
The Best Defense is Attack: Repairing Semantics in Textual Adversarial
Examples

Anonymous ACL submission

Abstract

Recent studies have revealed the vulnerabil-001
ity of pre-trained language models to adver-002
sarial attacks. Adversarial defense techniques003
have been proposed to reconstruct adversarial004
examples within feature or text spaces. How-005
ever, these methods struggle to effectively re-006
pair the semantics in adversarial examples, re-007
sulting in unsatisfactory defense performance.008
To repair the semantics in adversarial exam-009
ples, we introduce a novel approach named010
Reactive Perturbation Defocusing (RAPID),011
which employs an adversarial detector to iden-012
tify the fake labels of adversarial examples013
and leverages adversarial attackers to repair014
the semantics in adversarial examples. Our015
extensive experimental results, conducted on016
four public datasets, demonstrate the consis-017
tent effectiveness of RAPID in various adver-018
sarial attack scenarios. For easy evaluation,019
we provide a click-to-run demo of RAPID at020
https://tinyurl.com/22ercuf8.021

1 Introduction022

Pre-trained language models (PLMs) have achieved023

state-of-the-art (SOTA) performance across a vari-024

ety of natural language processing tasks (Wang025

et al., 2019a,b). However, PLMs are reported026

to be highly vulnerable to adversarial examples,027

a.k.a., adversaries, created by subtly altering se-028

lected words in natural examples, a.k.a. clean or029

benign examples (Li et al., 2019; Garg and Ra-030

makrishnan, 2020; Li et al., 2020; Jin et al., 2020;031

Li et al., 2021; Boucher et al., 2022). While the032

significance of textual adversarial robustness has033

been broadly recognized within the deep learn-034

ing community (Alzantot et al., 2018; Ren et al.,035

2019; Zang et al., 2020; Zhang et al., 2021; Jin036

et al., 2020; Li et al., 2021; Wang et al., 2022a;037

Xu et al., 2023), efforts to enhance adversarial ro-038

bustness remain very limited, especially compared039

to other deep learning fields like computer vision040

(CV) (Rony et al., 2019; Gowal et al., 2021; Wang041

BAE PWWS TextFooler

−1

−0.5

0

0.5

1

(b) Rapid-Amazon

C
os
in
e
S
im

il
ar
it
y

BAE PWWS TextFooler
−0.2

0

0.2

0.4

0.6

0.8

1

(c) RS&V-SST2

C
os
in
e
S
im

il
ar
it
y

BAE PWWS TextFooler

−1

−0.5

0

0.5

1

(a) Rapid-SST2

C
os
in
e
S
im

il
ar
it
y

Adversarial
Repaired

BAE PWWS TextFooler
−0.5

0

0.5

1

(d) RS&V-Amazon

C
os
in
e
S
im

il
ar
it
y

Figure 1: Box plots of the cosine similarity between
the adversary–natural example pairs (marked in red)
and the repaired adversary–natural example pairs ob-
tained by RAPID versus RS&V. The cosine similarity is
evaluated based on the features extracted by the victim
models of RAPID and RS&V, respectively. It is ob-
served that the victim model cannot discern the seman-
tic differences between the adversaries and the repaired
adversaries produced by RS&V, whereas RAPID can
precisely differentiate between adversaries and natural
examples. Conversely, when using RAPID, the repaired
adversaries regain their semantic alignment with the
natural examples.

et al., 2023; Xu et al., 2023). Current works on 042

textual adversarial robustness can be classified into 043

three categories: adversarial defense, adversarial 044

training (Liu et al., 2020a,b; Ivgi and Berant, 2021; 045

Dong et al., 2021b,a), and adversary reconstruc- 046

tion (Zhou et al., 2019; Jones et al., 2020; Bao 047

et al., 2021; Keller et al., 2021; Mozes et al., 2021; 048

Li et al., 2022; Shen et al., 2023). Since both ad- 049

versarial training and reconstruction are resource- 050

intensive, there has been growing interest in adver- 051

sarial defense. Nevertheless, the current adversarial 052

defense techniques have two bottlenecks. 053

� Current works can hardly identify the seman- 054

tic discrepancies between natural and adver- 055

1

https://tinyurl.com/22ercuf8

sarial examples1. We show an example of056

RS&V (Wang et al., 2022c) in Figure 1, it is057

clear that RS&V fails to discern the semantic058

differences between adversarial and repaired059

examples. This is attributed to the augmenta-060

tion method used in RS&V that is not only061

untargeted but also does not effectively iden-062

tify or neutralize adversaries.063

� Given the time-intensive nature of the defense064

process, adversarial defense is also notori-065

ous for its computational inefficiency (Mozes066

et al., 2021; Wang et al., 2022c). This can067

be partially attributed to their inability to pre-068

detect adversaries and to indiscriminately pro-069

cess all input texts. This not only wastes070

computational budget on unnecessary defense071

actions regarding natural examples but also072

leads to an unwarranted defensive stance to-073

wards natural examples, which may further074

compromise performance.075

Bearing the above two challenges in mind, we076

propose a simple yet effective textual adversary077

defense paradigm, named reactive perturbation de-078

focusing (RAPID), which has the following two079

distinctive features.080

� To address the first bottleneck, we propose081

a novel concept of perturbation defocusing082

(Section 2.2.2). The basic idea is to lever-083

age adversarial attackers to re-inject some per-084

turbations into the pre-detected adversaries085

to distract the victim model from malicious086

perturbations, and to repair these adversaries087

based on the inherent robustness of the victim088

models. Further, the accuracy of adversarial089

defense is augmented by a pseudo-semantic090

similarity filtering strategy (Section 2.2.3).091

� To overcome the second bottleneck, RAPID092

trains an in-victim-model adversarial detec-093

tor, without introducing additional cost (Sec-094

tion 2.1), to proactively concentrate the de-095

fense efforts on the examples pre-detected as096

adversaries. In particular, this adversarial de-097

tector is jointly trained with the victim model098

in a multi-task way and is capable of recogniz-099

ing adversaries generated by different attack-100

ers. This helps not only minimize collateral101

impacts on natural examples (Xu et al., 2022)102

but also reduces the waste of computational103

budget upon defending against natural exam-104

1In this work, we refer to the semantics in adversaries as
the features encoded by PLM for simplicity.

ples. 105

Figure 2 provides a pedagogical example of the 106

working mechanism of RAPID in the context of 107

sentiment analysis. There are four key takeaways 108

from our empirical study. 109

RAPID achieves up to 99.9% repair accuracy 110

upon pre-detected adversaries, significantly 111

surpassing text/feature-level reconstruction 112

and voting-based methods (Table 2). 113

RAPID reduces nearly 50% computational 114

cost for adversarial defense compared against 115

adversarial attack (Table 15). 116

RAPID is robust in recognizing and defend- 117

ing against a wide range of unknown adver- 118

sarial attacks (Table 5), such as CLARE (Li 119

et al., 2021) and large language models like 120

ChatGPT-3.5 (OpenAI, 2023). 121

We develop a user-friendly API2 as a bench- 122

marking platform for different adversarial at- 123

tackers under the defense of RAPID. 124

2 Proposed Method 125

Our proposed RAPID framework comprises two 126

phases. Phase #1 trains a joint model that not only 127

performs the standard text classification task but is 128

also capable of detecting adversaries. Phase #2 is 129

dedicated to implementing a pseudo-supervised ad- 130

versary defense based on PD. It diverts the victim 131

model’s attention from malicious perturbations and 132

rectifies the outputs without compromising perfor- 133

mance on natural examples. 134

2.1 Phase #1: joint model training 135

The crux of Phase #1 is the joint training of two 136

models: one is the victim model as the standard 137

text classifier, and the other is an in-victim-model 138

adversarial detector, which is a binary classifier 139

that pre-detects adversaries before the defense. 140

2.1.1 Multi-attack-based adversary sampling 141

To derive the data used for training the adversarial 142

detector, we apply adversarial attack methods upon 143

the victim model FS to sample adversaries. To 144

enable the adversarial detector to identify various 145

unknown adversaries, we employ three widely used 146

open-source adversarial attackers: BAE (Garg and 147

Ramakrishnan, 2020), PWWS (Ren et al., 2019), 148

and TEXTFOOLER (Jin et al., 2020). For each data 149

instance ⟨x, y⟩ ∈ D, the set of natural examples, 150

2For the sake of anonymous requirement, we will release
this tool upon the acceptance of this paper.

2

This is the most intriguing
exploration of alienation.

Hijack This is the most interesting
investigation of alienation.

This is the most intriguing
investigation of alienation.

Perturbation
defocusing

This is the most intriguing
exploration of alienation.

This is the most intriguing
investigation of alienation.

Hijack

<latexit sha1_base64="GuibbS1X6IS6Qg3rUL7xdy5cbu4=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBE8lUSkeizowWMV+wFtLJvNpl262YTdiVpC/4cXD4p49b9489+4bXPQ1gcDj/dmmJnnJ4JrdJxva2l5ZXVtvbBR3Nza3tkt7e03dZwqyho0FrFq+0QzwSVrIEfB2oliJPIFa/nDy4nfemBK81je4ShhXkT6koecEjTSfRfZE2qa3ZKEB+NeqexUnCnsReLmpAw56r3SVzeIaRoxiVQQrTuuk6CXEYWcCjYudlPNEkKHpM86hkoSMe1l06vH9rFRAjuMlSmJ9lT9PZGRSOtR5JvOiOBAz3sT8T+vk2J44WVcJikySWeLwlTYGNuTCOyAK0ZRjAwhVHFzq00HRBGKJqiiCcGdf3mRNE8rbrVSvTkr167yOApwCEdwAi6cQw2uoQ4NoKDgGV7hzXq0Xqx362PWumTlMwfwB9bnDyFgkvI=</latexit>

Rapid
Ha, adversary!

Figure 2: A pedagogical example of RAPID in sentiment analysis. The original word in this example is exploration.
Perturbation defocusing repairs the adversary by injecting perturbations (interesting) to distract the objective model
from the malicious perturbation (i.e., investigation). RAPID only implements defense on the pre-detected adversary.

we apply each of the adversarial attackers to sample151

three adversaries3:152

⟨x̃, ỹ⟩i ← Ai (FS , ⟨x, y⟩) , (1)153

where Ai, i ∈ {1, 2, 3}, represents BAE, PWWS,154

and TEXTFOOLER, respectively. ⟨x̃, ỹ⟩i is the ad-155

versary generated by Ai. Note that we collect all156

adversaries, including both successful and failed157

ones, to constitute the adversarial dataset D̃. Fi-158

nally, we compose a hybrid dataset as shown in159

the left part of Figure 3. D := D
⋃
D̃ for the joint160

model training.161

2.1.2 Joint model training objectives162

To conduct the joint model training of both the vic-163

tim model and the adversarial detector, we propose164

an aggregated loss function as follows:165

L := Lc + Ld + La + λ||θ||22, (2)166

where λ is the ℓ2 regularization parameter, and θ167

represents the parameters of the underlying PLM.168

Lc, Ld, and La denotes the loss for training a stan-169

dard classifier, an adversarial detector, and adver-170

sarial training, respectively.171

• Standard classification loss Lc: Here we use the172

cross-entropy loss widely used for text classifica-173

tion:174

Lc := −
C∑
i=1

[pi log (p̃i) + qi log (q̃i)] , (3)175

where C is the number of classes. p and p̃ re-176

spectively indicate the true and predicted proba-177

bility distributions of the standard classification178

label, while q and q̂ represent any incorrect stan-179

dard classification label and its likelihood, re-180

spectively. Note that the labels of the adversaries181

3The formulation of word-level adversarial attack is avail-
able in Appendix B.

