

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ANTISLOP: A COMPREHENSIVE FRAMEWORK FOR IDENTIFYING AND ELIMINATING REPETITIVE PAT- TERNS IN LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Repetitive lexical patterns in LLM output, termed “slop,” degrade writing quality through over-use and make AI-generated text immediately recognizable. We present Antislop, a comprehensive framework providing tools to both detect and eliminate these overused patterns. Our approach combines three innovations: (1) **The Antislop Sampler**, which uses backtracking to suppress unwanted strings at inference time without destroying vocabulary; (2) **An automated pipeline** that profiles model-specific slop against human baselines and generates training data; (3) **Final Token Preference Optimization (FTPO)**, a novel fine-tuning method that operates on individual tokens, surgically adjusting logits wherever a banned pattern has appeared in an inference trace. We demonstrate that some slop patterns appear over $1,000\times$ more frequently in LLM output than human text. The Antislop Sampler successfully suppresses 8,000+ patterns while maintaining quality, whereas token banning becomes unusable at just 2,000. Most importantly, FTPO achieves 90% slop reduction while maintaining or improving performance in cross-domain evals including GSM8K, MMLU, and creative writing tasks. In contrast, DPO suffers significant degradation in writing quality and lexical diversity despite achieving weaker suppression. We release all code and results datasets under MIT license.

1 INTRODUCTION

Language models have ushered in an era of slop: Repetitive words and phrases that are instantly recognizable as AI generated text(Wu et al., 2025). In creative writing, the ubiquitous *Elara* always speaks with “voice barely above a whisper”. In functional writing, we see “it’s not just X, it’s Y” patterns appearing everywhere; far more often than they would in human writing. In our tests, we find that these patterns occur thousands of times more frequently in LLM text than in human writing, leading to the perception of repetition and over-use – i.e. *slop*.

Existing approaches to suppress unwanted patterns are brittle or ineffective. Token banning creates collateral damage– for instance, if we wish to ban “catatonic” and it tokenizes to [“cat”, “atonic”], we will have banned all words that tokenize firstly to “cat”. Instructing the model to avoid a set of banned vocabulary has limited efficacy and may induce a backfire effect due to the “Pink elephant problem” (Castricato et al., 2024).

We present the Antislop Sampler: it detects unwanted patterns during generation – words, phrases, and regex patterns – then backtracks to the pattern’s first token, reduces its probability, and resamples. Our sampler can suppress 8,000 patterns with configurable strength (from soft discouragement to hard banning), without degrading output.

To train slop suppression into the model, we present **Final Token Preference Optimization (FTPO)**, a training algorithm designed to surgically suppress slop with minimal collateral damage to the model. Teaching a model to disprefer its *most preferred tokens* requires large logit adjustments, which can damage the model. Our FTPO trainer implements several “soft-touch” mechanisms to minimize deviations from the reference weights. We measure substantial improvements over DPO and token banning on banlist suppression rates, lexical diversity and impact on writing quality.

054 We release all code and results datasets under MIT license.
 055
 056

057 2 RELATED WORK 058

059 Degeneration in text outputs was highlighted by Holtzman et al. (2020), who showed that maximum-
 060 likelihood decoding (e.g. beam search) can lead to bland, looping text. Stochastic decoding strate-
 061 gies like top- k , top- p (nucleus sampling), and min- p (Nguyen et al., 2025) have since been adopted
 062 to increase diversity and reduce incoherent outputs. Nonetheless, these strategies do not directly
 063 address repetitive writing tendencies in otherwise coherent outputs. Studies have found that rein-
 064 forcement learning from human feedback (RLHF) can significantly reduce output diversity com-
 065 pared to a supervised baseline (Kirk et al., 2024), and similar effects have been documented for
 066 other alignment fine-tuning methods (O’Mahony et al., 2024; Murthy et al., 2024). Even the use
 067 of rigid chat-format templates can suppress creativity, a phenomenon dubbed *diversity collapse* in
 068 LLMs (Yun et al., 2025).

069 Several recent samplers attempt to improve creativity and diversity while suppressing repetition.
 070 *XTC* (*Exclude Top Choices*) removes the current highest-probability tokens above a threshold (Wei-
 071 dmann, 2024b), and *DRY* (*Don’t Repeat Yourself*) prevents repetition of sequences that have already
 072 occurred verbatim in the text multiple times (Weidmann, 2024a). These methods encourage se-
 073 lection of lesser-used continuations and reliably prevent local looping, but in our experiments they
 074 leave the global over-representation profile of words and trigrams essentially unchanged (App. O).

075 Beam-search methods exclude forbidden words or phrases by pruning any beam that would produce
 076 them. Efficient variants use tries and a fixed beam budget to enforce both positive and negative
 077 constraints (Hu et al., 2019). A recent benchmark compares decoding-time and training-time ap-
 078 proaches, and notes that models can still slip around bans with small spelling changes or closely
 079 related word forms; they also test simple fixes to reduce this (Jon et al., 2023).

080 A similar approach by Zhang et al. (2025) trains a model to deploy a special [RESET] token when
 081 unsafe content is detected in the inference trace, triggering backtracking and a retry of the current
 082 sentence. Work by Roush et al. (2022) further explored lexical filtering at inference time. Their
 083 plug-and-play method enforced constraints (such as omitting the letter e in a lipogram) without
 084 fine-tuning the model.

085 Welleck et al. (2020) introduced an unlikelihood training objective that penalizes undesirable con-
 086 tinuations (e.g., repeated tokens or n-grams) by adding a negative log-probability term for explicitly
 087 marked “negative” events, and Li et al. (2020) extended this idea to dialogue generation. In this
 088 formulation, the core mechanism is a generic loss on disfavored tokens, while two key ingredients
 089 are left open: how to construct the dataset of negative events (which contexts and spans should be
 090 treated as slop, repetition, or otherwise undesirable), and what complementary “positive” objective
 091 should be paired with the unlikelihood term (e.g., standard MLE, task-specific supervision, or pref-
 092 erence data). Our methods can be viewed as making concrete choices for both of these aspects in
 093 the context of over-represented stylistic patterns in LLMs.

094 Our work closely connects to preference-optimization methods like Direct Preference Optimization
 095 (Rafailov et al., 2023), which align the model on preference pairs without relying on reward models.
 096 However, DPO has known failure modes, including *lowering* the likelihood of preferred responses,
 097 inducing diversity collapse and reducing syntactic and n-gram variety in outputs (Razin et al., 2024;
 098 Lanchantin et al., 2025; Shypula et al., 2025). To counter this, FTPO uses multi-term regularization
 099 similar to RLHF’s KL penalty (Stiennon et al., 2020).

100 3 FORENSIC ANALYSIS OF OVER-REPRESENTED PATTERNS 101

102 3.1 QUANTIFYING SLOP 103

104 To identify over-used patterns in LLM outputs, we analyze the statistical overrepresentation of
 105 words, bigrams ($n = 2$) and trigrams ($n = 3$) versus human text. We limit our analysis to $n \leq 3$ due
 106 to practical constraints: with $n \geq 4$, patterns typically appear fewer than 5 times across our 2,000
 107 generated samples.

108 For each model, we generate 2,000 outputs using creative writing prompts from Reddit (Ntral-AI,
 109 2024) and compute frequency ratios:

$$\rho(p) = \frac{f_{LLM}(p)}{f_{human}(p)}$$

113 where $f_{LLM}(p)$ and $f_{human}(p)$ represent the frequencies of pattern p in LLM and human corpora
 114 respectively. Our human baseline combines wordfreq (Speer et al., 2018) for individual words and
 115 a curated corpus of Reddit creative writing and Project Gutenberg texts for n-grams. For n-gram
 116 processing, we remove stop-words. We treat a pattern p as over-represented when its ratio exceeds
 117 1.0, adding the *most over-represented* subset of these to the banlist.

118 By collating a list of the highest over-represented words and n-grams, we produce a "slop finger-
 119 print" of the model's unique tendencies.

121 3.2 EMPIRICAL FINDINGS

123 Table 1 reveals the severity of the problem. With `gemma-3-12b`, certain patterns show extreme
 124 overrepresentation:

Word	Ratio	Trigram	Ratio
elara	85,513x	heart hammered ribs	1,192x
unsettlingly	3,833x	voice trembling slightly	731x
shimmered	2,882x	said voice devoid	693x
stammered	2,043x	felt profound sense	550x

132 Table 1: Top overrepresented patterns in `gemma-3-12b` outputs, and their frequency ratio relative
 133 to human baseline.

135 The name "Elara" appears 85,513 times more frequently in `gemma-3-12b`'s creative writing out-
 136 puts than in human text, while the trigram "heart hammered ribs" shows 1,192x overrepresentation.
 137 We find similar ratios of over-use in other models tested (Mistral-small-3.2 and Llama-3-3-70b).
 138 Slop fingerprints cluster strongly within model families, but differ substantially between model fam-
 139 ilies (Appendix L), warranting a model-specific approach to slop identification and suppression.

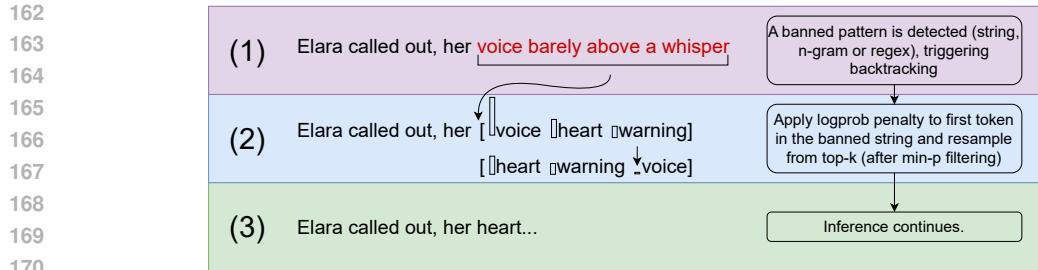
140 Our analysis reveals several distinct categories of slop. Models fixate on specific character names
 141 ("Elara", "Kael"), sensory clichés ("voice barely above a whisper"), intensifiers ("a profound sense")
 142 and a go-to set of overused descriptives ("unsettlingly", "shimmered"). We also count sentence-level
 143 constructions of the form "It's not X, it's Y" to be 6.3x more prevalent than human writing in some
 144 models (Figure 8).

146 4 THE ANTISLOP SAMPLER

148 The Antislop Sampler provides inference-time suppression of unwanted patterns. It can suppress
 149 individual words ("tapestry"), multi-word phrases ("voice barely above a whisper"), and complex
 150 patterns defined by regular expressions ("It's not X, it's Y"). Unlike token banning, which triggers
 151 on the first token of a banned sequence and is prone to false positives, our sampler waits until the
 152 entire sequence appears in the inference trace before triggering a ban.

154 4.1 BACKTRACKING MECHANISM

156 During generation, we maintain a trace of all tokens and their logit distributions. After each new
 157 token (or chunk of inference), we scan for banned patterns. When detected, we backtrack to the
 158 position where the pattern began and lower the initiating token's probability by: $p_{new} = p_{old} \cdot$
 159 10^{-10s} where $0 \leq s \leq 1.0$ is the configurable ban-strength parameter. We then renormalize
 160 the modified distribution so that it again sums to one, $p'_i = p_i / \sum_j p_j$, and resample using min-p
 161 filtering with a fixed threshold of 0.1 to constrain the distribution to coherent candidates. If, after its
 probability is reduced, the same token is sampled again, the sampler ignores this violation in future



171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 1: The Antislop backtracking mechanism detects unwanted patterns in the inference trace, backtracks to the first token of the banned sequence, lowers its probability, then resamples.

checks to avoid infinite loops. This ability to allow banned patterns through if they are high enough probability is a key part of our implementation, which we term "soft-banning".

Algorithm 1 Antislop Backtracking

```

1: while generating tokens do
2:   generate token  $t$ 
3:   if banned_pattern detected then
4:     backtrack to pattern start
5:     reduce probability
6:     resample with min- $p$ 
7:   end if
8: end while

```

4.2 SOFT BANNING: CONFIGURABLE SUPPRESSION STRENGTH

Imposing a hard-ban on a word or pattern can cause problems with coherence when there are no good alternatives. Our soft-banning mechanism provides incremental control through the ban-strength parameter s . When $s = 0$, patterns are allowed freely. Values between 0 and 1 provide incremental suppression of the banlist, while $s = 1$ enforces complete blocking.

For example, this approach allows us to generally suppress the word "tapestry" while still permitting its use when directly requested in the prompt: "Write an essay about tapestries". At ban-strength < 1.0 , banned patterns are still allowed through when their probability is high enough compared to the next highest token. See Appendix A for a worked example.

4.3 IMPLEMENTATION AND LIMITATIONS

The sampler is implemented two ways: a single-threaded HuggingFace Transformers with streaming support, and a higher-throughput multithreaded OpenAI-API-compatible version for production inference platforms like vLLM (Kwon et al., 2023).

The sampler suppresses patterns without fine-tuning but reduces throughput. Each backtracking event restarts inference at a prior position, and this may occur hundreds of times per generation with large banlists. In practice, this reduces throughput by 69% up to 96% in worst cases, depending on banlist size (detailed performance analysis in Appendix C). For applications requiring maximum inference speed, this overhead motivates our complementary approach: using the sampler's outputs to train permanently improved models via FTPO.

5 FINAL TOKEN PREFERENCE OPTIMIZATION (FTPO)

We develop Final Token Preference Optimization (FTPO), a training method that permanently suppresses unwanted patterns with minimal degradation to model output. Suppressing slop is nontrivial because it requires large updates to the model's **most preferred patterns**, reducing their probability until other continuations are preferred. These large shifts can easily damage the model, leading

216 to degradation or model collapse. Our trainer approaches this delicate procedure by incorporating
 217 several strategies to constrain logits to the reference, while avoiding collateral damage.
 218

219 FTPO trains on just a single continuation token at the end of an *incomplete inference trace*. A
 220 final-token preference pair consists of three parts:

221 (1) The prompt, including the chat template and the model’s response up to the point a banned
 222 sequence appeared.

