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ABSTRACT

Repetitive lexical patterns in LLM output, termed “slop,” degrade writing qual-
ity through over-use and make AI-generated text immediately recognizable. We
present Antislop, a comprehensive framework providing tools to both detect and
eliminate these overused patterns. Our approach combines three innovations: (1)
The Antislop Sampler, which uses backtracking to suppress unwanted strings at
inference time without destroying vocabulary; (2) An automated pipeline that
profiles model-specific slop against human baselines and generates training data;
(3) Final Token Preference Optimization (FTPO), a novel fine-tuning method
that operates on individual tokens, surgically adjusting logits wherever a banned
pattern has appeared in an inference trace. We demonstrate that some slop pat-
terns appear over 1,000× more frequently in LLM output than human text. The
Antislop Sampler successfully suppresses 8,000+ patterns while maintaining qual-
ity, whereas token banning becomes unusable at just 2,000. Most importantly,
FTPO achieves 90% slop reduction while maintaining or improving performance
in cross-domain evals including GSM8K, MMLU, and creative writing tasks. In
contrast, DPO suffers significant degradation in writing quality and lexical diver-
sity despite achieving weaker suppression. We release all code and results datasets
under MIT license.

1 INTRODUCTION

Language models have ushered in an era of slop: Repetitive words and phrases that are instantly
recognizable as AI generated text(Wu et al., 2025). In creative writing, the ubiquitous Elara always
speaks with ”voice barely above a whisper”. In functional writing, we see ”it’s not just X, it’s Y”
patterns appearing everywhere; far more often than they would in human writing. In our tests, we
find that these patterns occur thousands of times more frequently in LLM text than in human writing,
leading to the perception of repetition and over-use – i.e. slop.

Existing approaches to suppress unwanted patterns are brittle or ineffective. Token banning creates
collateral damage– for instance, if we wish to ban ”catatonic” and it tokenizes to [”cat”, ”atonic”],
we will have banned all words that tokenize firstly to ”cat”. Instructing the model to avoid a set of
banned vocabulary has limited efficacy and may induce a backfire effect due to the ”Pink elephant
problem” (Castricato et al., 2024).

We present the Antislop Sampler: it detects unwanted patterns during generation – words, phrases,
and regex patterns – then backtracks to the pattern’s first token, reduces its probability, and resam-
ples. Our sampler can suppress 8,000 patterns with configurable strength (from soft discouragement
to hard banning), without degrading output.

To train slop suppression into the model, we present Final Token Preference Optimization
(FTPO), a training algorithm designed to surgically suppress slop with minimal collateral damage to
the model. Teaching a model to disprefer its most preferred tokens requires large logit adjustments,
which can damage the model. Our FTPO trainer implements several ”soft-touch” mechanisms to
minimize deviations from the reference weights. We measure substantial improvements over DPO
and token banning on banlist suppression rates, lexical diversity and impact on writing quality.
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We release all code and results datasets under MIT license.

2 RELATED WORK

Degeneration in text outputs was highlighted by Holtzman et al. (2020), who showed that maximum-
likelihood decoding (e.g. beam search) can lead to bland, looping text. Stochastic decoding strate-
gies like top-k, top-p (nucleus sampling), and min-p (Nguyen et al., 2025) have since been adopted
to increase diversity and reduce incoherent outputs. Nonetheless, these strategies do not directly
address repetitive writing tendencies in otherwise coherent outputs. Studies have found that rein-
forcement learning from human feedback (RLHF) can significantly reduce output diversity com-
pared to a supervised baseline (Kirk et al., 2024), and similar effects have been documented for
other alignment fine-tuning methods (O’Mahony et al., 2024; Murthy et al., 2024). Even the use
of rigid chat-format templates can suppress creativity, a phenomenon dubbed diversity collapse in
LLMs (Yun et al., 2025).

Several recent samplers attempt to improve creativity and diversity while suppressing repetition.
XTC (Exclude Top Choices) removes the current highest-probability tokens above a threshold (Wei-
dmann, 2024b), and DRY (Don’t Repeat Yourself) prevents repetition of sequences that have already
occurred verbatim in the text multiple times (Weidmann, 2024a). These methods encourage se-
lection of lesser-used continuations and reliably prevent local looping, but in our experiments they
leave the global over-representation profile of words and trigrams essentially unchanged (App. O).

Beam-search methods exclude forbidden words or phrases by pruning any beam that would produce
them. Efficient variants use tries and a fixed beam budget to enforce both positive and negative
constraints (Hu et al., 2019). A recent benchmark compares decoding-time and training-time ap-
proaches, and notes that models can still slip around bans with small spelling changes or closely
related word forms; they also test simple fixes to reduce this (Jon et al., 2023).

A similar approach by Zhang et al. (2025) trains a model to deploy a special [RESET] token when
unsafe content is detected in the inference trace, triggering backtracking and a retry of the current
sentence. Work by Roush et al. (2022) further explored lexical filtering at inference time. Their
plug-and-play method enforced constraints (such as omitting the letter e in a lipogram) without
fine-tuning the model.

Welleck et al. (2020) introduced an unlikelihood training objective that penalizes undesirable con-
tinuations (e.g., repeated tokens or n-grams) by adding a negative log-probability term for explicitly
marked “negative” events, and Li et al. (2020) extended this idea to dialogue generation. In this
formulation, the core mechanism is a generic loss on disfavored tokens, while two key ingredients
are left open: how to construct the dataset of negative events (which contexts and spans should be
treated as slop, repetition, or otherwise undesirable), and what complementary “positive” objective
should be paired with the unlikelihood term (e.g., standard MLE, task-specific supervision, or pref-
erence data). Our methods can be viewed as making concrete choices for both of these aspects in
the context of over-represented stylistic patterns in LLMs.