Standard
classifier

Adversarial
detector

Standard
output

Perturbation
defocusing

Detection
output

Repaired output Adversarial example

Multi-attack
adversary sampling

]
Natural
examples

]
Sampled

adversaries

Similarity
filtering

]
Repaired

adversaries

Input example

Phase #1 Phase #2

Figure 3: The overall architecture and workflow of
RAPID.

within D are set to a dummy value ∅ in this loss. 182

By doing so, we can make sure that Lc focuses 183

on the natural examples. 184

• Adversarial detection loss Ld: It only calculates 185

the binary cross-entropy for both natural exam- 186

ples and adversaries within D, where the labels 187

are either 0 or 1 in practice. Note that Ld is used 188

to train the adversarial detector as a binary clas- 189

sifier that determines whether the input example 190

is an adversary or not. 191

• Adversarial training loss La: In practice, the cal- 192

culation of La is the same as Lc. To improve the 193

robustness of adversaries, La only calculates the 194

loss for the adversaries by setting the labels of 195

natural examples within D as a dummy ∅. By 196

doing so, we can prevent this adversarial training 197

loss from negatively impacting the performance 198

on pure natural examples, which have been re- 199

ported to be notorious in recent studies (Dong 200

et al., 2021a,b). 201

All in all, each instance ⟨x,y⟩ ∈ D is augmented 202

with three different labels to accommodate these 203

three training losses, where y := (y1, y2, y3)
⊤. 204

2.2 Phase #2: reactive adversarial defense 205

To address the efficiency and semantic challenges 206

discussed in Section 1, the reactive adversarial de- 207

3

fense consists of the following three steps.208

2.2.1 Adversarial defense detection209

Our preliminary experiments suggested that PLMs210

like BERT and DEBERTA are sensitive to seman-211

tic shifts caused by adversarial attacks. Thereby,212

different from the current adversarial defense meth-213

ods, which often indiscriminately run defense upon214

all input examples, we will first apply the joint215

model FJ trained in the Phase #1 to determine216

whether the input x̂ is adversarial or not using the217

following prediction:218

(ŷ1, ŷ2, ŷ3)← FJ(x̂), (4)219

where ŷ1, ŷ2, and ŷ3 are predicted labels according220

to the three training losses in equation (2), respec-221

tively. Thereafter, only the inputs identified as ad-222

versaries (i.e., those with ŷ2 = 1) are used for the223

follow-up perturbation defocusing.224

2.2.2 Perturbation defocusing225

The basic idea of this perturbation defocusing is to226

inject safe perturbations into the adversary x̂ iden-227

tified by the adversarial defense detection in Sec-228

tion 2.2.1. The process is shown in Phase #2229

inFigure 3. In practice, we apply an adversarial230

attacker to attack x̂ to obtain a repaired example:231

⟨x̃r, ỹr1⟩ ← ÂPD (FJ , ⟨x̂, ŷ1⟩) , (5)232

where ŷ1 is the predicted label of x̂, and ÂPD is an233

adversarial attacker4. Note that the above pertur-234

bation is considered safe because it does not alter235

the semantics of x̂. By this means, we divert the236

standard classifier’s focus away from the malicious237

perturbations, allowing the standard classifier to238

concentrate on the adversary’s original semantics.239

In essence, the repaired examples can be correctly240

classified based on the model inherent robustness.241

2.2.3 Pseudo-semantic similarity filtering242

To prevent repaired adversaries from being misclas-243

sified, we propose a feature-level pseudo-semantic244

similarity filtering strategy to mitigate semantic245

bias. Specifically, for each x̂, we generate a set of246

repaired examples S := {x̃r
i}ki=1. Then, we encode247

these repaired examples using FJ to extract their248

semantic features. Thereafter, for each repaired249

example within S , we calculate its similarity score250

as:251

si =

∑k
j=1,j ̸=i sim(Hi,Hj)

k
, (6)252

4We choose PWWS because it is cost-effective, and it can
be replaced by any (or an ensemble of) adversarial attackers.

whereHi andHj are the hidden states of x̃r
i and x̃r

j 253

encoded by FJ , and sim(∗, ∗) evaluates the cosine 254

similarity. For the sake of efficiency, we set k = 3 255

in this paper. After the defense, the label of the 256

repaired x̂ is assigned as the predicted label of 257

the repaired example within S having the largest 258

similarity score. 259

Remark 1. Generally speaking, the basic idea 260

of perturbation defocusing is to search and inject 261

limited specific perturbations to change the fake 262

prediction to disable the malicious perturbations, 263

and we use adversarial attackers to search specific 264

perturbations in perturbation defocusing. 265

Remark 2. Note that the perturbation defocusing 266

in RAPID is decoupled with the adversarial detec- 267

tor, and its performance is agnostic to the adver- 268

sarial attackers used for this adversary sampling. 269

The empirical results in Table 5 demonstrate that 270

the adversarial detector can adapt to unknown at- 271

tack methods, even when trained on a small set of 272

adversaries. 273

3 Experimental Settings 274

In this section, we introduce the experimental set- 275

tings used in our experiments. 276

Table 1: The statistics of datasets used for evaluating
RAPID. We use subsets from Amazon, AGNews and
Yahoo! datasets to evaluate RAPID as the previous
works due to high resource occupation.

DATASET CATEGORIES
NUMBER OF EXAMPLES

TRAINING VALID TESTING

SST2 2 6, 920 872 1, 821

Amazon 2 7, 000 1, 000 2, 000

AGNews 4 120, 000 0 7, 600

Yahoo! 10 1, 400, 000 0 60, 000

Victim models: while any PLM can be used in 277

a plug-in manner in RAPID, this paper considers 278

BERT (Devlin et al., 2019) and DEBERTA (He 279

et al., 2021), two widely used PLMs based on the 280

transformer structure5, as both the victim classifier 281

and the joint model. Their corresponding hyperpa- 282

rameter settings are in Appendix C.2. 283

Datasets: we consider three widely used text 284

classification datasets6, including SST2 (Socher 285

et al., 2013), Amazon (Zhang et al., 2015), and 286

AGNews (Zhang et al., 2015) whose key statistics 287

are outlined in Table 1. SST2 and Amazon are bi- 288

nary sentiment classification datasets. AGNews and 289

5https://github.com/huggingface/transformers
6We have released the detailed source codes and processed

datasets in the supplementary materials.

4

https://github.com/huggingface/transformers

Yahoo! is a multi-categorical news classification290

dataset containing 4 and 10 categories, respectively.291

Adversarial attackers: our experiments employ292

three open-source attackers provided by TEXTAT-293

TACK7 (Morris et al., 2020). Their functionalities294

are outlined as follows, while their working mech-295

anisms are in Appendix C.1.296

a) Adversary sampling. BAE, PWWS and297

TEXTFOOLER are used to sample adversaries298

for training the adversarial detector (Sec-299

tion 2.1). Since they represent different types300

of attacks, we can train a detector that recog-301

nizes a variety of adversarial attacks.302

b) Adversary repair. We employ PWWS as the303

attacker ÂPD in the perturbation defocusing304

(Section 2.2). Compared to BAE, our prelim-305

inary experiments demonstrate that PWWS306

rarely changes the natural examples’ seman-307

tics, and it is more computationally efficient308

than TEXTFOOLER.309

c) Generalizability evaluation. We use310

IGA (Wang et al., 2021a), DEEPWORD-311

BUG (Gao et al., 2018), PSO (Zang et al.,312

2020) and CLARE to evaulate RAPID’s313

generalization capability.314

Evaluation metrics: we use the following five fine-315

grained metrics8 for text classification to evaluate316

the adversarial defense performance.317

• Nature accuracy (NTA): it evaluates the vic-318

tim’s performance on the target dataset that319

only contains natural examples.320

• Attack accuracy (ATA): It evaluates the vic-321

tim’s performance under adversarial attacks.322

• Detection accuracy (DTA): It measures the323

defender’s adversaries detection performance.324

• Defense accuracy (DFA): It evaluates the de-325

fender’s performance of adversaries repair.326

• Repaired accuracy (RPA): It evaluates the327

victim’s performance on the attacked dataset328

after being repaired.329

Note that we evaluate the adversarial detection and330

defense performance on the entire testing set, while331

current works (Xu et al., 2022; Yang et al., 2022;332

Dong et al., 2021a,b) only evaluated a small amount333

of data extracted from the testing set.334

Baseline methods: RAPID is compared against the335

following six adversarial defense baselines.336

• DISP (Zhou et al., 2019): It is an embedding337

7https://github.com/QData/TextAttack
8The mathematical definitions of these evaluation metrics

can be found in Appendix C.3.

feature reconstruction method and uses a pertur- 338

bation discriminator to evaluate the probability 339

that a token is perturbed and provides a set of 340

potential perturbations. 341

• FGWS (Mozes et al., 2021): It uses frequency- 342

guided word substitutions to exploit the fre- 343

quency properties of adversarial word substitu- 344

tions to detect adversaries. 345

• RS&V (Wang et al., 2022c): It is a text re- 346

construction method based on the randomized 347

substitution-to-vote strategy. RS&V accumu- 348

lates the logits of massive samples generated by 349

randomly substituting the words in the adver- 350

saries with synonyms. 351

• RSMI (Moon et al., 2023): RSMI is a two-stage 352

framework that combines randomized smooth- 353

ing (RS) with masked inference (MI) to improve 354

the adversarial robustness of NLP systems. This 355

is not a technical analogy because adversarial 356

detection support is not included in this research. 357

Note that the rationale for choosing the above base- 358

lines is their open-source nature, while we can 359

hardly reproduce the experimental results of other 360

methods like TEXTSHIELD (Shen et al., 2023). 361

3.1 Ablation Experiments 362

Due to the page limitation, we include the follow- 363

ing ablation experiments in Appendix D: 364

• Performance of RAPID against LLM-based 365

adversarial attack 366

• Performance of RAPID with different adver- 367

sarial attackers in perturbation defocusing 368

• Performance of RAPID without adversarial 369

training Objective 370

• Performance of RAPID without multitask 371

training objective 372

• Performance Comparison between RAPID and 373

adversarial training baseline 374

• Efficiency evaluation of RAPID 375

• Impact of k in RAPID 376

• Adversarial example evaluation 377

4 Experimental Results 378

4.1 Adversary detection performance 379

Results shown in Table 2 demonstrate the effective- 380

ness of the adversarial detector in RAPID. Com- 381

pared to the previous adversary detection-based de- 382

fense (Mozes et al., 2021; Wang et al., 2022c; Shen 383

et al., 2023), the in-victim-model adversarial detec- 384

tor identifies the adversaries with no extra cost. On 385

the other hand, our evaluation confirms a very low 386

5

https://github.com/QData/TextAttack

Table 2: The adversarial detection and defense performance of RAPID on four public datasets. The victim model is
BERT and the results in bold font indicate the best performance. We report the average accuracy of five random
runs. For fair comparisons, all the baseline experiments are re-implemented based on the latest adversarial attackers
from the Textattack library to avoid biases. “TF” indicates TEXTFOOLER and “-” means the results are not available
because of a lack of adversarial detection support.

DEFENDER ATTACKER
AGNews(4-category) Yahoo!(10-category) SST2 (2-category) Amazon(2-category)

NTA ATA DTA DFA RPA NTA ATA DTA DTA RPA NTA ATA DTA DFA RPA NTA ATA DTA DFA RPA

DISP

PWWS 32.09 55.49 57.82 68.23 5.70 61.67 54.95 50.24 23.44 38.93 34.46 35.33 15.56 41.90 45.92 59.80

TF 94.13 50.50 53.78 56.18 70.16 75.63 13.60 50.73 57.48 53.18 91.24 16.21 37.80 34.37 37.16 93.67 21.77 43.10 47.15 60.56

BAE 74.80 45.26 45.75 81.39 27.50 54.82 53.75 50.90 35.21 36.59 37.51 42.22 44.00 40.28 42.74 61.85

FGWS

PWWS 32.09 65.24 68.35 71.78 5.70 65.83 61.46 53.28 23.44 40.28 40.38 39.20 15.56 44.47 56.89 60.29

TF 94.25 50.50 68.88 70.71 73.40 76.24 13.60 68.57 65.17 54.53 91.34 16.21 42.79 41.05 41.53 94.26 21.77 45.75 58.74 61.51

BAE 74.80 44.29 47.95 83.57 27.50 58.63 56.33 52.94 35.21 43.83 48.37 44.90 44.00 42.26 43.04 64.63

RS&V

PWWS 32.09 83.67 84.96 83.80 5.70 65.01 65.22 57.22 23.44 36.90 37.10 38.54 15.56 29.60 45.30 46.17

TF 94.14 50.50 82.44 83.45 82.53 76.39 13.60 74.21 74.54 58.10 91.55 16.21 39.70 38.40 39.70 94.32 21.77 40.70 42.30 55.70