223 **Prompt:** "# User: Write me a story. # Assistant: Once upon a time, Princess"

224 (2) A single *rejected* continuation token, corresponding to the first token of the banned sequence.
 225 **Rejected:** "Elara"

226 (3) A set of *chosen* coherent alternative continuation tokens.

227 **Chosen:** ["Madelyne", "Nadia", "Freya", "Isolde"]

228 In our implementation, each final-token preference
 229 pair is instantiated at a single backtracking event of the Antislop sampler: we cache
 230 the top- k logits at that position (with $k = 20$),
 231 remove the rejected token from this candidate
 232 set, renormalize over the remaining tokens, and
 233 sample 4–8 distinct, high-probability alterna-
 234 tives to form the chosen set C .
 235

237 5.1 LIMITATIONS 238 OF DIRECT PREFERENCE OPTIMIZATION

240 Direct Preference Optimization (DPO)
 241 (Rafailov et al., 2023) can also train on
 242 final-token pairs to suppress slop like FTPO.
 243 However, DPO is limited to updating a single
 244 *chosen* token per training sample, unlike FTPO
 245 which can update a set of preferred tokens in
 246 one step.

247 More importantly, DPO’s primary hyperparameter for constraining updates (β) is a coarse tool,
 248 impairing learning at high values and causing model degradation by allowing large logit movements
 249 at low values (Wu et al., 2024).

251 5.2 THE FTPO FORMULATION

252 FTPO implements several mechanisms to constrain logits to reference, with a two-part regularization
 253 allowing larger shifts for *chosen* and *rejected* logits, relative to the remaining vocab. The loss
 254 function is formulated as such: At the final position in the inference trace, define token r (rejected)
 255 and chosen alternatives C . We optimize three loss objectives:

256 **Preference loss with margin.** We enforce that chosen tokens exceed the rejected token’s logit by
 257 margin m :

$$259 \quad \mathcal{L}_{pref} = \frac{\sum_{c \in C} w_c \cdot \text{softplus}((m - \Delta_c)/\tau)}{\sum_{c \in C} w_c} \quad (1)$$

260 where $\Delta_c = y[c] - y[r]$ is the logit gap between chosen and rejected, and the weight $w_c =$
 261 $\text{clamp}((m - \Delta_c)/m, 0, 1)$ deactivates the loss when the margin is achieved (Figure 15).

262 **Target regularization.** We tether chosen and rejected ("target") logits to reference values y_{ref}
 263 from the frozen base model at the same position, calculating MSE loss directly on logit deltas (not
 264 logprobs). A zero-penalty window

$$265 \quad \mathcal{L}_{target} = \frac{1}{|T|} \sum_{j \in T} \max(|y[j] - y_{ref}[j]| - \tau_{target}, 0)^2 \quad (2)$$

270 where $T = C \cup \{r\}$ contains all target tokens. To avoid redundant forward passes, we compute and
 271 cache y_{ref} during the data-generation step and reuse these cached logits during FTPO training.
 272

273 **Non-target regularization.** We strongly anchor the remaining vocabulary to prevent distribution
 274 drift:

$$275 \quad \mathcal{L}_{nontarget} = \frac{1}{|N|} \sum_{j \in N} (y[j] - y_{ref}[j])^2 \quad (3)$$

$$276$$

277 where N represents all non-target tokens.

278 The total loss, incorporating weighting coefficients λ_{target} and $\lambda_{nontarget}$:

$$281 \quad \mathcal{L}_{FTPO} = \mathcal{L}_{pref} + \lambda_{target} \mathcal{L}_{target} + \lambda_{nontarget} \mathcal{L}_{nontarget} \quad (4)$$

$$282$$

283 All FTPO results in this paper use a single default configuration: a margin of $m = 2.0$ logits in the
 284 preference term, a target tether of $\lambda_{target} = 0.05$ with zero-penalty window $\tau_{target} = 0.5$, and a
 285 non-target tether of $\lambda_{nontarget} = 0.4$ (see App. E).

286 5.3 KEY DESIGN PRINCIPLES

288 Three design choices make FTPO effective for targeted suppression of unwanted patterns:

290 **Logit-space operation.** With large logit updates to *chosen* and *rejected*, probability mass gets
 291 redistributed substantially after softmax, which would impose compensatory pressure on unrelated
 292 (non-target) logits if we were to use KL-loss as our regularizer. By using MSE loss on logits instead,
 293 we avoid this collateral pressure, localizing updates to just the logits we care about, i.e. the chosen
 294 & rejected.

295 **Margin-based deactivation.** The weight w_c automatically reduces to zero when chosen tokens win
 296 by margin m , preventing overtraining. This self-limiting behavior maintains model stability even
 297 with extended training to high preference accuracy.

298 **Two-part regularization.** The two-part MSE loss allows target logits to move relatively freely,
 299 while constraining the remaining vocabulary to the reference. This allows training to high preference
 300 accuracy while avoiding destructive logit divergences.

302 5.4 AUTOMATED TRAINING DATA GENERATION

304 The Antislop Sampler provides an effective mechanism for generating training data for FTPO. At
 305 each backtracking event, we capture a preference pair at the exact position where a banned sequence
 306 would begin: the *rejected* token that initiated the unwanted pattern versus *chosen* viable alternatives
 307 from min-p filtering (Figure 2). This allows us to build an end-to-end automated pipeline to identify
 308 a model’s overused patterns, generate a targeted preference training set, and train the model with
 309 FTPO to suppress these patterns. We release this automated pipeline open-source.

311 6 EXPERIMENTAL EVALUATION

313 6.1 EXPERIMENTAL SETUP

315 **Models** We evaluate on three model families to represent different architectures and scales:
 316 gemma-3-12b, Mistral-Small-3.2, and Llama-3.3-70B.

317 **Datasets** We utilize distinct data subsets for training and evaluation to ensure no data leakage:

- 320 **Slop Profiling Training:** We use 2,000 prompts from the Reddit Writing Prompts dataset
 321 (Nitral-AI, 2024) to generate the model’s “slop fingerprint” and synthesize the FTPO training
 322 data.
- 323 **Evaluation:** We evaluate on a hold-out set of writing prompts. To test out-of-distribution
 324 generalization, we also evaluate on the EQ-Bench Creative Writing prompts (Paech, 2023).

324 • **Human Baseline:** To calculate over-representation ratios, we utilize wordfreq (Speer et al.,
 325 2018) for single words and a curated corpus of Project Gutenberg texts for n-gram statistics.
 326

327 **Metrics** Our primary metrics measure suppression efficacy, impact on lexical diversity and writing
 328 quality. We include MMLU and GSM8K to assess impact on out-of-domain tasks.
 329

330 **Banlist Suppression Rate:** The percentage reduction in the frequency of banned patterns appearing
 331 in outputs relative to the baseline model.
 332

333 **Writing Quality Rubric:** A GPT-5-as-Judge evaluation on a 0-100 scale, assessing coherence,
 334 grammar, style, and formatting artifacts (see Figure 11).
 335

336 **Lexical Diversity:** An aggregate, length-controlled metric combining MATTR-500, Root-
 337 TTR, HD-D, and Distinct-n scores, normalized to the baseline model
 338 (100).
 339

340 **MMLU:** 5-shot evaluation of STEM and cross-domain knowledge (Hendrycks
 341 et al., 2021).
 342

343 **GSM8K:** 8-shot evaluation of grade-school math reasoning (Cobbe et al., 2021).
 344

345 **Longform Writing:** A 30k-token multi-turn story generation task judged by Claude-3.5-
 346 Sonnet, specifically designed to detect repetitive loops and degradation
 347 in extended contexts (Paech, 2025).
 348

349 **Methods Compared.** We evaluate four approaches: (1) token banning with logit bias -100, (2)
 350 Antislop Sampler with configurable ban-strength s , (3) FTPO fine-tuning, and (4) DPO fine-tuning
 351 on identical preference pairs. We test banlist sizes of 2k, 4k, and 8k patterns to assess scalability.
 352

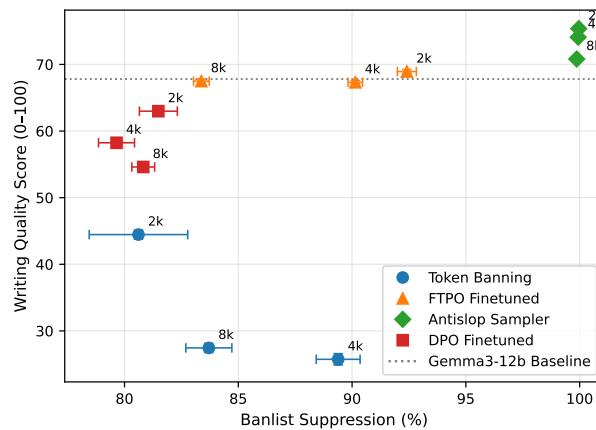
353 **Training Details.** Our primary experiments train gemma-3-12b with FTPO and DPO at banlist
 354 sizes 2k, 4k and 8k. FTPO uses the hyperparameter configuration specified in Appendix Q. DPO
 355 uses $\beta = 0.1$. To minimize perturbation of the original weights, we freeze all layers except the
 356 last 5 and lm_head. We train a high-rank LoRA (Hu et al., 2021) with r between 128 and 512. We
 357 find these high ranks allow higher preference accuracy targets to be reached with lower degradation.
 358 Both methods train for 1 epoch with early stopping at target suppression rates. For the preference
 359 accuracy ablation (6.4), learning rate is scaled such that both methods reached the early stopping
 360 targets at approximately the same number of training samples processed.
 361

362 6.2 MAIN RESULTS: SUPPRESSION PERFORMANCE VS. WRITING QUALITY

363 Figure 3 visualizes the performance in
 364 banlist suppression for each method,
 365 plotted against output degradation as
 366 measured by our writing rubric. The
 367 Antislop Sampler achieves perfect sup-
 368 pression (100%) while actually im-
 369 proving writing quality above baseline.
 370 FTPO maintains quality within 1% of
 371 the baseline performance of gemma-3-
 372 12b, while achieving 83-92% sup-
 373 pression rates.
 374

375 In contrast, DPO and token banning
 376 show marked quality degradation. DPO
 377 drops 6-15 points in writing quality de-
 378 spite achieving only 80-82% sup-
 379 pression. Token banning collapses even
 380 more severely, with quality falling to
 381 28 (out of 100) at 8k patterns. In prac-
 382 tice, this degradation manifests as se-
 383 vere repetition, spelling and grammar
 384 artifaciting, and incoherence.
 385

386 We evaluate on a non-overlapping sub-
 387 set of 1,000 prompts from the same
 388



389 Figure 3: Our methods (Antislop Sampler and FTPO) out-
 390 perform DPO and token banning for effective sup-
 391 pression of gemma-3-12b’s overused patterns, with negli-
 392 gible quality degradation. We test with a range of banlist sizes
 393 from 2,000 to 8,000 banned items. Error bars are CI95.
 394

378 Reddit Writing Prompts dataset (Nitral-AI, 2024) and observe similar patterns on an out-of-
 379 distribution EQ-Bench Creative Writing set (Figure 10).

380 We also train gemma-3-27b on mixed-domain prompts (essays and creative writing), achieving 83%
 381 banlist suppression with no degradation in longform writing quality.

384 **Key Result:** FTPO achieves 90% suppression with < 1% quality loss, while DPO achieves 80%
 385 suppression with 15% quality degradation.

389 6.3 FTPO vs DPO: DETAILED COMPARISON

391 FTPO maintains strong suppression across models with minimal degradation (Table 2). The Key
 392 Findings: FTPO suppresses 90+% of slop in creative writing outputs for banlist sizes $\leq 4,000$
 393 items, causing negligible impact on writing quality metrics, lexical diversity and math/STEM bench-
 394 marks.

395 **Suppression effectiveness.** FTPO achieves 8.5% stronger suppression than DPO at equivalent train-
 396 ing settings.

398 **Capability preservation.** FTPO maintains math reasoning on GSM8k and world-knowledge capa-
 399 bilities on MMLU within 1-3% of baseline. DPO degrades both metrics by 2-5%.

400 **Long-form generation.** The difference is most dramatic in the longform creative writing test, since
 401 repetition and other degradation modes are exacerbated in extended multi-turn generation. Our
 402 FTPO-trained models cluster around the baseline gemma3 score for 2k, 4k and 8k banlist sizes;
 403 while DPO experiences a large degradation in quality.

404 **Lexical diversity.** FTPO maintains or enhances diversity (95-102% of baseline), while DPO causes
 405 progressive collapse (74-92%). This confirms our hypothesis: DPO has collateral effects on proba-
 406 bility distributions, while FTPO’s precise adjustments preserve vocabulary diversity.

407 This pattern holds from 12B to 70B parameters, demonstrating that FTPO generalizes across ar-
 408 chitectures. Some models are more sensitive to preference training and prone to repetition and
 409 artifacting; for Llama-3.3-70B we restrict LoRA updates to *lm_head* to avoid repetition, at the cost
 410 of a lower suppression rate of 66%.

412 To verify that FTPO is not simply trading one set of slop for another or drifting semantically, we re-
 413 profile each model’s “slop fingerprint” (top over-represented words and *n*-grams relative to a human
 414 baseline) and run a cosine-distance embedding analysis. After FTPO, average over-use of these
 415 patterns drops sharply instead of being replaced by a new set of equally extreme over-used patterns,
 416 and embedding distances to the baseline remain only modestly above natural sampling variability
 417 and far below a simple style-prompt shift (App. M, App. N).

419 Table 2: FTPO & DPO evaluation results for models fine-tuned to suppress a range of banlist sizes
 420 from of 1k to 8k items.