Our work closely connects to preference-optimization methods like Direct Preference Optimization
(Rafailov et al., 2023), which align the model on preference pairs without relying on reward models.
However, DPO has known failure modes, including lowering the likelihood of preferred responses,
inducing diversity collapse and reducing syntactic and n-gram variety in outputs (Razin et al., 2024;
Lanchantin et al., 2025; Shypula et al., 2025). To counter this, FTPO uses multi-term regularization
similar to RLHF’s KL penalty (Stiennon et al., 2020).

3 FORENSIC ANALYSIS OF OVER-REPRESENTED PATTERNS

3.1 QUANTIFYING SLOP

To identify over-used patterns in LLM outputs, we analyze the statistical overrepresentation of
words, bigrams (n = 2) and trigrams (n = 3) versus human text. We limit our analysis to n ≤ 3 due
to practical constraints: with n ≥ 4, patterns typically appear fewer than 5 times across our 2,000
generated samples.
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For each model, we generate 2,000 outputs using creative writing prompts from Reddit (Nitral-AI,
2024) and compute frequency ratios:

ρ(p) =
fLLM (p)

fhuman(p)

where fLLM (p) and fhuman(p) represent the frequencies of pattern p in LLM and human corpora
respectively. Our human baseline combines wordfreq (Speer et al., 2018) for individual words and
a curated corpus of Reddit creative writing and Project Gutenberg texts for n-grams. For n-gram
processing, we remove stop-words. We treat a pattern p as over-represented when its ratio exceeds
1.0, adding the most over-represented subset of these to the banlist.

By collating a list of the highest over-represented words and n-grams, we produce a ”slop finger-
print” of the model’s unique tendencies.

3.2 EMPIRICAL FINDINGS

Table 1 reveals the severity of the problem. With gemma-3-12b, certain patterns show extreme
overrepresentation:

Word Ratio Trigram Ratio
elara 85,513× heart hammered ribs 1,192×
unsettlingly 3,833× voice trembling slightly 731×
shimmered 2,882× said voice devoid 693×
stammered 2,043× felt profound sense 550×

Table 1: Top overrepresented patterns in gemma-3-12b outputs, and their frequency ratio relative
to human baseline.

The name “Elara” appears 85,513 times more frequently in gemma-3-12b’s creative writing out-
puts than in human text, while the trigram “heart hammered ribs” shows 1,192× overrepresentation.
We find similar ratios of over-use in other models tested (Mistral-small-3.2 and Llama-3-3-70b).
Slop fingerprints cluster strongly within model families, but differ substantially between model fam-
ilies (Appendix L), warranting a model-specific approach to slop identification and suppression.

Our analysis reveals several distinct categories of slop. Models fixate on specific character names
(“Elara”, “Kael”), sensory clichés (“voice barely above a whisper”), intensifiers (“a profound sense”)
and a go-to set of overused descriptives (“unsettlingly”, “shimmered”). We also count sentence-level
constructions of the form “It’s not X, it’s Y” to be 6.3× more prevalent than human writing in some
models (Figure 8).

4 THE ANTISLOP SAMPLER

The Antislop Sampler provides inference-time suppression of unwanted patterns. It can suppress
individual words (“tapestry”), multi-word phrases (“voice barely above a whisper”), and complex
patterns defined by regular expressions (“It’s not X, it’s Y”). Unlike token banning, which triggers
on the first token of a banned sequence and is prone to false positives, our sampler waits until the
entire sequence appears in the inference trace before triggering a ban.

4.1 BACKTRACKING MECHANISM

During generation, we maintain a trace of all tokens and their logit distributions. After each new
token (or chunk of inference), we scan for banned patterns. When detected, we backtrack to the
position where the pattern began and lower the initiating token’s probability by: pnew = pold ·
10−10s where 0 ≤ s ≤ 1.0 is the configurable ban-strength parameter. We then renormalize
the modified distribution so that it again sums to one, p′i = pi/

∑
j pj , and resample using min-p

filtering with a fixed threshold of 0.1 to constrain the distribution to coherent candidates. If, after its
probability is reduced, the same token is sampled again, the sampler ignores this violation in future
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[  heart   warning   voice]

Elara called out, her voice barely above a whisper
A banned pattern is detected (string,

n-gram or regex), triggering
backtracking

Elara called out, her [  voice   heart   warning] Apply logprob penalty to first token
in the banned string and resample

from top-k (after min-p filtering)

Elara called out, her heart... Inference continues.

(1)

(2)

(3)

Figure 1: The Antislop backtracking mechanism detects unwanted patterns in the inference trace,
backtracks to the first token of the banned sequence, lowers its probability, then resamples.

checks to avoid infinite loops. This ability to allow banned patterns through if they are high enough
probability is a key part of our implementation, which we term ”soft-banning”.

Algorithm 1 Antislop Backtracking

1: while generating tokens do
2: generate token t
3: if banned pattern detected then
4: backtrack to pattern start
5: reduce probability
6: resample with min-p
7: end if
8: end while

4.2 SOFT BANNING: CONFIGURABLE SUPPRESSION STRENGTH

Imposing a hard-ban on a word or pattern can cause problems with coherence when there are no good
alternatives. Our soft-banning mechanism provides incremental control through the ban-strength
parameter s. When s = 0, patterns are allowed freely. Values between 0 and 1 provide incremental
suppression of the banlist, while s = 1 enforces complete blocking.

For example, this approach allows us to generally suppress the word “tapestry” while still per-
mitting its use when directly requested in the prompt: “Write an essay about tapestries”. At
ban-strength < 1.0, banned patterns are still allowed through when their probability is high
enough compared to the next highest token. See Appendix A for a worked example.

4.3 IMPLEMENTATION AND LIMITATIONS

The sampler is implemented two ways: a single-threaded HuggingFace Transformers with stream-
ing support, and a higher-throughput multithreaded OpenAI-API-compatible version for production
inference platforms like vLLM (Kwon et al., 2023).