BAE 74.80 46.98 48.67 86.90 27.50 37.41 37.88 62.27 35.21 19.84 20.92 43.65 44.00 38.59 39.01 65.03

RSMI

PWWS 32.09 − − 76.10 5.70 − − 62.75 23.44 − − 65.96 15.56 − − 70.48

TF 93.71 50.50 − − 63.20 76.45 50.50 − − 63.73 91.55 16.21 − − 61.67 94.11 21.77 − − 72.62

BAE 74.80 − − 86.10 27.50 − − 65.22 35.21 − − 67.42 44.00 − − 75.21

RAPID

PWWS 32.09 90.11 95.88 92.36 5.70 87.33 92.47 69.40 23.44 94.03 98.62 89.85 15.56 97.33 99.99 94.42

TF 94.30 50.50 90.29 96.76 92.14 76.45 13.60 87.49 93.54 70.50 91.70 16.21 94.03 99.86 89.72 94.24 21.77 93.85 99.99 93.96

BAE 74.80 57.55 96.25 93.64 27.50 82.46 96.30 73.06 35.21 78.99 99.28 89.77 44.00 80.55 99.99 93.89

false positive rate (≈ 2%) of adversary detection on387

natural examples, resulting in a very slight perfor-388

mance degradation on natural examples. Further,389

the adaptability of RAPID to previously unseen at-390

tack methods is evidenced in Table 5, highlighting391

the versatility of our adversarial detector. It excels392

at identifying adversaries by detecting disruptions393

introduced by malicious attackers, such as gram-394

mar errors and word misuse. Note that detection395

performance on the AGNews dataset is lower due396

to the absence of news data in the BERT training397

corpus, as discussed in Table 8 of He et al. (2021).398

4.2 Adversary defense performance399

As for the adversary defense, RAPID outperforms400

existing methods across all datasets, as outlined401

in Table 2. When we focus on correctly identi-402

fied adversaries, RAPID can effectively repair up to403

92% to 99% of them, even on the challenging 10-404

category Yahoo datasets. Our research also sheds405

light on the limitations of unsupervised text-level406

and feature-level reconstruction methods, as re-407

ported in studies such as Zhou et al. (2019); Mozes408

et al. (2021); Wang et al. (2022c). These meth-409

ods struggle to rectify the deep semantics in ad-410

versaries, rendering them inefficient and inferior.411

Additionally, we find that previous methods are412

not robust when defending against adversaries in413

short texts, as evidenced by their failure on the414

SST2 and Amazon datasets. In summary, RAPID415

employs adversarial attackers to repair adversaries’416

deep semantics and minimize edits in the text space,417

Table 3: The performance of RAPID without pseudo-
similarity filtering, where colored numbers indicate
performance declines. The metrics not unaffected by
the pseudo-similarity filtering are omitted.

DATASET ATTACKER DTA RPA

AGNews

PWWS 94.19(−1.69 ↓) 90.80(−1.56 ↓)
TF 94.26(−2.50 ↓) 91.35(−0.79 ↓)

BAE 92.98(−3.27 ↓) 91.44(−2.20 ↓)

Yahoo!

PWWS 88.04(−4.43 ↓) 65.38(−4.02 ↓)
TF 91.28(−2.26 ↓) 67.48(−3.02 ↓)

BAE 92.48(−3.84 ↓) 71.35(−1.71 ↓)

SST2

PWWS 98.12(−0.50 ↓) 87.80(−2.05 ↓)
TF 98.03(−1.83 ↓) 88.40(−1.32 ↓)

BAE 95.87(−3.41 ↓) 87.52(−2.25 ↓)

Amazon

PWWS 99.99(0.00) 94.40(−0.02 ↓)
TF 98.92(−1.07 ↓) 93.31(−0.65 ↓)

BAE 98.53(−1.41 ↓) 93.62(−0.27 ↓)

resulting in satisfactory adversarial defense. We 418

emphasize the importance of dedicated deep se- 419

mantics repair in the context of adversarial defense 420

against unsupervised features and text space recon- 421

struction. 422

4.3 Ablation for similarity filtering 423

The pseudo-semantic similarity filtering (Sec- 424

tion 2.2.3) exclusively affects the defense process, 425

so we have omitted the unaffected metrics, such as 426

the detection accuracy in Table 2. From the results 427

shown in Table 3, we find that the adversarial de- 428

fense performance of RAPID without this filtering 429

strategy is notably inferior (≈ 1%) in most cases. 430

Further, the degradation in defense performance 431

is more pronounced in the case of the AGNews and 432

Yahoo! datasets compared to the SST2 and Amazon 433

datasets. This discrepancy is attributed to the larger 434

vocabularies and longer text lengths in the AGNews 435

and Yahoo! datasets, resulting in diversified re- 436

6

paired examples in terms of similarity.437

4.4 Adaptive adversarial defesne438

Table 4: Defense performance (RPA) of the original
attacks (OA) and adaptive attacks (AA), respectively.

PWWS TF BAE

OA AA OA AA OA AA

AGNews 92.36 85.82 92.14 89.13 93.64 86.61
Yahoo! 69.30 65.41 80.50 87.58 73.06 70.17
SST2 89.85 83.51 89.72 83.68 89.77 86.92
Amazon 99.42 93.43 93.96 88.75 93.89 88.51

Although the defense against adaptive adversar-439

ial attacks in CV has been well established, the440

adaptive attacks in natural language processing are441

still under early investigation because of the non-442

differentiable nature of text space. To the best of443

our knowledge, there are no open-source or click-444

to-run adversarial defenses for adaptive adversarial445

attacks. We adopt a simple evaluation experiment446

of defense against EOT (Athalye et al., 2018), an447

adaptive attack from CV, where the implementation448

details of this experiment are available in Wang449

et al. (2022b). We show the results in Table 4.450

Overall, while adaptive attacks typically resulted451

in reduced effectiveness compared to original at-452

tacks, there were instances (e.g., TF on Yahoo!)453

where adaptive strategies either maintained or454

slightly improved performance. This indicates vari-455

ability in how different attack methods and datasets456

interact with adaptive defensive strategies.457

4.5 Further research questions458

We discuss more findings about RAPID by answer-459

ing the following research questions (RQs).460

RQ1: How is the generalization ability of RAPID461

to unknown attackers?462

Methods: To assess the generalization ability of the463

in-victim-model adversarial detector in RAPID, we464

have conducted experiments among various state-465

of-the-art adversarial attackers: PSO, IGA, DEEP-466

WORDBUG, and CLARE, which were not included467

in the training of the adversarial detector in RAPID.468

Note that better adversarial detection and defense469

performance against unknown adversarial attackers470

indicates a superior generalizability of RAPID.471

Results: The results are listed in Table 5. In terms472

of adversarial defense, RAPID is capable of repair-473

ing a substantial number of adversaries generated474

by various unknown attack methods (up to 87.68%475

and 94.65% on the SST2 and Amazon datasets, re-476

spectively). However, RAPID experiences a de-477

cline in performance in identifying and defending478

Table 5: Performance of RAPID for adversarial detection
and defense against unknown adversarial attacks.

DATASET ATTACKER ATA DTA DFA RPA

AGNews

PSO 14.83 68.46 67.82 90.39

IGA 26.87 76.74 74.59 92.33

DEEPWORDBUG 45.53 72.73 87.23 89.33

CLARE 8.46 62.78 61.54 64.78

Yahoo!

PSO 6.28 80.26 76.89 87.82

IGA 14.75 82.69 81.02 54.55

DEEPWORDBUG 51.34 72.73 87.10 62.27

CLARE 3.56 64.85 62.40 52.47

SST2

PSO 7.95 87.50 87.50 82.61

IGA 18.39 89.33 98.67 87.68

DEEPWORDBUG 30.67 95.44 83.59 81.90

CLARE 2.59 62.50 59.37 65.30

Amazon

PSO 5.76 90.48 90.48 91.55

IGA 14.91 92.31 92.31 94.65

DEEPWORDBUG 43.43 87.04 85.19 86.87

CLARE 3.25 60.44 59.37 62.94

against adversaries when facing the challenging 479

CLARE attack. This performance degradation is 480

likely attributed to their ineffective adversarial de- 481

tection, which could potentially be improved by 482

training CLARE-based adversaries for adversarial 483

detection within RAPID. In summary, RAPID has 484

demonstrated robust generalization ability, effec- 485

tively detecting and repairing a wide array of ad- 486

versaries generated by unknown attackers. 487

RQ2: Does perturbation defocusing really re- 488

pair adversaries? 489

BAE PWWS TextFooler
0.2

0.4

0.6

0.8

1

(c) RS&V-AGNews

C
os
in
e
S
im

il
ar
it
y

BAE PWWS TextFooler
0.4

0.6

0.8

1

(d) RS&V-Yahoo

C
os
in
e
S
im

il
ar
it
y

BAE PWWS TextFooler
−0.4

0

0.4

0.8

1

(b) Rapid-Yahoo

C
os
in
e
S
im

il
ar
it
y

BAE PWWS TextFooler

−1

−0.5

0

0.5

1

(a) Rapid-AGNews

C
os
in
e
S
im

il
ar
it
y

Adversarial
Repaired

Figure 4: Box plots of semantic cosine similarity score
distributions on multi-categorial datasets. Similar to
Figure 1, RAPID is more competent to repair semantics
according to the feature similarity score distributions.

Methods: To address this RQ, we investigate the 490

discrepancy between adversaries and their repaired 491

counterparts in the feature space. Specifically, 492

we employ three attackers (i.e., BAE, PWWS, 493

TEXTFOOLER) to generate adversaries and their 494

corresponding repaired examples. Using the vic- 495

tim model, we encode these examples into the fea- 496

ture space and evaluate the cosine similarity be- 497

tween adversary-natural example pairs and repaired 498

7

Table 6: The performance of RAPID on four public
datasets based on the victim model DEBERTA. The
numbers in red color indicate performance declines com-
pared to the BERT-based RAPID.

DATASET ATTACKER NTA ATA DTA DFA RPA

AGNews

PWWS

96.69

62.77 96.47 98.47 93.12

TF 39.85 91.41 95.90 ↓ 93.69

BAE 81.64 90.20 97.92 93.40 ↓

Yahoo!

