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ABSTRACT

The directed graph (digraph), as a generalization of undirected graphs, exhibits
superior representation capability in modeling complex topology systems and has
garnered considerable attention in recent years. Despite the notable efforts made
by existing DiGraph Neural Networks (DiGNNs) to leverage directed edges, they
still fail to comprehensively delve into the abundant data knowledge concealed in
the digraphs. This limitation results in sub-optimal performance and underscores
the necessity of further exploring the potential correlations between the directed
topology and node profiles from a data-centric perspective, thereby empowering
model-centric neural networks with stronger encoding capabilities. In this paper,
we propose Entropy-driven Digraph knowlEdge distillatioN (EDEN), which can
serve as a new data-centric digraph learning paradigm or a model-agnostic hot-and-
plug data online knowledge distillation module for most existing DiGNNs to fully
leverage informative digraphs. Specifically, EDEN first utilizes directed structural
measurements from a topological perspective to construct a knowledge tree, guided
by the hierarchical encoding theory. Subsequently, EDEN quantifies the mutual
information of nodes from a feature perspective to further refine the knowledge flow,
facilitating tree layer-wise knowledge distillation. As a general framework, EDEN
also can naturally extend to undirected scenarios and demonstrate satisfactory
performance. In our experiments, EDEN has been widely evaluated on 14 (di)graph
datasets and across 4 downstream tasks. The results demonstrate that EDEN attains
SOTA performance and exhibits strong improvement for prevalent (Di)GNNs.

1 INTRODUCTION

In recent years, Graph Neural Networks (GNNs) have achieved SOTA performance across various
tasks including node-level Wu et al. (2019); Hu et al. (2021); Li et al. (2024b), link-level Zhang
& Chen (2018); Tan et al. (2023), and graph-level Zhang et al. (2019); Yang et al. (2022). The
effectiveness of GNNs stems from their capability to conduct message propagation over graphs,
thereby capturing structural insights and node features. Unfortunately, most existing graph learning
methods are tailored for undirected scenarios, resulting in a cascade of negative impacts in terms of:

(1) Data-level sub-optimal representation: Due to the complex structural patterns present in the real
world, the absence of directed topology limits the captured relational information, thereby resulting
in sub-optimal data representations with inevitable information loss Koke & Cremers (2023); Geisler
et al. (2023); Maekawa et al. (2023); (2) Model-level inefficient learning: The optimization dilemma
arises when powerful GNNs are applied to sub-optimal data. For instance, undirected GNNs struggle
to analyze the connective rules among nodes in the entanglement of homophily and heterophily (i.e.,
whether connected nodes have similar features or same labels) Luan et al. (2022); Zheng et al. (2022);
Platonov et al. (2023) due to neglect the valuable directed topology Rossi et al. (2023); Maekawa
et al. (2023); Sun et al. (2024). This oversight compels the undirected methods to heavily rely on
well-designed models or tricky theoretical assumptions to remedy the neglect of directed topology.

To break these limitations, Directed GNNs (DiGNNs) are proposed to adequately encode directed
topology and node features Tong et al. (2020a); Zhang et al. (2021c); Rossi et al. (2023); Sun
et al. (2024); Li et al. (2024a). Despite advancements in DiGNN design considering asymmetric
topology, these methods still fail to fully explore the potential correlations between complex directed
topology and node profiles. Notably, this potential correlation extends beyond directed edges and
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high-order neighbors to unseen structural patterns associated with topology and node semantics.
Therefore, we emphasize revealing abundant digraph knowledge from a data-centric perspective to
ultimately enhance model learning. Specifically, (1) Topology: unlike undirected graphs, directed
topology in digraphs offers node pairs or groups a more diverse range of connection patterns,
implying rich structural knowledge; (2) Feature: digraph nodes present greater potential for more
sophisticated feature knowledge when compared to nodes in the undirected graph that often present
with predominant homophily Ma et al. (2021); Luan et al. (2022); Zheng et al. (2022). The two above
data knowledge perspectives form the basis of digraphs and motivate our research. The core of our
motivation is disentangling the complex directed structural patterns and node profiles.

To fully utilize this data-derived knowledge for the learning process, we adhere to the fundamental
concept of data-centric ML and propose Entropy-driven Digraph knowlEdge distillatioN (EDEN).
Serving as a general data online knowledge distillation (KD) framework, EDEN seamlessly integrates
digraph knowledge into the models to obtain the optimal embeddings for downstream tasks. Specif-
ically, EDEN first employs directed structural measurement as a quantification metric to capture
the natural evolution of topology in the digraph (guided by the structural entropy theory), thereby
constructing a hierarchical knowledge tree (HKT) (topology perspective). Subsequently, EDEN
further refines the HKT with fine-grained adjustments based on the mutual information (MI) of
node profiles (guided by the learning process), regulating the knowledge flow (feature perspective).
Building upon this, EDEN can be viewed as a new data-centric DiGNN or a hot-and-plug data online
KD strategy for existing DiGNNs. For the motivation and key insights behind our use of HKT for
digraph data online KD, please refer to Sec. 2.2. Notably, while we highlight the importance of EDEN
in extracting intricate data knowledge in directed scenarios, it can naturally extend to undirected
settings and still exhibit satisfactory performance. More details can be found in Sec. 4.1.

Our contributions. (1) New Perspective. To the best of our knowledge, EDEN is the first attempt to
achieve data online KD for empowering digraph representation learning. It provides a new perspective
for the digraph learning community and emphasizes the feasibility and importance of data-centric
digraph mining. (2) Unified Framework. EDEN facilitates data-centric digraph learning through the
establishment of a fine-grained HKT from both topology and feature perspectives. It contributes to
discovering unseen but valuable structural patterns concealed in the digraph for improving learning
efficiency. (3) Flexible Method. Through the personalized design, EDEN can be regarded as a new
data-centric digraph learning paradigm. Furthermore, it can also serve as a model-agnostic hot-and-
plug data online KD module, seamlessly integrating with existing DiGNNs to improve predictions.
(4) SOTA Performance. Extensive experiments across a wide variety of tasks and di(graph) datasets
demonstrate that EDEN consistently outperforms the best baselines (up to 3.12% higher). Moreover,
it provides a substantial positive impact on prevalent (Di)GNNs (up to 4.96% improvement).

2 PRELIMINARIES

2.1 NOTATIONS AND PROBLEM FORMULATION

We consider a digraph G = (V, E) with |V| = n nodes, |E| = m edges. Each node has a feature
vector of size f and a one-hot label of size c, the feature and label matrix are represented as
X ∈ Rn×f and Y ∈ Rn×c. G can be described by an asymmetrical adjacency matrix A(u, v).
D = diag (d1, · · · , dn) is the corresponding degree matrix. Typical downstream tasks are as follows.

Node-level Classification. Suppose Vl is the labeled set, the semi-supervised node classification
paradigm aims to predict the labels for nodes in the unlabeled set Vu with the supervision of Vl.
Link-level Prediction. (1) Existence: predict if (u, v) ∈ E exists in the edge sets; (2) Direction:
predict the edge direction of pairs of nodes u, v for which either (u, v) ∈ E or (v, u) ∈ E ; (3)
Three-class link classification: classify an edge (u, v) ∈ E , (v, u) ∈ E , or (u, v), (v, u) /∈ E .

2.2 HIERARCHICAL ENCODING THEORY IN STRUCTURED DATA

Inspired by the information theory of structured data Li & Pan (2016), let G be a real-world digraph
influenced by natural noise. We define its information entropy H from both topology and feature
perspectives, and H determines the true structure T of G. The structured data knowledge K is
concealed in T . The basic assumptions based on the above definitions are as follows:
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Figure 1: The overview of our proposed hierarchical encoding theory in structured data. Its core
involves digraph encoding within every HKT layer and MI neural estimation across layers (illustrated
using leaf nodes and their parents). Different colors and dotted lines represent distinct labels.

Assumption 2.1. The information entropyH of G is captured by the directed structure (topology)
and trainable hierarchical encoding system (feature), reflecting the uncertainty of complex systems.
Assumption 2.2. The true structure T of G is obtained by excluding the maximum uncertaintyH.
Assumption 2.3. The knowledge K forms the foundation of G and is concealed in the true structure
T of G, which is used to optimize the hierarchical encoding system and achieve iterative training.

Based on these assumptions, we adhere to the hierarchical encoding theory Byrne & Russon (1998);
Dittenbach et al. (2002); Clauset et al. (2008a) to establish a novel paradigm shown in Fig. 1. This
paradigm standardizes the evolution of structured data in physical systems, inspiring the notion of
decoding this naturally structured knowledge for analyzing complex digraphs. In other words, this
trainable encoding system progressively captures the information needed to uniquely determine nodes,
such as their positions, within structured data. From this, the encoded result constitutes knowledge K
residing within the true structure T . Subsequently, applying KD on extracted K from T optimizes the
encoding system to achieve iterative training. The above concepts form the core of our motivation.

Notably, the directed structural measurement and node MI in Fig. 1 aim to uncover the structural and
feature complexity of networks. Leveraging these methods, we efficiently compress information,
reduce redundancy, and reveal hierarchical structures that capture subtle data knowledge often
overlooked by previous studies. In other words, we minimize uncertainty and noise in G, revealing the
underlying true structure T , which captures the layered organization of the data’s inherent evolution.
This T allows us to effectively decode the underlying knowledge K, corresponding to the HKT in
EDEN. This theoretical hypothesis has been widely applied in graph learning in recent years, driving
significant research advancements in graph pooling Wu et al. (2022), contrastive learning Wu et al.
(2023); Wang et al. (2023), and graph structure learning Zou et al. (2023); Duan et al. (2024).

In this paper, we adopt a data-centric perspective, which we believe has been overlooked in previous
studies. Specifically, we investigate the potential of hierarchical graph data KD within the to enhance
model-centric (Di)GNNs. The core intuition behind our approach is that data quality often limits
the upper bound for model performance Yang et al. (2023); Zheng et al. (2023); Liu et al. (2023).
By leveraging HKT, we can uncover complex patterns within graphs, enhancing data utility. This
is particularly relevant for digraphs, where intricate directed causal relationships demand deeper
exploration. However, our approach can also be naturally extended to undirected graphs. For further
discussion on our proposed HKT and hierarchical graph clustering, please refer to Appendix A.1.

2.3 DIGRAPH REPRESENTATION LEARNING

To obtain node embeddings in digraphs, both spectral Zhang et al. (2021c); Lin & Gao (2023); Koke
& Cremers (2023); Li et al. (2024a) and spatial Tong et al. (2020b;a); Zhou et al. (2022); Rossi et al.
(2023); Sun et al. (2024) methods are proposed. Specifically, to implement spectral convolution
on digraphs with theoretical guarantees, the core is to depend on holomorphic Duong & Robinson
(1996) filters or obtain a symmetric (conjugated) digraph Laplacian based on PageRank Andersen
et al. (2006) or magnetic Laplacian Chung (2005). Regarding spatial methods, researchers draw
inspiration from the WL test Shervashidze et al. (2011) and employ message-passing mechanisms
that account for directed edges. They commonly employ independently learnable weights for in- and
out-neighbors to fuse node representations He et al. (2022b); Kollias et al. (2022); Sun et al. (2024).
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Figure 2: The overview of our proposed EDEN.

2.4 ENTROPY-DRIVEN MI NEURAL ESTIMATION

Information entropy originates from the practical need for measuring uncertainty in communication
systems Shannon (1948). Motivated by this application, MI measures the dependence between two
random variables. Based on this, Infomax Linsker (1988) maximizes the MI between inputs (features)
and outputs (predictions), concentrating the encoding system more on frequently occurring patterns.
To effectively estimate MI, MINE Belghazi et al. (2018) uses the DV Pinsky (1985) representation
to approximate the KL divergence closely associated with MI. It achieves neural estimation of MI
by parameterizing the function family as a neural network and gradually raising a tight lower bound
through gradient descent. Motivated by these key insights, DGI Veličković et al. (2019) proposes
graph Infomax to guide the contrastive learning process. GMI Peng et al. (2020) maximizes the MI
between the current node and its neighbors, effectively aggregating features. CoGSL Liu et al. (2022)
optimizes graph view generation and fusion through MI to guide graph structure learning.

3 METHODOLOGY

The core idea of EDEN is to fully leverage the digraph data knowledge to empower model learning.
As a data online KD framework, EDEN achieves mutual evolution between teachers and students
(i.e., parent and children nodes in the HKT) through the following steps as shown in Fig. 2. To avoid
confusion between the data-level online KD and the widely known model-level offline KD (i.e., large
teacher model and lightweight student model), we provide a detailed explanation in Appendix A.2.

Step 1: Knowledge Discovery: (a) To begin with, we employ directed structural measurement as a
quantification metric to construct a coarse-grained HKT, discovering knowledge from a topology per-
spective; (b) building upon this, we perform neural estimation of node MI from a feature perspective.
Through gradient descent, we regulate the coarse old knowledge flow and obtain fine-grained HKT.

Step 2: Knowledge Distillation: Then, we denote parent and child nodes within the same corrected
partition as teachers and students to achieve data online KD. Specifically, we customize trainable
knowledge generation and transfer for each parent and child by node-adaptive strategies and HKT.

Step 3: Leaf Prediction: Finally, we generate leaf-centered predictions (i.e., original digraph nodes)
for downstream tasks. In this process, to harness rich knowledge from the HKT, we employ random
walk to capture multi-level representations from their parents and siblings to improve predictions.