The sampler suppresses patterns without fine-tuning but reduces throughput. Each backtracking
event restarts inference at a prior position, and this may occur hundreds of times per generation with
large banlists. In practice, this reduces throughput by 69% up to 96% in worst cases, depending
on banlist size (detailed performance analysis in Appendix C). For applications requiring maximum
inference speed, this overhead motivates our complementary approach: using the sampler’s outputs
to train permanently improved models via FTPO.

5 FINAL TOKEN PREFERENCE OPTIMIZATION (FTPO)

We develop Final Token Preference Optimization (FTPO), a training method that permanently sup-
presses unwanted patterns with minimal degradation to model output. Suppressing slop is nontrivial
because it requires large updates to the model’s most preferred patterns, reducing their probabil-
ity until other continuations are preferred. These large shifts can easily damage the model, leading
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to degradation or model collapse. Our trainer approaches this delicate procedure by incorporating
several strategies to constrain logits to the reference, while avoiding collateral damage.

FTPO trains on just a single continuation token at the end of an incomplete inference trace. A
final-token preference pair consists of three parts:

(1) The prompt, including the chat template and the model’s response up to the point a banned
sequence appeared.
Prompt: ”# User: Write me a story. # Assistant: Once upon a time, Princess”

(2) A single rejected continuation token, corresponding to the first token of the banned sequence.
Rejected: "Elara"

(3) A set of chosen coherent alternative continuation tokens.
Chosen: ["Madelyne", "Nadia", "Freya", "Isolde"]

"The sky was a tapestry
of color"

Identify overused
patterns in baseline

model

Rejected: "tapestry"
Chosen: ["cascade",
"brilliant", "crimson"]

Generate preference
dataset with Antislop

Sampler

The sky was a
↓tapestry
↑cascade
↑brilliant
↑crimson
=purple
=bagel

FTPO trains model
to suppress slop

and prefer coherent
alternative tokens

with minimal collateral
damage

Figure 2: Pipeline for identifying and suppressing
overused writing patterns in a language model.

In our implementation, each final-token prefer-
ence pair is instantiated at a single backtrack-
ing event of the Antislop sampler: we cache
the top-k logits at that position (with k = 20),
remove the rejected token from this candidate
set, renormalize over the remaining tokens, and
sample 4–8 distinct, high-probability alterna-
tives to form the chosen set C.

5.1 LIMITATIONS
OF DIRECT PREFERENCE OPTIMIZATION

Direct Preference Optimization (DPO)
(Rafailov et al., 2023) can also train on
final-token pairs to suppress slop like FTPO.
However, DPO is limited to updating a single
chosen token per training sample, unlike FTPO
which can update a set of preferred tokens in
one step.

More importantly, DPO’s primary hyperparameter for constraining updates (β) is a coarse tool,
impairing learning at high values and causing model degradation by allowing large logit movements
at low values (Wu et al., 2024).

5.2 THE FTPO FORMULATION

FTPO implements several mechanisms to constrain logits to reference, with a two-part regulariza-
tion allowing larger shifts for chosen and rejected logits, relative to the remaining vocab. The loss
function is formulated as such: At the final position in the inference trace, define token r (rejected)
and chosen alternatives C. We optimize three loss objectives:

Preference loss with margin. We enforce that chosen tokens exceed the rejected token’s logit by
margin m:

Lpref =

∑
c∈C wc · softplus((m−∆c)/τ)∑

c∈C wc
(1)

where ∆c = y[c] − y[r] is the logit gap between chosen and rejected, and the weight wc =
clamp((m−∆c)/m, 0, 1) deactivates the loss when the margin is achieved (Figure 15).

Target regularization. We tether chosen and rejected (”target”) logits to reference values yref
from the frozen base model at the same position, calculating MSE loss directly on logit deltas (not
logprobs). A zero-penalty window

Ltarget =
1

|T |
∑
j∈T

max(|y[j]− yref [j]| − τtarget, 0)
2 (2)

5
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where T = C ∪ {r} contains all target tokens. To avoid redundant forward passes, we compute and
cache yref during the data-generation step and reuse these cached logits during FTPO training.

Non-target regularization. We strongly anchor the remaining vocabulary to prevent distribution
drift:

Lnontarget =
1

|N |
∑
j∈N

(y[j]− yref [j])
2 (3)

where N represents all non-target tokens.

The total loss, incorporating weighting coefficients λtarget and λnontarget:

LFTPO = Lpref + λtargetLtarget + λnontargetLnontarget (4)

All FTPO results in this paper use a single default configuration: a margin of m = 2.0 logits in the
preference term, a target tether of λtarget = 0.05 with zero-penalty window τtarget = 0.5, and a
non-target tether of λnontarget = 0.4 (see App. E).

5.3 KEY DESIGN PRINCIPLES

Three design choices make FTPO effective for targeted suppression of unwanted patterns:

Logit-space operation. With large logit updates to chosen and rejected, probability mass gets
redistributed substantially after softmax, which would impose compensatory pressure on unrelated
(non-target) logits if we were to use KL-loss as our regularizer. By using MSE loss on logits instead,
we avoid this collateral pressure, localizing updates to just the logits we care about, i.e. the chosen
& rejected.

Margin-based deactivation. The weight wc automatically reduces to zero when chosen tokens win
by margin m, preventing overtraining. This self-limiting behavior maintains model stability even
with extended training to high preference accuracy.

Two-part regularization. The two-part MSE loss allows target logits to move relatively freely,
while constraining the remaining vocabulary to the reference. This allows training to high preference
accuracy while avoiding destructive logit divergences.