422 experiment	423 mmlu	424 gsm8k	425 longform	426 writing qual	427 diversity	428 ban %
423 gemma-3-12b baseline	424 0.590	425 0.888	426 51.3	427 67.80	428 100.00	429 0.00
424 gemma-3-12b FTPO 2k (Ours)	425 0.559	426 0.876	427 47.5	428 68.93	429 101.05	430 92.39
425 gemma-3-12b FTPO 4k (Ours)	426 0.565	427 0.880	428 49.4	429 67.31	430 97.68	431 90.15
426 gemma-3-12b FTPO 8k (Ours)	427 0.592	428 0.889	429 52.3	430 67.49	431 95.09	432 83.40
427 gemma-3-12b DPO 2k	428 0.541	429 0.847	430 36.6	431 62.98	432 91.03	433 82.00
428 gemma-3-12b DPO 4k	429 0.549	430 0.861	431 34.8	432 58.24	433 81.92	434 80.64
429 gemma-3-12b DPO 8k	430 0.571	431 0.864	432 26.9	433 54.61	434 73.92	435 81.44
430 Mistral-Small baseline	431 0.812	432 0.900	433 56.03	434 72.93	435 100.00	436 0.00
431 Mistral-Small FTPO 1k (Ours)	432 0.811	433 0.895	434 58.38	435 74.60	436 102.10	437 89.46
432 Llama-3.3-70B baseline	433 0.801	434 0.929	435 36.77	436 64.34	437 100.00	438 0.00

432	Llama-3.3-70B FTPO 1k (Ours)	0.799	0.923	35.57	63.16	99.66	66.41
-----	------------------------------	-------	-------	-------	-------	-------	-------

433

434

435

6.4 ROBUSTNESS TO OVERTRAINING

436

437 Compared with DPO, FTPO can train to a higher preference accuracy target on final-token preference
 438 pairs before degradation or model collapse occurs. FTPO is designed to precisely alter only the
 439 logits needed, switching off the training signal when *chosen* logits are winning by a given margin
 440 over *rejected*. DPO lacks these “soft-touch” features, resulting in *chosen/rejected* logits continuing
 441 to diverge as training progresses.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

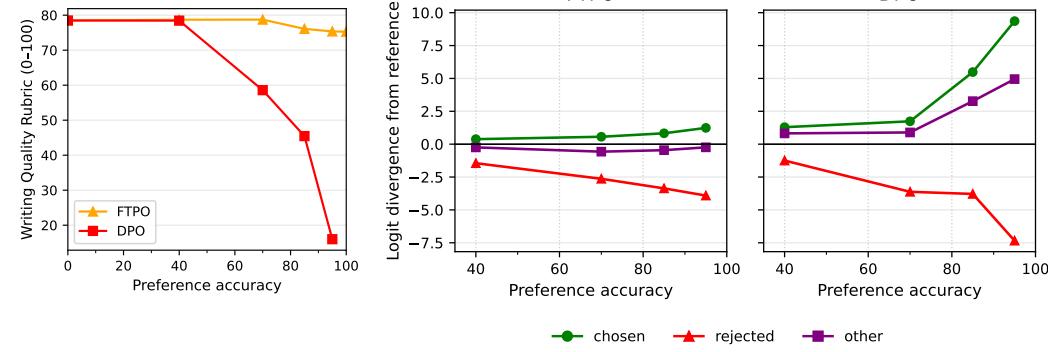
458

459

460

461

462



(a) FTPO maintains writing quality as training progresses to higher pref accuracies, while DPO degrades sharply after the 40% accuracy mark. This experiment trains gemma-3-12b on a banlist of 1,000 items.

(b) With FTPO, logits stay close to reference due to (1) the MSE loss terms and (2) the early switch-off feature which nulls the training signal for chosen tokens that are already winning vs rejected. With DPO, logits diverge unconstrained as training continues. We posit this to be the main cause of FTPO’s minimal degradation vs DPO.

Figure 4: (a) Impact on writing quality from training to high preference accuracy targets; (b) Logit divergence from reference as training progresses.

463

464

When training gemma-3-12b to increasing preference accuracy targets, we find FTPO can train to nearly 100% preference accuracy with minimal degradation, while DPO only manages 40%, after which substantial degradation occurs (Figure 4a). Increasing DPO’s β hyperparameter to 1.0 mitigates this degradation, but impairs learnability, reducing ban suppression by 15.9% (Figure 9). We posit that FTPO’s mechanisms for constraining logits to the reference while allowing freedom of movement of target logits are the primary reasons it outperforms DPO on this task.

470

471

6.5 REGEX BANS

472

473

474

475

476

477

478

479

The Antislop Sampler can also target sentence-level patterns using regex bans. The “It’s not X, it’s Y” construction is a recurring stylistic pattern that uses different words in each instance but follows some recognisable archetypes. We define these archetypes as regex patterns in Appendix P. In qwen3-4b, these patterns appear extremely frequently, at a rate of 1.10 occurrences per 1,000 characters (Appendix D). With the Antislop Sampler enforcing a regex ban, the frequency drops to exactly zero. This demonstrates that the sampler can suppress structural templates—patterns where the specific vocabulary varies but the underlying syntactic form remains constant.

480

481

6.6 FTPO HYPERPARAMETER ABLATIONS

482

483

484

485

The FTPO trainer exposes hyperparameters to tune the strength of the MSE loss tether to the reference, and also the margin specifying where gradients turn off for winning *chosen* logits. We train gemma-3-12b on hyperparameter ranges outside the defaults, observing poor preference accuracy and degradation at these sub-optimal values, and thus demonstrating the efficacy of these FTPO safeguards (Appendix E).

486 7 DISCUSSION
487
488489 Antislop Sampler achieves 100% suppression of over-used patterns without quality loss. FTPO
490 outperforms DPO on our measured metrics, even for 30,000-token generations.
491492 Detecting complex semantic patterns, such as metaphor overuse or narrative tropes—is fundamen-
493 tally harder than matching n-grams. These high-level repetitions evade simple lexical filters. Al-
494 though methods like embedding-based clustering or syntactic parsing could identify them, they are
495 currently too expensive to run inside a training loop. We therefore focus on mechanical detection
496 because it is tractable and captures the majority of artifacts, though we acknowledge that measuring
497 abstract stylistic repetition remains a difficult challenge for the field.
498499 There are limitations and tradeoffs to our methods: Antislop Sampler reduces throughput by 69-
500 96% with vLLM at banlist sizes of 1,000 to 8,000 respectively, due to the frequency of backtracking
501 events. In performance-sensitive deployments, this is a clear incentive to prefer a solution that trains
502 suppression into the weights.
503504 Anticipating these downstream needs, we develop a pipeline that automatically profiles a model’s
505 overused writing patterns, generates a training set, and trains the model to suppress these patterns.
506 Our FTPO trainer is designed to make targeted adjustments to the model’s over-used writing ten-
507 dencies with minimal changes to its distribution otherwise. We hypothesize that FTPO’s minimal
508 degradation compared to DPO is primarily due to its multi-part loss tethering to reference logits,
509 and zeroing of gradient updates when chosen tokens are winning versus rejected.
510511 We encourage **future work** to explore Antislop’s performance in domains other than creative writ-
512 ing, human-rater replication of quality metrics, AI generated text detection, and suppression of toxic
513 text.
514515 Decoding-time diversity methods such as top- k , top- p /nucleus, min- p , temperature schedules, and
516 more recent proposals like XTC, DRY, Mirostat, and top- $n\sigma$ primarily manipulate the *candidate set*
517 or its *entropy* without changing the local *rank ordering* of the few tokens that actually trigger stereo-
518 typed phrasing. This explains their mixed success against “slop”: they either (i) widen exploration
519 and let more low-probability garbage through or (ii) prune more aggressively and entrench the same
520 high-probability modes. By contrast, the AntiSlop sampler is sequence-aware and *intervenes exactly*
521 *at the moment* a banned pattern would begin, backtracking to the initiating token and reshaping the
522 immediate continuation by resampling from cached top-logprob candidates. FTPO then converts
523 that intervention into a durable, *local* preference change by enlarging the logit margin between the
524 offending token and viable alternatives while keeping the rest of the vocabulary tightly tethered to
525 reference logits. Empirically, this division of labor yields robust suppression with minimal collat-
526 eral damage: the sampler guarantees enforcement at inference; FTPO makes the model *want* the
527 alternative even when the sampler is disabled.
528529 8 CONCLUSION
530
531532 We introduced a framework for eliminating overused stylistic patterns (“slop”) in LLM outputs while
533 preserving capabilities on our evaluated benchmarks. The *Antislop sampler* performs sequence-
534 level enforcement with a backtracking resample that preserves coherence, supports hard and soft
535 bans, and can suppress string and regex patterns. Our automated pipeline extracts model-specific
536 slop fingerprints by comparing the model’s overused writing patterns against human baselines, then
537 synthesizes a preference dataset without human intervention. *Final Token Preference Optimization*
538 (*FTPO*) trains the model on these pairs, making suppression permanent. Across our tests, FTPO and
539 the sampler achieved higher suppression than DPO and logit-based token banning, with negligible
540 measurable quality loss on our rubric. We release code and datasets under the MIT license.
541542 **AI Usage Disclosure:** Language models were used to assist with early drafting of sections of this
543 paper. All results were human designed and performed, and the citations were human-sourced and
544 validated.
545

540 REPRODUCIBILITY STATEMENT
541

542 We provide all materials to reproduce our results. Algorithms are specified in Sections 4.2–5.2
543 including loss definitions and hyperparameters. The general configuration template for FTPO/DPO
544 training configuration, LoRA settings, early-stopping criteria, and decoding parameters are given
545 in App. Q. In addition, the data pipeline, prompts, judge rubric, and scoring template are included
546 (Fig. 11). For inference with Antislop, we describe the implementation and throughput (App. C), and
547 include our antislop-vllm implementation in supplementary materials. The supplemental materials
548 contain necessary code and example configuration files to run Antislop Sampler and the automated
549 training pipeline with FTPO or DPO.

550
551 ETHICS STATEMENT
552

553 We adhere to the ICLR Code of Ethics (<https://iclr.cc/public/CodeOfEthics>). Our
554 study operates on publicly available datasets and benchmarks: Reddit SFW Writing Prompts via
555 Nitral-AI (Nitral-AI, 2024), EQ-Bench creative prompts (Paech, 2023), Project Gutenberg texts
556 (Project Gutenberg), and wordfreq statistics (Speer et al., 2018). We processed only public text and
557 did not collect or annotate human subjects. No personally identifying information was collected,
558 and no IRB was required.

559 Potential harms include: (i) unintended suppression of legitimate dialects, or minority styles; (ii)
560 attempts to evade AI-text detection. Mitigations: our code produces human-readable banlists which
561 may be vetted by hand before deployment; we document and expose the *ban-strength* control
562 (Sec. 4.2) and provide soft-ban defaults rather than hard blocking; we implement a whitelist to
563 prevent terms from being automatically banned; we recommend human review of any production
564 banlist. Our methods do not target model safety filters and are not intended to bypass them.

565 We transparently report throughput impacts (App. C) to support energy-cost accounting. The au-
566 thors declare no conflicts of interest, no external sponsorship that biases results, and disclose LLM
567 assistance for drafting as stated in the paper’s AI Usage Disclosure.
568

569 REFERENCES
570

571 Louis Castricato, Nathan Lile, Suraj Anand, Hailey Schoelkopf, Siddharth Verma, and Stella Bi-
572 derman. Suppressing pink elephants with direct principle feedback, 2024. URL <https://arxiv.org/abs/2402.07896>.
573

574 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Łukasz Kaiser,
575 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
576 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
577 2021. URL <https://arxiv.org/abs/2110.14168>.
578

579 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
580 Steinhardt. Measuring massive multitask language understanding. In *International Conference on*
581 *Learning Representations (ICLR)*, 2021. URL <https://arxiv.org/abs/2009.03300>.
582

583 Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
584 degeneration. In *International Conference on Learning Representations (ICLR)*, 2020.

585 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
586 and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL <https://arxiv.org/abs/2106.09685>.
587

588 J. Edward Hu, Huda Khayrallah, Ryan Culkin, Patrick Xia, Tongfei Chen, Matt Post, and Benjamin
589 Van Durme. Improved lexically constrained decoding for translation and monolingual rewr-
590 iting. In *Proceedings of the 2019 Conference of the North American Chapter of the Association*
591 *for Computational Linguistics: Human Language Technologies*, pp. 839–850, Minneapolis, Min-
592 nesota, 2019. Association for Computational Linguistics. URL <https://aclanthology.org/N19-1090/>.
593

594 Josef Jon, Dušan Variš, Michal Novák, João Paulo Aires, and Ondřej Bojar. Negative lexical
 595 constraints in neural machine translation. *arXiv preprint arXiv:2308.03601*, 2023. URL
 596 <https://arxiv.org/abs/2308.03601>.

597

598 Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
 599 Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and
 600 diversity. *arXiv preprint arXiv:2310.06452*, 2024. URL <https://arxiv.org/abs/2310.06452>.

601

602 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 603 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 604 serving with pagedattention. In *Proceedings of the 29th ACM Symposium on Operating Systems
 605 Principles (SOSP '23)*, pp. 611–626, New York, NY, USA, 2023. ACM. doi: 10.1145/3600006.
 606 3613165.

607

608 Jack Lanchantin, Angelica Chen, Shehzaad Dhuliawala, Ping Yu, Jason Weston, Sainbayar
 609 Sukhbaatar, and Ilia Kulikov. Diverse preference optimization. *arXiv preprint arXiv:2501.18101*,
 610 2025. URL <https://arxiv.org/abs/2501.18101>.

611

612 Margaret Li, Stephen Roller, Ilia Kulikov, Sean Welleck, Y-Lan Boureau, Kyunghyun Cho, and
 613 Jason Weston. Don't say that! making inconsistent dialogue unlikely with unlikelihood training.
 614 In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
 (ACL)*, pp. 4715–4728, 2020.