3.1 MULTI-PERSPECTIVE KNOWLEDGE DISCOVERY

In the context of digraph machine learning, original data have two pivotal components: (1) Topology
describes the intricate connection patterns among nodes; (2) Feature uniquely identifies each node,
closely linked to labels. If knowledge discovery focuses on only one aspect, it would lead to coarse-
grained knowledge and sub-optimal distillation. To avoid this, EDEN first conducts topology mining
to enrich subsequent feature mining, and collectively, establish a robust foundation for effective KD.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Topology-aware structural measurement. In a highly connected digraph, nodes frequently interact
with their neighbors, constructing the complex topology. By employing random walks Pearson (1905),
we can capture these interactions and introduce entropy as a measure of topological uncertainty Li &
Pan (2016). Specifically, we can quantify one-dimensional structural information of G by leveraging
the stationary distribution of its degrees d and the Shannon entropy, which is formally defined as:

H1(G) :=−
∑
v∈V

(
d̃inv
m

log
d̃inv
m

+
d̃outv

m
log

d̃outv

m

)
, (1)

where d̃in and d̃out are in and out-degrees of nodes in the digraph. Based on this, to achieve high-order
topology mining, let P = {X1,X2, · · · ,XC} be a partition of V , where X denotes a community. To
this point, we can define the two-dimensional structural information of G by P as follows:

H2(G) = min
P

{
HP

in(G) +HP
out(G)

}
, HP

in/out(G) :=

−
L∑

j=1

vol (Vj)

m

∑
v∈Vj

d̃
in/out
v

vol (Vj)
log

d̃
in/out
v

vol (Vj)
+
gj
m

log
vol (Vj)

m

 ,
(2)

where vol(V) =
∑

v∈V d̃inv /d̃outv , Vj and gj are the nodes and the number of directed edges with
endpoint/startpoint in the partition j, depend onHP . Despite their effectiveness, real-world digraphs
commonly exhibit a complex hierarchical structure Clauset et al. (2008b), naturally extending
structural measurement to higher dimensions. Consequently, we leverage a h-height partition tree T
for structured data (see Appendix A.3) to obtain h-dimensional structural measurement as follows:

Hh(G) = min
∀T :Height(T )=h

{
HT

in(G) +HT
out(G)

}
,HT

in/out(G) = −
∑

∀t∈T ,t ̸=λ

g
in/out
t

vol(V) log
vol (t)

vol (t+)
, (3)

where t+ is the parent of t and λ is the root node of the HKT, gint and goutt are the number of directed
edges from other partitions to the current partition and from the current partition to other partitions, at
the level where node t is located. To this end, we comprehensively quantify the directed information.

Coarse-grained HKT construction. In contrast to the directed structural measurements defined in
previous work Li & Pan (2016), EDEN addresses the limitations of forward-only random walks by
incorporating reverse walks. This modification is motivated by the non-strongly connected nature
of most digraphs, where the proportion of complete walk paths declines sharply after only five
steps (as shown in our empirical studies in Appendix A.4). This decline suggests that most walk
sequences fail to capture sufficient information beyond the immediate neighborhood of the starting
node. Consequently, strictly adhering to edge directions in walks (forward-only) results in severe
walk interruptions, which ultimately degrades the effectiveness of Hh(G). Furthermore, we add
self-loops for sink nodes (i.e., nodes with zero in or out degrees) to prevent the scenario where
the adjacency matrix might be a zero power and ensure that the sum of landing probabilities is 1.
Based on this, we utilize Eq. (3) as a quantification metric and employ a greedy algorithm DeVore &
Temlyakov (1996) to seek the optimal hierarchical partition tree that minimizes uncertainty. For a
detailed coarse-grained HKT construction algorithm, please refer to Appendix A.5.

Feature-oriented node measurement. At this point, we have simulated the natural evolution of
a digraph from a topology perspective, guided by the principle of minimizing directed structural
uncertainty. However, as previously pointed out, node features play an equally pivotal role in digraph
learning, which means that the topological measurement alone is insufficient to accurately reflect the
true structure in digraphs, and mislead knowledge generation. Therefore, we aim to fully leverage
node features based on the original partitions to fine-tune the coarse HKT for the subsequent KD.

The key insight of HKT refinement is to emphasize high feature similarity within the same partition
while ensuring differences across distinct partitions. This is to retain authority in the parent nodes
(teachers) during knowledge generation and avoid the reception of misleading knowledge by the
child nodes (students). To achieve our targets, we introduce intra- and inter-partition node MI neural
estimation from a feature perspective. Specifically, the former retains nodes with higher MI within
the current partition. These nodes not only serve as effective representations of the current partition
but also inherit partition criteria based on structural measurement. The latter identifies nodes in other
partitions that effectively represent their own partitions while exhibiting high MI with the current
partition. We can reserve and utilize affiliations of these nodes to improve the HKT structure.
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Partition-based MI neural estimation. Before introducing our method, we provide a formalized
definition as follows. For current partition Xp, we first sample a subset Ωp consisting of Kp nodes
from Xp and other partitions Xq at the same HKT height (more details can be found in Appendix A.6).
Then, we employ a criterion function C(·) to quantify the information of Ωp, aiming to find the most
informative subset for generating knowledge about Xp by solving the problem maxΩp⊂V C(Ωp),
subject to |Ωp| = Kp. In our implementation, we formulate C(Ωp) for Xp based on the neural
MI estimator between nodes and their generalized neighborhoods, capturing the neighborhood
representation capability of nodes. Based on this, we derive the following theorems related to MI
neural estimation for structured data, guiding the design of a criterion function for HKT partitions.

Theorem 3.1. Let T be the HKT in a digraph G = (V, E). For any selected node v ∈ Xp and u ∈ Xq

in the subset Ωp, we define their generalized neighborhoods as N T
v = Xp and N T

u = Xp ∪ Xq.
Given v and N T

v as an example, consider random variables fv and fNT
v

as their unique node
(sets) features, the lower bound of MI between v and its generalized neighborhoods is given by the
KL divergence between the joint distribution P

(
fv, fNT

v

)
=P

(
fv = Xv, fNT

v
= XNT

v

)
and the

product of marginal distributions Pfv ⊗ PfNT
v

can be formally defined as follows:

I(Ω)(fv, fNT
v
) = DKL

(
P
(
fv, fNT

v

)
∥Pfv ⊗ PfNT

v

)
≥ sup

F∈F

{
E
Xv,XNT

v
∼P

(
fv,fNT

v

)[F (Xv,XNT
v

)]
EXv∼Pfv ,XNT

v̄
∼PfNT

v

[
e
F
(
Xv,XNT

v̄

)
−1
]}

,
(4)

where v̄ represents the randomly selected node in Ωp except for v. This lower bound is derived from
the f -divergence representation based on KL divergence. F is an arbitrary function that maps a pair
of the node and its generalized neighborhoods to a real value, reflecting the dependency.

Theorem 3.2. The lower bound in Theorem 3.1 can be converted to f-divergence representations
based on non-KL divergence. This GAN-like divergence for structured data is formally defined as:

DKL

(
P
(
fv, fNT

v

)
∥Pfv⊗PfNT

v

)
∼ I(Ω)

GAN(fv, fNT
v
)

≥ sup
F∈F

{
E
P
(
fv,fNT

v

) [log σ (F (Xv,XNT
v

))]
EPfv ,PfNT

v

[
log
(
1− σ

(
F
(
Xv,XNT

v̄

)))]}
,

(5)

where σ(·) is the activation function. Since solving I(Ω)
GAN across the entire function space F is

practically infeasible, we employ a neural network Fw(·, ·) parameterized by w.

Theorem 3.3. Through the optimization of w, we obtain C(Ω)= Î
(Ω)
GAN as the GAN-based node MI

neural estimation for every partition within fine-grained HKT:

max
w

1

|Ω|
∑
v∈Ω

log σ
(
Fw

(
Xv,XNT

v

))
+max

w

1

|Ω|2
∑

(v,v̄)∈Ω

log
(
1− σ

(
Fw

(
Xv,XNT

v̄

)))
. (6)

The two terms capture the dependency and difference between selected nodes and their neighborhoods.

Fine-grained HKT correction. Based on the above theorems, we instantiate the intra-partition MI:

F intra
w :=Qintra

(
W1 (M (Xv)),W2

(
M
(
XNT

v

)))
, (7)

where Qintra is an embedding function designed to quantify node MI by maximizing intra-partition
Xp similarity,M is a model-agnostic digraph learning function, andW1 andW2 are embedding
functions for selected nodes and their generalized neighborhoods. Building upon this, we extend
Eq. (7) to the inter-partition scenario, enabling the discovery of potential nodes u that exhibit high
MI with Xp and inherit the directed structure measurement criteria of Xq:

F inter
w :=Qinter

(
W1(M (Xu)) ,W2

(
M
(
XNT

u

)))
. (8)

Notably, the above equations shareW1 andW2, as they are both used for encoding the current node
and corresponding generalized neighborhoods. In our implementation, Q andW are instantiated as
MLP and the linear layer. Furthermore, we combine it with Sec. 3.2 to reduce complexity. Detailed
proofs of the theorems and discussions can be found in Appendix A.6-A.8.
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3.2 NODE-ADAPTIVE KNOWLEDGE DISTILLATION

Knowledge Generation. After considering the distinctness of nodes, we obtain Ωp for the current
partition Xp by solving Eq. (6), where Ωp comprises K nodes selected from Xp and other partitions
Xq . Now, we compute an affinity score for each sampling node in Ωp based on their unique roles vx
given by coarse-grained HKT, where v1 is the nodes from the current partition, and v2 is the nodes
obtained by performing partition-by-partition sampling of the other partitions. The sampling process
is limited by the number of nodes in Xp. The above process in the can Xp be formally defined as:

Sv1 =σ(Qintra(W1(M(Xv1)),W2(M(XNT
v1
))),

Sv2,1 =σ(Qinter(W1(M(Xv2)),W2(M(XNT
v2
))),

Sv2,2 =σ(Qintra(W1(M(Xv2)),W2(M(XXv2
q
))),

(9)

where Sv1 and Sv2,1 are used to discover the knowledge closely related to the current partition.
However, this strategy often causes an over-fitting problem. Therefore, we introduce Sv2,2 to bring
diverse knowledge from other partitions. Specifically, we aim to identify and emphasize nodes
that, while representing other partitions, exhibit significant differences from the current partition by
Sv2 = max(Sv2,1 ,Sv2,2). Finally, we obtain the parent representation of Xp by Xp = SΩpXΩp .

Knowledge Transfer. In this section, we introduce the personalized knowledge transfer from the
parent node Xp (teacher) to the child nodes Xv (student) under partition Xp. The key insights of our
proposed node-adaptive strategy are as follows: (1) For parent nodes, not all knowledge is clearly
expressible, implying that class knowledge hidden in embeddings or soft labels may be ambiguous.
(2) For child nodes, each node has a unique digraph context, causing various knowledge requirements.
Building upon this, our proposed strategy considers the trade-off between the knowledge held by the
parent node and the specific requirements of individual child nodes, facilitating personalized transfer.

Specifically, we first refine the knowledge hidden in the parent node representation through entropy-
driven Qparent to improve knowledge quality. Then, we aim to capture the diverse requirements of
child nodes in knowledge transfer by Qchild to achieve personalized transfer. Similar to Sec. 3.1, we
employ MLP to instantiate Q. To this point, we have built an end-to-end online KD framework for
the mutual evolution of teacher and student by the node-adaptive KD loss, which is defined as:

Lkd = ∥Xp/Up−Qchild

(
XXp

v1,v2

)
∥F , Up =σ

(
Qparent

(
−

c∑
i=1

Xp,i log (Xp,i)

))
. (10)

3.3 RANDOM WALK-BASED LEAF PREDICTION

Now, we have obtained representations for all nodes in the HKT. Then, our focus shifts to generating
leaf-centered predictions for various downstream tasks. To improve performance, a natural idea is to
leverage the multi-level representations, including siblings and higher-level parents of the current
leaf node, to provide a more informative context. Therefore, we employ the tree-based random walk
to obtain this embedding sequence. However, given a receptive field, the number of paths is greater
than the number of nodes, employing all paths becomes impractical, especially with a large receptive
field. To gather more information with fewer paths in the search space, we define walk rules based
on the specific downstream task. Specifically, we concentrate on sampling siblings (srw) to capture
same-level representation for link-level tasks. Conversely, for node-level tasks, we prioritize sampling
from parents (prw) or children (crw) to acquire multi-level representations. Consider a random walk
on edge et,s, currently at node s and moving to the next node r. The transition probability is set as
follows:

Prw(vi=r |vi−1=s,vi−2= t)=


1/prw, parent
1/srw, sibling
1/crw, child
0, otherwise

. (11)

Then, we concat the k-step random walk results (i.e., node sequence) to obtain Pk
rw for each leaf

node. After that, the leaf-centered prediction and overall optimization with α-flexible KD and MLP
instantiated Qrw are formally defined as (please refer to Appendix A.9 for complexity analysis):

L = Lcross-entropy

(
Ŷ,Y

)
+ αLkd,

Ŷ(v) = Softmax
(
Qnode

rw

(
Pk
rw−v

))
, Ŷ(u, v)=Softmax

(
Qlink

rw

(
Pk
rw−u||Pk

rw−v

))
.