5.4 AUTOMATED TRAINING DATA GENERATION

The Antislop Sampler provides an effective mechanism for generating training data for FTPO. At
each backtracking event, we capture a preference pair at the exact position where a banned sequence
would begin: the rejected token that initiated the unwanted pattern versus chosen viable alternatives
from min-p filtering (Figure 2). This allows us to build an end-to-end automated pipeline to identify
a model’s overused patterns, generate a targeted preference training set, and train the model with
FTPO to suppress these patterns. We release this automated pipeline open-source.

6 EXPERIMENTAL EVALUATION

6.1 EXPERIMENTAL SETUP

Models We evaluate on three model families to represent different architectures and scales:
gemma-3-12b, Mistral-Small-3.2, and Llama-3.3-70B.

Datasets We utilize distinct data subsets for training and evaluation to ensure no data leakage:

• Slop Profiling Training: We use 2,000 prompts from the Reddit Writing Prompts dataset
(Nitral-AI, 2024) to generate the model’s “slop fingerprint” and synthesize the FTPO train-
ing data.

• Evaluation: We evaluate on a hold-out set of writing prompts. To test out-of-distribution
generalization, we also evaluate on the EQ-Bench Creative Writing prompts (Paech, 2023).

6
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• Human Baseline: To calculate over-representation ratios, we utilize wordfreq (Speer et al.,
2018) for single words and a curated corpus of Project Gutenberg texts for n-gram statistics.

Metrics Our primary metrics measure suppression efficacy, impact on lexical diversity and writing
quality. We include MMLU and GSM8K to assess impact on out-of-domain tasks.

Banlist Suppression Rate: The percentage reduction in the frequency of banned patterns appearing
in outputs relative to the baseline model.

Writing Quality Rubric: A GPT-5-as-Judge evaluation on a 0-100 scale, assessing coherence,
grammar, style, and formatting artifacts (see Figure 11).

Lexical Diversity: An aggregate, length-controlled metric combining MATTR-500, Root-
TTR, HD-D, and Distinct-n scores, normalized to the baseline model
(100).

MMLU: 5-shot evaluation of STEM and cross-domain knowledge (Hendrycks
et al., 2021).

GSM8K: 8-shot evaluation of grade-school math reasoning (Cobbe et al., 2021).
Longform Writing: A 30k-token multi-turn story generation task judged by Claude-3.5-

Sonnet, specifically designed to detect repetitive loops and degradation
in extended contexts (Paech, 2025).

Methods Compared. We evaluate four approaches: (1) token banning with logit bias -100, (2)
Antislop Sampler with configurable ban-strength s, (3) FTPO fine-tuning, and (4) DPO fine-tuning
on identical preference pairs. We test banlist sizes of 2k, 4k, and 8k patterns to assess scalability.

Training Details. Our primary experiments train gemma-3-12b with FTPO and DPO at banlist
sizes 2k, 4k and 8k. FTPO uses the hyperparameter configuration specified in Appendix Q. DPO
uses β = 0.1. To minimize perturbation of the original weights, we freeze all layers except the
last 5 and lm head. We train a high-rank LoRA (Hu et al., 2021) with r between 128 and 512. We
find these high ranks allow higher preference accuracy targets to be reached with lower degradation.
Both methods train for 1 epoch with early stopping at target suppression rates. For the preference
accuracy ablation (6.4), learning rate is scaled such that both methods reached the early stopping
targets at approximately the same number of training samples processed.

6.2 MAIN RESULTS: SUPPRESSION PERFORMANCE VS. WRITING QUALITY

80 85 90 95 100
Banlist Suppression (%)
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2k
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4k8k

2k4k
8k

2k

4k
8k

Token Banning
FTPO Finetuned
Antislop Sampler
DPO Finetuned
Gemma3-12b Baseline

Figure 3: Our methods (Antislop Sampler and FTPO) out-
perform DPO and token banning for effective suppres-
sion of gemma-3-12b’s overused patterns, with negligible
quality degradation. We test with a range of banlist sizes
from 2,000 to 8,000 banned items. Error bars are CI95.

Figure 3 visualizes the performance in
banlist suppression for each method,
plotted against output degradation as
measured by our writing rubric. The
Antislop Sampler achieves perfect sup-
pression (100%) while actually im-
proving writing quality above baseline.
FTPO maintains quality within 1% of
the baseline performance of gemma-3-
12b, while achieving 83-92% suppres-
sion rates.

In contrast, DPO and token banning
show marked quality degradation. DPO
drops 6-15 points in writing quality de-
spite achieving only 80-82% suppres-
sion. Token banning collapses even
more severely, with quality falling to
28 (out of 100) at 8k patterns. In prac-
tice, this degradation manifests as se-
vere repetition, spelling and grammar
artifacting, and incoherence.

We evaluate on a non-overlapping sub-
set of 1,000 prompts from the same
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Reddit Writing Prompts dataset (Nitral-AI, 2024) and observe similar patterns on an out-of-
distribution EQ-Bench Creative Writing set (Figure 10).

We also train gemma-3-27b on mixed-domain prompts (essays and creative writing), achieving 83%
banlist suppression with no degradation in longform writing quality.

Key Result: FTPO achieves 90% suppression with < 1% quality loss, while DPO achieves 80%
suppression with 15% quality degradation.

6.3 FTPO VS DPO: DETAILED COMPARISON

FTPO maintains strong suppression across models with minimal degradation (Table 2). The Key
Findings: FTPO suppresses 90+% of slop in creative writing outputs for banlist sizes <= 4, 000
items, causing negligible impact on writing quality metrics, lexical diversity and math/STEM bench-
marks.

Suppression effectiveness. FTPO achieves 8.5% stronger suppression than DPO at equivalent train-
ing settings.

Capability preservation. FTPO maintains math reasoning on GSM8k and world-knowledge capa-
bilities on MMLU within 1-3% of baseline. DPO degrades both metrics by 2-5%.