PWWS

78.63

15.70 88.91 92.64 70.47

TF 6.19 89.32 92.60 69.96 ↓
BAE 47.50 90.25 93.74 ↓ 72.12 ↓

SST2

PWWS

95.01

37.14 95.21 98.42 94.15

TF 22.59 93.06 ↓ 99.08 94.58

BAE 38.84 80.82 98.59 94.16

Amazon

PWWS

95.51

22.72 97.62 99.99 94.55

TF 23.95 94.91 99.99 94.84

BAE 56.65 82.71 99.99 94.50

adversary-natural example pairs. The larger cosine499

similarity scores indicate better performance in re-500

pairing the deep semantics in the adversaries.501

Results: The semantic similarity score distributions502

(e.g., the median similarity scores of repaired ex-503

amples are always larger than the adversaries) from504

Figure 1 and Figure 4 reveal a notable global sim-505

ilarity between the natural examples and repaired506

examples by RAPID, which means RAPID does507

repair the deep semantics of the adversaries. Con-508

versely, the similarity scores of the repaired exam-509

ples obtained using defenders (without adversarial510

detection) are indistinguishable from the adversar-511

ial examples across all datasets. In conclusion, our512

observations show the ability of RAPID to effec-513

tively repair the deep semantics of adversaries.514

RQ3: How does the inherent robustness of the515

victim model affect RAPID?516

Methods: We assessed the impact of the inherent517

robustness of the victim model, focusing on DE-518

BERTA, a cutting-edge PLM utilized across vari-519

ous tasks. Specifically, we trained a victim model520

based on DEBERTA, replicating the experimental521

setup and evaluating the performance variation of522

RAPID based on this DEBERTA victim model.523

Results: As in Table 6, the DEBERTA-based victim524

model demonstrates superior accuracy under adver-525

sarial attacks, indicating higher inherent robustness526

in DEBERTA compared to the victim model built527

on BERT. In particular, DEBERTA-based RAPID528

excels in identifying adversaries across all classi-529

fication datasets, especially on the binary datasets.530

In short, the performance in adversarial detection531

and defense follows a similar upward trajectory to532

the capacity of the base model.533

5 Related Works 534

Prior research on adversarial defense can be 535

classified into three categories: adversarial 536

training-based methods (Miyato et al., 2017; Zhu 537

et al., 2020; Ivgi and Berant, 2021); context 538

reconstruction-based methods (Pruthi et al., 2019; 539

Liu et al., 2020b; Mozes et al., 2021; Keller et al., 540

2021; Chen et al., 2021; Xu et al., 2022; Li 541

et al., 2022; Swenor and Kalita, 2022); and feature 542

reconstruction-based methods(Zhou et al., 2019; 543

Jones et al., 2020; Wang et al., 2021a). Some stud- 544

ies (Wang et al., 2021b) also investigated hybrid 545

defense methods. As for the adversarial training- 546

based methods, they are notorious for the perfor- 547

mance degradation of natural examples. They can 548

improve the robustness of PLMs by fine-tuning, 549

yet increasing the cost of model training caused by 550

catastrophic forgetting (Dong et al., 2021b). Text 551

reconstruction-based methods, such as word substi- 552

tution (Mozes et al., 2021; Bao et al., 2021) and 553

translation-based reconstruction, may fail to iden- 554

tify semantically repaired adversaries or introduce 555

new malicious perturbations (Swenor and Kalita, 556

2022). Feature reconstruction methods, on the 557

other hand, may struggle to repair typo attacks (Liu 558

et al., 2020a; Tan et al., 2020; Jones et al., 2020), 559

sentence-level attacks (Zhao et al., 2018; Cheng 560

et al., 2019), and other unknown attacks. There 561

are some works towards the adversarial detection 562

and defense joint task (Zhou et al., 2019; Mozes 563

et al., 2021; Wang et al., 2022c). However, these 564

adversarial detection methods may be ineffective 565

for unknown adversarial attackers and can hardly 566

alleviate resource waste in adversarial defense. An- 567

other similar work to RAPID is Textshield (Shen 568

et al., 2023), which aims to defend against word- 569

level adversarial attacks by detecting adversarial 570

sentences based on a saliency-based detector and 571

fixing the adversarial examples using a corrector. 572

Overall, our study focuses on maintaining the se- 573

mantics by introducing minimal safe perturbations 574

into adversaries, thus alleviating the semantic shift- 575

ing problem in all reconstruction-based works. 576

6 Conclusion 577

We propose RAPID to repair semantics in adver- 578

sarial examples. RAPID shows an outstanding ad- 579

versarial defense performance (up to ≈ 99% of 580

identified adversarial examples). It is believed that 581

RAPID has the potential to significantly shift the 582

landscape of textual adversarial defense. 583

8

Limitations584

One limitation of the proposed method is that it585

tends to introduce new perturbations into the adver-586

saries, which may lead to semantic shifts. This may587

be unsafe for some tasks, e.g., machine translation.588

Furthermore, the method requires a large amount589

of computational resources to generate the adver-590

saries during the training phase, which may be a591

limitation in some scenarios. Finally, the method592

has not been tested on a wide range of NLP tasks593

and domains, and further evaluations on other tasks594

and domains are necessary to fully assess its capa-595

bilities.596

References597

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-598
Jhang Ho, Mani B. Srivastava, and Kai-Wei Chang.599
2018. Generating natural language adversarial exam-600
ples. In EMNLP’18: Proc. of the 2018 Conference on601
Empirical Methods in Natural Language Processing,602
pages 2890–2896. Association for Computational603
Linguistics.604

Anish Athalye, Nicholas Carlini, and David A. Wag-605
ner. 2018. Obfuscated gradients give a false sense606
of security: Circumventing defenses to adversarial607
examples. In Proceedings of the 35th International608
Conference on Machine Learning, ICML 2018, Stock-609
holmsmässan, Stockholm, Sweden, July 10-15, 2018,610
volume 80 of Proceedings of Machine Learning Re-611
search, pages 274–283. PMLR.612

Rongzhou Bao, Jiayi Wang, and Hai Zhao. 2021. De-613
fending pre-trained language models from adversarial614
word substitution without performance sacrifice. In615
ACL-IJCNLP’21: Findings of the 2021 Conference of616
the Association for Computational Linguistics: ACL-617
IJCNLP 2021, Online Event, August 1-6, 2021, vol-618
ume ACL-IJCNLP 2021 of Findings of ACL, pages619
3248–3258. Association for Computational Linguis-620
tics.621

Nicholas Boucher, Ilia Shumailov, Ross Anderson, and622
Nicolas Papernot. 2022. Bad characters: Impercepti-623
ble NLP attacks. In 43rd IEEE Symposium on Secu-624
rity and Privacy, SP 2022, San Francisco, CA, USA,625
May 22-26, 2022, pages 1987–2004. IEEE.626

Guandan Chen, Kai Fan, Kaibo Zhang, Boxing Chen,627
and Zhongqiang Huang. 2021. Manifold adversar-628
ial augmentation for neural machine translation. In629
ACL-IJCNLP’21: Findings of the 2021 Conference of630
the Association for Computational Linguistics, pages631
3184–3189. Association for Computational Linguis-632
tics.633

Yong Cheng, Lu Jiang, and Wolfgang Macherey. 2019.634
Robust neural machine translation with doubly ad-635
versarial inputs. In ACL’19: Proc. of the 57th Con-636

ference of the Association for Computational Lin- 637
guistics, pages 4324–4333. Association for Compu- 638
tational Linguistics. 639

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 640
Kristina Toutanova. 2019. BERT: pre-training of 641
deep bidirectional transformers for language under- 642
standing. In NAACL-HLT’19: Proc. of the 2019 643
Conference of the North American Chapter of the As- 644
sociation for Computational Linguistics, pages 4171– 645
4186. Association for Computational Linguistics. 646

Xinshuai Dong, Anh Tuan Luu, Rongrong Ji, and Hong 647
Liu. 2021a. Towards robustness against natural lan- 648
guage word substitutions. In ICLR’21: Proc. of the 649
9th International Conference on Learning Represen- 650
tations. OpenReview.net. 651

Xinshuai Dong, Anh Tuan Luu, Min Lin, Shuicheng 652
Yan, and Hanwang Zhang. 2021b. How should pre- 653
trained language models be fine-tuned towards ad- 654
versarial robustness? In NeurIPS’21: Proc. of the 655
2021 Conference on Neural Information Processing 656
Systems, pages 4356–4369. 657

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing 658
Dou. 2018. Hotflip: White-box adversarial examples 659
for text classification. In Proceedings of the 56th 660
Annual Meeting of the Association for Computational 661
Linguistics, ACL 2018, Melbourne, Australia, July 662
15-20, 2018, Volume 2: Short Papers, pages 31–36. 663
Association for Computational Linguistics. 664

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yan- 665
jun Qi. 2018. Black-box generation of adversarial 666
text sequences to evade deep learning classifiers. In 667
SP’18: Proc. of the 2018 IEEE Security and Privacy 668
Workshops, pages 50–56. IEEE Computer Society. 669

Siddhant Garg and Goutham Ramakrishnan. 2020. 670
BAE: bert-based adversarial examples for text clas- 671
sification. In EMNLP’20: Proc. of the 2020 Con- 672
ference on Empirical Methods in Natural Language 673
Processing, pages 6174–6181. Association for Com- 674
putational Linguistics. 675

Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, 676
Florian Stimberg, Dan Andrei Calian, and Timothy A. 677
Mann. 2021. Improving robustness using generated 678
data. In NeurIPS’21: Advances in Neural Informa- 679
tion Processing Systems, pages 4218–4233. 680

Chuan Guo, Alexandre Sablayrolles, Hervé Jégou, and 681
Douwe Kiela. 2021. Gradient-based adversarial at- 682
tacks against text transformers. In Proceedings of the 683
2021 Conference on Empirical Methods in Natural 684
Language Processing, EMNLP 2021, Virtual Event 685
/ Punta Cana, Dominican Republic, 7-11 November, 686
2021, pages 5747–5757. Association for Computa- 687
tional Linguistics. 688

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021. 689
Debertav3: Improving deberta using electra-style pre- 690
training with gradient-disentangled embedding shar- 691
ing. CoRR, abs/2111.09543. 692

9

https://doi.org/10.18653/v1/d18-1316
https://doi.org/10.18653/v1/d18-1316
https://doi.org/10.18653/v1/d18-1316
http://proceedings.mlr.press/v80/athalye18a.html
http://proceedings.mlr.press/v80/athalye18a.html
http://proceedings.mlr.press/v80/athalye18a.html
http://proceedings.mlr.press/v80/athalye18a.html
http://proceedings.mlr.press/v80/athalye18a.html
https://doi.org/10.18653/v1/2021.findings-acl.287
https://doi.org/10.18653/v1/2021.findings-acl.287
https://doi.org/10.18653/v1/2021.findings-acl.287
https://doi.org/10.18653/v1/2021.findings-acl.287
https://doi.org/10.18653/v1/2021.findings-acl.287
https://doi.org/10.1109/SP46214.2022.9833641
https://doi.org/10.1109/SP46214.2022.9833641
https://doi.org/10.1109/SP46214.2022.9833641
https://doi.org/10.18653/v1/2021.findings-acl.281
https://doi.org/10.18653/v1/2021.findings-acl.281
https://doi.org/10.18653/v1/2021.findings-acl.281
https://doi.org/10.18653/v1/p19-1425
https://doi.org/10.18653/v1/p19-1425
https://doi.org/10.18653/v1/p19-1425
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://openreview.net/forum?id=ks5nebunVn_
https://openreview.net/forum?id=ks5nebunVn_
https://openreview.net/forum?id=ks5nebunVn_
https://proceedings.neurips.cc/paper/2021/hash/22b1f2e0983160db6f7bb9f62f4dbb39-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/22b1f2e0983160db6f7bb9f62f4dbb39-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/22b1f2e0983160db6f7bb9f62f4dbb39-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/22b1f2e0983160db6f7bb9f62f4dbb39-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/22b1f2e0983160db6f7bb9f62f4dbb39-Abstract.html
https://doi.org/10.18653/V1/P18-2006
https://doi.org/10.18653/V1/P18-2006
https://doi.org/10.18653/V1/P18-2006
https://doi.org/10.1109/SPW.2018.00016
https://doi.org/10.1109/SPW.2018.00016
https://doi.org/10.1109/SPW.2018.00016
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://proceedings.neurips.cc/paper/2021/hash/21ca6d0cf2f25c4dbb35d8dc0b679c3f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/21ca6d0cf2f25c4dbb35d8dc0b679c3f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/21ca6d0cf2f25c4dbb35d8dc0b679c3f-Abstract.html
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.464
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.464
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.464
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543

Maor Ivgi and Jonathan Berant. 2021. Achieving model693
robustness through discrete adversarial training. In694
EMNLP’21: Proc. of the 2021 Conference on Empir-695
ical Methods in Natural Language Processing, pages696
1529–1544. Association for Computational Linguis-697
tics.698

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter699
Szolovits. 2020. Is BERT really robust? A strong700
baseline for natural language attack on text classifi-701
cation and entailment. In AAAI’20: Proc. of the 34th702
AAAI Conference on Artificial Intelligence, pages703
8018–8025. AAAI Press.704

Erik Jones, Robin Jia, Aditi Raghunathan, and Percy705
Liang. 2020. Robust encodings: A framework for706
combating adversarial typos. In ACL’20: Proc. of707
the 58th Annual Meeting of the Association for Com-708
putational Linguistics Conference, pages 2752–2765.709
Association for Computational Linguistics.710

Yannik Keller, Jan Mackensen, and Steffen Eger. 2021.711
Bert-defense: A probabilistic model based on BERT712
to combat cognitively inspired orthographic adversar-713
ial attacks. In ACL-IJCNLP’21: Findings of the 2021714
Conference of the Association for Computational Lin-715
guistics, volume ACL-IJCNLP 2021 of Findings of716
ACL, pages 1616–1629. Association for Computa-717
tional Linguistics.718

Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris719
Brockett, Ming-Ting Sun, and Bill Dolan. 2021. Con-720
textualized perturbation for textual adversarial attack.721
In NAACL-HLT’21: Proc. of the 2021 Conference of722
the North American Chapter of the Association for723
Computational Linguistics, pages 5053–5069. Asso-724
ciation for Computational Linguistics.725

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting726
Wang. 2019. Textbugger: Generating adversarial727
text against real-world applications. In 26th Annual728
Network and Distributed System Security Symposium,729
NDSS 2019, San Diego, California, USA, February730
24-27, 2019. The Internet Society.731