(12)
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3.4 LIGHTWEIGHT EDEN IMPLEMENTATION

As a data-centric framework, EDEN effectively implements hierarchical digraph data online KD
driven by HKT and trainable modules, while seamlessly integrating with any model-centric neural
network. This framework offers new insights and tools for advancing data-centric digraph learning.
However, scalability remains a bottleneck in our approach, and we aim to propose feasible solutions
to enhance its efficiency. Specifically, we implement a lightweight EDEN as outlined below.

Lightweight Coarse-grained HKT Construction. As detailed in Algorithm 1-2 of Appendix A.5,
we can introduce randomness using Monte Carlo methods, which select potential node options rather
than optimal ones for sampling before executing the detaching and merging process. Probabilities
are assigned to these choices, and a random option is selected for execution. This approach involves
running multiple Monte Carlo simulations, where nodes are randomly chosen in each run to generate
various candidate solutions. An optimal or near-optimal solution is then selected from these.

Lightweight Fine-grained HKT Construction. For node MI neural estimation, computational
efficiency can be further optimized using techniques such as incremental training and prototype rep-
resentation for label-specific children and parent nodes. This training and embedding representation
method will significantly reduce the computational overhead of node MI neural estimation.

Lightweight Layer-wise Digraph Learning Function. We can obtain node representations through
weight-free feature propagation, a computationally efficient embedding method that has proven
effective in recent studies Wu et al. (2019); Zhang et al. (2022); Li et al. (2024b). Through this design,
we significantly reduce the number of learnable parameters and achieve efficient gradient updates.

4 EXPERIMENTS

In this section, we aim to offer a comprehensive evaluation and address the following questions: Q1:
How does EDEN perform as a new data-centric DiGNN? Q2: As a hot-and-plug data online KD
module, what is its impact on the prevalent (Di)GNNs? Q3: If EDEN is effective, what contributes
to its performance? Q4: What is the running efficiency of EDEN? Q5: How robust is EDEN when
dealing with hyperparameters and sparse scenarios? To maximize the usage for the constraint space,
we will introduce datasets, baselines, and experiment settings in Appendix A.10-A.13.

4.1 PERFORMANCE COMPARISON

Table 1: Test accuracy (%) in directed Node-C.
Models CoraML CiteSeer WikiCS Tolokers Empire Rating Arxiv

GCNII 80.8±0.5 62.5±0.6 78.1±0.3 78.5±0.1 76.3±0.4 42.3±0.5 65.4±0.3
GATv2 81.3±0.9 62.8±0.9 78.0±0.4 78.8±0.2 78.2±0.9 43.8±0.6 66.7±0.3
AGT 81.2±0.8 62.9±0.8 78.3±0.3 78.5±0.2 77.6±0.7 43.6±0.4 66.2±0.4

DGCN 82.2±0.5 63.5±0.7 78.4±0.3 78.7±0.3 78.7±0.5 44.7±0.6 66.9±0.2
DIMPA 82.4±0.6 64.0±0.8 78.8±0.4 78.9±0.2 79.0±0.6 44.6±0.5 67.1±0.3

D-HYPR 82.7±0.4 63.8±0.7 78.7±0.2 79.2±0.2 78.8±0.5 44.9±0.5 66.8±0.3

DiGCN 82.0±0.6 63.9±0.5 79.0±0.3 79.1±0.3 78.4±0.6 44.3±0.7 67.1±0.3
MagNet 82.2±0.5 64.2±0.6 78.9±0.2 79.0±0.2 78.8±0.4 44.7±0.6 67.3±0.3
HoloNet 82.5±0.5 64.1±0.7 79.2±0.3 79.4±0.2 78.7±0.5 44.5±0.6 67.5±0.2

EDEN 84.6±0.5 65.8±0.6 81.4±0.3 81.3±0.2 81.1±0.6 46.3±0.4 69.7±0.3

A New Digraph Learning Paradigm. To an-
swer Q1, we present the performance of EDEN
as a new data-centric DiGNN in the Table 1
and Table 2. These tables provide a comprehen-
sive evaluation of EDEN’s performance across
four downstream tasks on digraph datasets with
three evaluation metrics. According to reports,
EDEN consistently achieves state-of-the-art per-
formance across all scenarios. Specifically, com-
pared to various methods that intermittently
achieve the second-best results, EDEN attains
improvements of 2.78% and 2.24% on node- and link-level tasks. Based on Sec. 3.4, the design
details of the HKT layer-wise digraph learning function in EDEN can be found in Appendix A.11.

A Hot-and-plug Online KD Module. Subsequently, to answer Q2, we present performance gains
achieved by incorporating EDEN as a hot-and-plug module into existing methods in Table 3 (deploy-
ment details can be found in Appendix A.11.). Based on the results, we observe that EDEN performs
better on digraphs and DiGNNs compared to undirected ones. This is because more abundant data
knowledge is inherent in digraphs, coupled with the theoretically stronger representational power of
DiGNNs (see Sec. 2.2). EDEN is designed to meet this specific demand, thus showcasing superior
performance. Notably, the performance of EDEN as a hot-and-plug module exceeds its performance
as a self-reliant method in some cases. This is attributed to the adoption of a lightweight HKT con-
struction and layer-wise digraph learning function design for running efficiency. While this approach
sacrifices some accuracy, it significantly enhances scalability for handling large-scale WikiTalk.
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Table 2: Model performance (%) in three directed link-level downstream tasks.
Datasets (→) Slashdot WikiTalk

Tasks (→) Existence Direction Link-C Existence Direction Link-C

Models (↓) AUC AP AUC AP ACC AUC AP AUC AP ACC

GCN 88.4±0.1 88.6±0.1 90.1±0.1 90.2±0.1 83.8±0.2 92.4±0.1 92.3±0.0 86.5±0.2 87.1±0.1 84.6±0.2
GAT 88.1±0.2 88.4±0.1 90.4±0.2 90.5±0.1 83.5±0.3 OOM OOM OOM OOM OOM

OptBG 88.6±0.1 88.5±0.0 89.8±0.1 90.6±0.0 83.7±0.2 92.7±0.1 92.2±0.1 87.2±0.1 87.3±0.1 85.1±0.2
NAG 88.9±0.1 89.1±0.1 90.6±0.2 90.4±0.1 84.0±0.3 OOM OOM OOM OOM OOM

NSTE 90.6±0.1 90.8±0.0 92.2±0.1 92.4±0.0 85.4±0.2 94.4±0.1 94.6±0.1 90.7±0.1 90.0±0.0 90.4±0.1
Dir-GNN 90.4±0.1 90.5±0.0 92.0±0.1 91.8±0.1 85.2±0.2 94.7±0.2 94.3±0.1 90.9±0.1 90.3±0.1 90.6±0.2
MagNet 90.3±0.1 90.2±0.1 92.2±0.2 92.4±0.1 85.3±0.1 OOM OOM OOM OOM OOM
MGC 90.1±0.1 90.4±0.0 92.1±0.1 92.3±0.1 85.0±0.1 94.5±0.1 94.2±0.0 90.6±0.1 90.2±0.0 90.1±0.1

EDEN 91.8±0.1 92.0±0.0 93.3±0.1 93.1±0.0 87.1±0.2 95.4±0.1 95.8±0.1 91.5±0.0 91.7±0.1 91.0±0.1

Table 3: Node-C test accuracy (%) gains brought by EDEN in Di(GNNs) under Di(graphs).
Models CoraML CiteSeer WikiCS Arxiv Photo Computer PPI Flickr Improv.

OptBG 81.5±0.7 62.4±0.7 77.9±0.4 66.4±0.4 91.5±0.5 82.8±0.5 57.2±0.2 50.9±0.3 ↑2.75%OptBG+EDEN 82.8±0.6 64.6±0.8 79.4±0.3 67.9±0.4 93.9±0.6 84.9±0.6 59.8±0.3 52.8±0.4

NAG 81.2±0.9 62.5±0.9 78.3±0.3 65.9±0.5 91.3±0.7 83.1±0.4 57.1±0.2 51.2±0.4 ↑2.54%NAG+EDEN 83.0±0.9 64.8±0.7 79.8±0.4 67.3±0.4 93.6±0.8 85.2±0.5 59.2±0.2 52.5±0.4

DIMPA 82.4±0.6 64.0±0.8 78.8±0.4 67.1±0.3 91.4±0.6 82.4±0.5 56.7±0.3 50.5±0.3 ⇑4.32%DIMPA+EDEN 85.4±0.5 66.9±0.7 82.2±0.5 69.9±0.3 94.1±0.7 85.1±0.5 59.5±0.4 52.9±0.2

Dir-GNN 82.6±0.6 64.5±0.6 79.1±0.4 66.9±0.4 91.1±0.5 82.9±0.6 56.8±0.3 50.8±0.4 ⇑4.68%Dir-GNN+EDEN 85.9±0.4 67.2±0.5 82.8±0.3 70.5±0.3 93.8±0.5 84.8±0.7 59.4±0.3 53.1±0.3

HoloNet 82.5±0.5 64.1±0.7 79.2±0.3 67.5±0.2 90.8±0.5 83.0±0.6 57.0±0.3 51.0±0.4 ⇑4.46%HoloNet+EDEN 86.0±0.4 67.5±0.6 82.6±0.2 70.8±0.3 93.7±0.5 85.3±0.5 59.5±0.5 53.4±0.5

4.2 ABLATION STUDY

To answer Q3, we present ablation study results in Table 4, evaluating the effectiveness of the
following modules: (1) Diverse knowledge in Eq. (9) for over-fitting issues; (2) Node-adaptive
personalized transfer for KD (Eq. (10)); (3) Tree-based random walk for leaf prediction (Eq. (11)); (4)
KD loss function for the gradient interaction between teachers and students (Eq. (10)). Notably, HKT
serves as the core of the proposed EDEN framework, with the graph data online KD occurring within
the layers of this tree structure, as shown in Fig. 2. As the foundational component of EDEN, the
framework cannot function without this tree structure. Therefore, analyzing HKT in isolation during
ablation studies is inappropriate. Instead, we highlight the contributions of each module designed to
enable the effective implementation of EDEN, as detailed below.

Table 4: Ablation study performance (%).
Datasets(→)
Modules(↓)

Tolokers (ACC) Slashdot (AUC)
Node-C Link-C Existence Direction

EDEN 81.33±0.2 82.67±0.1 91.82±0.1 93.29±0.1
w/o Diverse Knowledge 81.10±0.3 82.32±0.2 91.50±0.2 93.06±0.2

w/o Personalized Transfer 81.04±0.2 82.44±0.1 91.59±0.1 93.11±0.1
w/o Tree-based Random Walk 80.87±0.3 82.28±0.2 91.26±0.1 92.87±0.1

w/o Knowledge Distillation Loss 80.21±0.3 81.20±0.1 90.94±0.1 92.35±0.1

Datasets(→)
Modules(↓)

Rating (ACC) Epinions (AUC)
Node-C Link-C Existence Direction

EDEN 46.33±0.4 66.37±0.4 93.48±0.1 89.40±0.1
w/o Diverse Knowledge 45.96±0.5 66.10±0.5 93.21±0.2 89.12±0.1

w/o Personalized Transfer 46.12±0.3 66.04±0.3 93.15±0.1 89.14±0.1
w/o Tree-based Random Walk 46.04±0.4 65.82±0.5 93.12±0.1 89.09±0.1

w/o Knowledge Distillation Loss 45.65±0.5 65.19±0.4 92.67±0.1 88.71±0.1

Experimental results demonstrate a significant
improvement in model predictions and variance
reduction by combining these modules, validat-
ing their effectiveness. Specifically, module (1)
introduces diverse knowledge from other parti-
tions, mitigating over-fitting issues caused by
solely focusing on the current partition. This
effectiveness is reflected in higher accuracy and
lower variance. Module (2) affirms our key in-
sight: the need for a tailored knowledge trans-
fer strategy for parent and child nodes in HKT-
based KD. Thus, we can leverage KD to provide
more effective supervision during model train-
ing. Module (3) indirectly underscores the validity of the EDEN, as the multi-level representations
embedded in the HKT provide beneficial information for various downstream tasks. This introduces
a richer HKT semantic context, leading to a significant improvement in prediction accuracy. Finally,
module (4) unifies the above modules into an end-to-end optimization framework to empower the
digraph learning process. Module (2) can be seen as a more detailed exploration of this component.
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4.3 EFFICIENCY COMPARISON
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Figure 3: Efficiency of Node-C on Empire.

To answer Q4, we present the running efficiency
report in Fig. 3, where EDEN is primarily di-
vided into two segments: (1) The pre-processing
step depicted in Fig. 3(a) showcases coarse-
grained HKT construction, with the x-axis rep-
resenting predefined tree height h; (2) The end-
to-end training step depicted in Fig. 3(b). The
x-axis denotes the selection of tree height h and
sampling coefficient κ introduced by Sec. 3.1
and Sec. 3.2. Since the pre-processing is independent of model training, the computational bottleneck
introduced by the coarse-grained HKT construction is alleviated, reducing constraints on deployment
scalability. Additionally, the lightweight implementation in pre-processing further mitigates it. Mean-
while, benefiting from the lightweight fine-grained HKT construction and personalized layer-wise
digraph learning function, EDEN exhibits a significant advantage in training costs compared to
existing baselines shown in Fig. 3(b)-(c). Due to space constraints, additional details regarding the
model convergence efficiency during the training process can be found in Appendix A.14.