Long-form generation. The difference is most dramatic in the longform creative writing test, since
repetition and other degradation modes are exacerbated in extended multi-turn generation. Our
FTPO-trained models cluster around the baseline gemma3 score for 2k, 4k and 8k banlist sizes;
while DPO experiences a large degradation in quality.

Lexical diversity. FTPO maintains or enhances diversity (95-102% of baseline), while DPO causes
progressive collapse (74-92%). This confirms our hypothesis: DPO has collateral effects on proba-
bility distributions, while FTPO’s precise adjustments preserve vocabulary diversity.

This pattern holds from 12B to 70B parameters, demonstrating that FTPO generalizes across ar-
chitectures. Some models are more sensitive to preference training and prone to repetition and
artifacting; for Llama-3.3-70B we restrict LoRA updates to lm head to avoid repetition, at the cost
of a lower suppression rate of 66%.

To verify that FTPO is not simply trading one set of slop for another or drifting semantically, we re-
profile each model’s “slop fingerprint” (top over-represented words and n-grams relative to a human
baseline) and run a cosine-distance embedding analysis. After FTPO, average over-use of these
patterns drops sharply instead of being replaced by a new set of equally extreme over-used patterns,
and embedding distances to the baseline remain only modestly above natural sampling variability
and far below a simple style-prompt shift (App. M, App. N).

Table 2: FTPO & DPO evaluation results for models fine-tuned to suppress a range of banlist sizes
from of 1k to 8k items.

experiment mmlu gsm8k longform writing qual diversity ban %

gemma-3-12b baseline 0.590 0.888 51.3 67.80 100.00 0.00
gemma-3-12b FTPO 2k (Ours) 0.559 0.876 47.5 68.93 101.05 92.39
gemma-3-12b FTPO 4k (Ours) 0.565 0.880 49.4 67.31 97.68 90.15
gemma-3-12b FTPO 8k (Ours) 0.592 0.889 52.3 67.49 95.09 83.40
gemma-3-12b DPO 2k 0.541 0.847 36.6 62.98 91.03 82.00
gemma-3-12b DPO 4k 0.549 0.861 34.8 58.24 81.92 80.64
gemma-3-12b DPO 8k 0.571 0.864 26.9 54.61 73.92 81.44
Mistral-Small baseline 0.812 0.900 56.03 72.93 100.00 0.00
Mistral-Small FTPO 1k (Ours) 0.811 0.895 58.38 74.60 102.10 89.46
Llama-3.3-70B baseline 0.801 0.929 36.77 64.34 100.00 0.00
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Llama-3.3-70B FTPO 1k (Ours) 0.799 0.923 35.57 63.16 99.66 66.41

6.4 ROBUSTNESS TO OVERTRAINING

Compared with DPO, FTPO can train to a higher preference accuracy target on final-token prefer-
ence pairs before degradation or model collapse occurs. FTPO is designed to precisely alter only the
logits needed, switching off the training signal when chosen logits are winning by a given margin
over rejected. DPO lacks these ”soft-touch” features, resulting in chosen/rejected logits continuing
to diverge as training progresses.

0 20 40 60 80 100
Preference accuracy

20

30

40

50

60

70

80

W
rit

in
g 

Qu
al

ity
 R

ub
ric

 (0
10

0)

FTPO
DPO

(a) FTPO maintains writing
quality as training progresses to

higher pref accuracies, while DPO
degrades sharply after the 40%

accuracy mark. This experiment
trains gemma-3-12b on a banlist

of 1,000 items.

40 60 80 100
Preference accuracy

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Lo
gi

t d
iv

er
ge

nc
e 

fro
m

 re
fe

re
nc

e FTPO

40 60 80 100
Preference accuracy

DPO

chosen rejected other

(b) With FTPO, logits stay close to reference due to (1) the MSE
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continues. We posit this to be the main cause of FTPO’s
minimal degradation vs DPO.

Figure 4: (a) Impact on writing quality from training to high preference accuracy targets; (b) Logit
divergence from reference as training progresses.

When training gemma-3-12b to increasing preference accuracy targets, we find FTPO can train
to nearly 100% preference accuracy with minimal degradation, while DPO only manages 40%,
after which substantial degradation occurs (Figure 4a). Increasing DPO’s β hyperparameter to 1.0
mitigates this degradation, but impairs learnability, reducing ban suppression by 15.9% (Figure 9).
We posit that FTPO’s mechanisms for constraining logits to the reference while allowing freedom
of movement of target logits are the primary reasons it outperforms DPO on this task.

6.5 REGEX BANS

The Antislop Sampler can also target sentence-level patterns using regex bans. The ”It’s not X,
it’s Y” construction is a recurring stylistic pattern that uses different words in each instance but
follows some recognisable archetypes. We define these archetypes as regex patterns in Appendix P.
In qwen3-4b, these patterns appear extremely frequently, at a rate of 1.10 occurrences per 1,000
characters (Appendix D). With the Antislop Sampler enforcing a regex ban, the frequency drops to
exactly zero. This demonstrates that the sampler can suppress structural templates—patterns where
the specific vocabulary varies but the underlying syntactic form remains constant.

6.6 FTPO HYPERPARAMETER ABLATIONS

The FTPO trainer exposes hyperparameters to tune the strength of the MSE loss tether to the refer-
ence, and also the margin specifying where gradients turn off for winning chosen logits. We train
gemma-3-12b on hyperparameter ranges outside the defaults, observing poor preference accuracy
and degradation at these sub-optimal values, and thus demonstrating the efficacy of these FTPO
safeguards (Appendix E).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 DISCUSSION

Antislop Sampler achieves 100% suppression of over-used patterns without quality loss. FTPO
outperforms DPO on our measured metrics, even for 30,000-token generations.