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,732
and Xipeng Qiu. 2020. BERT-ATTACK: adversarial733
attack against BERT using BERT. In EMNLP’20:734
Proc. of the 2020 Conference on Empirical Methods735
in Natural Language Processing, pages 6193–6202.736
Association for Computational Linguistics.737

Linyang Li, Demin Song, Jiehang Zeng, Ruotian Ma,738
and Xipeng Qiu. 2022. Rebuild and ensemble: Ex-739
ploring defense against text adversaries. CoRR,740
abs/2203.14207.741

Hui Liu, Yongzheng Zhang, Yipeng Wang, Zheng Lin,742
and Yige Chen. 2020a. Joint character-level word743
embedding and adversarial stability training to de-744
fend adversarial text. In AAAI’20: Proc. of the 34th745
AAAI Conference on Artificial Intelligence, pages746
8384–8391. AAAI Press.747

Kai Liu, Xin Liu, An Yang, Jing Liu, Jinsong Su, Sujian 748
Li, and Qiaoqiao She. 2020b. A robust adversarial 749
training approach to machine reading comprehension. 750
In AAAI’20: Proc. of the Thirty-Fourth AAAI Con- 751
ference on Artificial Intelligence, pages 8392–8400. 752
AAAI Press. 753

Takeru Miyato, Andrew M. Dai, and Ian J. Goodfel- 754
low. 2017. Adversarial training methods for semi- 755
supervised text classification. In ICLR’17: Proc. of 756
the 5th International Conference on Learning Repre- 757
sentations. OpenReview.net. 758

Han Cheol Moon, Shafiq R. Joty, Ruochen Zhao, Megh 759
Thakkar, and Chi Xu. 2023. Randomized smoothing 760
with masked inference for adversarially robust text 761
classifications. In Proceedings of the 61st Annual 762
Meeting of the Association for Computational Lin- 763
guistics (Volume 1: Long Papers), ACL 2023, Toronto, 764
Canada, July 9-14, 2023, pages 5145–5165. Associa- 765
tion for Computational Linguistics. 766

John X. Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, 767
Di Jin, and Yanjun Qi. 2020. Textattack: A frame- 768
work for adversarial attacks, data augmentation, and 769
adversarial training in NLP. In Proceedings of the 770
2020 Conference on Empirical Methods in Natu- 771
ral Language Processing: System Demonstrations, 772
EMNLP 2020 - Demos, Online, November 16-20, 773
2020, pages 119–126. Association for Computational 774
Linguistics. 775

Maximilian Mozes, Pontus Stenetorp, Bennett Klein- 776
berg, and Lewis D. Griffin. 2021. Frequency-guided 777
word substitutions for detecting textual adversarial 778
examples. In EACL’21: Proc. of the 16th Conference 779
of the European Chapter of the Association for Com- 780
putational Linguistics, pages 171–186. Association 781
for Computational Linguistics. 782

OpenAI. 2023. GPT-4 technical report. CoRR, 783
abs/2303.08774. 784

Danish Pruthi, Bhuwan Dhingra, and Zachary C. Lipton. 785
2019. Combating adversarial misspellings with ro- 786
bust word recognition. In ACL’19: Proc. of the 57th 787
Conference of the Association for Computational Lin- 788
guistics, pages 5582–5591. Association for Compu- 789
tational Linguistics. 790

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. 791
2019. Generating natural language adversarial exam- 792
ples through probability weighted word saliency. In 793
ACL’19: Proc. of the 57th Conference of the Associa- 794
tion for Computational Linguistics, pages 1085–1097. 795
Association for Computational Linguistics. 796

Jérôme Rony, Luiz G. Hafemann, Luiz S. Oliveira, Is- 797
mail Ben Ayed, Robert Sabourin, and Eric Granger. 798
2019. Decoupling direction and norm for efficient 799
gradient-based L2 adversarial attacks and defenses. 800
In CVPR’19: IEEE Conference on Computer Vision 801
and Pattern Recognition, pages 4322–4330. Com- 802
puter Vision Foundation / IEEE. 803

10

https://doi.org/10.18653/v1/2021.emnlp-main.115
https://doi.org/10.18653/v1/2021.emnlp-main.115
https://doi.org/10.18653/v1/2021.emnlp-main.115
https://ojs.aaai.org/index.php/AAAI/article/view/6311
https://ojs.aaai.org/index.php/AAAI/article/view/6311
https://ojs.aaai.org/index.php/AAAI/article/view/6311
https://ojs.aaai.org/index.php/AAAI/article/view/6311
https://ojs.aaai.org/index.php/AAAI/article/view/6311
https://doi.org/10.18653/v1/2020.acl-main.245
https://doi.org/10.18653/v1/2020.acl-main.245
https://doi.org/10.18653/v1/2020.acl-main.245
https://doi.org/10.18653/v1/2021.findings-acl.141
https://doi.org/10.18653/v1/2021.findings-acl.141
https://doi.org/10.18653/v1/2021.findings-acl.141
https://doi.org/10.18653/v1/2021.findings-acl.141
https://doi.org/10.18653/v1/2021.findings-acl.141
https://doi.org/10.18653/v1/2021.naacl-main.400
https://doi.org/10.18653/v1/2021.naacl-main.400
https://doi.org/10.18653/v1/2021.naacl-main.400
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.48550/arXiv.2203.14207
https://doi.org/10.48550/arXiv.2203.14207
https://doi.org/10.48550/arXiv.2203.14207
https://ojs.aaai.org/index.php/AAAI/article/view/6356
https://ojs.aaai.org/index.php/AAAI/article/view/6356
https://ojs.aaai.org/index.php/AAAI/article/view/6356
https://ojs.aaai.org/index.php/AAAI/article/view/6356
https://ojs.aaai.org/index.php/AAAI/article/view/6356
https://ojs.aaai.org/index.php/AAAI/article/view/6357
https://ojs.aaai.org/index.php/AAAI/article/view/6357
https://ojs.aaai.org/index.php/AAAI/article/view/6357
https://openreview.net/forum?id=r1X3g2_xl
https://openreview.net/forum?id=r1X3g2_xl
https://openreview.net/forum?id=r1X3g2_xl
https://doi.org/10.18653/V1/2023.ACL-LONG.282
https://doi.org/10.18653/V1/2023.ACL-LONG.282
https://doi.org/10.18653/V1/2023.ACL-LONG.282
https://doi.org/10.18653/V1/2023.ACL-LONG.282
https://doi.org/10.18653/V1/2023.ACL-LONG.282
https://doi.org/10.18653/V1/2020.EMNLP-DEMOS.16
https://doi.org/10.18653/V1/2020.EMNLP-DEMOS.16
https://doi.org/10.18653/V1/2020.EMNLP-DEMOS.16
https://doi.org/10.18653/V1/2020.EMNLP-DEMOS.16
https://doi.org/10.18653/V1/2020.EMNLP-DEMOS.16
https://doi.org/10.18653/v1/2021.eacl-main.13
https://doi.org/10.18653/v1/2021.eacl-main.13
https://doi.org/10.18653/v1/2021.eacl-main.13
https://doi.org/10.18653/v1/2021.eacl-main.13
https://doi.org/10.18653/v1/2021.eacl-main.13
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.18653/v1/p19-1561
https://doi.org/10.18653/v1/p19-1561
https://doi.org/10.18653/v1/p19-1561
https://doi.org/10.18653/v1/p19-1103
https://doi.org/10.18653/v1/p19-1103
https://doi.org/10.18653/v1/p19-1103
https://doi.org/10.1109/CVPR.2019.00445
https://doi.org/10.1109/CVPR.2019.00445
https://doi.org/10.1109/CVPR.2019.00445

Lingfeng Shen, Ze Zhang, Haiyun Jiang, and Ying Chen.804
2023. Textshield: Beyond successfully detecting ad-805
versarial sentences in text classification. In ICLR’23:806
The Eleventh International Conference on Learning807
Representations. OpenReview.net.808

Richard Socher, Alex Perelygin, Jean Wu, Jason809
Chuang, Christopher D. Manning, Andrew Y. Ng,810
and Christopher Potts. 2013. Recursive deep mod-811
els for semantic compositionality over a sentiment812
treebank. In Proceedings of the 2013 Conference on813
Empirical Methods in Natural Language Processing,814
EMNLP 2013, 18-21 October 2013, Grand Hyatt815
Seattle, Seattle, Washington, USA, A meeting of SIG-816
DAT, a Special Interest Group of the ACL, pages817
1631–1642. ACL.818

Abigail Swenor and Jugal Kalita. 2022. Using random819
perturbations to mitigate adversarial attacks on senti-820
ment analysis models. CoRR, abs/2202.05758.821

Samson Tan, Shafiq R. Joty, Lav R. Varshney, and Min-822
Yen Kan. 2020. Mind your inflections! improving823
NLP for non-standard englishes with base-inflection824
encoding. In EMNLP’20: Proc. of the 2020 Con-825
ference on Empirical Methods in Natural Language826
Processing, pages 5647–5663. Association for Com-827
putational Linguistics.828

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-829
preet Singh, Julian Michael, Felix Hill, Omer Levy,830
and Samuel R. Bowman. 2019a. Superglue: A stick-831
ier benchmark for general-purpose language under-832
standing systems. In NeurIPS’19: Advances in Neu-833
ral Information Processing Systems, pages 3261–834
3275.835

Alex Wang, Amanpreet Singh, Julian Michael, Fe-836
lix Hill, Omer Levy, and Samuel R. Bowman.837
2019b. GLUE: A multi-task benchmark and anal-838
ysis platform for natural language understanding. In839
ICLR’19: 7th International Conference on Learning840
Representations. OpenReview.net.841

Boxin Wang, Hengzhi Pei, Boyuan Pan, Qian Chen,842
Shuohang Wang, and Bo Li. 2020. T3: tree-843
autoencoder constrained adversarial text generation844
for targeted attack. In Proceedings of the 2020 Con-845
ference on Empirical Methods in Natural Language846
Processing, EMNLP 2020, Online, November 16-20,847
2020, pages 6134–6150. Association for Computa-848
tional Linguistics.849

Boxin Wang, Chejian Xu, Xiangyu Liu, Yu Cheng, and850
Bo Li. 2022a. Semattack: Natural textual attacks via851
different semantic spaces. In Findings of the Associ-852
ation for Computational Linguistics: NAACL 2022,853
Seattle, WA, United States, July 10-15, 2022, pages854
176–205. Association for Computational Linguistics.855

Jiayi Wang, Rongzhou Bao, Zhuosheng Zhang, and Hai856
Zhao. 2022b. Rethinking textual adversarial defense857
for pre-trained language models. IEEE ACM Trans.858
Audio Speech Lang. Process., 30:2526–2540.859

Xiaosen Wang, Jin Hao, Yichen Yang, and Kun He. 860
2021a. Natural language adversarial defense through 861
synonym encoding. In UAI’21: Proc. of the 37th 862
Conference on Uncertainty in Artificial Intelligence, 863
volume 161 of Proceedings of Machine Learning 864
Research, pages 823–833. AUAI Press. 865

Xiaosen Wang, Yifeng Xiong, and Kun He. 2022c. De- 866
tecting textual adversarial examples through random- 867
ized substitution and vote. In UAI, volume 180 of 868
Proceedings of Machine Learning Research, pages 869
2056–2065. PMLR. 870

Xiaosen Wang, Yichen Yang, Yihe Deng, and Kun He. 871
2021b. Adversarial training with fast gradient projec- 872
tion method against synonym substitution based text 873
attacks. In AAAI’21: Proc. of the 35th AAAI Confer- 874
ence on Artificial Intelligence, pages 13997–14005. 875
AAAI Press. 876

Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Wei- 877
wei Liu, and Shuicheng Yan. 2023. Better diffusion 878
models further improve adversarial training. CoRR, 879
abs/2302.04638. 880

Jianhan Xu, Cenyuan Zhang, Xiaoqing Zheng, Linyang 881
Li, Cho-Jui Hsieh, Kai-Wei Chang, and Xuanjing 882
Huang. 2022. Towards adversarially robust text clas- 883
sifiers by learning to reweight clean examples. In 884
ACL’22: Findings of the 2022 Conference of the As- 885
sociation for Computational Linguistics, pages 1694– 886
1707. Association for Computational Linguistics. 887