4.4 ROBUSTNESS ANALYSIS

Hyperparameter Selection. To answer Q5, we first analyze the impact of hyperparameter selection
on running efficiency and predictive performance based on Fig. 3(a) and (b). Our observations include:
(1) Higher HKT height h leads to a substantial increase in the time complexity for greedy algorithm
during pre-process; (2) Larger sampling coefficients κ indicate additional computational costs due to
considering more nodes in the knowledge generation, especially pronounced with increased height h;
(3) Appropriately increasing h and κ for fine-grained distillation significantly improves performance.
However, excessive increase leads to apparent optimization bottlenecks, resulting in sub-optimal
performance. In addition, we further discuss the implementation details of HKT-based random walk
for leaf prediction and KD loss factor in Appendix A.14. This involves investigating the impact of
transition probabilities between distinct identity nodes (i.e., parent, sibling, and children) during the
sequence acquisition on predictive performance and further analyzing the effectiveness of KD.

(a) Feature Sparsity (b) Edge Sparsity (c) Label Sparsity

EDEN EDEN EDEN

Figure 4: Node-C performance on CoraML.

Sparsity Challenges. Subsequently, we pro-
vide sparse experimental results in Fig. 4. For
stimulating feature sparsity, we assume that the
feature of unlabeled nodes is partially missing.
In this case, methods that rely on the quantity of
node representations like D-HYPR and NAG are
severely compromised. Conversely, DiGCN and
MGC exhibit robustness, as high-order propa-
gation partially compensates for missing features. As for edge sparsity, since all baselines rely on
the topology to empower their neural architectures, their performance is not optimistic. However,
we observe that EDEN exhibits leading performance through fine-grained digraph data knowledge
mining. For stimulating label sparsity, we change the number of labeled samples for each class and
acquire the results with a similar trend as the feature-sparsity tests. Building upon these observations,
EDEN comprehensively improves both the performance and robustness of the various baselines.

5 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

In this paper, we propose a general data-centric (di)graph online KD framework, EDEN. It achieves
fine-grained data knowledge exploration abiding with the hierarchical thesis proposed in Sec. 2.2.
Comprehensive evaluations demonstrate significant all-around advantages. We believe that imple-
menting data-centric graph KD through the tree structure is a promising direction, as the hierarchical
structure effectively captures the natural evolution of graphs. However, it must be acknowledged
that the current EDEN framework has significant algorithmic complexity, including multi-step com-
putations. Despite the lightweight implementation, scalability challenges persist when applied to
billion-level graphs. Therefore, our future work aims to simplify the hierarchical data KD theory and
develop a user-friendly computational paradigm to facilitate its practical deployment in industry.
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A APPENDIX

The appendix is organized as follows:

A.1 HKT Construction and Hierarchical Graph Clustering.
A.2 Data-level Online Knowledge Distillation in EDEN.
A.3 The Definition of partition tree.
A.4 Breaking the Limitations of Single-direction Random Walks.
A.5 Greedy Algorithms for Partition Tree Construction.
A.6 The Proof of Theorem 3.1.
A.7 The Proof of Theorem 3.2.
A.8 The Proof of Theorem 3.3.
A.9 Algorithm Complexity Analysis.
A.10 Dataset Description.
A.11 Compared Baselines.
A.12 Hyperparameter Settings.
A.13 Experiment Environment.
A.14 Extend Experimental Results.

A.1 HKT CONSTRUCTION AND HIERARCHICAL GRAPH CLUSTERING

Although the HKT construction process may appear similar to hierarchical clustering, it is important
to clarify that HKT is fundamentally different, as it leverages topology-driven structural entropy,
a dynamic measurement rooted in the information theory of structured data, to capture deeper
structural insights. This approach goes beyond static clustering techniques, providing a more nuanced
understanding of the underlying graph structure. Additionally, EDEN integrates feature-oriented
node mutual information (MI) neural estimation as a key criterion for HKT construction, which
allows for a more fine-grained analysis of node relationships based on feature information. As a
result, the multi-granularity quantification criteria established by our method are not only distinct but
also innovative compared to traditional hierarchical clustering (see Sec. 3.1).

While traditional hierarchical clustering can reveal the layered structure of a network, it is not directly
applicable to the complexities of (di)graph learning. EDEN, on the other hand, utilizes HKT as a
foundational framework to enable the development of learnable knowledge generation and transfer
mechanisms that can be seamlessly integrated with existing (Di)GNN architectures. This integration
provides a novel way to enhance model learning by effectively capturing and utilizing the hierarchical
structure of directed graphs. Furthermore, we have designed a random walk-based leaf prediction
mechanism, tailored to various graph-based downstream tasks, ensuring that our approach is robust
and adaptable to different application scenarios (for more technical details, refer to Sec. 3.2-3.3).

A.2 DATA-LEVEL ONLINE KNOWLEDGE DISTILLATION IN EDEN

Graph KD typically follows a model-level, offline teacher-student framework. In this setup, knowl-
edge is transferred from a large, pre-trained teacher GNN to a more compact and efficient student
model, such as a smaller GNN or MLP. The teacher captures complex patterns and representations
within the graph. The student, rather than learning directly from ground truth labels, learns from the
teacher’s soft predictions or intermediate representations. This approach allows the student model to
replicate the teacher’s performance while significantly reducing computational complexity.

With the rapid advancement of KD, it has expanded into multiple model-level KD variants. These
include self-distillation, where a single model simultaneously acts as both the teacher and student, en-
hancing its own learning process Chen et al. (2021); Zhang et al. (2023), and online distillation, where
both teacher and student models are continuously updated throughout the training process Zhang et al.
(2021b); Feng et al. (2022). These innovations reflect the growing diversity in how knowledge transfer
can be applied beyond the initial teacher-student (large model to lightweight model) framework.
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In this paper, we focus specifically on data-level graph KD, which emphasizes uncovering the latent
knowledge embedded in graph structures, using data samples as the medium for distillation Zhang
et al. (2020); Zhu et al. (2024). In the EDEN framework, parent and child nodes within the HKT
assume the roles of teacher and student, respectively. This enables knowledge transfer through their
representations in a hierarchical manner. Our approach aligns with the principles of data-level online
KD, leveraging the topological relationships between nodes to drive more effective distillation.

A.3 THE DEFINITION OF PARTITION TREE

To define high-dimensional measurements of directed structural information, we introduce a partition
tree T of digraphs, which can also be regarded as the coarse-grained HKT without feature-oriented
refinement (i.e., knowledge discovery (a) from a topology perspective only). Notably, community
detection or clustering can be understood as a hierarchical structure, specifically a 3-layer partition
tree. In this structure, the leaf nodes represent the individual nodes from the original graph, while
their parent nodes serve as virtual nodes that represent entire communities. To make it easier to
understand, we first give an example of a two-dimensional directed structural measurement of the
graph,H2(G), where we consider a digraph G = (V, E) and its 2-order partition P = {X1, · · · ,XC}
of node sets V . Building upon this, we interpret P through a 2-height partition tree T as follows.

To begin with, we introduce the root node λ and define a set of nodes Tλ = V as a subset of the
root node λ in the 2-height partition tree T . Notably, in this two-dimensional directed structural
measurement, the nodes in the 2-height partition tree have only three types of identity information:

(1) the root node (h = 0), which does not exist in the original digraph but is used to describe the
partition tree;

(2) the successor nodes (h = 1), which are not present in the original digraph but are employed to
characterize leaf nodes;

(3) the leaf nodes (h = 2), which represent the original digraph nodes.

Then, we introduce C immediate successors for the root denote ϕi = λ⟨i⟩, i = 1, · · · , C. Naturally,
we can extend the concept associated with the root to successor nodes ϕi, which are directly related to
the coarse partitioning of leaf nodes Xi. Thus, we define Tϕi

= Xi. Now, for each ϕi, we introduce
|Xi| immediate successors denoted ϕi⟨j⟩ for all j ∈ {1, · · · , |Xi|}, and each successor ϕi⟨j⟩ is
associated with an element in Xi. Thus, we define Tϕi⟨j⟩ as the singleton of a node in Tϕi

= Xi.

To this point, T is a partition tree of height 2, and all its leaves are associated with singletons. For
any node α ∈ T , Tα is the union of Tβ for all β values (immediate successors) of α, and the union of
Tα for all nodes with α values at the same level of the partition tree T constitutes a partition of V .
Hence, the partition tree of a digraph is a set of nodes, each associated with a nonempty subset of
nodes in digraph G, and can be defined as follows:

Definition A.1. (partition tree of Digraphs): Let G = (V, E) be a connected digraph. We define the
h-height partition tree T of G with the following properties:

(1) For the root node λ, we define the set Tλ = V as the collection of nodes with heights less than λ.

(2) For each node α ∈ T , the immediate successors of α are denoted as α⟨j⟩ for j ranging from 1 to
a natural number N , ordered from left to right as j increases.

(3) For any natural number i ≤ h and each non-leaf node α ̸= λ, the set {Tα | h(α) = i} forms a
partition of V , where h(α) denotes the height of α (note that the height of the root node λ is 0).

(4) For each leaf node α in T , Tα is a singleton, indicating that Tα contains a single node from V .

(5) For any two nodes α, β ∈ T at different heights in the tree, we use α ⊂ β or β ⊂ α to denote
their hierarchical relationship.

(6) For α ⊂ β or β ⊂ α, we employ − and + to further describe this hierarchical relationship within
the same partition. Specifically, if α ⊂ β with h(α) = h(β) + 1, then β− represents the child nodes
of β. Conversely, if β ⊂ α with h(β) = h(α) + 1, then β+ denotes the parent node of β. (note that
for every non-leaf node α ̸= λ, h (α−)− 1 = h(α) = h (α+) + 1)

(7) For each α, Tα is the union of Tβ for all β such that β+ = α. Thus, Tα = ∪β+=αTβ .
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(a) Walk with Circles (b) Walk without Circles
Figure 5: The visualization experiments of the interruption issue of single-direction random walk
on digraphs. The circle represents a special topology where a node can walk back to itself, and its
existence will alleviate walk interruption. The y-axis denotes the proportion of non-walk interruptions.

According to Definition A.1, for a given digraph G, we compute the h-dimensional directed structural
information measurementHh(G) of G by Eq. (3) while simultaneously identifying a h-height coarse-
grained HKT T . The above process adheres to the following principles:

(1) The h-dimensional structural information measurement Hh(G) of a digraph G is achieved or
approximated through the h-dimensional hierarchical partition tree T of G;

(2)Hh(G) serves as the guiding principle for the formation of the h-dimensional coarse-grained HKT
T by minimizing the uncertainty or non-determinism inherent in the h-dimensional structures of G;

(3) T , functioning as a coarse-grained HKT for G, encompasses the rules, regulations, and orders
governing G. This HKT is derived by minimizing the random variations present in the h-dimensional
structures of the digraphs, with these variations being determined by our h-dimensional directed
structural information measurement.

Based on the above principles, the h-dimensional structural measurement of digraphs, provided by the
h-height partition tree, serves as a metric enabling us to comprehensively or maximally identify the
h-dimensional structure while mitigating the impact of random variations in the digraphs. Meanwhile,
Hh(G) excellently facilitates the complete extraction of order from unordered digraphs, allowing us
to discern order from disorder within structured data. Remarkably, our definition retains all properties
of the digraphs, providing robust support for the thorough analysis of structured data.

A.4 BREAKING THE LIMITATIONS OF SINGLE-DIRECTION RANDOM WALKS

Utilizing simple random walks (SRW) on digraphs introduces unique challenges due to the inherent
structure of these graphs. A common issue arises when the random walk encounters nodes with
no outgoing edges, causing the walk to terminate prematurely. To better understand and visualize
this limitation, we apply SRW starting from each node across four different digraphs. As the walk
length increases, we track the proportion of complete paths relative to the total sequences, as shown
in Fig. 5(a). To further assess the impact of graph cycles, we design a modified SRW that excludes
cycles and conduct the same experiment, with results presented in Fig. 5(b).

This investigation highlights a key limitation of random walks on digraphs: strictly following edge
directions leads to frequent interruptions in the walk. Due to the non-strongly connected nature of
most digraphs, the proportion of complete walks drops sharply after just five steps. This indicates that
random walks on digraphs typically fail to gather information beyond the immediate neighborhood
of the starting node, limiting their ability to capture long-range dependencies. Moreover, when we
eliminate the influence of cycles, the proportion of uninterrupted sequences declines even further,
underscoring the difficulty of maintaining continuous paths in digraphs and further highlighting
the limitations of SRWs (forward-only) in exploring deeper graph structures. It is evident that this
significantly hinders the ability of structural entropy to capture topological uncertainty, reducing the
effectiveness ofHh(G) and leading to sub-optimal coarse-grained HKT.
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A.5 GREEDY ALGORITHMS FOR PARTITION TREE CONSTRUCTION

The primary impetus for developing the greedy partition tree construction algorithm lies in the quest
for an effective method to construct hierarchical tree structures from digraph data while simultaneously
minimizing the complexity and uncertainty associated with the underlying relationships. In complex
systems represented by digraphs, directed structural entropy serves as a key metric to gauge the
disorder and intricacy within the network. By harnessing the concept of directed edge structural
entropy minimization, the algorithm aims to derive hierarchical trees that capture essential structural
characteristics while promoting simplicity and interpretability. In a nutshell, the design principles of
our proposed algorithm are as follows

(1) Directed edge structural entropy definition: The algorithm hinges on a rigorous definition of
directed edge structural entropy within the context of the digraph mentioned in Sec. 3.1. This metric
quantifies the uncertainty and disorder associated with the relationships between nodes in the digraph.