Detecting complex semantic patterns, such as metaphor overuse or narrative tropes—is fundamen-
tally harder than matching n-grams. These high-level repetitions evade simple lexical filters. Al-
though methods like embedding-based clustering or syntactic parsing could identify them, they are
currently too expensive to run inside a training loop. We therefore focus on mechanical detection
because it is tractable and captures the majority of artifacts, though we acknowledge that measuring
abstract stylistic repetition remains a difficult challenge for the field.

There are limitations and tradeoffs to our methods: Antislop Sampler reduces throughput by 69-
96% with vLLM at banlist sizes of 1,000 to 8,000 respectively, due to the frequency of backtracking
events. In performance-sensitive deployments, this is a clear incentive to prefer a solution that trains
suppression into the weights.

Anticipating these downstream needs, we develop a pipeline that automatically profiles a model’s
overused writing patterns, generates a training set, and trains the model to suppress these patterns.
Our FTPO trainer is designed to make targeted adjustments to the model’s over-used writing ten-
dencies with minimal changes to its distribution otherwise. We hypothesize that FTPO’s minimal
degradation compared to DPO is primarily due to its multi-part loss tethering to reference logits,
and zeroing of gradient updates when chosen tokens are winning versus rejected.

We encourage future work to explore Antislop’s performance in domains other than creative writ-
ing, human-rater replication of quality metrics, AI generated text detection, and suppression of toxic
text.

Decoding-time diversity methods such as top-k, top-p/nucleus, min-p, temperature schedules, and
more recent proposals like XTC, DRY, Mirostat, and top-nσ primarily manipulate the candidate set
or its entropy without changing the local rank ordering of the few tokens that actually trigger stereo-
typed phrasing. This explains their mixed success against ”slop”: they either (i) widen exploration
and let more low-probability garbage through or (ii) prune more aggressively and entrench the same
high-probability modes. By contrast, the AntiSlop sampler is sequence-aware and intervenes exactly
at the moment a banned pattern would begin, backtracking to the initiating token and reshaping the
immediate continuation by resampling from cached top-logprob candidates. FTPO then converts
that intervention into a durable, local preference change by enlarging the logit margin between the
offending token and viable alternatives while keeping the rest of the vocabulary tightly tethered to
reference logits. Empirically, this division of labor yields robust suppression with minimal collat-
eral damage: the sampler guarantees enforcement at inference; FTPO makes the model want the
alternative even when the sampler is disabled.

8 CONCLUSION

We introduced a framework for eliminating overused stylistic patterns (”slop”) in LLM outputs while
preserving capabilities on our evaluated benchmarks. The Antislop sampler performs sequence-
level enforcement with a backtracking resample that preserves coherence, supports hard and soft
bans, and can suppress string and regex patterns. Our automated pipeline extracts model-specific
slop fingerprints by comparing the model’s overused writing patterns against human baselines, then
synthesizes a preference dataset without human intervention. Final Token Preference Optimization
(FTPO) trains the model on these pairs, making suppression permanent. Across our tests, FTPO and
the sampler achieved higher suppression than DPO and logit-based token banning, with negligible
measurable quality loss on our rubric. We release code and datasets under the MIT license.

AI Usage Disclosure: Language models were used to assist with early drafting of sections of this
paper. All results were human designed and performed, and the citations were human-sourced and
validated.
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REPRODUCIBILITY STATEMENT

We provide all materials to reproduce our results. Algorithms are specified in Sections 4.2–5.2
including loss definitions and hyperparameters. The general configuration template for FTPO/DPO
training configuration, LoRA settings, early-stopping criteria, and decoding parameters are given
in App. Q. In addition, the data pipeline, prompts, judge rubric, and scoring template are included
(Fig. 11). For inference with Antislop, we describe the implementation and throughput (App. C), and
include our antislop-vllm implementation in supplementary materials. The supplemental materials
contain necessary code and example configuration files to run Antislop Sampler and the automated
training pipeline with FTPO or DPO.

ETHICS STATEMENT

We adhere to the ICLR Code of Ethics (https://iclr.cc/public/CodeOfEthics). Our
study operates on publicly available datasets and benchmarks: Reddit SFW Writing Prompts via
Nitral-AI (Nitral-AI, 2024), EQ-Bench creative prompts (Paech, 2023), Project Gutenberg texts
(Project Gutenberg), and wordfreq statistics (Speer et al., 2018). We processed only public text and
did not collect or annotate human subjects. No personally identifying information was collected,
and no IRB was required.

Potential harms include: (i) unintended suppression of legitimate dialects, or minority styles; (ii)
attempts to evade AI-text detection. Mitigations: our code produces human-readable banlists which
may be vetted by hand before deployment; we document and expose the ban-strength control
(Sec. 4.2) and provide soft-ban defaults rather than hard blocking; we implement a whitelist to
prevent terms from being automatically banned; we recommend human review of any production
banlist. Our methods do not target model safety filters and are not intended to bypass them.

We transparently report throughput impacts (App. C) to support energy-cost accounting. The au-
thors declare no conflicts of interest, no external sponsorship that biases results, and disclose LLM
assistance for drafting as stated in the paper’s AI Usage Disclosure.
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cal constraints in neural machine translation. arXiv preprint arXiv:2308.03601, 2023. URL
https://arxiv.org/abs/2308.03601.

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and
diversity. arXiv preprint arXiv:2310.06452, 2024. URL https://arxiv.org/abs/2310.
06452.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th ACM Symposium on Operating Systems
Principles (SOSP ’23), pp. 611–626, New York, NY, USA, 2023. ACM. doi: 10.1145/3600006.
3613165.

Jack Lanchantin, Angelica Chen, Shehzaad Dhuliawala, Ping Yu, Jason Weston, Sainbayar
Sukhbaatar, and Ilia Kulikov. Diverse preference optimization. arXiv preprint arXiv:2501.18101,
2025. URL https://arxiv.org/abs/2501.18101.