615

616 Sonia K. Murthy, Tomer Ullman, and Jennifer Hu. One fish, two fish, but not the whole sea: Alignment
 617 reduces language models' conceptual diversity. *arXiv preprint arXiv:2411.04427*, 2024.
 618 URL <https://arxiv.org/abs/2411.04427>.

619

620 Minh Nhat Nguyen, Andrew Baker, Clement Neo, Allen Roush, Andreas Kirsch, and Ravid
 621 Shwartz-Ziv. Turning up the heat: Min-p sampling for creative and coherent llm outputs, 2025.
 622 URL <https://arxiv.org/abs/2407.01082>.

623

624 Nitral-AI. Reddit-sfw-writing_prompts_sharegpt. https://huggingface.co/datasets/Nitral-AI/Reddit-SFW-Writing_Prompts_ShareGPT, 2024. Accessed: 2025-09-16.

625

626

627 Laura O'Mahony, L'eo Grinsztajn, Hailey Schoelkopf, and Stella Biderman. Attributing mode
 628 collapse in the fine-tuning of large language models. In *ICLR Workshop on Mathematical and
 629 Empirical Understanding of Foundation Models (ME-FoMo)*, 2024.

630

631 Samuel J. Paech. Eq-bench: An emotional intelligence benchmark for large language models, 2023.
 632 URL <https://arxiv.org/abs/2312.06281>.

633

634 Samuel J. Paech. Longform creative writing benchmark. <https://github.com/EQ-bench/longform-writing-bench>, 2025. GitHub repository.

635

636 Project Gutenberg. Project gutenberg. URL <https://www.gutenberg.org/>.

637

638 Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
 639 Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
 640 *arXiv preprint arXiv:2305.18290*, 2023. URL <https://arxiv.org/abs/2305.18290>.

641

642 Noam Razin, Sadhika Malladi, Adithya Bhaskar, Danqi Chen, Sanjeev Arora, and Boris Hanin.
 643 Unintentional unalignment: Likelihood displacement in direct preference optimization. *arXiv
 644 preprint arXiv:2410.08847*, 2024. URL <https://arxiv.org/abs/2410.08847>.

645

646 Allen Roush, Sanjay Basu, Akshay Moorthy, and Dmitry Dubovoy. Most language models can be
 647 poets too: An AI writing assistant and constrained text generation studio. In *Proceedings of the
 648 Second Workshop on When Creative AI Meets Conversational AI (CAI)*, pp. 9–15, 2022. URL
<https://aclanthology.org/2022.cai-1.2/>.

648 Alexander Shypula, Shuo Li, Botong Zhang, Vishakh Padmakumar, Kayo Yin, and Osbert Bastani.
 649 Does instruction tuning reduce diversity? a case study using code generation. In *ICLR 2025*
 650 *Workshop on Deep Learning for Code (DL4C)*, 2025. URL [https://openreview.net/](https://openreview.net/forum?id=hMEHnLJyrU)
 651 [forum?id=hMEHnLJyrU](https://openreview.net/forum?id=hMEHnLJyrU). OpenReview.

652 Robyn Speer, Joshua Chin, Andrew Lin, Sara Jewett, and Lance Nathan. *Luminosoinsight/wordfreq*:
 653 v2.2, October 2018. URL <https://doi.org/10.5281/zenodo.1443582>.

654 Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Casey Voss, Alec Radford,
 655 Dario Amodei, and Paul Christiano. Learning to summarize with human feedback. In *Advances*
 656 *in Neural Information Processing Systems (NeurIPS)*, 2020.

657 Philipp Emanuel Weidmann. Dry: A modern repetition penalty that reliably prevents loop-
 658 ing. GitHub pull request #5677 to *oobabooga/text-generation-webui*, May 2024a.
 659 URL <https://github.com/oobabooga/text-generation-webui/pull/5677>.
 660 Merged May 20, 2024.

661 Philipp Emanuel Weidmann. Exclude top choices (xtc): A sampler that boosts creativity,
 662 breaks writing clichés, and inhibits non-verbatim repetition. GitHub pull request #6335 to
 663 *oobabooga/text-generation-webui*, September 2024b. URL <https://github.com/oobabooga/text-generation-webui/pull/6335>. Merged Sep 28, 2024.

664 Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.
 665 Neural text generation with unlikelihood training. In *International Conference on Learning Rep-*
 666 *resentations (ICLR)*, 2020.

667 Junchao Wu, Shu Yang, Runzhe Zhan, Yulin Yuan, Lidia Sam Chao, and Derek Fai Wong. A
 668 survey on llm-generated text detection: Necessity, methods, and future directions. *Computational*
 669 *Linguistics*, 51(1):275–338, 2025.

670 Junkang Wu, Yuexiang Xie, Zhengyi Yang, Jiancan Wu, Jinyang Gao, Bolin Ding, Xi-
 671 ang Wang, and Xiangnan He. β -dpo: Direct preference optimization with dynamic
 672 β . In *Advances in Neural Information Processing Systems (NeurIPS)*, 2024. URL
 673 https://proceedings.neurips.cc/paper_files/paper/2024/file/ea888178abdb6fc233226d12321d754f-Paper-Conference.pdf.

674 Longfei Yun, Chenyang An, Zilong Wang, Letian Peng, and Jingbo Shang. The price of format:
 675 Diversity collapse in llms. *arXiv preprint arXiv:2505.18949*, 2025. URL <https://arxiv.org/abs/2505.18949>.

676 Yiming Zhang, Jianfeng Chi, Hailey Nguyen, Kartikeya Upasani, Daniel Bikel, Jason Weston, and
 677 Eric Michael Smith. Backtracking improves generation safety. In *Proceedings of the International*
 678 *Conference on Learning Representations (ICLR)*, 2025.

679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

APPENDICES

A SOFT BANNING

In real-world use cases, it is often not preferable to ban a word or phrase outright. In these cases, a scalable "soft ban" is preferred, where there is a general suppression effect, but the suppressed vocab may still be used if there are no good alternatives.

An example of how soft-banning works when there are no good alternate candidates:

- Step 1. We have the word "tapestry" in our banlist, and have set ban-strength = 0.2 and min-p = 0.1.
- Step 2. The user requests an essay on tapestry weaving.
- Step 3. The model begins inference with, "The art of Tapestry-", triggering backtracking. In this example we will say "Tapestry" was the top token at this position with 0.99 prob, with the next highest token "Mural" at 0.0005.
- Step 4. The "Tapestry" token is reduced to $\text{prob}_{\text{new}} = 0.99 \times 10^{-10 \cdot 0.2} = 0.0099$.
- Step 5. After probability rescaling, min-p still excludes "Mural" from consideration, since $\frac{0.0005}{0.0099} \approx 0.05 < 0.1$ (the min-p threshold), resulting in "Tapestry" remaining the only candidate for sampling.
- Step 6. "Tapestry" is selected as the next token despite being on the banlist. This specific violation at this position is marked to be ignored by Antislop in future checks, to avoid a backtracking loop.

A ban-strength value of 1.0 is effectively a hard ban, enforcing 100% suppression of the banlist.

To determine whether each method can still use the suppressed patterns when contextually necessary, we construct an adversarial prompt:

Write a short story (500 words) incorporating the target phrase exactly 3 times in the story.
The target phrase is: "{phrase}".

Figure 5 validates the soft-banning mechanism (Section 4.2), where ban-strength s controls suppression intensity. The Antislop Sampler with $s = 0.4$ achieves optimal balance, suppressing patterns in 90% of normal generation (non-adversarial) while fully permitting them when explicitly requested.

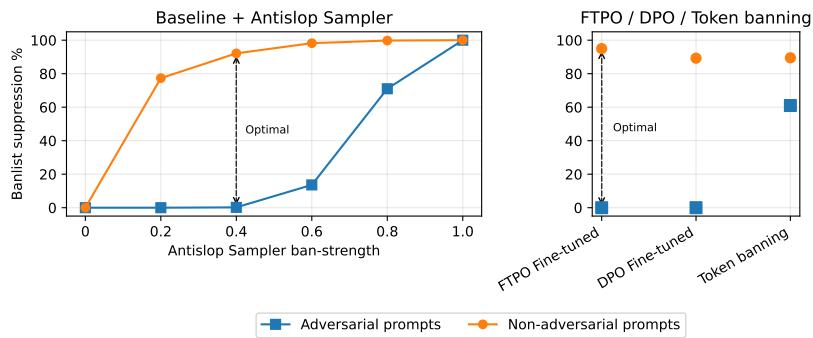


Figure 5: Our methods can suppress 90+ percent of banlist occurrences while allowing the banlist through when contextually necessary. Antislop Sampler, FTPO, DPO and token banning are compared on banlist suppression efficacy under normal writing conditions (non-adversarial prompts) and when the model is explicitly instructed to use the banned vocab (adversarial prompts). We indicate optimal behavior for most real-world use cases to be **maximal suppression in normal writing conditions**, and **minimal (preferably zero) suppression in adversarial conditions** – i.e. when the model has no coherent alternatives.

756 **B INFERENCE PERFORMANCE (TOK/S)**
757

758 We release two implementations of the Antislop sampler: A single-threaded version using Hug-
759 gingface Transformers, and a higher-throughput version that works with any OpenAI-compatible
760 v1/completion endpoint that supports `top_logprobs`. The sampler incurs significant throughput
761 penalty, especially with larger banlist sizes, due to the backtracking events. There is additional
762 performance lost with the API implementation, since it generates in chunks, with banned pattern de-
763 tection only occurring after a chunk is generated. This could be optimized further by, for example,
764 integrating the sampler into vLLM directly rather than generating chunkwise via the API.

765 The maximum token rate of our OpenAI API implementation is discovered with binary search on the
766 number of concurrent threads when generating with vLLM. Figures cited are using a single Nvidia
767 H100 gpu.

768 We measure a 69% reduction in throughput at a banlist size of 1,000, up to 96% reduction at banlist
769 size 8,000. However, these should be considered worst-case values. A banlist of this size would be
770 overkill for most real-world usage; we include it here as a stress-test.
771

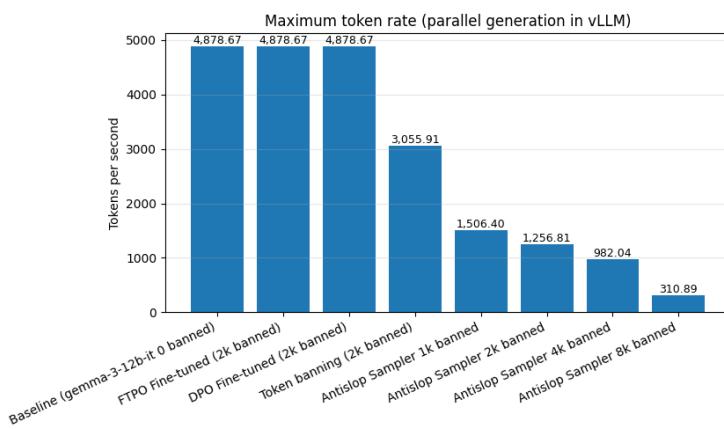


Figure 6: Rate of inference is measured for each method when generating with optimal parallelism with vLLM.

C INFERENCE PERFORMANCE AND COST ANALYSIS

We release two implementations of the Antislop sampler: A single-threaded version using Hug-
gingface Transformers, and a higher-throughput version that works with any OpenAI-compatible
v1/completion endpoint that supports `top_logprobs`. The sampler incurs significant throughput
penalty, especially with larger banlist sizes, due to the backtracking events. There is additional
performance lost with the API implementation, since it generates in chunks, with banned pattern de-
tection only occurring after a chunk is generated. This could be optimized further by, for example,
integrating the sampler into vLLM directly rather than generating chunkwise via the API.

The maximum token rate of our OpenAI API implementation is discovered with binary search on the
number of concurrent threads when generating with vLLM. Figures cited are using a single Nvidia
H100 gpu.

We measure a 69% reduction in throughput at a banlist size of 1,000, up to 96% reduction at banlist
size 8,000. However, these should be considered worst-case values. A banlist of this size would be
overkill for most real-world usage; we include it here as a stress-test.

C.1 PIPELINE COST ANALYSIS

We analyze the computational resources required to execute the complete Antislop pipeline, includ-
ing the automated generation of the preference dataset via the Antislop Sampler and the subsequent

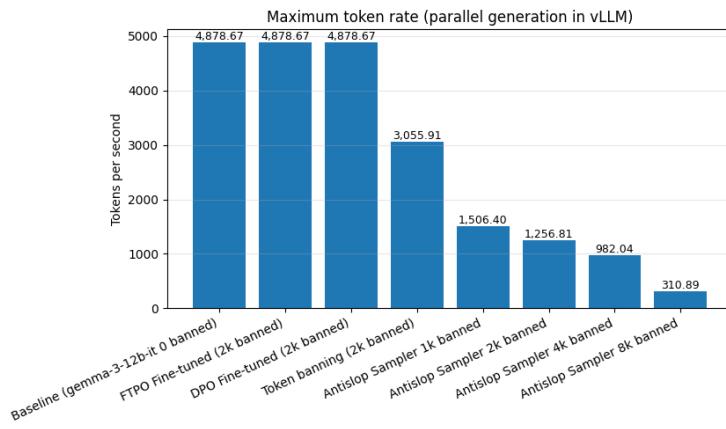


Figure 7: Rate of inference is measured for each method when generating with optimal parallelism with vLLM.

FTPO fine-tuning. Costs are estimated based on standard on-demand cloud pricing for a single NVIDIA H100 GPU (approx. \$2.00–\$2.50/hr).

Table 3: Cost and resource analysis for complete slop removal pipeline (Dataset Generation + FTPO Training) on $1 \times$ H100 GPU.