(2) Greedy selection strategy: At its core, the algorithm employs a greedy strategy, iteratively selecting
directed edges that contribute most significantly to the reduction of directed structural entropy. This
strategy ensures that each step in the tree construction process maximally minimizes the overall
disorder in the evolving hierarchy.

(3) Hierarchical tree construction: The selected directed edges are systematically incorporated into
the growing tree structure, establishing a hierarchical order that reflects the inherent organization
within the graph. This process continues iterations until a coherent and informative tree representation
is achieved.

(4) Complexity considerations: The algorithm balances the trade-off between capturing essential
structural information and maintaining simplicity. By prioritizing directed edges that significantly
impact entropy reduction, it aims to construct trees that are both insightful and comprehensible.

In conclusion, the greedy partition tree construction algorithm for digraph data, rooted in the mini-
mization of directed edge structural entropy, presents a promising avenue for extracting hierarchical
structures from the network with intricate topology. To clearly define a greedy partition tree construc-
tion algorithm, we introduce the following meta-operations in Alg. 1.

These meta-operations collectively define the intricate logic underlying the greedy partition tree
construction algorithm, providing a comprehensive framework for constructing hierarchical structures
in graph data while adhering to the principles of minimizing directed edge structural entropy. Building
upon these foundations, we employ meta-operations to present the detailed workflow of the greedy
structural tree construction algorithm. This facilitates the coarse-grained HKT construction from
a topological perspective, ultimately achieving digraph data knowledge discovery (i.e., Step 1
Knowledge Discovery (a) in our proposed EDEN as illustrated in Fig. 2).

The Alg. 2 outlines the construction of a height-limited partition tree algorithm, emphasizing the
minimization of directed structural uncertainty. It begins by sorting input data in non-decreasing
order. Subsequently, it constructs an initial partition tree, using a greedy approach that iteratively
combines nodes until the root has only two children. After that, it enters a phase of height reduction,
wherein nodes contributing to excess height are detached iteratively until the tree attains height h.
To stabilize the structure, it inserts filler nodes for any node with a height discrepancy exceeding 1.
This three-phase process ensures the efficient construction of a height-limited partition tree while
minimizing directed structural measurement.

A.6 THE PROOF OF THEOREM 3.1

As discussed in Sec. 3.1, node features in a digraph act as essential identifiers that exhibit strong
correlations with node labels. These features are not only instrumental in distinguishing nodes
but also play a critical role in the construction of data knowledge. Recognizing this, our proposed
partition-based node MI neural estimation seeks to further refine the coarse-grained HKT, which
is initialized by the greedy algorithm. This refinement is achieved by quantifying the correlations
between node features within the partition tree, thereby enhancing the granularity of the HKT. The
refined tree provides a more accurate and nuanced representation of the graph, laying a robust
foundation for subsequent KD. This process ensures that both topological structure and node feature
information are effectively leveraged in the distillation, leading to improved model performance.
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Algorithm 1 Meta-operation (Function) Definitions
Definition. node vλ is the root of T , nodes (vi, vj) are two children nodes of node vλ

// Meta-1: Counts the number of children nodes of the given node vλ.
Function CountChildren(vλ):
Return Number of children of node λ

// Meta-2: Inserts a new node between nodes vi and vj , with vλ as the root.
Function Combine(vi, vj):
Insert a new node vn between nodes vi, vj and node vλ
vλ.children← vn
vn.children← vi
vn.children← vj

// Meta-3: Chooses two nodes (vi, vj) from vλ.children to maximize the reduction ofHT (G).
Function PickTwo(G):
argmax(vi,vj)

{
HT (G)−HTCombine(vi,vj)(G)

}
Return (vi, vj)

// Meta-4: Computes the height of the partition tree T .
Function TreeHeight(T ):
Return h(T )

// Meta-5: Detaches node vi from the tree T and merges its children to vj .children.
Function Detach(vi):
Detach vi from T and merge its children to vj .children
vj .children← vj .children+ vi.children
Delete vi

// Meta-6: Chooses one node vi from T based on minimizing the increase ofHT (G).
Function ChooseNode(T ):
argminvi

{
HTdetach(vi)(G)−HT (G) | vi ̸= vr}

Return vi

// Meta-7: Computes the absolute difference in height between the parent of vi and vi.
Function DeltaHeight(vi):
Return | TreeHeight (vi .parent)− TreeHeight (vi) |

// Meta-8: Inserts a filler node between nodes vi and vj to keep the tree height balanced.
Function InsertFillerNode(vi, vj):
Insert a new node vn between nodes vi and vj
vn.children← vi
vj .children← vn
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Algorithm 2 Construction of a Height-Limited Partition Tree
Input: data xi, size m
repeat

Initialize noChange = true.
for i = 1 to m− 1 do

if xi > xi+1 then
Swap xi and xi+1

noChange = false
end if

end for
until noChange is true
Input: a digraph G = (V, E), an integer h ≥ 2
Initialize partition tree T with root node λ and set all V as leaves

Phase I: Build a partition tree from leaves to root, using the greedy method
while CountChildren(r) > 2 do
(vi, vj)← PickTwo(G)
Combine(vi, vj)→ T

end while

Phase II: Height reduction to h
while TreeHeight(T ,G,V ′) > h do
vi ← ChooseNode(T ,G,V ′)
Detach(vi) from T

end while

Phase III: Stabilize tree structure
for Each vi ∈ T do

if DeltaHeight(vi) > 1 then
InsertFillerNode(vi, vi.parent)

end if
end for

Considering a digraph G = (V, E) and its coarse-grained partition tree T , where V encompasses all
nodes in the digraph, along with the corresponding feature and label matrix represented as X and Y.
For current partition Xp given by T , we employ a sampling strategy to obtain a candidate node subset
Ωp with Kp nodes from the current partition Xp and other partitions Xq . Notably, different partitions
used for sampling should be at the same height within the HKT (e.g., the current partition Xp and
other partitions Xq should satisfy h(Xp) = h(Xq)). Building upon this, to reduce the computational
complexity, we adopt a computation-friendly sampling strategy. Specifically, considering the number
of nodes in the current partition is |Xp|, we include all of them in the candidate set Ωp. Additionally,
we perform random sampling for partition-by-partition until the total non-duplicated nodes in the Ωp

satisfy κ |Xp|, where κ ≥ 1 is used to control the knowledge domain expansion come from the other
partitions Xq . This subset Ωp is used to generate knowledge that represents the current partition Xp,
formally represented as the parent representation of this partition in the HKT. Notably, we assign
distinct identifiers to the sampled nodes based on their partition affiliations, denoting them as v ∈ Xp

and u ∈ Xq , providing clarity in illustrating our method and derivation process.

Building upon this foundation, given the node v as an example, a random variable fv is introduced to
represent the node feature when randomly selecting a node from Ωp within the current partition Xp.
Then, the probability distribution of fv is formally defined as Pfv = P (fv = Xv),∀v ∈ Ωp ∩ Xp.
Similarly, we can generalize Pfv to scenarios originating from other partitions to obtain Pfu =
P (fu = Xu),∀u ∈ Ωp ∩ Xq. In Ωp, the definition of the generalized neighborhoods for any node
is closely tied to the partition provided by the HKT, rather than relying on the traditional definition
based on the adjacency matrix A from directed edge sets E . Specifically, for nodes belonging to the
current partition, denoted as v ∈ Xp, their generalized neighborhoods are defined as N T

v = Xp. This
is done to identify nodes with sufficient information to efficiently represent the current partition i.e.,
(measure MI between v andN T

v ). As for nodes belonging to other partitions, denoted as u ∈ Xq , their
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generalized neighborhoods are defined asN T
u = Xp ∪Xq . This is intended to address the limitations

of the coarse-grained partition tree produced by considering only topological metrics. In other words,
we aim to identify sets of nodes within other partitions that effectively capture the representation of
both the current partition Xp (explore potential correlation from the feature perspective) and their own
partition Xq (inherit their own partition criteria about directed structural information measurement),
thereby refining the HKT through MI measurement between u and N T

u .

Notably, we chose N T
v = Xp for the following reasons: (1) We aim to calculate the MI neural

estimation between the current node v and its generalized neighborhoods Xp as a criterion for
quantifying affinity scores. This approach ensures that nodes representative of the current partition
receive higher affinity scores. Therefore, the generalized neighborhood of the current node needs
to be closely related to the partition to which the node belongs, leading us to impose this restriction
rather than defining the neighborhood as all nodes V . For more on the motivation, intuition, and
theory behind this mechanism, please refer to Sec. 2.2. As for the details on the calculation of affinity
scores, we recommend referring to Sec. 3.2 on knowledge generation. (2) In general, the number
of partitions Xp is considerably smaller than the total set of nodes V . As a result, one of the key
motivations for imposing this neighborhood restriction is to minimize computational overhead and
improve overall runtime efficiency. By limiting the scope of the calculations, we are able to streamline
the process without sacrificing performance, making the method more scalable for large-scale graphs.
In summary, expanding the neighborhood to include all nodes would result in higher computational
costs and poorer performance. Therefore, we restrict the definition of the generalized neighborhood
based on the partition obtained by HKT.

In either case, the generalized neighborhoods are subgraphs containing nodes from V . These nodes
may not be directly connected in the original topology but reveal inherent correlations at a higher
level through the measurement of directed structural information. Therefore, this representation
transcends the topological exploration of the digraph by A and reflects intrinsic knowledge at a
higher level. Building upon this, considering a node v as an example, let fNT

v
be a random variable

representing the generalized neighborhood feature selected from Ωp, originating from the current
partition Xp. We define the probability distribution of fNT

v
as PfNT

v
= P (fNT

v
= XNT

v
).

Therefore, considering a node v ∈ Xp as an example, we define the joint distribution of the random
variables of node features and its generalized neighborhood features within partition Xp given by
HKT, which is formulated as:

P
(
fv, fNT

v

)
= P

(
fv = Xv, fNT

v
= XNT

v

)
,∀v ∈ Ωp ∩ Xp, (13)

where the joint distribution reflects the probability that we randomly pick the corresponding node fea-
ture and its generalized neighborhood feature of the same node v within partition Xp together. Build-
ing upon this, the MI between the node features and the generalized neighborhood features within
the current partition Xp is defined as the KL-divergence between the joint distribution P

(
fv, fNT

v

)
and the product of the marginal distributions of the two random variables Pfv ⊗ PfNT

v
. The above

process can be formally defined as:

I(Ω)
(
fv, fNT

v

)
= DKL

(
P
(
fv, fNT

v

)
∥Pfv ⊗ PfNT

v

)
. (14)

This MI measures the mutual dependency between the selected node and its generalized neigh-
borhoods in Ωp. The KL divergence adopts the f -representation Belghazi et al. (2018) is defined
as:

DKL

(
P
(
fv, fNT

v

)
∥Pfv ⊗ PfNT

v

)
≥ sup

F∈F

{
E
Xv,XNT

v
∼P

(
fv,fNT

v

)[F (Xv,XNT
v

)]}
− sup

F∈F

{
EXv∼Pfv ,XNT

v̄
∼PfNT

v

[
e
F
(
Xv,XNT

v̄

)
−1
]}

,

(15)

where F is an arbitrary class of functions that maps a pair of selected node features and its generalized
neighborhood features to a real value. Here, we use F (·, ·) to compute the dependency. If we explore
any possible function F ∈ F , it can serve as a tight lower bound for MI. Building upon this, we can
naturally extend the above derivation process to the scenario of sampling nodes belonging to other
partitions, specifically u ∈ Ωp ∩ Xq . At this point, we can assess the shared contribution of nodes v
and u with different affiliations in generating knowledge for the current partition Xp.
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A.7 THE PROOF OF THEOREM 3.2

The primary objective here is to introduce a node selection criterion that is grounded in quantifying
the dependency between the selected node and its generalized neighborhoods. This dependency
serves as the foundation for assessing the relevance and influence of each node within its local
structure. The key insights behind using this dependency as a guiding principle are central to the
formulation of the criterion function. By leveraging this approach, we aim to enhance the process of
knowledge generation for the current partition Xp, ensuring that both local and global relationships
are effectively captured and utilized in the knowledge distillation process. The detailed reasoning and
benefits of this approach are outlined as follows:

(1) In our definition, the generalized neighborhoods of the selected node are closely tied to the current
partition Xp and their own partition Xi. Thus, measuring this dependency is equivalent to quantifying
the correlation between the representation of the selected node and the knowledge possessed by the
current partition and their own partition.

(2) The node-selection criterion is essentially a mechanism for weight allocation. Since the candidate
node set is fixed by the sampling process, this step aims to assign higher affinity scores to nodes that
better represent the current and their own partition. This guides the knowledge generation process to
acquire the parent node representation for the current partition.