Margaret Li, Stephen Roller, Ilia Kulikov, Sean Welleck, Y-Lan Boureau, Kyunghyun Cho, and
Jason Weston. Don’t say that! making inconsistent dialogue unlikely with unlikelihood training.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
(ACL), pp. 4715–4728, 2020.

Sonia K. Murthy, Tomer Ullman, and Jennifer Hu. One fish, two fish, but not the whole sea: Align-
ment reduces language models’ conceptual diversity. arXiv preprint arXiv:2411.04427, 2024.
URL https://arxiv.org/abs/2411.04427.

Minh Nhat Nguyen, Andrew Baker, Clement Neo, Allen Roush, Andreas Kirsch, and Ravid
Shwartz-Ziv. Turning up the heat: Min-p sampling for creative and coherent llm outputs, 2025.
URL https://arxiv.org/abs/2407.01082.

Nitral-AI. Reddit-sfw-writing prompts sharegpt. https://huggingface.co/datasets/
Nitral-AI/Reddit-SFW-Writing_Prompts_ShareGPT, 2024. Accessed: 2025-09-
16.

Laura O’Mahony, L’eo Grinsztajn, Hailey Schoelkopf, and Stella Biderman. Attributing mode
collapse in the fine-tuning of large language models. In ICLR Workshop on Mathematical and
Empirical Understanding of Foundation Models (ME-FoMo), 2024.

Samuel J. Paech. Eq-bench: An emotional intelligence benchmark for large language models, 2023.
URL https://arxiv.org/abs/2312.06281.

Samuel J. Paech. Longform creative writing benchmark. https://github.com/EQ-bench/
longform-writing-bench, 2025. GitHub repository.

Project Gutenberg. Project gutenberg. URL https://www.gutenberg.org/.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
arXiv preprint arXiv:2305.18290, 2023. URL https://arxiv.org/abs/2305.18290.

Noam Razin, Sadhika Malladi, Adithya Bhaskar, Danqi Chen, Sanjeev Arora, and Boris Hanin.
Unintentional unalignment: Likelihood displacement in direct preference optimization. arXiv
preprint arXiv:2410.08847, 2024. URL https://arxiv.org/abs/2410.08847.

Allen Roush, Sanjay Basu, Akshay Moorthy, and Dmitry Dubovoy. Most language models can be
poets too: An AI writing assistant and constrained text generation studio. In Proceedings of the
Second Workshop on When Creative AI Meets Conversational AI (CAI), pp. 9–15, 2022. URL
https://aclanthology.org/2022.cai-1.2/.

12

https://arxiv.org/abs/2308.03601
https://arxiv.org/abs/2310.06452
https://arxiv.org/abs/2310.06452
https://arxiv.org/abs/2501.18101
https://arxiv.org/abs/2411.04427
https://arxiv.org/abs/2407.01082
https://huggingface.co/datasets/Nitral-AI/Reddit-SFW-Writing_Prompts_ShareGPT
https://huggingface.co/datasets/Nitral-AI/Reddit-SFW-Writing_Prompts_ShareGPT
https://arxiv.org/abs/2312.06281
https://github.com/EQ-bench/longform-writing-bench
https://github.com/EQ-bench/longform-writing-bench
https://www.gutenberg.org/
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2410.08847
https://aclanthology.org/2022.cai-1.2/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Alexander Shypula, Shuo Li, Botong Zhang, Vishakh Padmakumar, Kayo Yin, and Osbert Bastani.
Does instruction tuning reduce diversity? a case study using code generation. In ICLR 2025
Workshop on Deep Learning for Code (DL4C), 2025. URL https://openreview.net/
forum?id=hMEHnLJyrU. OpenReview.

Robyn Speer, Joshua Chin, Andrew Lin, Sara Jewett, and Lance Nathan. Luminosoinsight/wordfreq:
v2.2, October 2018. URL https://doi.org/10.5281/zenodo.1443582.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Casey Voss, Alec Radford,
Dario Amodei, and Paul Christiano. Learning to summarize with human feedback. In Advances
in Neural Information Processing Systems (NeurIPS), 2020.

Philipp Emanuel Weidmann. Dry: A modern repetition penalty that reliably prevents loop-
ing. GitHub pull request #5677 to oobabooga/text-generation-webui, May 2024a.
URL https://github.com/oobabooga/text-generation-webui/pull/5677.
Merged May 20, 2024.

Philipp Emanuel Weidmann. Exclude top choices (xtc): A sampler that boosts creativity,
breaks writing clichés, and inhibits non-verbatim repetition. GitHub pull request #6335 to
oobabooga/text-generation-webui, September 2024b. URL https://github.
com/oobabooga/text-generation-webui/pull/6335. Merged Sep 28, 2024.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.
Neural text generation with unlikelihood training. In International Conference on Learning Rep-
resentations (ICLR), 2020.

Junchao Wu, Shu Yang, Runzhe Zhan, Yulin Yuan, Lidia Sam Chao, and Derek Fai Wong. A
survey on llm-generated text detection: Necessity, methods, and future directions. Computational
Linguistics, 51(1):275–338, 2025.

Junkang Wu, Yuexiang Xie, Zhengyi Yang, Jiancan Wu, Jinyang Gao, Bolin Ding, Xi-
ang Wang, and Xiangnan He. β-dpo: Direct preference optimization with dynamic
β. In Advances in Neural Information Processing Systems (NeurIPS), 2024. URL
https://proceedings.neurips.cc/paper_files/paper/2024/file/
ea888178abdb6fc233226d12321d754f-Paper-Conference.pdf.

Longfei Yun, Chenyang An, Zilong Wang, Letian Peng, and Jingbo Shang. The price of format:
Diversity collapse in llms. arXiv preprint arXiv:2505.18949, 2025. URL https://arxiv.
org/abs/2505.18949.