Stage	Model Size	Time	Memory/Throughput	Est. Cost
Dataset Gen. (2,000 samples)	12B (gemma-3)	1.5 hours	1,506 tok/sec* (69% reduction vs baseline)	~\$3.00
FTPO Training (10k samples)	12B (gemma-3) 27B	2.3 hours 6.8 hours	42 GB VRAM 68 GB VRAM	~\$4.50 ~\$13.30

Total Pipeline Cost: The complete workflow for a 12B model requires approximately 4 hours and \$7.50 in compute credits. This is comparable to standard supervised fine-tuning (SFT) workflows.

Resource Requirements: Training the 12B model requires 42 GB of VRAM (using LoRA $r = 256$ and 4-bit quantization), fitting comfortably on a single A100/H100 (80GB). The 27B model requires 68 GB under similar settings.

Scalability: FTPO Training exhibits similar scalability properties to DPO. Because the method operates on final-token preference pairs rather than full-sequence generation during training, it scales efficiently to larger models (e.g., 70B+) provided sufficient GPU memory is available to hold the base model weights and optimizer states.

Energy Consumption: We estimate the average power draw of an H100 GPU at peak load to be approximately 700W. Given a total pipeline duration of 3.8 hours (1.5h generation + 2.3h training), the total energy demand to fine-tune the model is approximately 2,660 Wh (~2.6 kWh).

864 **D LONG-RANGE CONSTRAINT ENFORCEMENT VIA REGEX BANS**
865

866 Some models exhibit stylistic slop such as the “not x , but y ” family of constructions, which standard
867 quality metrics rarely penalize and which are difficult to unlearn post hoc. We prevent these forms
868 at inference by compiling a small set of regular expressions into one alternation and scanning the
869 full generated text each validation pass. On a match we locate the earliest offending span, map its
870 first character to the corresponding generated-token index, and trigger backtracking at that position.
871 Backtracking resamples from the cached top-logprob lists with the same decoding hyperparameters
872 (temperature, top- p , top- k , min- p), yielding a coherent alternative continuation without another API
873 call.

874 Figure 8 shows an example where the baseline qwen3-4b overuses the pattern, while Antislop with
875 regex bans reduces its rate to zero.

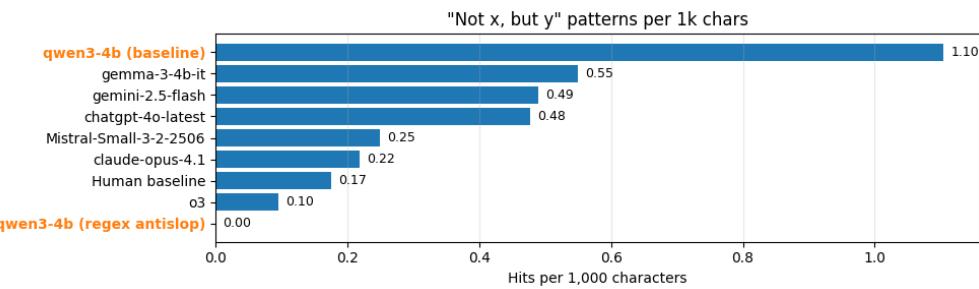
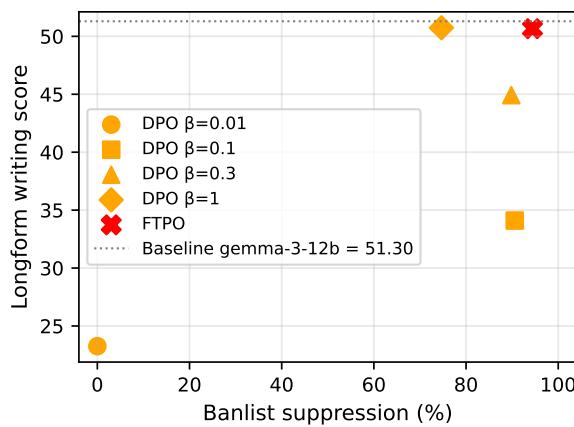


Figure 8: Occurrences per 1k characters of the “not x , but y ” family across several models. The Antislop variant of qwen3-4b enforces regex bans with backtracking and yields 0.00 hits.

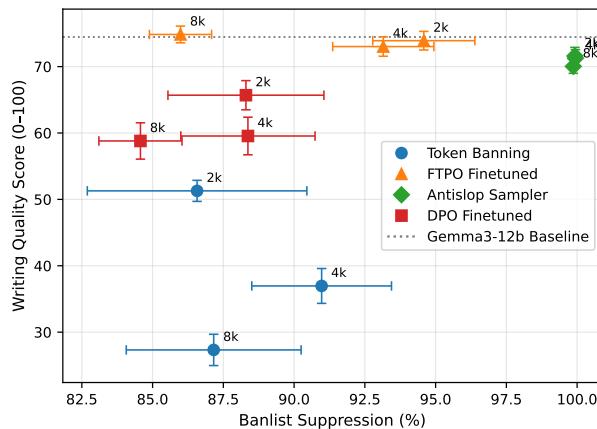
918 E HYPERPARAMETER ABLATIONS
919920 The FTPO trainer exposes some tunable hyperparameters:
921922 **clip_epsilon_logits**: Clips the preference-loss component of the training signal for *chosen logits* that
923 are already beating the rejected logit by this margin.924 **lambda_mse_target**: The strength of the tethering to reference logits, specifically applied to the
925 target (chosen & rejected) logits. Higher values prevent the target logits straying too far from refer-
926 ence, but also make it harder for the trainer to achieve high preference accuracy. Lower values allow
927 the model to learn more easily, but may lead to degradation or model collapse.928 In this ablation, we train gemma-3-12b with FTPO on 10k samples with early stopping at 95% pref-
929 erence accuracy. We vary clip_epsilon_logits from 2 (default) to 16 while keeping other parameters
930 at defaults, to demonstrate the protective effect of this feature of the trainer. We also ablate the
931 lambda_mse_target parameter, setting it at 0, 0.05 (default) and 0.4 while keeping other parameters
932 at defaults. We measure the impact on writing quality, average divergence of logits from reference,
933 and the percent of training examples processed before the 95% preference accuracy early stopping
934 condition is triggered.935 Table 4: FTPO ablation results for clip_epsilon_logits and lambda_mse_target.
936

937 experiment	writing qual	ban %	early stop	Δ_{chosen}	Δ_{rejected}	Δ_{other}
939 gemma-3-12b baseline	67.80	0.00	N/A	N/A	N/A	N/A
940 default params	67.89	84.51	66.00	1.23	-3.93	-0.26
941 no margin clipping	19.57	98.24	37.00	1.48	-7.02	-0.35
942 no target mse loss	39.65	94.54	46.00	-2.91	-8.31	-3.17
943 strong target mse loss	69.68	55.86	100.00	1.18	-1.50	0.07

944 We find that setting the clip_epsilon_logits parameter (the margin clip point that switches off prefer-
945 ence loss for winning logits) to 16 – effectively disabled – results in model collapse. Logits diverge
946 much further from reference, and output degrades to single-word repetitions. With this parameter
947 set to 2 (the default), the model reaches the 95% preference accuracy stopping point with writing
948 quality preserved.949 With lambda_mse_target reduced to 0, disabling the reference tether for target logits, we ob-
950 serve faster training and logits diverging farther from reference. Writing quality degrades 71%
951 from the baseline per our rubric, illustrating the protective effect of this loss component. When
952 lambda_mse_target is set to 0.4, logits diverged much less from reference, but the model was only
953 able to achieve 74% preference accuracy by training completion. At the default value of 0.05, the
954 model reached the 95% preference accuracy target without any substantial output degradation.955 **Hyperparameter Robustness.** While FTPO operates in logit space, we find that our default hyper-
956 parameters transfer well across diverse model families (gemma3, llama3, mistral-small, glm-4).
957958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 F DPO β HYPERPARAMETER ABLATION
973
974
975

990 Figure 9: We examine the impact of DPO’s β hyperparameter, training gemma-3-12b on our final-
991 token preference set with several values of β : 0.01, 0.1, 0.3 and 1.0. This training set suppresses a
992 banlist of 1,000 items. With DPO, we observe an expected tradeoff in learnability vs degradation
993 (Wu et al., 2024). DPO manages a $< 1\%$ reduction in output quality at $\beta = 1.0$, but at the expense of
994 significantly impaired banlist suppression (74.7%). At lower values of β , output quality is markedly
995 reduced for the DPO-trained models. In comparison, the FTPO model trained on the same dataset
996 achieves the highest suppression rate of 94.4% suppression, with negligible ($< 1\%$) degradation in
997 longform writing score.

998
999 G SUPPRESSION PERFORMANCE VS WRITING QUALITY FOR EQ-BENCH
1000 DATASET

1017 Figure 10: We replicate 6.2 with an out-of-distribution writing prompts dataset. While a smaller
1018 dataset size of 96 prompts (and correspondingly larger error bars), we observe a similar pattern of
1019 banlist suppression rates and impact on writing quality for each method.
1020

1026 **H MOST COMMON OVER-REPRESENTED WORDS AND TRIGRAMS ACROSS**
 1027 **MODELS**

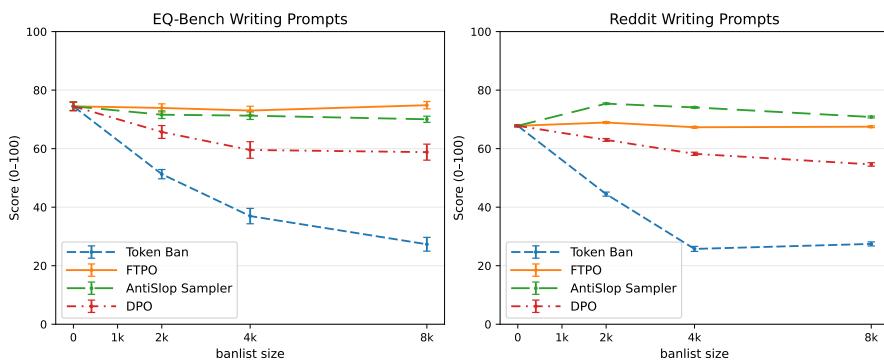
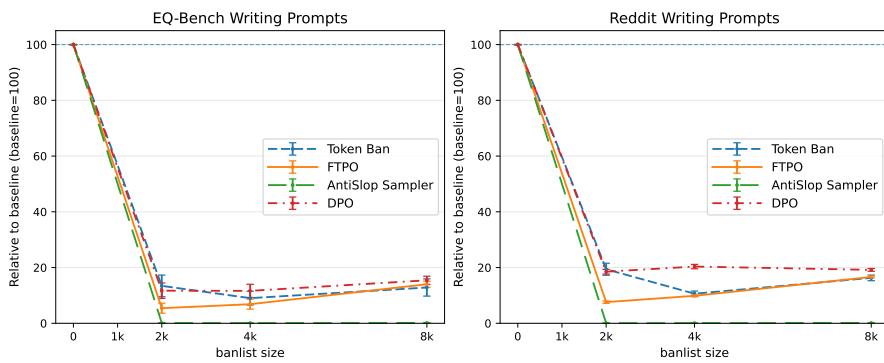
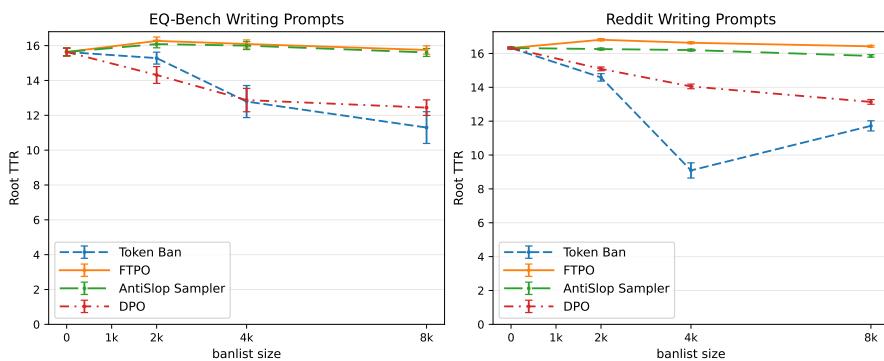
1030	pattern	percent models
1031	flickered	98.5
1032	flicker	94.0
1033	flickering	92.5
1034	leaned	82.1
1035	muttered	82.1
1036	gaze	80.6
1037	grinned	80.6
1038	containment	77.6
1039	gestured	77.6
1040	addendum	74.6
1041	murmured	73.1
1042	nodded	73.1
1043	glint	68.7
1044	hesitated	68.7
1045	whispered	68.7
1046	blinked	64.2
1047	hummed	64.2
1048	faintly	62.7
	leans	62.7
	unreadable	62.7

1049 Table 5: Top overlapping words across 67 AI models. Each entry shows the % of models in which
 1050 the token appears among their top 120 most over-represented words (relative to a human baseline).
 1051

1053	pattern	percent models
1054	voice barely whisper	68.7
1055	said voice low	61.2
1056	air thick scent	49.3
1057	took deep breath	44.8
1058	smile playing lips	43.3
1059	something else something	37.3
1060	said voice barely	35.8
1061	voice barely audible	35.8
1062	take deep breath	32.8
1063	could shake feeling	31.3
1064	eyes never leaving	29.9
1065	casting long shadows	28.4
1066	says voice low	26.9
1067	something else entirely	26.9
1068	heart pounding chest	25.4
1069	one last time	23.9
1070	spreading across face	22.4
1071	air thick smell	19.4
1072	could help feel	19.4
	long shadows across	19.4

1073 Table 6: Top overlapping trigrams across 67 AI models. Each entry shows the % of models in which
 1074 the phrase appears among their top 40 most over-represented trigrams (relative to a human baseline).
 1075

1080 **I WRITING QUALITY RUBRIC PROMPT**
10811082 You are an expert in assessing creative writing. Your task is to
1083 score the test model's response below, by several metrics, on a
1084 0-20 scale.
10851086 [PROMPT START]
10871088 {writing_prompt}
10891090 [PROMPT END]
10911092 [TEST MODEL RESPONSE]
10931094 {test_model_response}
10951096 [TEST MODEL RESPONSE END]
10971098 [Task]
10991100 You are an expert in assessing creative writing. Your task is to
1101 score the model's response below, by several metrics, on a 0-20
1102 scale.
11031104 Scoring notes:
11051106 - In the output, write the metric names exactly as below so they can
1107 be parsed.
1108 - Use the designated output format exactly.
1109 - All criteria are "higher is better"
1110 - You are a critic, and your job is to be critical, especially of any
1111 failings or amateurish elements.
11121113 - Output format is:
11141115 [Scores]
11161117 Metric 1 name: [Score 0-20]
11181119 Metric 2 name: ...
11201121 ---
11221123 Now, rate the supplied model output on the following criteria:
11241125 Spelling/grammar
1126 Formatting issues & artifacts
1127 Coherence
1128 Consistency of tense, pronouns, perspective
1129 Repetition issues
1130 Overall quality of the piece
11311132 Figure 11: Writing quality rubric prompt: This prompt was used to assess the overall quality of
1133 creative writing outputs in our experiments, with a particular focus on the common modes of degra-
1134 dation.
1135

1134 **J IMPACT ON METRICS BY BANLIST SIZE**
11351149 Figure 12: Impact on writing quality per our LLM-judged rubric at several banlist sizes, for each
1150 suppression method (Token banning, FTPO, Antislop Sampler and DPO).1164 Figure 13: Impact on banlist suppression rates at several banlist sizes, for each suppression method
1165 (Token banning, FTPO, Antislop Sampler and DPO).1180 Figure 14: Impact on lexical diversity at several banlist sizes, for each suppression method (Token
1181 banning, FTPO, Antislop Sampler and DPO).