Building upon this, instead of calculating the exact MI based on KL divergence, we opt for non-KL
divergences to offer favorable flexibility and optimization convenience. Remarkably, both non-KL
and KL divergences can be formulated within the same f -representation framework. We commence
with the general f -divergence between the joint distribution and the product of marginal distributions
of vertices and neighborhoods. The above process can be formally defined as follows:

Df

(
P
(
fv, fNT

v

)
∥Pfv ⊗ PfNT

v

)
=

∫
PfvPfNT

v
f

(
P
(
fv, fNT

v

)
PfvPfNT

v

)
dXvdXNT

v
, (16)

where f(·) represents a convex and lower-semicontinuous divergence function. When f(x) = x log x,
the f -divergence is specified as the Kullback-Leibler (KL) divergence. The function f(·) has a
convex conjugate function, denoted as f⋆(·), where f⋆(t) = supx∈domf

{tx− f(x)}, and domf is
the domain of f(·). It’s important to note that these two functions, f(·) and f⋆(·), are dual to each
other. According to the Fenchel conjugate Hiriart-Urruty & Lemaréchal (2004) and node sampling
space Ωp based on different affiliations given by HKT, the f -divergence can be modified as:

Df

(
P
(
fv, fNT

v

)
∥Pfv ⊗ PfNT

v

)
=

∫
PXPfNT

v
sup

t∈domf⋆

{
t
P
(
X, fNT

v

)
PfvPfNT

v

− f⋆(t)

}

≥ sup
F∈F

{
E
P
(
fv,fNT

v

)[F (Xv,XNT
v

)]
−EPfv ,PfNT

v

[
f⋆
(
F
(
Xv,XNT

v̄

))]}
,

(17)

where F represents any function that maps the selected node and its generalized neighborhood
features to a scalar, and the function F (·, ·) serves as a variational representation of t. v̄ is a randomly
selected node from Ωp excluding v. This step confines the quantification of MI to the sampling
space of Ωp, providing a finer-grained quantification criterion. Additionally, we employ an activation
function σ : R→ domf⋆ to constrain the function value F (·, ·)→ σ(F (·, ·)). Thus, we obtain:

Df

(
P
(
fv, fNT

v

)
∥Pfv ⊗ PfNT

v

)
≥

sup
F∈F

{
E
P
(
fv,fNT

v

) [σ (F (Xv,XNT
v

))]
− EPfv ,PfNT

v

[
f⋆
(
σ
(
F
(
Xv,XNT

v̄

)))]}
.

(18)

Given that σ (F (·, ·)) also belongs to F and its value falls within domf⋆ , the optimal solution
satisfies the equation. Assuming the divergence function is f(x) = x log x, the conjugate divergence
function is f⋆(t) = exp(t − 1), and the activation function is σ(x) = x, we can derive the f -
representation of KL divergence shown in Eq. (15). It is important to note that the choice of the
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activation function σ(·) is not unique, and our target is to identify one that facilitates both derivation
and computation. Here, we explore an alternative form of divergence utilizing f -representation,
known as GAN-like divergence. In this context, we employ a specific form of the divergence
function, given by f(x) = x log x − (x + 1) log(x + 1), with the conjugated divergence function
defined as f⋆(t) = − log(1 − exp(t)) Nowozin et al. (2016). The chosen activation function is
σ(·) = − log(1 + exp(·)). The GAN-like divergence can be expressed as:

DGAN

(
P
(
fv, fNT

v

)
∥Pfv ⊗ PfNT

v

)
≥ sup

F∈F
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E
P
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v
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v
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v
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(19)

where, σ(·) denotes the sigmoid function. Ultimately, the GAN-like divergence transforms the f -
divergence into a binary cross-entropy, akin to the objective function used for training the discriminator
in GAN Goodfellow et al. (2014). In the aforementioned process of selecting sub-nodes suitable for
generating knowledge for the current partition Xp, the above lower bound consists of two components.
The first term assesses the effective representational capability of the selected node for its generalized
neighborhoods. Considering the close correlation of the definition of generalized neighborhoods
with the current partition, it can be regarded as a measure from the embedding perspective of the
relevance of the selected node to the knowledge of the current partition. The second term binds the
measurement space of relevance with the sampling space based on the affiliation relationship. It
gauges the expressive capability of the currently selected node for partition knowledge compared
to other nodes in the sampling set. Based on the aforementioned inference, we can generalize it to
nodes u belonging to other partitions Xq .

A.8 THE PROOF OF THEOREM 3.3

To determine the form of the function F (·, ·), we parametrize F (·, ·) using trainable neural networks
instead of manual design. The parameterized function is denoted as Fw(·, ·), where w generally
represents the trainable parameters. In this study, Tw(·, ·) has two construction mechanisms based on
the partition Xi to which the selected node belongs and the current partition Xp where the knowledge
generation process is applied. The criteria are as follows:

(1) Intra-partition: Identifying nodes v that efficiently represent the current partition Xp (i.e., MI
between Xv and XNT

v
= Xp) and assigning them higher affinity scores to dominate the weighted

knowledge generation process based on the Ωp.

(2) Inter-partition: Identifying nodes u within other partitions Xq that potentially represent the current
partition effectively (i.e., MI between Xu and Xp). Meanwhile, node u is required to adhere to
well-defined criteria for directed structural information measurement inherited from its corresponding
partition to ensure accuracy (i.e., MI between Xu and Xq). Building upon this foundation, we
achieve MI neural estimation between Xu and XNT

v
= Xp ∪Xq to obtain efficient affinity scores for

u ∈ Xq . These nodes might not have been correctly assigned to the current partition Xp initially due
to coarse-grained directed structural measurements.
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Following these criteria, we reformulate the problem into a fine-grained selection task for nodes
contained within two partition roles Xp and Xq . Building on this, we provide the instantiation of the
criterion function C(·), incorporating (1) a model-agnostic digraph learning functionM executed
at each tree layer of the HKT, which can leverage some widely used model architectures such as
DiGCN Tong et al. (2020a), MagNet Zhang et al. (2021c), HoloNet Koke & Cremers (2023), or be
tailored for practical settings; (2) mapping functionsW1 andW2 dedicated to encoding the currently
selected node and its generalized neighborhoods, respectively; (3) two functions Qintra and Qinter

for generating the final affinity scores based on the encoding results and the current node’s partition
affiliation. Furthermore, to efficiently encode the generalized neighborhoods, we perform an l-step
label propagation based on the high-level neighborhood relations TXi in partition Xi provided by the
HKT. The above process based on the current partition Xp can be formally defined as

F intra
w := Qintra

(
W1 (M (Xv)) ,W2

(
M
(
XNT

v

)))
,

F inter
w := Qinter

(
W1 (M (Xu)) ,W2

(
M
(
XNT

u

)))
,

XNT
v

= Agg
(
X̂l

i,∀i ∈ Xp

)
, XNT

u
= Agg

(
X̂l

i,∀i ∈ Xp ∪ Xq

)
,

X̂l
i = τX0

i + (1− τ)
∑

j∈TXp or j∈TXp∪TXq

1√
d̃id̃j

X̂l−1
i , ∀i ∈ Xp or i ∈ Xp ∪ Xq.

(20)

We adopt the approximate calculation method for the personalized PageRank Klicpera et al. (2019).
Meanwhile, we set τ = 0.5 and l = 5 by default to capture deep structural information. Due to the
small-world phenomenon, we aim to traverse as many nodes as possible within the subgraph through
such settings. Moreover, Agg(·) is a generalized neighborhood representation aggregation function.
This function can be implemented through weight-free operations. It is noteworthy that, due to the
shared encoding function weights within each partition Xi, the results generated by the neighborhood
representation function in partitions with different node quantities must have the same size. In our
implementation, considering computational costs, we default to using the weight-free form.

In this manner, the parameterized GAN-like divergence serves as a variational lower bound for the
theoretical GAN-like-divergence-based MI between digraph nodes and their generalized neighbor-
hoods. Taking the node v belonging to the current partition Xp as an example, we obtain the following
representation. Similarly, an extension can be applied to nodes u belonging to other partitions Xq .
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GAN
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v

)
= DGAN
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v
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(21)

A.9 ALGORITHM COMPLEXITY ANALYSIS

The complexity of Step 1 is O (h(m log n+ n)). Notably, as T tends to be balanced during the
structural measurement minimization, height h is approximately log n. Additionally, considering that
m ≫ n, the complexity of Step 1 scales nearly linearly with the number of edges. Subsequently,
Step 2 and Step 3 introduce the KD-based training framework. Considering L-layer MLP and HKT
layer-wise DiGNN, the time complexity can be bound by O(h(Lmf +Lkn log nc2)). In comparison
to Step 1, it is negligible. This is attributed to the random walk and feature transformation can
be executed with significantly lower costs due to sparse matrices and parallelism in computation.
Moreover, in practice, we can employ a lightweight HKT layer-wise digraph learning to achieve
acceleration. Consequently, O(m) in Step 1 remains the primary bottleneck for achieving scalability.
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Table 5: The statistical information of the experimental di(graph) benchmark datasets.
Datasets #Node #Features #Edges #N Classes #N Train/Val/Test #L Train/Val/Test #Task Description

Photo 7,487 745 119,043 8 612/612/5,889 Undirected Transductive N Co-purchase
Computers 13,381 767 245,778 10 1100/1100/10651 Undirected Transductive N Co-purchase

PPI 56,944 50 818,716 121 4,555/4,555/39,993 Undirected Inductive N Protein
Flickr 89,250 500 899,756 7 7,140/7,140/47,449 Undirected Inductive N Image

CoraML 2,995 2,879 8,416 7 140/500/2355 80%/15%/5% Node&Link Citation
CiteSeer 3,312 3,703 4,591 6 120/500/2692 80%/15%/5% Node&Link Citation
WikiCS 11,701 300 290,519 10 580/1769/5847 80%/15%/5% Node&Link Weblink
Tolokers 11,758 10 519,000 2 50%/25%/25% 80%/15%/5% Node&Link Crowd-sourcing
Empire 22,662 300 32,927 18 50%/25%/25% 80%/15%/5% Node&Link Article Syntax
Rating 24,492 300 93,050 5 50%/25%/25% 80%/15%/5% Node&Link Rating
Arxiv 169,343 128 2,315,598 40 60%/20%/20% 80%/15%/5% Node&Link Citation

Slashdot 75,144 100 425,702 - - 80%/15%/5% Link Social
Epinions 114,467 100 717,129 - - 80%/15%/5% Link Social
WikiTalk 2,388,953 100 5,018,445 - - 80%/15%/5% Link Co-editor

A.10 DATASET DESCRIPTION

We evaluate the performance of our proposed EDEN on 10 digraph and 4 undirected graph benchmark
datasets, considering the node-level transductive/inductive semi-supervised classification task and
three link-level prediction tasks. The 10 publicly partitioned digraph datasets include 3 citation
networks (CoraML, Citeseer, and ogbn-arxiv) in Bojchevski & Günnemann (2018); Hu et al. (2020),
2 social networks (Slashdot and Epinions) in Ordozgoiti et al. (2020); Massa & Avesani (2005), web-
link network (WikiCS) in Mernyei & Cangea (2020), crowd-sourcing network (Toloklers) Platonov
et al. (2023), syntax network (Empire), rating network (Rating) Platonov et al. (2023), and co-editor
network Leskovec et al. (2010). In the transductive scenario, we conduct experiments on two co-
purchase networks. In the inductive scenario, we perform experiments on the image relation and the
protein interaction networks. The dataset statistics are shown in Table 5 and more descriptions can be
found later in this section.

We need to clarify that we are using the directed version of the dataset instead of the one provided by
the PyG library (CoraML, CiteSeer)1, WikiCS paper2 and the raw data given by the OGB (ogb-arxiv)3.
Meanwhile, we remove the redundant multiple and self-loop edges to further normalize the 10 digraph
datasets. In addition, for Slashdot, Epinions, and WikiTalk, the PyGSD He et al. (2023) library reveals
only the topology and lacks the corresponding node features and labels. Therefore, we generate the
node features using eigenvectors of the regularised topology. Building upon this foundation, the
description of all digraph benchmark datasets is listed below:

Photo and Computers Shchur et al. (2018) are segments of the Amazon co-purchase graph. Nodes
represent goods and edges represent that two goods are frequently bought together. Given product
reviews as bag-of-words node features, the task is to map goods to their respective product category.

PPI Zeng et al. (2020) stands for Protein-Protein Interaction (PPI) network, where nodes represent
protein. If two proteins participate in a life process or perform a certain function together, it is
regarded as an interaction between these two proteins. Complex interactions between multiple
proteins can be described by PPI networks.

Flickr Zeng et al. (2020) dataset originates from the SNAP, they collect Flickr data and generate an
undirected graph. Nodes represent images, and edges connect images with common properties like
geographic location, gallery, or shared comments. Node features are 500-dimensional bag-of-words
representations extracted from the images. The labels are manually merged from the 81 tags into 7
classes.

CoraML and CiteSeer Bojchevski & Günnemann (2018) are three citation network datasets. In
these three networks, papers from different topics are considered nodes, and the edges are citations
among the papers. The node attributes are binary word vectors, and class labels are the topics the
papers belong to.

1https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
2https://github.com/pmernyei/wiki-cs-dataset
3https://ogb.stanford.edu/docs/nodeprop/
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WikiCS Mernyei & Cangea (2020) is a Wikipedia-based dataset for bench-marking GNNs. The
dataset consists of nodes corresponding to computer science articles, with edges based on hyperlinks
and 10 classes representing different branches of the field. The node features are derived from the
text of the corresponding articles. They were calculated as the average of pre-trained GloVe word
embeddings Pennington et al. (2014), resulting in 300-dimensional node features.

Tolokers Platonov et al. (2023) is derived from the Toloka crowdsourcing platform Likhobaba et al.
(2023). Nodes correspond to tolokers (workers) who have engaged in at least one of the 13 selected
projects. An edge connects two tolokers if they have collaborated on the same task. The objective is
to predict which tolokers have been banned in one of the projects. Node features are derived from the
worker’s profile information and task performance statistics.