Yuancheng Xu, Yanchao Sun, Micah Goldblum, Tom 888
Goldstein, and Furong Huang. 2023. Exploring and 889
exploiting decision boundary dynamics for adversar- 890
ial robustness. CoRR, abs/2302.03015. 891

Puyudi Yang, Jianbo Chen, Cho-Jui Hsieh, Jane-Ling 892
Wang, and Michael I. Jordan. 2020. Greedy attack 893
and gumbel attack: Generating adversarial examples 894
for discrete data. J. Mach. Learn. Res., 21:43:1– 895
43:36. 896

Yichen Yang, Xiaosen Wang, and Kun He. 2022. Ro- 897
bust textual embedding against word-level adversar- 898
ial attacks. In UAI, volume 180 of Proceedings of Ma- 899
chine Learning Research, pages 2214–2224. PMLR. 900

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, 901
Meng Zhang, Qun Liu, and Maosong Sun. 2020. 902
Word-level textual adversarial attacking as combi- 903
natorial optimization. In ACL’20: Proc. of the 58th 904
Annual Meeting of the Association for Computational 905
Linguistics Conference, pages 6066–6080. Associa- 906
tion for Computational Linguistics. 907

Guoyang Zeng, Fanchao Qi, Qianrui Zhou, Tingji 908
Zhang, Zixian Ma, Bairu Hou, Yuan Zang, Zhiyuan 909
Liu, and Maosong Sun. 2021. Openattack: An open- 910
source textual adversarial attack toolkit. In Proceed- 911
ings of the Joint Conference of the 59th Annual Meet- 912
ing of the Association for Computational Linguistics 913
and the 11th International Joint Conference on Natu- 914
ral Language Processing, ACL 2021 - System Demon- 915
strations, Online, August 1-6, 2021, pages 363–371. 916
Association for Computational Linguistics. 917

11

https://openreview.net/pdf?id=xIWfWvKM7aQ
https://openreview.net/pdf?id=xIWfWvKM7aQ
https://openreview.net/pdf?id=xIWfWvKM7aQ
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
http://arxiv.org/abs/2202.05758
http://arxiv.org/abs/2202.05758
http://arxiv.org/abs/2202.05758
http://arxiv.org/abs/2202.05758
http://arxiv.org/abs/2202.05758
https://doi.org/10.18653/v1/2020.emnlp-main.455
https://doi.org/10.18653/v1/2020.emnlp-main.455
https://doi.org/10.18653/v1/2020.emnlp-main.455
https://doi.org/10.18653/v1/2020.emnlp-main.455
https://doi.org/10.18653/v1/2020.emnlp-main.455
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.495
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.495
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.495
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.495
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.495
https://doi.org/10.18653/V1/2022.FINDINGS-NAACL.14
https://doi.org/10.18653/V1/2022.FINDINGS-NAACL.14
https://doi.org/10.18653/V1/2022.FINDINGS-NAACL.14
https://proceedings.mlr.press/v161/wang21a.html
https://proceedings.mlr.press/v161/wang21a.html
https://proceedings.mlr.press/v161/wang21a.html
https://ojs.aaai.org/index.php/AAAI/article/view/17648
https://ojs.aaai.org/index.php/AAAI/article/view/17648
https://ojs.aaai.org/index.php/AAAI/article/view/17648
https://ojs.aaai.org/index.php/AAAI/article/view/17648
https://ojs.aaai.org/index.php/AAAI/article/view/17648
https://doi.org/10.48550/arXiv.2302.04638
https://doi.org/10.48550/arXiv.2302.04638
https://doi.org/10.48550/arXiv.2302.04638
https://doi.org/10.18653/v1/2022.findings-acl.134
https://doi.org/10.18653/v1/2022.findings-acl.134
https://doi.org/10.18653/v1/2022.findings-acl.134
https://doi.org/10.48550/arXiv.2302.03015
https://doi.org/10.48550/arXiv.2302.03015
https://doi.org/10.48550/arXiv.2302.03015
https://doi.org/10.48550/arXiv.2302.03015
https://doi.org/10.48550/arXiv.2302.03015
http://jmlr.org/papers/v21/19-569.html
http://jmlr.org/papers/v21/19-569.html
http://jmlr.org/papers/v21/19-569.html
http://jmlr.org/papers/v21/19-569.html
http://jmlr.org/papers/v21/19-569.html
https://doi.org/10.18653/v1/2020.acl-main.540
https://doi.org/10.18653/v1/2020.acl-main.540
https://doi.org/10.18653/v1/2020.acl-main.540
https://doi.org/10.18653/V1/2021.ACL-DEMO.43
https://doi.org/10.18653/V1/2021.ACL-DEMO.43
https://doi.org/10.18653/V1/2021.ACL-DEMO.43

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.918
Character-level convolutional networks for text clas-919
sification. In Advances in Neural Information Pro-920
cessing Systems 28: Annual Conference on Neural In-921
formation Processing Systems 2015, December 7-12,922
2015, Montreal, Quebec, Canada, pages 649–657.923

Xinze Zhang, Junzhe Zhang, Zhenhua Chen, and Kun924
He. 2021. Crafting adversarial examples for neu-925
ral machine translation. In ACL-IJCNLP’21: Proc.926
of the 59th Annual Meeting of the Association for927
Computational Linguistics and the 11th International928
Joint Conference on Natural Language Processing,929
pages 1967–1977. Association for Computational930
Linguistics.931

Zhengli Zhao, Dheeru Dua, and Sameer Singh.932
2018. Generating natural adversarial examples. In933
ICLR’18: Proc. of the 6th International Conference934
on Learning Representations. OpenReview.net.935

Yichao Zhou, Jyun-Yu Jiang, Kai-Wei Chang, and Wei936
Wang. 2019. Learning to discriminate perturbations937
for blocking adversarial attacks in text classification.938
In EMNLP-IJCNLP’19: Proc. of the Conference on939
Empirical Methods in Natural Language Process-940
ing and the 9th International Joint Conference on941
Natural Language Processing, pages 4903–4912. As-942
sociation for Computational Linguistics.943

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Gold-944
stein, and Jingjing Liu. 2020. Freelb: Enhanced ad-945
versarial training for natural language understanding.946
In ICLR’20: Proc. of the 8th International Confer-947
ence on Learning Representations. OpenReview.net.948

A Reproducibility949

To encourage everyone interested in our work to950

implement RAPID, we have taken the following951

steps:952

• We have created an online click-to-run953

demo alailable at https://tinyurl.com/954

22ercuf8 for easy evaluation. Everyone can955

input adversarial examples and obtain the re-956

paired examples immediately.957

• We have released the detailed source codes958

and processed datasets that can be retrieved959

in the supplementary materials. This enables960

everyone to access the official implementa-961

tion, aiding in understanding the paper and962

facilitating their own implementations.963

• We will also release an online benchmark tool964

for evaluating the performance of adversarial965

attackers under the defense of RAPID. This966

step is essential for reducing evaluation vari-967

ance across different codebases.968

These efforts are aimed at promoting the repro- 969

ducibility of our work and facilitating its imple- 970

mentation by the research community. 971

B Word-level adversarial attack 972

Our focus is on defending against word-level adver- 973

sarial attacks. However, our method can be easily 974

adapted to different types of adversarial attacks. 975

Let x = (x1, x2, · · · , xn) be a natural sentence, 976

where xi, 1 ≤ i ≤ n, denotes a word. y is the 977

ground truth label. Word-level attackers generally 978

replace some original words with similar words 979

(e.g., synonyms) to fool the objective model. For 980

example, substituting xi with x̂i generates an ad- 981

versary: x̂ = (x1, · · · , x̂i, · · · , xn), where x̂i is an 982

alternative substitution for xi. For an adversary x̂, 983

the objective model F predicts its label as follows: 984

ŷ = argmaxF (·|x̂) , (7) 985

where ŷ ̸= y if x̂ is a successful adversary. To 986

represent adversarial attacks to F using an adver- 987

sarial attacker A, we denote an adversarial attack 988

as follows: 989

(x̂, ŷ)← A(F, (x, y)), (8) 990

where x and y denote the natural example and its 991

true label. x̂ and ŷ are the perturbed adversary and 992

label, respectively. 993

B.1 Investigation of textual adversarial attack 994

This section delves into an examination of textual 995

adversarial attacks. 996

Traditional approaches, such as those noted 997

by Li et al. (2019) and Ebrahimi et al. (2018), of- 998

ten involve character-level modifications to words 999

(e.g., changing "good" to "go0d") to deceive mod- 1000

els by altering their statistical patterns. In a dif- 1001

ferent approach, knowledge-based perturbations, 1002

exemplified by the work of Zang et al. (2020), em- 1003

ploy resources like HowNet to confine the search 1004

space, especially in terms of substituting words. 1005

Recent research (Garg and Ramakrishnan, 2020; 1006

Li et al., 2020) has investigated using pre-trained 1007

models for generating context-aware perturba- 1008

tions (Li et al., 2021). Semantic-based methods, 1009

such as SemAttack (Wang et al., 2022a), typically 1010

use BERT embedding clusters to create sophis- 1011

ticated adversarial examples. This differs from 1012

prior heuristic methods that employed greedy al- 1013

gorithms (Yang et al., 2020; Jin et al., 2020) or ge- 1014

netic algorithms (Alzantot et al., 2018; Zang et al., 1015

12

https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://doi.org/10.18653/v1/2021.acl-long.153
https://doi.org/10.18653/v1/2021.acl-long.153
https://doi.org/10.18653/v1/2021.acl-long.153
https://openreview.net/forum?id=H1BLjgZCb
https://doi.org/10.18653/v1/D19-1496
https://doi.org/10.18653/v1/D19-1496
https://doi.org/10.18653/v1/D19-1496
https://openreview.net/forum?id=BygzbyHFvB
https://openreview.net/forum?id=BygzbyHFvB
https://openreview.net/forum?id=BygzbyHFvB
https://tinyurl.com/22ercuf8
https://tinyurl.com/22ercuf8
https://tinyurl.com/22ercuf8