1188 **K FTPO LOSS FUNCTION DEFINITION**
11891190 **Preference Loss Component:**
11911192 For each chosen token index c against a rejected token index r , define the logit gap
1193

1194
$$\Delta = y[c] - y[r].$$

1195 The margin requirement is m . A smooth penalty is applied if the gap is smaller than m :
1196

1197
$$\ell^{\text{pref}} = \log(1 + e^{(m-\Delta)/\tau}),$$

1198 with $\tau = 1$ here. A taper weight
1199

1200
$$w = \text{clamp}\left(\frac{m-\Delta}{m}, 0, 1\right)$$

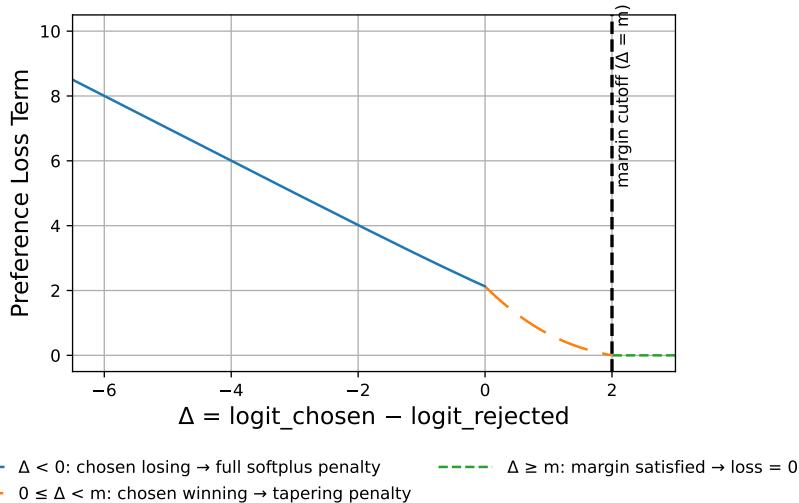
1201

1202 shrinks the contribution as Δ approaches the margin. The preference loss is the weighted mean over
1203 chosen tokens:
1204

1205
$$\mathcal{L}_{\text{pref}} = \frac{\sum w \ell^{\text{pref}}}{\sum w}.$$

1206

1207

1225 Figure 15: Preference loss component as a function of the logit gap Δ . When $\Delta < 0$ (chosen
1226 losing), the penalty is large. As Δ increases toward the margin m , the penalty smoothly tapers.
1227 Once $\Delta \geq m$, the weight goes to zero and the preference loss no longer contributes.
12281229 **MSE tether terms:**1230 Let deviations be $d_j = y[j] - y^{\text{ref}}[j]$. Define:
12311232 • **Target set** $T = \{c\} \cup \{r\}$ (chosen and rejected indices).
1233 • **Non-target set** $N = \{1, \dots, V\} \setminus T$.
12341235 **Non-target MSE loss term:**

1236
$$\mathcal{L}_{\text{nontarget}} = \frac{\sum_{j \in N} d_j^2}{|N|}.$$

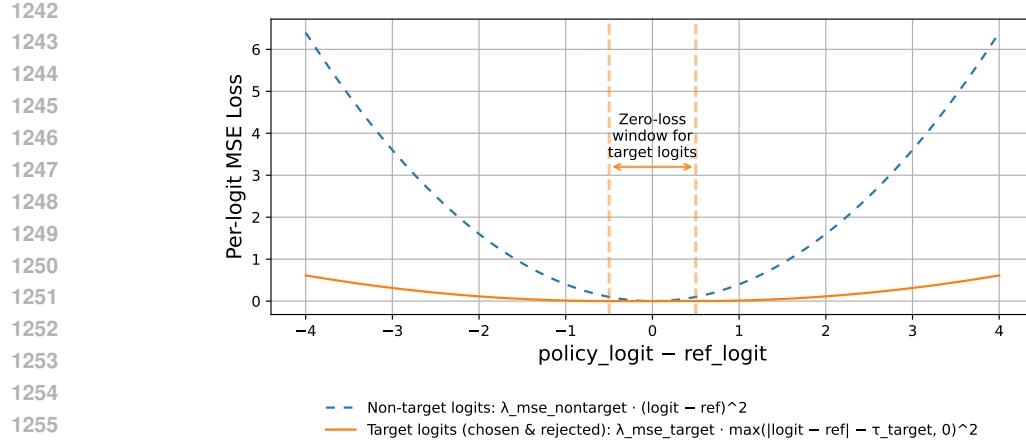
1237

1238

1239 **Target MSE loss term with zero-penalty window**

1240

1241
$$e_j = \max(|d_j| - \tau_{\text{target}}, 0), \quad \mathcal{L}_{\text{target}} = \frac{\sum_{j \in T} e_j^2}{|T|}.$$



1296

L SLOP PROFILE CLUSTERING BETWEEN MODELS

1297
 1298
 1299
 1300
 1301 Colloquially, slop may refer to over-used
 1302 words, phrases, themes or writing styles. Here
 1303 we focus on over-used words and n-grams
 1304 as they are relatively straightforward to ex-
 1305 tract. For a given model, we generate outputs
 1306 from a creative writing prompts dataset (Paech,
 1307 2023) and a writing prompts dataset sourced
 1308 from Reddit (Ntral-AI, 2024). We then com-
 1309 pute a list of the most over-represented words
 1310 and bigrams/trigrams relative to a human base-
 1311 line. The human baseline we use for individual
 1312 words is the Python library **wordfreq** (Speer
 1313 et al., 2018). For bigrams/trigrams, we com-
 1314 pute a human baseline from a mix of sources in-
 1315 cluding a large Reddit creative writing dataset,
 1316 and a selection of public domain works from
 1317 the Gutenberg Library (Project Gutenberg). For
 1318 n-gram extraction, we remove stop-words.

1319 A "slop fingerprint" is collated from the top
 1320 120 most over-represented words and the top
 1321 40 most over-represented bigrams and tri-
 1322 grams. To avoid over-indexing on high-
 1323 frequency words & phrases in single texts (e.g.
 1324 a character name), we require the pattern to oc-
 1325 cur from at least 3 writing prompts indepen-
 1326 dently. To examine the relationship of this fin-
 1327 gerprint between models, we perform hierar-
 1328 chical clustering on these top-200 lists per the
 1329 average rank-distance between each model pair
 (Figure 17).

1330 It's important to distinguish between counting
 1331 the frequency of words and n-grams in a text,
 1332 and calculating their frequency *relative to a hu-*
 1333 *man baseline*, as we are doing here. The for-
 1334 mer simply surfaces patterns that are common
 1335 in writing; the latter surfaces repetitive writing
 1336 tendencies of a model that begin to stand out
 1337 across multiple generations, leading to the per-
 1338 ception of "slop". In some models this repeti-
 1339 tion is extreme: *mistral-small-3.1-24b-instruct-*
 1340 *2503* produced 102 "eyes never leaving" tri-
 1341 grams and 62 "voice barely whisper" trigrams
 1342 across just 96 writing prompts.

1343 We find a high correlation in words and n-grams found on the top most over-represented lists across
 1344 the models tested, with "*flickered*" appearing on 98.5% of lists, and the trigram "*voice barely whis-*
 1345 *per*" appearing on 68.7% of lists. See Table 5 for the most commonly co-occurring word patterns
 1346 across slop fingerprints, and Table 6 for trigram patterns.

1347 We utilise this method for identifying over-represented usages to compile a target list for slop re-
 1348 duction with the Antislop Sampler and FTPO fine-tuning. It should be noted that this method of
 1349 identifying slop is domain-specific; the over-used patterns in creative writing will differ from pro-
 1350 fessional writing, for instance. Here, we focus on creative writing, however the method can be
 1351 applied to other domains by choosing a different set of prompts from which to derive the slop list.

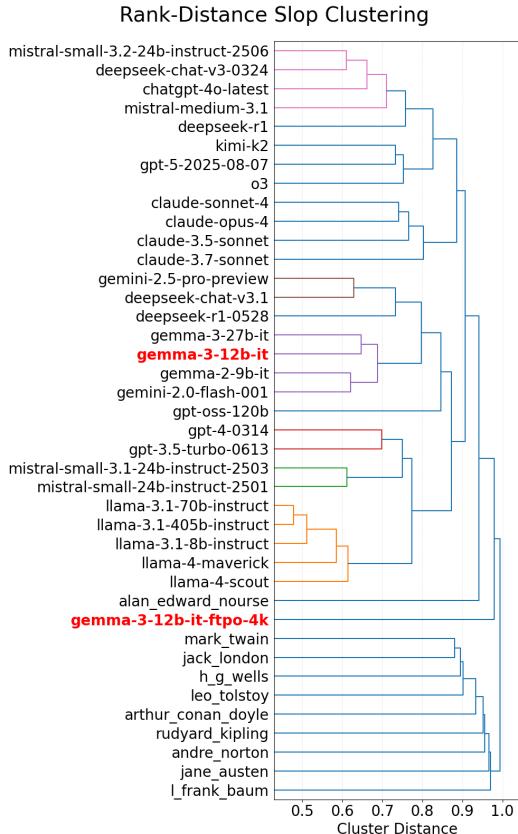


Figure 17: Top 200 over-represented words and bigrams/trigrams were extracted for each model relative to a human baseline, for a set of creative writing outputs. For included human authors, a selection of their works were used. A dendrogram was generated with cluster distance as the **average ranking distance** of the top over-represented words & n-grams list between models. Our FTPO antislop finetune of **gemma-3-12b** is highlighted, clustering closer to human authors than any other tested model.

1350 M ASSESSING EMERGENCE OF NEW SLOP

1351
 1352 A natural concern with any suppression method is a “whack-a-mole” effect: once a set of over-
 1353 represented patterns is pushed down, the model might simply substitute a different set of equally
 1354 extreme over-used patterns. Here we describe the experiments we ran to check whether FTPO is
 1355 just trading one slop fingerprint for another, or whether it actually reduces the overall amount of
 1356 slop.

1357
 1358 **M.1 SETUP**

1359
 1360 We focus on `gemma-3-27b` and its FTPO-finetuned variant (`gemma-3-27b-antislop`). The
 1361 pipeline is:

1362
 1363 1. Generate creative-writing outputs from the Reddit Writing Prompts dataset for both models, using
 1364 the same prompt set and decoding settings as in the main experiments.
 1365 2. For each model, compute token-level frequencies for words and n -grams ($n \in \{2, 3\}$), removing
 1366 stop-words for n -grams as in Section ??.
 1367 3. Compute over-representation ratios

1368
 1369
$$\rho(p) = \frac{f_{\text{LLM}}(p)}{f_{\text{human}}(p)}$$

1370
 1371 using the same human baselines as in our primary experiments (wordfreq for unigrams, curated
 1372 Reddit+Gutenberg corpus for bigrams/trigrams).

1373
 1374 4. For each model separately, rank patterns by $\rho(p)$ and extract the top-40 words and top-40 tri-
 1375 grams. This is done *without* consulting the training banlist, so that any new slop introduced by
 1376 FTPO can surface.

1377 All statistics reported below are computed on these “top- k ” lists for the baseline vs FTPO model.

1378
 1379 **M.2 OVER-REPRESENTATION BEFORE AND AFTER FTPO**

1380
 1381 For the baseline `gemma-3-27b`, the top over-represented words show extreme usage relative to
 1382 human text. Concretely, the top 5 most over-represented words (with human-normalized ratios and
 1383 raw counts across our sample) is:

1384 **Gemma-3-27b (baseline):**

1385
 1386 1. `elara`: ratio 18,861 \times , count 355
 1387 2. `logline`: ratio 3,739 \times , count 109
 1388 3. `worldbuilding`: ratio 3,121 \times , count 240
 1389 4. `grimdark`: ratio 2,819 \times , count 70
 1390 5. `unsettlingly`: ratio 2,275 \times , count 54

1392 For **gemma-3-27b-antislop**, the corresponding top-5 looks like:

1393
 1394 1. `elara`: ratio 1,552 \times , count 39
 1395 2. `unusualness`: ratio 1,496 \times , count 18
 1396 3. `lysandra`: ratio 1,330 \times , count 35
 1397 4. `outlandishness`: ratio 1,169 \times , count 12
 1398 5. `logline`: ratio 1,028 \times , count 40

1399
 1400 Two things are happening:

1401
 1402 • The same tokens that were severely over-used before (e.g., `elara`, `logline`) are now much
 1403 closer to human baseline.