Empire Platonov et al. (2023) is based on the Roman Empire article from the English
Wikipedia Lhoest et al. (2021), each node in the graph corresponds to a non-unique word in the text,
mirroring the article’s length. Nodes are connected by an edge if the words either follow each other
in the text or are linked in the sentence’s dependency tree. Thus, the graph represents a chain graph
with additional connections.

Rating Platonov et al. (2023) is derived from the Amazon product co-purchasing network metadata
available in the SNAP4 datasets Leskovec & Krevl (2014). Nodes represent various products, and
edges connect items frequently bought together. The task involves predicting the average rating
given by reviewers, categorized into five classes. Node features are based on the mean FastText
embeddings Grave et al. (2018) of words in the product description. To manage graph size, only the
largest connected component of the 5-core is considered.

ogbn-arxiv Hu et al. (2020) is a citation graphs indexed by MAG Wang et al. (2020). Each paper
comes with a 128-dimensional feature vector obtained by averaging the embeddings of words in
its title and abstract. The embeddings of individual words are computed by running the skip-gram
model.

Slashdot Ordozgoiti et al. (2020) is from a technology-related news website with user communities.
The website introduced Slashdot Zoo features that allow users to tag each other as friends or foes.
The dataset is a common signed social network with friends and enemies labels. In our experiments,
we only consider friendships.

Epinions Massa & Avesani (2005) is a who-trust-whom online social network. Members of the site
can indicate their trust or distrust of the reviews of others. The network reflects people’s opinions of
others. In our experiments, we only consider the ”trust” relationships.

WikiTalk Leskovec et al. (2010) includes all users and discussions from the inception of Wikipedia
until January 2008. The network comprises n = 2, 388, 953 nodes, where each node represents a
Wikipedia user, and a directed edge from node vi to node vj indicates that user i edited user j ’s talk
page at least once. For our analysis, we extract the largest weakly connected component.

A.11 COMPARED BASELINES

The baselines we employ are as follows: (1) Directed spatial-based approaches: DGCN Tong et al.
(2020b), DIMPA He et al. (2022b), NSTE Kollias et al. (2022), D-HYPR Zhou et al. (2022), and
Dir-GNN Rossi et al. (2023); (2) Directed spectral-based approaches: DiGCN Tong et al. (2020a),
MagNet Zhang et al. (2021c), MGCZhang et al. (2021a), and HoloNet Koke & Cremers (2023).
Furthermore, to verify the generalization of our proposed EDEN, we compare the undirected GNNs
in digraphs with coarse undirected transformation (i.e., convert directed edges into undirected edges):
GCN Kipf & Welling (2017), GAT Veličković et al. (2018), GCNII Chen et al. (2020), GATv2 Brody
et al. (2022), OptBasisGNN Guo & Wei (2023) (OptBG), NAGphormer Chen et al. (2023) (NAG),
and AGT Ma et al. (2023). The descriptions of them can be found later in this section. For link-level
dataset split, we are aligned with previous work Zhang et al. (2021c); He et al. (2022a; 2023). To
alleviate the influence of randomness, we repeat each experiment 10 times to represent unbiased
performance and running time (second report). Notably, we present experiment results with various
baselines in separate modules, avoiding abundant charts and validating the generalizability of EDEN.

4https://snap.stanford.edu/
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Notably, EDEN can be regarded as a novel digraph learning paradigm or a hot-and-plug online distil-
lation module for prevalent (Di)GNNs. Now, we elaborate on their experimental implementations.

(1) A new digraph learning paradigm: Different from the direct application of existing DiGNNs, in
the HKT layer-wise distillation process based on HKT, we implement the digraph learning functions
of Eq.(7) and Eq.(8) through personalized model design. Specifically, to reduce computational
costs, we employ the magnetic Laplacian proposed in MagNet Zhang et al. (2021c) for digraph
convolution. Compared to MagNet, EDEN pre-computes L iterations of feature propagation and
compresses complex learning processes into simple linear mappings, maximizing training and
inference efficiency. Building upon this, a personalized model design for the online distillation
process is implemented to achieve end-to-end training.

(2) A hot-and-plug online distillation module: Essentially, EDEN serves as a general online distillation
framework, introducing a hierarchical knowledge transfer mechanism for existing DiGNNs. In other
words, EDEN seamlessly integrates into the HKT layer-wise digraph learning functions (i.e., utilize
existing digraph neural architectures as digraph learning function in Eq.(7) and Eq.(8) to generate
node embeddings or soft labels) to improve predictions.

DGCN Tong et al. (2020b): DGCN proposes the first and second-order proximity of neighbors to
design a new message-passing mechanism, which in turn learns aggregators based on incoming and
outgoing edges using two sets of independent learnable parameters.

DIMPA He et al. (2022b): DIMPA represents source and target nodes separately. However, DIMPA
aggregates the neighborhood information within K hops in each layer to further increase the receptive
field (RF), and it performs a weighted average of the multi-hop neighborhood information to capture
the local network information.

NSTE Kollias et al. (2022): NSTE is inspired by the 1-WL graph isomorphism test, which uses
two sets of trainable weights to encode source and target nodes separately. Then, the information
aggregation weights are tuned based on the parameterized feature propagation process to generate
node representations.

D-HYPR Zhou et al. (2022): D-HYPR introduces hyperbolic collaborative learning from diverse
neighborhoods and incorporates socio-psychological-inspired regularizers. This conceptually simple
yet effective framework extends seamlessly to digraphs with cycles and non-transitive relations,
showcasing versatility in various downstream tasks.

Dir-GNN Rossi et al. (2023): Dir-GNN introduces a versatile framework tailored for heterophilous
settings. It addresses edge directionality by conducting separate aggregations of incoming and
outgoing edges. Demonstrated to match the expressivity of the directed Weisfeiler-Lehman test,
Dir-GNN outperforms conventional MPNNs in accurately modeling digraphs.

DiGCN Tong et al. (2020a): DiGCN notices the inherent connections between graph Laplacian and
stationary distributions of PageRank, it theoretically extends personalized PageRank to construct
real symmetric Digraph Laplacian. Meanwhile, DiGCN uses first-order and second-order neighbor
proximity to further increase RF.

MagNet Zhang et al. (2021c): MagNet utilizes complex numbers to model directed information,
it proposes a spectral GNN for digraphs based on a complex Hermitian matrix known as the mag-
netic Laplacian. Meanwhile, MagNet uses additional trainable parameters to combine the real and
imaginary filter signals separately to achieve better prediction performance.

MGC Zhang et al. (2021a): MGC introduces the magnetic Laplacian, a discrete operator with the
magnetic field, which preserves edge directionality by encoding it into a complex phase with an
electric charge parameter. By adopting a truncated variant of PageRank, it designs and builds a
low-pass filter for homogeneous graphs and a high-pass filter for heterogeneous graphs.

HoloNet Koke & Cremers (2023): HoloNet demonstrates that spectral convolution can extend
to digraphs. By leveraging advanced tools from complex analysis and spectral theory, HoloNet
introduces spectral convolutions tailored for digraphs.

GCN Kipf & Welling (2017): GCN is guided by a localized first-order approximation of spectral
graph convolutions. This model’s scalability is directly proportional to the number of edges, and it
learns intermediate representations in hidden layers that capture both the structure and node features.
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(a) CiteSeer-Node-C (b) CiteSeer-Link-C (c) Arxiv-Node-C
Training Epoch (ACC)

(d) Arxiv-Link-C (e) Slashdot-Exist (f) Slashdot-Direct

EDEN EDEN EDEN

EDEN EDEN EDEN

Training Epoch (ACC) Training Epoch (ACC)

Training Epoch (ACC) Training Epoch (AUC) Training Epoch (AUC)

Figure 6: Convergence curves on node- and link-level tasks.

GCNII Chen et al. (2020) incorporates initial residual and identity mapping. Theoretical and
empirical evidence is presented to demonstrate these techniques alleviate the over-smoothing issue.

GAT Veličković et al. (2018) utilizes attention mechanisms to quantify the importance of neighbors
for message aggregation. This strategy enables implicitly specifying different weights to different
nodes in a neighborhood, without depending on the graph structure upfront.

GATv2 Brody et al. (2022) introduces a variant with dynamic graph attention mechanisms to improve
GAT. This strategy provides better node representation capabilities and enhanced robustness when
dealing with graph structure as well as node attribute noise.

OptBasisGNN Guo & Wei (2023): OptBasisGNN revolutionizes GNNs by redefining polynomial
filters. It dynamically learns suitable polynomial bases from training data, addressing fundamental
adaptability. OptBasisGNN innovatively addresses the challenge of determining the optimal polyno-
mial basis for a specific graph and signal, showcasing its effectiveness in extensive experiments.

NAGphormer Chen et al. (2023) treats each node as a sequence containing a series of tokens. For
each node, NAGphormer aggregates the neighborhood features from different hops into different
representations.

AGT Ma et al. (2023) consists of a learnable centrality encoding strategy and a kenneled local
structure encoding mechanism to extract structural patterns from the centrality and subgraph views to
improve node representations for the node-level downstream tasks.

A.12 HYPERPARAMETER SETTINGS

The hyperparameters in the baseline models are set according to the original paper if available.
Otherwise, we perform a hyperparameter search via the Optuna Akiba et al. (2019). For our proposed
EDEN, during the topology-aware coarse-grained HKT construction, we perform a grid search in the
interval [3, 10] to determine the height of HKT. In the feature-oriented fine-grained HKT correction, a
grid search is conducted in the interval [1, 2] to obtain the optimal κ, deciding the knowledge reception
field when generating parent node representations for the current partition. For random walk-based
leaf prediction, we search in the interval [0, 1] based on node-level or link-level downstream tasks
to determine the optimal walking probability. Additionally, within the same interval, we search to
determine the hyperparameter α for knowledge distillation loss, ensuring optimal convergence.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

(a) Node-C (ACC)
𝑠!"
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(b) Link-C (ACC) (c) Link-E (AUC) (d) Link-D (AUC)

Figure 7: The sensitive analysis of HKT-based random walk under Tolokers.

(a) Empire-Node-C (b) Empire-Link-C (c) Epinions-Link-E (d) Epinions-Link-D

Figure 8: The sensitive analysis of KD loss factor.

A.13 EXPERIMENT ENVIRONMENT

The experiments are conducted on Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz, NVIDIA GeForce
RTX 3090 with 24GB memory, and CUDA 11.8. The operating system is Ubuntu 18.04.6 with
768GB of memory. As for software versions we use Python 3.9 and Pytorch 1.11.0.

A.14 EXTEND EXPERIMENTAL RESULTS

Convergence Analysis. To supplement answer Q3, we first present the convergence curves in Fig. 6,
where we observe that EDEN exhibits higher initial performance and more stable convergence. For
instance, in the Node-C for the CiteSeer, EDEN nearly reaches converged performance by the 25th
epoch and maintains stability throughout the subsequent training process. Notably, various link-level
downstream tasks, benefiting from a larger number of training samples, exhibit smoother optimization
curves and more stable predictive performances compared to node-level classification tasks.

Hyperparameter Analysis. To provide a comprehensive analysis of the robustness of EDEN from
the perspective of hyperparameter sensitivity, we supplement the experimental results in Fig.7 with
the outcomes of HKT-based random walk sampling for leaf-centric prediction, considering various
probabilities of transitioning between different identity nodes (i.e., parents, siblings, and children).
Notably, we do not discuss the sampling probability regarding children separately. This is because
their main role is to provide return probabilities in the random walk process to yield richer sampling
sequences, without explicitly indicating the identity of the next node to visit. Before giving our
analysis, we first revisit the key insights introduced in Sec.3.3: (1) For node-level downstream tasks,
it’s preferable to sample the parent of the current leaf node to offer a rich high-level representation of
the current label class. (2) For link-level downstream tasks, it’s preferable to sample the siblings of the
current leaf node to provide topologically relevant contextual insights at the same level. Based on the
experimental results, we observe that for Node-C, larger values of prw and smaller values of srw yield
better predictive performance, whereas for the three distinct link-level downstream tasks, smaller
values of prw and larger values of srw are preferable. This validates our aforementioned assertions
and provides an empirical reference for selecting hyperparameters when practically applying EDEN.

