
Adam,

learning rate = 1e-5,
γ = 10,

critic training step: 1,
feature extractor
and discriminator
training step: 5

batch size = 64
Adam,

learning rate = 1e-4,
γ = 10,

critic training step: 1,
feature extractor
and discriminator
training step: 4

batch size = 64
Adam,

learning rate = 1e-6,
γ = 10,

critic training step: 1,
feature extractor
and discriminator
training step: 3

DSN

batch size = 32
SGD, momentum = 0.8,

learning rate = 1e-2,
α = 0.01,

β = 0.075, γ = 0.25

batch size = 32
SGD, momentum = 0.8,

learning rate = 1e-2,
α = 0.01,

β = 0.075, γ = 0.25

batch size = 64
SGD, momentum = 0.8,

learning rate = 1e-2,
α = 0.01,

β = 0.075, γ = 0.4

batch size = 256
SGD, momentum = 0.1,

learning rate = 1e-4,
α = 0.046,

β = 0.075, γ = 0.25

ADDA

batch size = 128
Adam,

learning rate = 1e-5,
critic training step: 1,

target model
training step: 1

batch size =256
Adam,

learning rate = 1e-6,
critic training step: 2,

target model
training step: 1

batch size = 128
Adam,

learning rate = 1e-5,
critic training step: 1,

target model
training step: 1

batch size = 128
Adam,

learning rate = 1e-6,
critic training step: 4,

target model
training step: 1

CAT

batch size = 512
SGD,

learning rate = 0.01
(1+10p)0.75 ,

momentum = 0.9,
p = 0.9,
m = 30

batch size = 128
SGD,

learning rate = 0.01
(1+10p)0.75 ,

momentum = 0.9,
p = 0.9,
m = 30

batch size = 256
SGD,

learning rate = 0.01
(1+10p)0.75 ,

momentum = 0.9,
p = 0.9,
m = 30

batch size = 128
SGD,

learning rate = 0.01
(1+10p)0.75 ,

momentum = 0.9,
p = 0.9,
m = 30

CDAN
batch size = 64

SGD, momentum = 0.9,
learning rate =1e-3

batch size = 128
SGD, momentum = 0.5,

learning rate =0.1

batch size = 64
SGD, momentum = 0.9,

learning rate =0.01

batch size = 16
SGD, momentum = 0.1,

learning rate =1e-4

pixelDA

batch size = 64
Adam

learning rate =0.0002,
dim of the

noise input: 10

batch size = 64
Adam

learning rate =0.0002,
dim of the

noise input: 20

batch size = 32
Adam,

learning rate =0.001,
dim of the

noise input: 20

batch size = 32
Adam,

learning rate =0.001,
dim of the

noise input: 20

DRANet batch size = 32
Adam

batch size = 32
Adam

batch size = 32
Adam

batch size = 32
Adam

MCD batch size = 128
learning rate = 0.1

batch size = 128
learning rate = 0.01

batch size = 128
learning rate = 0.01

batch size = 128
learning rate = 0.01

MDD batch size = 128
learning rate = 0.1

batch size = 128
learning rate = 0.01

batch size = 128
learning rate = 0.01

batch size = 128
learning rate = 0.01

H DETAILS OF EXPERIMENTAL SETUP: TST DATASET WITH SHIFTED
LABEL DISTRIBUTION

The Tail Suspension Test (TST) dataset (Gallagher et al., 2017) consists of local field potentials
(LFPs) recorded from the brains of 26 mice. These mice belong to two genetic backgrounds: a
genetic model of bipolar disorder (Clock-∆19) and wildtype mice. Each mouse is subjected to
3 behavioral assays which are designed to vary stress: home cage (HC), open field (OF), and tail-
suspension (TS). We conduct experiments on two domain adaptation tasks using these neural activity
data: transferring from wildtype mice to the bipolar mouse model and vice versa. We aim to predict
for each one second window which of the 3 conditions (HC, OF, or TS) the mouse is currently
experiencing. To create label distribution shifts, we subsample the datasets so that we have 6000
Homecage observations, 3000 Open Field observations, and 6000 Tail Suspension observations in
the bipolar genotype dataset and 3000 Homecage observations, 6000 OpenField observations, and
3000 Tail Suspension observations in the wildtype genotype dataset.
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H.1 DETAILS OF THE TST DATASET WITH SHIFTED LABEL DISTRIBUTION