1404 • Some new tokens appear in the top-5, but their ratios and counts are much smaller than the worst
 1405 offenders in the baseline.
 1406

1407 Aggregating across the full top-40 lists for these two models, we see:

1408 • The *mean* over-representation ratio for the top-40 words drops by 73% (from $1,439\times$ to $394\times$).
 1409 • The *mean* over-representation ratio for the top-40 trigrams drops by 36%.

1410 This indicates that FTPO does not simply swap in a new set of equally over-represented words: the
 1411 overall mass of slop, as measured by the degree of over-use relative to human text, goes down.

1412 This pattern is consistent with the design of the FTPO loss. At each suppression site, gradients are
 1413 spread over multiple chosen alternatives instead of pushing probability into a single replacement
 1414 token, and the margin-based switch-off stops training once the chosen tokens win by the specified
 1415 gap. Both design choices make it hard for any single alternative to become the new “Elara.”

1419 M.3 ENTROPY AT SUPPRESSION SITES

1420 We also measure how the local token distribution changes at the positions where a banned pattern
 1421 would have begun (i.e., the positions that generate FTPO training pairs). For each such position we
 1422 compute the Shannon entropy of the top- k token distribution.

1423 For gemma-3-27b, we see:

1424 • Entropy at suppression sites: 1.34 (baseline) \rightarrow 1.93 (FTPO).
 1425 • Entropy at random positions: 0.59 (baseline) \rightarrow 0.89 (FTPO).

1426 So at the exact locations where a slop pattern would be selected in the baseline model, our finetuned
 1427 model has a flatter distribution. At random positions, entropy also rises, but by a smaller amount.
 1428 This is consistent with FTPO increasing the probability mass of a **set of viable continuations** instead
 1429 of merely shifting probability from one fixed phrase to another.

1433 M.4 SEMANTIC SHIFT VS. SEMANTIC COLLAPSE

1435 To check for broader semantic drift, we embed outputs from the baseline and FTPO models and
 1436 compare them in cosine space.

1437 The procedure is:

- 1439 1. Sample a set of prompts.
- 1440 2. For each prompt, generate one completion with the baseline model and one with the FTPO model
 1441 under the same decoding settings.
- 1442 3. Compute embeddings for each completion (using `gemini-embedding-001`) and measure:
 - 1444 • The mean cosine distance between baseline and FTPO outputs.
 - 1445 • The mean cosine distance between two independent baseline samples for the same prompt (as
 1446 a “natural variability” baseline).
 - 1447 • The mean cosine distance between baseline completions with and without a strong style in-
 1448 struction (e.g., “Write in the style of Hunter S. Thompson”) as a reference for a deliberate
 1449 semantic shift.

1450 We observe:

1452 • Baseline vs baseline (two temperature samples): average cosine distance ≈ 0.079 .
 1453 • Baseline vs FTPO: average cosine distance ≈ 0.098 .
 1454 • Baseline vs baseline+style-prompt: average cosine distance ≈ 0.18 .

1455 So the FTPO model is slightly farther from the baseline than two random baseline samples are from
 1456 each other, but much closer than a deliberate style shift. Combined with the entropy results and the

1458 over-representation analysis, this suggests that FTPO is not pushing the model into a completely
 1459 different stylistic regime; it is shaving down a specific set of over-used continuations while keeping
 1460 overall semantics in roughly the same region.

1462 N EMBEDDING-BASED SEMANTIC SHIFT ANALYSIS

1463 We also ran an embedding-based check to see whether FTPO causes a large shift in the model’s
 1464 stylistic or semantic content.

1468 N.1 SETUP

1469 We used the same prompt distribution as in our creative-writing experiments and drew 500 prompts.
 1470 For each prompt, we generated using `temperature=1.0`:

- 1473 • 10 completions from the baseline model (`gemma-3-27b`),
- 1474 • 10 completions from the FTPO-finetuned model (`gemma-3-27b-antislop`),
- 1475 • 10 completions from the baseline model with an added style instruction (“Write in the style of
 1476 Hunter S. Thompson”).

1477 For each completion, we computed an embedding using `google/gemini-embedding-001`
 1478 (via the OpenRouter embeddings API). All distances below are cosine distances, i.e. $1 - \cos(\theta)$
 1479 between embedding vectors.

1480 We then computed three quantities:

- 1484 1. **Within-model diversity:** For each model separately, and for each prompt, we took all pairwise
 1485 distances between that model’s 10 embeddings and averaged them. Averaging those per-prompt
 1486 values gives a single within-model distance.
- 1487 2. **Baseline vs FTPO distance:** For each prompt, we took all cross distances between the 10 base-
 1488 line embeddings and the 10 FTPO embeddings, averaged them, then averaged across prompts.
- 1489 3. **Baseline vs style-prompt distance:** Same as above, but comparing baseline completions to
 1490 baseline+style completions.

1492 N.2 RESULTS

1494 Table 7 summarizes the mean cosine distances:

1496 Comparison	1497 Mean cosine distance
1498 Baseline (within-model)	0.079
1499 FTPO (within-model)	0.087
1500 Baseline vs FTPO	0.098
1501 Baseline vs baseline+style instruction	0.180

1502 Table 7: Embedding-based distances averaged over 500 prompts and 10 generations per prompt.
 1503 Lower is closer in embedding space.

1505 The FTPO model shows slightly higher within-model diversity than the baseline (0.087 vs 0.079,
 1506 about a 10.1% increase), which is consistent with the entropy and diversity gains we see elsewhere.
 1507 The baseline vs FTPO distance (0.098) is only modestly higher than baseline’s own within-model
 1508 variability, and much smaller than the distance induced by a simple style prompt (0.18).

1510 Taken together, this suggests that FTPO is not pushing the model into a new semantic regime; it is
 1511 making targeted, local adjustments while keeping responses in roughly the same semantic neigh-
 1512 bourhood as the original model.

Q INFERENCE-TIME BASELINES: DRY AND XTC

We also compared our methods against two decoding-time approaches that target repetition and diversity: XTC and DRY (Weidmann, 2024b;a). The goal here is to see whether they reduce the same kind of global over-use that shows up in our slop fingerprints, not just short-range repetition.

0.1 SETUP

We use gemma-3-27b and generate 2,000 creative-writing outputs under four settings:

- baseline sampler (standard top- p /temperature),
- FTPO-finetuned model (same decoding as baseline),
- XTC sampler on the baseline model,
- DRY sampler on the baseline model.

For each setting we recompute the slop fingerprint: the top-40 most over-represented words and the top-40 most over-represented trigrams, measured as the ratio

$$\rho(p) = \frac{f_{\text{LLM}}(p)}{f_{\text{human}}(p)}$$

against the same human baselines as in the main text. We then take the average $\rho(p)$ over the top-40 words and the top-40 trigrams.

0.2 RESULTS

Table 8 summarizes the average over-use of the top-40 patterns:

Method	Top-40 words avg ratio	Top-40 trigrams avg ratio
Baseline gemma-3-27b	1439×	173×
FTPO-finetuned gemma-3-27b	394×	111×
XTC sampler (on baseline)	1267×	205×
DRY sampler (on baseline)	1442×	168×

Table 8: Average over-representation ratios (model vs human writing) for the top-40 most over-used words and trigrams, under different inference-time methods. Lower is better.

XTC and DRY do what they are designed to do locally: they reduce obvious near-term repetition and looping. But from the perspective of global over-use, they leave the slop fingerprint essentially intact. The average over-representation for the top-40 words stays in the same ballpark as the baseline, and the trigram ratios are unchanged or slightly worse.

By contrast, the FTPO-finetuned model shows a large drop in average over-use for both words and trigrams while using the same simple sampler as the baseline. This is consistent with the idea that decoding-time tricks are not enough to fix model-wide over-representation; you have to move probability mass in the weights if you want the fingerprint itself to change.

P REGEX BLOCKLIST USED FOR “NOT x , BUT y ”

regex patterns: [

```

1566  "\b(?:\w+n(?:[']t)|not\s+(?:just|only|merely|because))\s+(?:(![. ;]
1567  :?!])..){1,100}{.;:?!]\s*(?:it|they|you)(?:['](?:s|re|m))?\b(!\]
1568  \s+(?:was|were|is|are|wasn[']t|weren[']t|isn[']t|aren[']t|ain[']t|)
1569  \b)(?:\s+[*]?\s*)?(?!when\b|then\b|but\b|and\b|yet\b)(?!ri|
1570  ght\b)(?!normal\b)(?!true\b)(?!sure\b)(?!only\b)(?!still\b)(!
1571  ?!rarely\b)(?!already\b)(?!wrong\b)(?!want\b)(?!just\b)(?!cou|
1572  ldn\b)(?!could\b)(?!saw\b)(?!started\b)(?!remember\b)(?!strug|
1573  gled\b)(?!watched\b)(?!goal\b)(?!took\b)(?!kept\b)(?!reminded|
1574  \b)(?!time\b)(?!have\b)(?!acted\b)(?!smiled\b)(?!think\b)(?!|
1575  give\b)(?!grab\b)(?!gave\b)(?!turn\b)(?!justify\b)(?!\\\w+ly\b)
1576  b)(?=[a-z]{4,}\b)[a-z]+\w*",
1577  "\b(?:\w+n(?:[']t)|not)\s+(?:just|only|merely)?\s*(?:(![-]![.?!])|
1578  .){1,80}{-}{1,2}\s*\w+(?:[']\w+)?\s+",
1579  "\b(?:wasn[']t|weren[']t|isn[']t|aren[']t|ain[']t|not)\s+(?!\\b(?:mi|
1580  nute|minutes|hour|hours|day|days|year|years|second|seconds)\b)(?!|
1581  with\b)(?!even\b)(?:(![. ;?!])..){2,120}{.;:?!]\s*(?:it|they|y|
1582  ou|that)(?:\s+(?:was|were|is|are)\b(?:\s+[*_~]?\\w+[*_~]?|(?:
1583  '[')(?:s|re|m))\b(?:\s+[*_~]?\\w+[*_~]?))",
1584  "\bno\s+longer\s+(?:just|only|merely)?\s+[^.;:?!]{1,120}{.;:?!]\s|
1585  *(?:it|they|you)\s+(?:is|are|was|were)\b(?:\s+[*_~]?\\w+[*_~]?|?
1586  ?",
1587  "\b(?:wasn[']t|weren[']t|isn[']t|aren[']t|ain[']t|not)\s+(?:just|onl|
1588  y|merely)?\s*(?:(!\\bbut\b|![.?!])..){1,80}{,;:\\-]\s*but\s+(?|
1589  !\b)(?:also\s+)?"
1590  ]
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

```

1620 **Q AUTO-ANTISLOP CONFIGURATION FILE FOR GEMMA-3-12B-IT 2K**
 1621 **BANLIST SIZE**
 1622
 1623
 1624
 1625 #####
 1626 # MAIN AUTO-ANTISLOP CONFIGURATION
 1627 #####
 1628 #####
 1629 # RUN SETUP
 1630 #####
 1631 experiment_base_dir: "results/auto_antislop_runs" # Base for timestamped
 1632 run directories
 1633 human_profile_path: "data/human_writing_profile.json"
 1634 log_level: "INFO"
 1635 # Iteration 0: Generates the baseline dataset & computes slop
 1636 # strings/ngrams to ban
 1637 # Iteration 1: Generates a dataset using antislop, banning those strings
 1638 # & ngrams. Recomputes the slop strings/ngrams at the end & adds any
 1639 # new slop to the banlists
 1640 # Iteration 2+: Extra iterations catch slop that emerges after the
 1641 # initial set is banned
 1642 num_iterations: 2 # Minimum 2 iterations (this is enough to catch most
 1643 # slop)
 1644 model_id: "google/gemma-3-12b-it" # Global model id for the pipeline. Can
 1645 # be overridden on individual steps.
 1646 #####
 1647 # VLLM SERVER MANAGEMENT (Conditional: if --manage-vllm is True)
 1648 #####
 1649 manage_vllm: true
 1650 vllm_model_id: null # Model served by vLLM (if unset, will use model_id)
 1651 vllm_port: 8000
 1652 vllm_hf_token: null # Optional: Your Hugging Face token if model is gated
 1653 vllm_cuda_visible_devices: "0" # set to e.g. "0,1,2,3" for multiple gpus
 1654 vllm_gpu_memory_utilization: 0.85 # leave some room for the refusal
 1655 # classifier if you are using it (about 3gb)
 1656 vllm_max_model_len: 4500
 1657 vllm_dtype: "bfloating16"
 1658 # Additional raw CLI arguments for vLLM server, e.g.,
 1659 # ["--tensor-parallel-size", "4"] for multiple gpus
 1660 vllm_extra_args: [] # each param as a separate string, e.g.
 1661 # ["--quantization", "bitsandbytes"]
 1662 vllm_env: # env vars for the vLLM process
 1663 # VLLM_USE_V1: "1" # may be needed for amd gpus
 1664
 1665 #####
 1666 # GENERATION PARAMETERS (using antislop-vllm)
 1667 #####
 1668 generation_step_enabled: true
 1669 # --- API & Model Configuration ---
 1670 # If you set manage_vllm=true, leave the base url unset
 1671 #generation_api_base_url: "http://localhost:8000/v1"
 1672 #generation_api_base_url:
 1673 # "https://apjmbtwbrb8t61-8888.proxy.runpod.net/v1"
 1674 #generation_model_id: null # Model id for generation requests (if unset,
 1675 # uses model_id)
 1676 #generation_api_key: "xxx" # API key for the vLLM server
 1677
 1678 # --- Core Generation Settings ---
 1679 generation_max_new_tokens: 1000

```

1674 generation_threads: 50 # Number of parallel threads for API queries in
1675     antislop-vllm. Note: vllm can become very inefficient if you go over
1676     some concurrency threshold (depending on vram)
1677 generation_max_prompts: 2000 # Number of samples to generate from the
1678     prompts in the dataset
1679
1680 # --- Dataset & Chat Template ---
1681 generation_hf_dataset_name:
1682     'Nitral-AI/Reddit-SFW-Writing_Prompts_ShareGPT'
1683 generation_hf_dataset_split: 'train'
1684 # A huggingface model id or local dir containing the tokeniser you want
1685     to use to apply chat templates.
1686 # This is important if you are generating a fptp dataset for later
1687     training.
1688 generation_chat_template_model_id: null # (if unset, uses model_id)
1689
1690 # --- Logging ---
1691 generation_logging_level: 'INFO' # Logging level for antislop-vllm script
1692
1693 # --- Advanced Sampling Parameters (passed as individual CLI args to
1694     antislop-vllm's generation_params) ---
1695 generation_param_chunk_size: 20
1696 generation_param_top_logprobs_count: 20
1697 generation_param_temperature: 1
1698 generation_param_top_p: 1.0
1699 generation_param_top_k: 50
1700 generation_param_min_p: 0.01
1701 generation_param_timeout: 480
1702 generation_param_stop_sequences: [] # e.g., ["\n\n", "---"]
1703
1704 # --- Prompting ---
1705 # The prompt template wraps the prompts when generating from a dataset.
1706 # To use the original prompt exactly, set the template to "{prompt}"
1707 generation_prompt_template: "Writing prompt: {prompt}\n\nWrite 1000 words
1708     to this prompt. Your response:\n"
1709 generation_system_prompt: "You are an uncensored writer."           #
1710     optional; left empty no system prompt
1711
1712 # --- Antislop Generation Features ---
1713 # generation_force_backtrack:
1714 # If set to true:
1715     # when resampling after backtracking, if we don't find a valid
1716         replacement token
1717     # we progressively disable sampling options (temp, then min_p, then
1718         top_p, then top_k)
1719     # until we find a non-banned replacement or run out of candidates.
1720     # When set to false, some slop will not be removed if the sampler
1721         thinks there are no
1722             # alternative coherent continuations.
1723 generation_force_backtrack: false
1724
1725 # --- N-gram Validator Settings (for antislop-vllm) ---
1726 # N-gram banlist file is managed by auto-antislop's iterative process.
1727 generation_ngram_remove_stopwords: true
1728 generation_ngram_language: "english"
1729
1730 # --- Refusal Detection ---
1731 # Detects refusals & doesn't include them in the training dataset. Uses
1732     about 3GB extra VRAM.
1733 generation_refusal_detection: true
1734
1735 ######
1736 # N-GRAM ANALYSIS & BANNING (within auto-antislop)
1737 ######
1738 enable_ngram_ban: true