2020), as well as gradient-based techniques (Wang1016

et al., 2020; Guo et al., 2021) that concentrated on1017

syntactic limitations.1018

With the evolution of adversarial attack tech-1019

niques, numerous tools such as TextAttack (Morris1020

et al., 2020) and OpenAttack (Zeng et al., 2021)1021

have been developed and made available in the1022

open-source community.1023

These resources facilitate deep learning re-1024

searchers to efficiently assess adversarial robust-1025

ness with minimal coding. Therefore, our experi-1026

ments in adversarial defense are conducted using1027

the TextAttack framework, and we extend our grat-1028

itude to the authors and contributors of TextAttack1029

for their significant efforts.1030

C Experiments implementation1031

C.1 Adversarial attackers in our experiments1032

We employ BAE, PWWS, and TEXTFOOLER to1033

generate adversaries for training the adversarial de-1034

tector. These attackers are chosen because they1035

represent different types of attacks, allowing us to1036

train a detector capable of recognizing a variety1037

of adversarial attacks. This detector exhibits good1038

generalization ability, which we confirm through1039

experiments with other adversarial attackers such1040

as IGA, DEEPWORDBUG, PSO, and CLARE. In-1041

cluding a larger number of adversarial attackers in1042

the training process can further enhance the perfor-1043

mance of the detector. We provide a brief introduc-1044

tion to these adversarial attackers:1045

a) BAE (Garg and Ramakrishnan, 2020) gener-1046

ates perturbations by replacing and inserting1047

tagged words based on the candidate words1048

generated by the masked language model1049

(MLM). To identify the most important words1050

in the text, BAE employs a word deletion-1051

based importance evaluation method.1052

b) PWWS (Ren et al., 2019) is an adversarial1053

attacker based on synonym replacement, which1054

combines word significance and classification1055

probability for word replacement.1056

c) TEXTFOOLER (Jin et al., 2020) considers ad-1057

ditional constraints (such as prediction consis-1058

tency, semantic similarity, and fluency) when1059

generating adversaries. TEXTFOOLER uses a1060

gradient-based word importance measure to lo-1061

cate and perturb important words.1062

C.2 Hyperparameter settings 1063

We employ the following configurations for fine- 1064

tuning classifiers: 1065

1. The learning rates for both BERT and DE- 1066

BERTA are set to 2× 10−5. 1067

2. The batch size is 16, and the maximum sequence 1068

modeling length is 128. 1069

3. Dropouts are set to 0.1 for all models. 1070

4. The loss functions of all objectives use cross- 1071

entropy. 1072

5. The victim models and RAPID models are 1073

trained for 5 epochs. 1074

6. The optimizer used for fine-tuning objective 1075

models is AdamW. 1076

Please refer to our released code for more details. 1077

C.3 Evaluation metrics 1078

In this section, we introduce the adversarial defense 1079

metrics. First, we select a target dataset, referred to 1080

as D, containing only natural examples. Our goal 1081

is to generate adversaries that can deceive a victim 1082

model FJ . We group the successful adversaries 1083

into a subset called Dadv and the remaining natural 1084

examples with no adversaries into another subset 1085

called Dnat. We then combine these two subsets to 1086

form the attacked dataset, Datt. We apply RAPID 1087

to Datt to obtain the repaired dataset, Drep. The 1088

evaluation metrics used in the experiments are de- 1089

scribed as follows: 1090

NTA =
TPD + TND
PD +ND

1091

1092

ATA =
TPDatt + TNDatt

PDatt +NDatt

1093

1094

DTA =
TP ∗

Dadv
+ TN∗

Dadv

P ∗
Dadv

+N∗
Dadv

1095

1096

DFA =
TPDadv

+ TNDadv

PDadv
+NDadv

1097

1098

RPA =
TPDrep + TNDrep

PDrep +NDrep

1099

where TP ,TN , P and N are the number of true 1100

positives and true negatives, positive and negative 1101

in standard classification, respectively. TP ∗, TN∗, 1102

P ∗ and N∗ indicate the case numbers in adversarial 1103

detection. 1104

C.4 Experimental environment 1105

The experiments are carried out on a computer run- 1106

ning the Cent OS 7 operating system, equipped 1107

13

with an RTX 3090 GPU and a Core i-12900k pro-1108

cessor. We use the PyTorch 1.12 library and a1109

modified version of TextAttack, based on version1110

0.3.7.1111

D Ablation experiments1112

D.1 Performance of RAPID against1113

LLM-based adversarial attack1114

Table 7: Defense performance of RAPID against adver-
sarial attacks generated by ChatGPT-3.5.

DATASET ATTACKER DFA RPA

AGNews CHATGPT
RS&V 59.0
RAPID 72.0

Yahoo! CHATGPT
RS&V 49.0
RAPID 61.0

SST2 CHATGPT
RS&V 37.0
RAPID 74.0

Amazon CHATGPT
RS&V 58.0
RAPID 82.0

Recent years have witnessed the superpower1115

of large language models (LLMs) such as1116

ChatGPT (OpenAI, 2023), which we hypothesize1117

to have a stronger ability to generate adversaries.1118

In this subsection, we evaluate the defense perfor-1119

mance of RAPID against adversaries generated by1120

ChatGPT-3.5. Specifically, for each dataset consid-1121

ered in our previous experiments, we use ChatGPT91122

to generate 100 adversaries and investigate the de-1123

fense accuracy achieved by RAPID.1124

From the experimental results shown in Ta-1125

ble 7, we find that RAPID consistently outperforms1126

RS&V in terms of defense accuracy. Specifically,1127

in the SST2 dataset, RS&V records a defense ac-1128

curacy of 37.0%, however, RAPID impressively1129

repairs 74.0% of the attacks. Similar trends hold1130

for the Amazon and AGNews datasets, where RAPID1131

achieves defense accuracy of 82.0% and 72.0%1132

respectively, in contrast to the 58.0% and 59.0%1133

offered by RS&V. In conclusion, RAPID can de-1134

fend against various unknown adversarial attacks1135

which have a remarkable performance in contrast1136

to existing adversarial defense approaches.1137

D.2 Performance of RAPID with different1138

adversarial attackers in perturbation1139

defocusing1140

In RAPID, PD can incorporate any adversarial at-1141

tacker or even an ensemble of attackers, as the1142

9ChatGPT3.5-0301

process doesn’t require prior knowledge of the spe- 1143

cific malicious perturbations. Regardless of which 1144

adversaries are deployed against RAPID, PWWS 1145

consistently seeks safe perturbations for the cur- 1146

rent adversarial examples. The abstract nature of 1147

PD is critical, allowing for adaptability and effec- 1148

tiveness against a broad spectrum of adversarial 1149

attacks, rendering it a versatile defense mechanism 1150

in our study. 1151

In order to investigate the impact of ÂPD in 1152

Phase #2, we have implemented further experi- 1153

ments to demonstrate the adversarial defense per- 1154

formance of PD using different attackers, e.g., 1155

TEXTFOOLER and BAE. The results are shown in 1156

Table 8. According to the experimental results, it is 1157

observed that PWWS has a similar performance to 1158

TEXTFOOLER in PD, while BAE is slightly infe- 1159

rior to both PWWS and TEXTFOOLER. However, 1160

the variances are not significant among different 1161

attackers in PD, which means the performance of 1162

RAPID is not sensitive to the choice of ÂPD, in 1163

contrast to the adversarial attack performance of 1164

the adversarial attacker. 1165

D.3 Performance of RAPID without 1166

adversarial training objective 1167

The rationale behind the adversarial training objec- 1168

tive La in our study is founded on two key hypothe- 1169

ses. 1170

a) Enhancing Adversarial Detection: We rec- 1171

ognize an implicit link between the tasks of 1172

adversarial training and adversarial example 1173

detection. Our theory suggests that by incorpo- 1174

rating an adversarial training objective, we can 1175

indirectly heighten the model’s sensitivity to 1176

adversarial examples, leading to more accurate 1177

detection of such instances. 1178

b) Improving Model Robustness: We posit that 1179

an adversarial training objective can bolster the 1180

model’s robustness, thereby mitigating perfor- 1181

mance degradation when the model faces an 1182

attack. This approach is designed to strengthen 1183

the model against potential adversarial threats. 1184

To validate these hypotheses, we conducted abla- 1185

tion experiments on the adversarial training objec- 1186

tive. The experimental setup was aligned with that 1187

described in Table 2, and the results are outlined in 1188

Table 9. 1189

These experimental findings reveal that omitting 1190

the adversarial training objective in RAPID con- 1191

sistently leads to a reduction in model robustness 1192

14

Table 8: The adversarial detection and defense performance of RAPID based on different backends (ÂPD). We
report the average accuracy of five random runs. “TF” indicates TEXTFOOLER.

DEFENDER ATTACKER
AGNews(4-category) Yahoo!(10-category) SST2 (2-category) Amazon(2-category)

NTA ATA DTA DFA RPA NTA ATA DTA DTA RPA NTA ATA DTA DFA RPA NTA ATA DTA DFA RPA

RAPID (PWWS)

PWWS 32.09 90.11 95.88 92.36 5.70 87.33 92.47 69.40 23.44 94.03 98.62 89.85 15.56 97.33 99.99 94.42

TF 94.30 50.50 90.29 96.76 92.14 76.45 13.60 87.49 93.54 70.50 91.55 16.21 94.03 99.86 89.72 94.32 21.77 93.85 99.99 93.96

BAE 74.80 57.55 96.25 93.64 27.50 82.46 96.30 73.06 35.21 78.99 99.28 89.77 44.00 80.55 99.99 93.89

RAPID (TF)

PWWS 32.09 83.67 94.07 92.27 5.70 65.01 83.25 65.33 23.44 36.90 98.90 90.67 15.56 29.60 99.99 94.33

TF 94.30 50.50 82.44 96.46 92.67 76.45 13.60 74.21 92.96 71.00 91.55 16.21 39.70 99.98 90.73 94.32 21.77 40.70 99.99 94.33

BAE 74.80 46.98 92.68 91.00 27.50 37.41 86.49 72.67 35.21 19.84 99.98 91.33 44.00 38.59 99.99 94.33

RAPID (BAE)

PWWS 32.09 83.67 93.22 92.08 5.70 65.01 81.15 64.00 23.44 36.90 93.92 87.67 15.56 29.60 99.54 94.00

TF 94.30 50.50 82.44 95.96 92.33 76.45 13.60 74.21 87.79 67.33 91.55 16.21 39.70 96.55 89.00 94.32 21.77 40.70 99.61 93.64

BAE 74.80 46.98 95.12 91.33 27.50 37.41 83.78 72.00 35.21 19.84 97.55 90.00 44.00 38.59 99.15 93.80

Table 9: The adversarial detection and defense performance of RAPID with (“w/”) and without (“w/o”) the
adversarial training objective. We report the average accuracy of five random runs. “TF” indicates TEXTFOOLER.

DEFENDER ATTACKER
AGNews(4-category) Yahoo!(10-category) SST2 (2-category) Amazon(2-category)

NTA ATA DTA DFA RPA NTA ATA DTA DTA RPA NTA ATA DTA DFA RPA NTA ATA DTA DFA RPA

RAPID (w/ La)

PWWS 32.09 90.11 95.88 92.36 5.70 87.33 92.47 69.40 23.44 94.03 98.62 89.85 15.56 97.33 99.99 94.42

TF 94.30 50.50 90.29 96.76 92.14 76.45 13.60 87.49 93.54 70.50 91.55 16.21 94.03 99.86 89.72 94.32 21.77 93.85 99.99 93.96

BAE 74.80 57.55 96.25 93.64 27.50 82.46 96.30 73.06 35.21 78.99 99.28 89.77 44.00 80.55 99.99 93.89

RAPID (w/o La)

PWWS 11.10 82.88 92.07 90.70 3.46 78.43 87.42 63.79 10.70 91.41 99.62 89.60 16.5 96.50 99.30 93.60

TF 94.44 16.09 84.88 93.07 87.28 76.32 0.42 78.65 78.36 56.72 91.54 5.30 89.48 95.15 85.80 94.29 17.53 98.63 99.17 92.78

BAE 67.93 83.17 91.49 91.15 45.10 71.89 75.47 64.56 25.70 57.01 95.64 87.10 45.54 92.67 99.48 93.31

across all datasets. This reduction can be as sub-1193

stantial as approximately 30%, adversely affecting1194

the performance of the adversarial defense. Addi-1195

tionally, adversarial detection capabilities also di-1196

minish, with the most significant drop being around1197

20%. These results highlight the critical role of the1198

adversarial training objective in RAPID, confirming1199

its efficacy in enhancing both model robustness and1200

adversarial example detection capabilities.1201

D.4 Performance of RAPID without multitask1202

training objective1203

DATASET MODEL VICTIM-S VICTIM-M
AGNews BERT 94.30 93.90 (−0.40 ↓)
Yahoo! BERT 76.45 76.61 (+0.16 ↑)
SST2 BERT 91.70 91.49 (−0.21 ↓)
Amazon BERT 94.24 94.24 (—)

Table 10: Victim model’s accuracy (%) on clean dataset-
based single-task and multitask training scenarios, i.e.,
Victim-S and Victim-M respectively. The experiments
are based on the BERT model.