The Tail Suspension Test (TST) dataset (Gallagher et al., 2017) consists of 26 mice recorded from
two genetic backgrounds, Clock-∆19 and wildtype. Clock-∆19 is a genotype which has been pro-
posed as a model of bipolar disorder while wildtype is considered as a typical or common geno-
type. Local field potentials (LFPs) are recorded from 11 brain regions and segmented into 1 second
windows. For each window, power spectral density, coherence, and granger causality features are
derived. Each mouse is placed through 3 behavioral contexts while collecting LFP recordings: home
cage, open field, and tail-suspension. Mice spent 5 minutes in the home cage which is considered a
baseline or low level of distress behavioral context. Mice spent 5 minutes in the open field context
which is considered a moderate level of distress. Mice then spent 10 minutes in the tail suspension
test which is a high distress context.

H.2 MODEL STRUCTURES

For feature extractor of the wildtype to bipolar task we use a network structure consisting of: a fully
connected layer that maps our data to a feature space of 256 dimensions, with a LeakyReLU activa-
tion function; a fully connected layer that maps the feature space to 128 dimensions, and a Softplus
activation function. For the bipolar to wildtype task, we use a network structure that includes: a fully
connected layer that maps our data to a feature space of 256 dimensions, with a ReLU activation
function; a fully connected layer that maps the feature space to 128 dimensions, with another ReLU
activation function. For the classifier, we use a network structure that includes: three fully connected
layers with ReLU activation and a dropout layer with a rate of 0.5. For benchmarks, we use the same
network structures as our model to ensure fair comparisons, with the exception of DSN which has
two fully connected layers with ReLU activation. See the included code link for additional details
on each experiment.

H.3 MODEL HYPERPARAMETERS

Again, we use Adaptive Experimentation (Ax) platform (Bakshy et al.; Letham et al., 2019), an
automatic tuning approaches to select hyperparameters to maximize the performance of our method.
We use Bayesian optimization supported by Ax with 20 iterations to decide the hyperparameter
choice. We note that most of the SOTA comparisons are not specifically designed for shifted label
distribution scenarios, and this setting caused issues in several competing. We used Ax to maximize
their performance in label shifting scenarios. Details on the model hyperparameters are provided
in Table 10 (If not specified, the default hyperparameters from their respective implementations are
employed.).

I ACCESSIBILITY OF THE DATASETS AND COMPUTING RESOURCES

Accessibility of the Datasets The MNIST, BSDS500, USPS, and SVHN datasets are pub-
licly available with an open-access license. The Tail Suspension Test (TST) dataset (Gallagher
et al., 2017) is available to download at https://research.repository.duke.edu/
concern/datasets/zc77sr31x?locale=en for free under a Creative Commons BY-NC
Attribution-NonCommercial 4.0 International license.

Computing Resources The experiments are conducted on a computer cluster equipped with a
NVIDIA GeForce RTX 2080 Ti that has a memory capacity of 11019MiB.
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Table 10: Model hyperparameters used for the label distribution shifting TST datasets

Clock-∆19 to Wildtype Wildtype to Clock-∆19

DARSA

batch size = 128,
α=1e-4, λY = 1,

λD = 0.4, λc = 0.1,
λa = 0.9,

m = 50
SGD, momentum = 0.6

batch size = 128,
α = 0.001, λY = 0.7,
λD = 0.1, λc = 0.1,

λa = 1,
m = 50

SGD, momentum = 0.3

DANN
batch size = 32

Adam,
learning rate = 1e-4

batch size = 32
Adam,

learning rate = 1e-4

WDGRL

batch size = 32
Adam,

learning rate = 1e-4,
γ = 10,

critic training step: 1,
feature extractor
and discriminator
training step: 2

batch size = 32
Adam,

learning rate = 1e-5,
γ = 10,

critic training step: 1,
feature extractor
and discriminator
training step: 3

DSN

batch size = 64
SGD, momentum = 0.5,

learning rate = 0.1,
α = 1,

β = 1, γ = 1

batch size = 32
SGD, momentum = 0.5,

learning rate = 0.1,
α = 1,

β = 1, γ = 1

CAT

batch size = 128
SGD,

learning rate = 0.01
(1+10p)0.75 ,

momentum = 0.9,
p = 0.9,
m = 3

batch size = 128
SGD,

learning rate = 0.01
(1+10p)0.75 ,

momentum = 0.9,
p = 0.9,
m = 3

CDAN
batch size = 64

SGD, momentum = 0.9,
learning rate = 0.1

batch size = 64
SGD, momentum = 0.9,

learning rate = 0.1
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