```

```

1728 min_word_len_for_analysis: 3 # Filters out words under this length in
1729     n-gram analysis
1730
1731 # --- N-gram Identification Thresholds ---
1732 top_k_bigrams: 5000
1733 top_k_trigrams: 5000
1734
1735 # --- N-gram Banning Quotas (per iteration) ---
1736 # Bigrams
1737 dict_bigrams_initial: 300      # How many of the top over-represented
1738                 dictionary bigrams to
1739                 # ban in the first antislop iteration.
1740                 # "Dictionary" means the bigrams were also
1741                 # found in the human
1742                 # writing corpus.
1743 dict_bigrams_subsequent: 0     # How many to ban in each subsequent
1744                 iteration
1745 nodict_bigrams_initial: 200    # "Nodict" here means the n-grams were not
1746                 found at all in the
1747                 # human corpus.
1748 nodict_bigrams_subsequent: 0
1749
1750 # Trigrams
1751 dict_trigrams_initial: 300
1752 dict_trigrams_subsequent: 0
1753 nodict_trigrams_initial: 200
1754 nodict_trigrams_subsequent: 0
1755
1756 # --- User-Defined N-gram Bans ---
1757 # User-supplied extra n-grams to always ban (processed by auto-antislop)
1758 extra_ngrams_to_ban: [
1759     # "voice barely whisper",
1760 ]
1761
1762 ######
1763 # OVER-REPRESENTED WORD ANALYSIS & BANNING
1764 #####
1765 compute_overrep_words: true
1766 top_k_words_for_overrep_analysis: 200000
1767
1768 # --- Quotas for Adding Over-represented Words to Slop Phrase banlist ---
1769 dict_overrep_initial: 920      # How many of the top over-represented
1770                 dictionary words to
1771                 # ban in the first antislop iteration.
1772                 # "Dictionary" means the words were also
1773                 # found in the human
1774                 # writing corpus.
1775 dict_overrep_subsequent: 0     # How many to ban in each subsequent
1776                 iteration
1777 nodict_overrep_initial: 80      # "Nodict" here means the n-grams were
1778                 not found at all in the
1779                 # human corpus.
1780 nodict_overrep_subsequent: 0
1781
1782 #####
1783 # SLOP PHRASE BANNING
1784 #####
1785
1786 # Slop phrases are over-represented whole phrases extracted from the
1787     generated texts.
1788 enable_slop_phrase_ban: true
1789 min_phrase_freq_to_keep: 2 # Min frequency for a new phrase from
1790     slop-forensics to be considered
1791 top_n_initial_slop_ban: 0 # New slop phrases from slop-forensics to ban
1792     in iter 0

```

```

1782 top_n_subsequent_slop_ban: 0 # New slop phrases from slop-forensics to
1783     ban in later iters
1784
1785 # --- User-Defined Slop Phrase Bans ---
1786 # User supplied list of strings to always ban
1787 # - case insensitive
1788 # To trigger a ban, the sequence must not have a word-like character
1789 #     (not punctuation or whitespace) directly on either side. That is to
1790 # say, we
1791 #     are not banning disallowed sequences that occur as substrings in
1792 # longer
1793 #     words. The exception is if the banned string is already bookended by
1794 #     a non-word character.
1795 #
1796 # Examples:
1797 #     banned string "cat"
1798 #         - won't trigger a ban for "cation"
1799 #         - will trigger a ban on "cat[morecat]"
1800 #     banned string "cat["
1801 #         - *will* trigger a ban on "cat[morecat]", because the banned string
1802 #             ends with a non-word character.
1803 extra_slop_phrases_to_ban: [
1804     # "...", "...", "rain", "tapestry", "static", "regret", "rust"
1805 ]
1806
1807 # --- Whitelisted Strings ---
1808 # These will be excluded from the list of slop strings that the pipeline
1809 # finds.
1810 # Note: special tokens in the tokenizer and parts of the chat template
1811 # are
1812 #     automatically whitelisted.
1813 whitelist_strings: [
1814     # "think", "thinking"
1815 ]
1816
1817 ######
1818 # REGEX BANNING
1819 ######
1820 # User-supplied regex patterns to ban
1821 # Note: unoptimised regex patterns can slow down antislop generation, as
1822 # they will be called often on large texts.
1823 extra_regex_patterns: [
1824     # These ones ban "it's not x, it's y" type patterns:
1825
1826     #"\b(?:\w+n(?:[']t)|not)\s+(?:just|only|merely|because))\s+(?:(![.]
1827     ;:?!])..){1,100}?[.;:?!]\s*(?:it|they|you)(?:[''](?:s|re|m))?\b(?:!
1828     \s+(?:was|were|is|are|wasn['']t|weren['']t|isn['']t|aren['']t|ain['']t
1829     )\b)(?:\s*[*]\s*)?(?!when\b|then\b|but\b|and\b|yet\b)(?!right\b)
1830     (?!normal\b)(?!true\b)(?!sure\b)(?!only\b)(?!still\b)(?!rarely\b)
1831     (?!already\b)(?!wrong\b)(?!want\b)(?!just\b)(?!could\b)(?!saw\b)
1832     (?!started\b)(?!remember\b)(?!struggled\b)(?!watched\b)(?!goal\b)
1833     (?!took\b)(?!kept\b)(?!reminded\b)(?!time\b)(?!have\b)(?!acted\b)
1834     (?!smiled\b)(?!think\b)(?!give\b)(?!grab\b)(?!gave\b)(?!turn\b)
1835     (?!justify\b)(?!w+ly\b)(?=[a-z]{4,}\b)[a-z]+\w*",
1836
1837     #"\b(?:\w+n(?:[']t)|not)\s+(?:just|only|merely)?\s*(?:(![-]![.?!])..){1,80}?[-]{1,2}\s*\w+(?:['']\w+)?\s+",
1838
1839     #"\b(?:wasn['']t|weren['']t|isn['']t|aren['']t|ain['']t|not)\s+(?:!|\b(?:!
1840     inute|minutes|hour|hours|day|days|year|years|second|seconds)\b)(?!with\b)
1841     (?!even\b)(?:(![.?!])..){2,120}?[.;:?!]\s*(?:it|they|you|that)(?:\s+(?:was|were|is|are))\b(?:\s+[*_?]\w+[*_?])?|(?:
1842     [''](?:s|re|m))\b(?:\s+[*_?]\w+[*_?])?",
```

```

1836     #"\bno\s+longer\s+(?:just|only|merely)?\s+[^.;:?!]{1,120}{.;:?!}\b\b
1837     s*(?:it|they|you)\s+(?:is|are|was|were)\b(?:\s+[*_~]?\\w+[*_~]?|_
1838     )?" ,
1839
1840     #"\b(?:wasn[']t|weren[']t|isn[']t|aren[']t|ain[']t|not)\s+(?:just|on_
1841     ly|merely)?\s*(?:(!\\bbut\\b|[^.?!]).){1,80}?[,;:\\-]\\s*but\\s+(_
1842     ?!I\\b) (?:also\\s+)?"
1843 ]
1844 #####
1845 # FINETUNING
1846 #####
1847 finetune_enabled: true
1848
1849 # --- General Finetuning Setup ---
1850 finetune_use_unsloth: false
1851 finetune_mode: "ftpo" # ftpo | dpo-final-token (final token preference
1852     optimisation)
1853 finetune_ftpo_dataset: "" # you can specify an existing ftpo dataset,
1854     or leave unset to let the
1855         # pipeline use the one produced in the
1856             generation step
1857 finetune_base_model_id: null # Base model for DPO (if unset, uses
1858     model_id)
1859 finetune_max_seq_length: 2500 # this may truncate some outputs
1860 finetune_load_in_4bit: true # qlora
1861
1862 # --- Early Stopping ---
1863 finetune_early_stopping_wins: 0.85 # Early stopping threshold for
1864     fraction of *chosen* completions that are selected over *rejected*.
1865         # More than 0.85 may be overtrained.
1866             Set to > 1.0 to disable early
1867                 stopping.
1868 finetune_early_stopping_loss: null # Loss threshold for early stopping.
1869     Set to null to disable.
1870
1871 # --- LoRA Configuration ---
1872 finetune_lora_r: 256 # the ftpo trainer works best with a high lora rank
1873 finetune_lora_alpha: 256
1874 finetune_lora_dropout: 0.05
1875 finetune_weight_decay: 0.01
1876 finetune_target_modules: ["up_proj", "down_proj", "lm_head"]
1877
1878 # --- Layer Freezing ---
1879 finetune_freeze_early_layers: true
1880 finetune_n_layers_unfrozen: 5
1881
1882 # --- Training Process ---
1883 finetune_gradient_checkpointing: "unsloth"
1884 finetune_chat_template: "" # e.g. "gemma-3" -- get the chat template from
1885     unsloth's helper if required, otherwise leave the string blank to use
1886         the tokeniser's chat template
1887 finetune_batch_size: 3
1888 finetune_gradient_accumulation_steps: 5
1889 finetune_warmup_ratio: 0.1
1890 finetune_num_epochs: 1
1891
1892 # --- Learning Rate ---
1893 finetune_learning_rate: 0.000001
1894 finetune_auto_learning_rate: true # true: automatically determine
1895     learning rate based on dataset size, effective batch size & lora rank
1896 finetune_auto_learning_rate_adjustment_scaling: 0.08 # scale the auto-lr
1897     by this factor

```

```

1890 # --- DPO/FTPO Specific ---
1891 finetune_beta: 0.1 # DPO beta
1892
1893 # --- Output & Saving ---
1894 finetune_output_dir_suffix: "_ftpo_exp01" # Appended to experiment run
1895     dir
1896 finetune_save_merged_16bit: true
1897 finetune_save_gguf_q8_0: false
1898
1899 # --- Dataset Handling for Finetuning ---
1900 finetune_max_train_examples: 12000 # adjust as needed
1901 finetune_shuffle_seed: 42
1902
1903 # --- FTPO Sample Regularization ---
1904 # 0 = off; 0.9 strongly downsamples overrepresented rule violations
1905 # (this is useful because the raw generated dataset is typically very
1906     skewed)
1907 ftpo_sample_rejected_regularisation_strength: 0.8
1908 ftpo_sample_chosen_regularisation_strength: 0.2
1909 ftpo_sample_min_chosen_tokens: 4 # filter out ftpo samples that have
1910     fewer than this number in the chosen tokens list
1911
1912
1913 # FTPO-specific hyper-parameters
1914 # Leave any of these out (or set to null) to fall back to FTPOTrainer
1915     defaults.
1916
1917 # Loss terms are computed separately for the target (chosen + rejected)
1918     tokens vs the remainder of the vocab.
1919 # This is because we want to allow more freedom of movement for the
1920     target tokens.
1921
1922 # MSE loss term 1: light mse loss applied tokenwise on target tokens
1923 ftpo_lambda_mse_target: 0.05 # Strength of MSE loss tether on the
1924     individual logits in the
1925             # chosen+rejected set vs
1926             # reference.
1927 ftpo_tau_mse_target: 0.5      # Grace bandwidth (logits) before the
1928     above MSE loss kicks in.
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

```