Before developing RAPID, we carefully consid-1204

ered the potential impact on classification perfor-1205

mance due to multitask training objectives. This1206

consideration was explored in our proof-of-concept1207

experiments.1208

To delve deeper into this impact, we trained vic-1209

tim models as single-task models (i.e., no adversar-1210

ial detection objective and adversarial training ob-1211

jective), instead of multitask training, and then col- 1212

lated detailed results for comparison with RAPID. 1213

In this experiment, we focused solely on evaluat- 1214

ing performance using pure natural examples. The 1215

results of this comparison are outlined in Table 10. 1216

The symbols "↑" and "↓" accompanying the num- 1217

bers indicate whether the performance is better or 1218

worse than that of the single-task model, respec- 1219

tively. 1220

Based on these results, it is apparent that the 1221

inclusion of additional loss terms in multitask train- 1222

ing objectives does impact the victim model’s per- 1223

formance on clean examples. However, this influ- 1224

ence is not substantial across all datasets and shows 1225

only slight variations. This finding suggests that the 1226

impact of multitask training objectives is relatively 1227

minor when compared to traditional adversarial 1228

training methods. 1229

D.5 Performance Comparison between 1230

RAPID and adversarial training baseline 1231

We have conducted experiments to showcase the ex- 1232

perimental results of the adversarial training base- 1233

line (AT). The victim model is BERT, and the 1234

experimental setup is the same as for RAPID, in- 1235

cluding the number of adversaries used for training. 1236

We only show the metric of repaired accuracy, as 1237

AT does not support detect-to-defense. The results 1238

(i.e., RPA (%)) are available in Table 11. 1239

For these experiments, we used BERT as the vic- 1240

15

DATASET ATTACKER RAPID AT
PWWS 92.36 60.10

AGNews TF 92.14 61.87
BAE 93.64 63.62

PWWS 69.40 40.21
Yahoo! TF 70.50 38.75

BAE 73.06 42.97

PWWS 89.85 32.46
SST2 TF 89.72 31.23

BAE 89.77 34.61

PWWS 94.42 51.90
Amazon TF 93.96 49.49

BAE 93.89 49.75

Table 11: The repaired performance of RAPID and
the adversarial training baseline. We report the av-
erage accuracy of five random runs. “TF” indicates
TEXTFOOLER.

tim model and maintained the same experimental1241

setup as for RAPID, including the number of adver-1242

saries used for training. It’s important to note that1243

we focus solely on the repaired accuracy metric, as1244

AT does not facilitate detect-to-defense function-1245

ality. From these results, it becomes apparent that1246

the traditional adversarial training baseline is less1247

effective compared to RAPID, which utilizes pertur-1248

bation defocusing. Specifically, the adversarial de-1249

fense accuracy of AT is generally below 50%. This1250

finding underscores the limitations of traditional1251

adversarial training methods, particularly their high1252

cost and reduced effectiveness against adapted ad-1253

versarial attacks.1254

D.6 Impact of k in RAPID1255

During the rebuttal period, we conducted additional1256

experiments to investigate the impact of k. From1257

the results shown in the following table, we can see1258

that choosing a larger k can help improve the per-1259

formance, especially when 1 ≤ k ≤ 3. However,1260

we also notice that when k > 3, the performance1261

improvement becomes marginal.1262

D.7 Adversarial example evaluation1263

The importance of evaluation for adversarial de-1264

fense instances has been emphasized in recent1265

works. Consequently, we have devised a simulation1266

strategy for human evaluation using ChatGPT-3.5.1267

We curated prompts to leverage ChatGPT-3.5 as the1268

human judge to evaluate 100 adversarial defense1269

examples (i.e., repaired examples) from both Rapid1270

and RS&V. We instructed ChatGPT-3.5 to identify1271

which instances appear unnatural and calculated1272

the number of unnatural repaired examples. Here1273

are the experimental results in Table 13, where1274

Table 12: Defense performance of RAPID under differ-
ent setting of k.

Attack k AGNews Yahoo! SST2 Amazon

PWWS 1 90.80 65.38 87.80 94.40
PWWS 2 91.24 65.24 88.01 94.21
PWWS 3 92.36 69.40 89.85 94.42
PWWS 4 92.41 69.32 89.49 94.29
PWWS 5 92.30 69.39 89.27 94.46

TF 1 91.35 67.48 88.40 93.31
TF 2 91.34 67.20 88.59 93.88
TF 3 92.14 70.50 89.72 93.96
TF 4 92.05 70.44 89.50 93.89
TF 5 92.31 80.56 89.32 93.99

BAE 1 91.44 71.35 87.52 93.62
BAE 2 91.38 72.91 88.07 93.22
BAE 3 93.64 73.06 89.77 93.89
BAE 4 93.71 73.11 89.68 93.95
BAE 5 93.55 73.42 89.81 93.78

LOWER is BETTER: Overall, RAPID produced

Table 13: The results of simulated human evaluation of
adversarial defense example evaluation.

Defender Attacker AGNews Yahoo! SST2 Amazon

RAPID PWWS 76 68 78 75
RAPID TF 75 71 81 74
RAPID BAE 82 72 82 77
RS&V PWWS 96 86 87 83
RS&V TF 98 78 83 80
RS&V BAE 99 81 92 88

1275
the least unnatural repaired examples. The results 1276

indicate that the repaired examples are generally 1277

easy to identify due to textual modifications, e.g., 1278

incorrect synonym replacements. The aim of ad- 1279

versarial defense is to repair model outputs, which 1280

have been effectively secured by Rapid according 1281

to our extensive experiments. 1282

D.8 Efficiency evaluation of RAPID 1283

The main efficiency depends on multiple adversar- 1284

ial perturbations search. We have implemented two 1285

experiments to investigate the efficiency of RAPID. 1286

Please note that the time costs for adversarial attack 1287

and defense are dependent on specific software and 1288

hardware environments. 1289

Time costs for multiple defenses. We have 1290

collected three small sub-datasets that contain dif- 1291

ferent numbers of adversarial examples and natural 1292

examples, say 200:0, 100:100, and 0:200. We apply 1293

adversarial detection and defense to this dataset and 1294

calculate the time costs. The results (measurement: 1295

16

ATTACKER
AGNews Yahoo! SST2 Amazon

200:0 100:100 0:200 200:0 100:100 0:200 200:0 100:100 0:200 200:0 100:100 0:200
PWWS 142.090 298.603 313.317 621.196 36.268 126.054 438.532 875.083

TF 1.188 146.654 293.542 1.157 314.926 642.206 1.092 51.303 137.795 1.138 329.075 665.052
BAE 141.434 260.231 352.186 876.606 52.626 138.325 349.256 655.264

Table 14: The efficiency of RAPID defending against different adversarial attacks with different portions of natural
and adversarial instances. The measurement is second.

DEFENDER ATTACKER
AGNews Yahoo! SST2 Amazon

CLEAN ATTACK DEFENSE CLEAN ATTACK DEFENSE CLEAN ATTACK DEFENSE CLEAN ATTACK DEFENSE

PWWS 2.081 1.356 4.958 3.308 0.529 0.588 4.745 3.678
RAPID TF 0.008 2.460 1.317 0.008 4.693 3.128 0.006 0.662 0.571 0.007 4.003 4.607

BAE 2.464 1.295 5.194 4.053 0.669 0.594 4.350 4.403

Table 15: The execution efficiency of inferring clean examples, generating, and defending against adversarial
examples.

second) are available in Table 14.1296

Time costs for single defense. We have also1297

detailed the time costs per natural example, adver-1298

sarial attack, and adversarial defense in PDṪhe1299

experimental results can be found in Table 15.1300

According to the experimental results, PD is1301

slightly faster than the adversarial attack in most1302

cases. Intuitively, the perturbed semantics in a1303

malicious adversarial example are generally not1304

robust, as most of the deep semantics remain within1305

the adversarial example. Therefore, RAPID is able1306

to rectify the example with fewer perturbations1307

needed to search.1308

E Deployment Demo 1309

We have created an anonymous demonstration of 1310

RAPID, which is available on Huggingface Space10. 1311

To illustrate the usage of our method, we provide 1312

two examples in Figure 5. In this demonstration, 1313

users can either input a new phrase along with a la- 1314

bel or randomly select an example from a supplied 1315

dataset, to perform an attack, adversarial detection, 1316

and adversarial repair. 1317

10https://huggingface.co/spaces/anonymous8/
RPD-Demo

17

https://huggingface.co/spaces/anonymous8/RPD-Demo
https://huggingface.co/spaces/anonymous8/RPD-Demo

���������	
 �����������������

���������������������� ��!�"# ���$���#����%���&�'()�*�(+,�-�.�"��%��/�0(+,�.1.2�"��%���3
04�56��7��(+����� �8 �

'��5�����(���%�8���$��)�7$5%���&�7$��9�!�%� �:��������� �)�7����0 ���7�5���$��;������<������=��<�>��=��<�����=���������������������?�<@��������A��>����>��B���@������AB�C	DE�;�����@�����>>�������������>����B�����@��F��<�=>����@�������=����@�@���G�@@��?�<����B�@����HIJKE;����������������?�<@����=����@�������������������?�<@���<�B�A��==�������������L�������������A�>������������>M��������B�N�=������==������@����A����=�E�C	D�����=����=����>���������=���==������@����A����=�E;�����A����M=�����N�L�C��>�����	����A����=�D�F�>��=N������=������@@���>���=���������������F�=��E�C	D���N=�F�>�=��B�GOPQJ���F�=����>>��>B��<@����<�=�K��@��F��<�����������R�FR���R����<������E;���D��@S����N�����=�=M=��=�����>M��������������������������>�����=�����>�������F�=���<����E�D��@S����N�������T���=������>M�=N�@�����=��F��<�����������>M����=������������N�=�����U�A����B��=����A��=�����F�C	DE V��%�� �W!�"# ��X�#%�YY;Z ��[���PQ\ �<�U�= ��] 	SSY ;�?�̂����� D��@S����N
=@����=�������?�<@��EEE _��N�=�����A��L�<���A���=��=��N��EEE
	������>��>M����>��>M ����������:��������� �W!�"# ������'�#������:��������� �W!�"# ��=>������AB��������F�>�@��F��<�=>��AB��AA����L�����=���N�����������������������F���<�=�̀�����FR�>����U����=�M=����F���>�=��=�=������������E P�=>������AB��������F�>�@��F��<�=>��AB��AA����L�����=���N���=��>�����������������<�����F���<�=�̀�����FR�>����U����=��>����F���>�=��=�=�����@����E Q�=>������AB��������F�>�@��F��<�=>��AB��AA����L�����=���N���=��>�����������������<�����F���<�=�̀�����FR�>����U����=�A�=N�F���>�=��=�=�����@����E PW!�"# ��)�a����5��*0$"#����$��3;���GbK��=��GRK��=�����A�?����=��>���������������=����������>����>������=������������������?�<@���>�<@���������������N�=����=@��=�������?�<@��E;���_��N�=���[������]?�<@���=>������AB��������F�>�@��F��<�=>��AB��AA����L�����=���N�����������������������F���<�=�̀�����FR�>����U����=�M=����F���>�=��=�=������������Ec����>����]�����=���F�������������]?�<@���c�<@������������[������]?�<@���=>������AB��������F�>�@��F��<�=>��AB��AA����L�����=���N����������1��=��>������d����������������d�������1�<�����d�������1��F���<�=�̀�����FR�>����U����=�M=����1��>�����d�������1�F���>�=��=�=��������1��@����d�������d���������1�Ec����>����]�����=���F�C�@������������������]?�<@���c�<@������������[������]?�<@���=>������AB��������F�>�@��F��<�=>��AB��AA����L�����=���N����������1��=��>������d����������������d�������1�<�����d�������1��F���<�=�̀�����FR�>����U����=�M��1�A����d�=�N���d�������1�F���>�=��=�=��������1��@����d�������d���������1�E94��e%�#%��$7�'��5�����(���%�8���$��)�7$5%���&f ghij k;�����l������������F������=��>������F��=��������������?�<@����������>���E�;��@����A��l��A����������@����>������A����F������������������?�<@��E�;���>�=F���=>�F�������@����=�������>�=F���=>���F�����@����>�����������������?�<@�������>���=E kmnoo pqhhjrg ghij f
F���l��@�����s���L��������A��=���@������AB�C	DE�;���@���l��A���F������=��>�����������=�����>�����F�>����=������E�;���>�=F���=>��F�������@����=�������>�=F���=>���F����@����>������A��E�;�����l>����>��F������=��>�����������������@����>������A������>����>�Etuvwxyzvtz x{|}y~z�{}�x}� �z�����zy|�}�z� tuvwxyzvtz x{|tu��zt� x{|�z�}x�zy ��zy|�}�z�

Y���>���������=N����������=���=�����������������>M������N�=�������=�������������?�<@��E c�������=�����������������>M���F���N�=�����=N��=��������������?�<@����������>M����<����E�����=������BL��=@����=�������?�<@����=���������N�=�����A���GF��<��A������������K���N�=�������=��������������?�<@��E _��N�=�����A��
�	�������
_��N�=���]?�<@�� _��N�=�����A��������������]?�<@�� 	����>������A����F�����������������]?�<@��C�@������������������]?�<@���AB�C	D 	����>������A����F�����C�@������������������]?�<@��

������������]?�<@���D���>���=�C���� C�@������Y��=�����c�����F�>����=�C����
Figure 5: The demo examples of adversarial detection and defense built on RAPID for defending against multi-
attacks. The comparisons between natural and repaired examples are available based on the “difflib” library. The “+”
and “−” in the colored boxes indicate letters addition and deletion compared to the natural examples. It is observed
that RAPID only injects only one perturbation to repair the adversarial example, i.e., changing “screw” to “bang” in
the adversarial example.

18