Additionally, in Fig. 8, we provide insights into how varying the coefficient α in the α-flexible KD
loss impacts the optimization process, reflected in the final predictive performance. According to
our experimental results, in most cases, EDEN should prioritize the KD process during end-to-end
optimization. This is because the node-adaptive trainable knowledge generation and transfer processes
ensure high-quality KD, thereby positively influencing downstream task predictions. Notably, smaller
values of α perform better in edge existence problems. This is because the cross-entropy loss function,
used to provide supervision, aids significantly in coarser-grained existence problems, while finer-
grained issues like directionality and classification often benefit more from data-driven high-quality
knowledge. In a nutshell, we recommend smaller α values for edge existence problems and larger α
values for other tasks, followed by manual adjustments based on practical performance.
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Table 7: Model performance (%) in three directed link-level downstream tasks.
Datasets (→) Slashdot Epinions

Tasks (→) Exist Direct Link-C Exist Direct Link-C

Models (↓) AUC AP AUC AP ACC AUC AP AUC AP ACC

GCNII 88.6±0.1 88.4±0.0 90.3±0.1 90.4±0.1 84.0±0.1 91.3±0.1 91.3±0.0 85.9±0.2 86.3±0.1 82.7±0.1
GATv2 88.2±0.2 88.5±0.1 90.6±0.1 90.4±0.1 83.7±0.3 91.8±0.2 91.6±0.1 85.5±0.1 85.9±0.1 83.0±0.2
AGT 88.7±0.2 88.6±0.1 90.1±0.0 90.5±0.1 83.8±0.2 91.5±0.2 91.4±0.2 85.7±0.2 86.2±0.2 83.4±0.1

DGCN 90.3±0.1 90.1±0.0 92.2±0.1 92.4±0.1 85.5±0.2 92.2±0.1 92.5±0.0 87.8±0.1 87.5±0.2 83.6±0.2
DIMPA 90.5±0.1 90.7±0.1 92.4±0.2 92.1±0.1 85.6±0.1 92.5±0.1 92.6±0.1 87.9±0.1 88.2±0.1 83.5±0.1

D-HYPR 90.3±0.0 90.6±0.1 92.2±0.1 91.9±0.0 85.4±0.1 92.8±0.1 92.4±0.1 88.2±0.1 88.3±0.0 83.7±0.2
DiGCN 90.4±0.1 90.5±0.1 92.1±0.1 92.0±0.1 85.2±0.1 92.4±0.1 92.7±0.1 88.0±0.1 87.8±0.1 83.6±0.1
HoloNet 90.2±0.1 90.3±0.0 91.8±0.1 92.0±0.0 85.1±0.1 92.6±0.1 92.5±0.0 88.1±0.1 88.2±0.0 84.0±0.1

EDEN 91.8±0.1 92.0±0.0 93.3±0.1 93.1±0.0 87.1±0.2 93.5±0.1 93.7±0.0 89.4±0.1 89.8±0.0 85.7±0.1

Comprehensive Results.

Table 6: Test accuracy (%) in directed Node-C.
Models CoraML CiteSeer WikiCS Tolokers Empire Rating Arxiv

GCN 80.6±0.4 62.1±0.4 78.3±0.2 78.0±0.1 75.8±0.5 42.5±0.4 65.2±0.2
GAT 80.7±0.6 62.6±0.6 78.2±0.3 78.4±0.2 77.8±0.8 42.9±0.5 65.9±0.3

OptBG 81.0±0.5 63.2±0.4 78.5±0.2 78.6±0.2 78.0±0.6 43.2±0.4 66.3±0.3
NAG 81.4±0.7 62.7±0.5 78.6±0.3 78.4±0.4 77.5±0.9 43.1±0.6 66.5±0.4

NSTE 82.2±0.5 64.3±0.7 79.0±0.3 79.3±0.3 78.9±0.6 44.7±0.6 67.2±0.4
Dir-GNN 82.6±0.6 64.0±0.6 79.1±0.4 79.1±0.3 79.1±0.5 45.0±0.5 67.4±0.3

MGC 82.3±0.4 63.9±0.5 78.8±0.2 79.0±0.2 78.6±0.4 44.8±0.4 67.0±0.2

EDEN 84.6±0.5 65.8±0.6 81.4±0.3 81.3±0.2 81.1±0.6 46.3±0.4 69.7±0.3

To present comprehensive experimental find-
ings, this section includes additional results (Ta-
ble 6, Table 7, Table 8, and Table 9) that couldn’t
be fully showcased in the main text due to space
limitations. These additional experimental re-
sults, consistent with the trends presented in
the main text, further substantiate our claims in
Sec. 4. Notably, to provide a more thorough
assessment, we introduce two additional eval-
uation metrics, Area Under Curve (AUC) and
Average Precision (AP), alongside the commonly known Accuracy (ACC). We default to using AUC
and AP in the evaluation of the link prediction tasks, and ACC to evaluate the predictive performance
of node-level tasks. Regarding the experimental results of Dir-GNN and HoloNet on the Empire
dataset, we would like to clarify that we ensured a fair comparison by using a class-balanced dataset
split instead of the pre-split datasets used in Dir-GNN and HoloNet.

AUC stands as a comprehensive metric for evaluating binary classification models. Quantifying the
area beneath the ROC curve, it provides a global assessment of the model’s ability to discriminate
between positive and negative instances. AUC is particularly valuable in scenarios with imbalanced
datasets, as it remains insensitive to variations in class distribution. Its utility extends to model
comparison, offering insights into performance variations across different decision thresholds.

AP involves ranking predictions by their confidence scores, typically probabilities, from highest to
lowest, and calculating precision and recall at each threshold. These metrics are used to construct a
precision-recall curve, which plots precision values as a function of recall. AP itself is computed as
the weighted mean of precision achieved at each threshold, where the weights are the increments
in recall from the previous thresholds. This approach allows AP to summarize the area under the
precision-recall curve, providing a single-figure measure of model performance that encapsulates both
the accuracy and the ranking of the positive predictions. Higher AP values indicate a model that not
only predicts the positive class accurately but also ranks those predictions highly, thus demonstrating
high precision and recall across the board.
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Table 8: Link-C ACC and others AUC (%) in three directed link-level downstream tasks.
Datasets Tasks GCN GAT OptBG NAG NSTE Dir-GNN MGC HoloNet EDEN

CoraML
Existence 83.26±0.18 83.96±0.25 83.55±0.16 84.32±0.20 87.94±0.18 88.15±0.21 87.86±0.20 87.80±0.24 90.84±0.19
Direction 82.73±0.32 84.25±0.54 83.46±0.40 85.39±0.47 90.74±0.54 91.08±0.45 89.10±0.62 89.83±0.57 92.36±0.48
Link-C 69.80±0.45 70.67±0.52 70.54±0.60 71.04±0.56 72.79±0.42 73.11±0.49 72.82±0.60 72.74±0.56 75.18±0.54

CiteSeer
Existence 75.60±0.34 76.27±0.28 75.85±0.29 76.94±0.40 79.80±0.42 79.65±0.34 79.46±0.29 79.32±0.30 82.24±0.37
Direction 72.32±0.75 73.46±0.53 72.96±0.68 73.88±0.67 88.35±0.68 88.64±0.57 88.47±0.41 88.76±0.48 90.56±0.40
Link-C 61.74±0.83 62.46±0.72 62.29±0.75 62.86±0.65 64.16±0.48 64.35±0.43 63.88±0.50 63.94±0.36 66.73±0.57

WikiCS
Existence 90.67±0.07 91.15±0.14 90.43±0.10 91.08±0.14 91.60±0.08 91.38±0.11 91.13±0.05 91.28±0.09 92.84±0.12
Direction 85.26±0.37 85.61±0.29 85.40±0.32 85.75±0.35 87.28±0.25 87.12±0.30 87.33±0.17 87.24±0.26 90.08±0.24
Link-C 78.71±0.15 79.08±0.19 78.84±0.23 79.42±0.22 81.83±0.19 81.67±0.14 81.47±0.20 81.26±0.18 83.45±0.21

Tolokers
Existence 91.90±0.09 92.23±0.14 92.08±0.09 92.19±0.11 93.03±0.14 93.48±0.11 93.69±0.10 93.84±0.08 94.93±0.10
Direction 87.68±0.13 87.57±0.08 88.28±0.11 88.97±0.09 89.42±0.10 89.65±0.08 89.92±0.07 89.76±0.11 91.52±0.12
Link-C 77.54±0.09 77.85±0.14 78.20±0.12 78.49±0.13 80.28±0.07 80.46±0.10 80.83±0.08 80.51±0.12 82.67±0.13

Empire
Existence 62.51±0.67 62.93±0.81 63.14±0.75 63.85±0.80 66.35±0.35 66.28±0.42 65.99±0.32 65.86±0.46 68.81±0.41
Direction 48.60±0.95 49.77±0.87 49.82±0.93 50.16±0.84 53.87±0.42 53.94±0.40 53.58±0.37 53.79±0.45 55.60±0.48
Link-C 52.56±0.86 53.02±0.99 52.84±1.01 53.12±1.17 58.69±0.44 58.62±0.45 58.09±0.31 58.33±0.35 60.74±0.39

Rating
Existence 73.48±0.45 73.95±0.57 73.60±0.52 75.26±0.43 76.91±0.20 77.48±0.29 77.21±0.18 77.12±0.26 79.52±0.27
Direction 78.54±0.32 78.81±0.41 78.90±0.36 79.42±0.35 82.85±0.27 83.46±0.30 83.68±0.21 83.30±0.33 85.19±0.29
Link-C 58.63±0.46 58.79±0.50 58.60±0.64 59.13±0.37 63.64±0.28 64.23±0.39 64.28±0.25 64.32±0.32 66.37±0.35

Arxiv
Existence 82.04±0.15 81.87±0.19 82.24±0.17 82.44±0.16 84.82±0.23 85.37±0.19 84.70±0.28 85.25±0.20 87.24±0.23
Direction 88.56±0.16 88.71±0.20 88.94±0.21 89.10±0.22 93.34±0.14 93.62±0.17 93.27±0.11 93.40±0.15 94.48±0.16
Link-C 74.70±0.17 74.53±0.16 74.93±0.20 75.05±0.18 78.63±0.17 78.89±0.15 78.70±0.18 78.93±0.21 80.16±0.21

Table 9: Link-C ACC and others AUC (%) in three directed link-level downstream tasks.
Datasets Tasks GCNII GATv2 AGT DGCN DIMPA D-HYPR DiGCN MagNet EDEN

CoraML
Existence 84.01±0.22 84.58±0.33 84.50±0.24 87.65±0.20 88.06±0.20 87.99±0.24 87.65±0.28 88.05±0.21 90.84±0.19
Direction 83.25±0.36 84.94±0.60 85.57±0.51 90.43±0.49 90.88±0.50 90.94±0.54 89.75±0.71 90.83±0.49 92.36±0.48
Link-C 70.43±0.55 71.24±0.58 71.23±0.47 72.55±0.48 72.86±0.55 72.91±0.38 72.53±0.56 72.96±0.42 75.18±0.54

CiteSeer
Existence 76.24±0.46 76.86±0.35 76.72±0.38 79.65±0.49 79.65±0.38 79.84±0.29 79.32±0.33 79.80±0.24 82.24±0.37
Direction 72.95±0.82 74.08±0.56 73.76±0.65 88.12±0.73 88.42±0.70 88.75±0.63 88.19±0.38 88.67±0.45 90.56±0.40
Link-C 62.37±0.88 63.21±0.78 62.53±0.57 64.02±0.56 64.21±0.43 64.30±0.37 63.92±0.59 64.03±0.40 66.73±0.57

WikiCS
Existence 90.98±0.10 91.48±0.20 90.87±0.18 91.24±0.10 91.53±0.10 91.58±0.11 91.49±0.13 91.52±0.12 92.84±0.13
Direction 85.84±0.49 86.95±0.32 85.65±0.42 86.88±0.33 87.26±0.29 87.35±0.34 87.38±0.21 87.40±0.18 90.08±0.24
Link-C 79.28±0.25 79.64±0.25 79.26±0.29 81.12±0.16 81.33±0.12 81.50±0.19 81.66±0.24 81.63±0.11 83.45±0.21

Tolokers
Existence 92.31±0.10 92.46±0.18 92.22±0.08 92.41±0.15 93.78±0.15 93.75±0.14 93.42±0.12 93.62±0.10 94.93±0.10
Direction 88.14±0.16 88.27±0.10 89.12±0.07 88.92±0.12 89.90±0.11 89.94±0.10 89.68±0.09 89.83±0.09 91.52±0.12
Link-C 78.10±0.11 78.29±0.19 78.72±0.15 79.74±0.08 80.84±0.09 80.79±0.09 80.52±0.10 80.78±0.8 82.67±0.13

Empire
Existence 63.37±0.72 63.78±0.90 63.92±0.74 65.67±0.40 66.28±0.32 66.31±0.35 66.39±0.43 66.27±0.34 68.81±0.41
Direction 49.56±0.90 50.64±0.76 50.38±0.70 53.26±0.32 53.92±0.36 53.87±0.42 53.91±0.50 53.84±0.39 55.60±0.48
Link-C 53.41±0.90 54.13±0.84 53.43±0.99 58.05±0.38 58.56±0.49 58.64±0.48 58.64±0.54 58.56±0.26 60.74±0.39

Rating
Existence 74.68±0.54 74.83±0.64 75.08±0.33 76.64±0.24 76.84±0.22 77.39±0.32 77.30±0.29 77.31±0.19 79.52±0.27
Direction 79.32±0.41 79.65±0.42 79.56±0.37 82.34±0.33 82.91±0.24 83.58±0.29 83.62±0.33 83.56±0.27 85.19±0.29
Link-C 59.95±0.62 60.27±0.58 59.37±0.40 63.28±0.23 63.78±0.30 64.33±0.36 64.28±0.40 64.32±0.30 66.37±0.35

Arxiv
Existence 83.14±0.23 82.54±0.31 82.21±0.18 84.40±0.19 85.19±0.21 85.13±0.23 85.02±0.31 85.29±0.19 87.24±0.23
Direction 89.20±0.27 89.13±0.29 89.47±0.28 93.05±0.16 93.41±0.19 93.24±0.20 93.18±0.25 93.37±0.14 94.48±0.16
Link-C 75.97±0.21 75.60±0.18 75.29±0.15 78.24±0.25 78.90±0.20 78.74±0.14 78.69±0.26 78.97±0.23 80.16±0.21
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