Yiming Zhang, Jianfeng Chi, Hailey Nguyen, Kartikeya Upasani, Daniel Bikel, Jason Weston, and
Eric Michael Smith. Backtracking improves generation safety. In Proceedings of the International
Conference on Learning Representations (ICLR), 2025.

13

https://openreview.net/forum?id=hMEHnLJyrU
https://openreview.net/forum?id=hMEHnLJyrU
https://doi.org/10.5281/zenodo.1443582
https://github.com/oobabooga/text-generation-webui/pull/5677
https://github.com/oobabooga/text-generation-webui/pull/6335
https://github.com/oobabooga/text-generation-webui/pull/6335
https://proceedings.neurips.cc/paper_files/paper/2024/file/ea888178abdb6fc233226d12321d754f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/ea888178abdb6fc233226d12321d754f-Paper-Conference.pdf
https://arxiv.org/abs/2505.18949
https://arxiv.org/abs/2505.18949


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDICES

A SOFT BANNING

In real-world use cases, it is often not preferable to ban a word or phrase outright. In these cases,
a scalable ”soft ban” is preferred, where there is a general suppression effect, but the suppressed
vocab may still be used if there are no good alternatives.

An example of how soft-banning works when there are no good alternate candidates:

Step 1. We have the word “tapestry” in our banlist, and have set ban-strength = 0.2 and min-p =
0.1.

Step 2. The user requests an essay on tapestry weaving.
Step 3. The model begins inference with, “The art of Tapestry-”, triggering backtracking. In this

example we will say “Tapestry” was the top token at this position with 0.99 prob, with the
next highest token “Mural” at 0.0005.

Step 4. The “Tapestry” token is reduced to probnew = 0.99× 10−10·0.2 = 0.0099.
Step 5. After probability rescaling, min-p still excludes “Mural” from consideration, since

0.0005
0.0099 ≈ 0.05 < 0.1 (the min-p threshold), resulting in “Tapestry” remaining the only
candidate for sampling.

Step 6. “Tapestry” is selected as the next token despite being on the banlist. This specific violation
at this position is marked to be ignored by Antislop in future checks, to avoid a backtracking
loop.

A ban-strength value of 1.0 is effectively a hard ban, enforcing 100% suppression of the banlist.

To determine whether each method can still use the suppressed patterns when contextually necessary,
we construct an adversarial prompt:

Write a short story (500 words) incorporating the
target phrase exactly 3 times in the story.
The target phrase is: "{phrase}".

Figure 5 validates the soft-banning mechanism (Section 4.2), where ban-strength s controls suppres-
sion intensity. The Antislop Sampler with s = 0.4 achieves optimal balance, suppressing patterns in
90% of normal generation (non-adversarial) while fully permitting them when explicitly requested.
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Figure 5: Our methods can suppress 90+ percent of banlist occurrences while allowing the banlist
through when contextually necessary. Antislop Sampler, FTPO, DPO and token banning are com-
pared on banlist suppression efficacy under normal writing conditions (non-adversarial prompts)
and when the model is explicitly instructed to use the banned vocab (adversarial prompts). We indi-
cate optimal behavior for most real-world use cases to be maximal suppression in normal writing
conditions, and minimal (preferably zero) suppression in adversarial conditions – i.e. when the
model has no coherent alternatives.
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B INFERENCE PERFORMANCE (TOK/S)

We release two implementations of the Antislop sampler: A single-threaded version using Hug-
gingface Transformers, and a higher-throughput version that works with any OpenAI-compatible
v1/completion endpoint that supports top logprobs. The sampler incurs significant throughput
penalty, especially with larger banlist sizes, due to the backtracking events. There is additional
performance lost with the API implementation, since it generates in chunks, with banned pattern de-
tection only occurring after a chunk is generated. This could be optimized further by, for example,
integrating the sampler into vLLM directly rather than generating chunkwise via the API.

The maximum token rate of our OpenAI API implementation is discovered with binary search on the
number of concurrent threads when generating with vLLM. Figures cited are using a single Nvidia
H100 gpu.

We measure a 69% reduction in throughput at a banlist size of 1,000, up to 96% reduction at banlist
size 8,000. However, these should be considered worst-case values. A banlist of this size would be
overkill for most real-world usage; we include it here as a stress-test.

Figure 6: Rate of inference is measured for each method when generating with optimal parallelism
with vLLM.

C INFERENCE PERFORMANCE AND COST ANALYSIS

We release two implementations of the Antislop sampler: A single-threaded version using Hug-
gingface Transformers, and a higher-throughput version that works with any OpenAI-compatible
v1/completion endpoint that supports top logprobs. The sampler incurs significant throughput
penalty, especially with larger banlist sizes, due to the backtracking events. There is additional
performance lost with the API implementation, since it generates in chunks, with banned pattern de-
tection only occurring after a chunk is generated. This could be optimized further by, for example,
integrating the sampler into vLLM directly rather than generating chunkwise via the API.

The maximum token rate of our OpenAI API implementation is discovered with binary search on the
number of concurrent threads when generating with vLLM. Figures cited are using a single Nvidia
H100 gpu.

We measure a 69% reduction in throughput at a banlist size of 1,000, up to 96% reduction at banlist
size 8,000. However, these should be considered worst-case values. A banlist of this size would be
overkill for most real-world usage; we include it here as a stress-test.

C.1 PIPELINE COST ANALYSIS

We analyze the computational resources required to execute the complete Antislop pipeline, includ-
ing the automated generation of the preference dataset via the Antislop Sampler and the subsequent
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Figure 7: Rate of inference is measured for each method when generating with optimal parallelism
with vLLM.

FTPO fine-tuning. Costs are estimated based on standard on-demand cloud pricing for a single
NVIDIA H100 GPU (approx. $2.00–$2.50/hr).

Table 3: Cost and resource analysis for complete slop removal pipeline (Dataset Generation + FTPO
Training) on 1× H100 GPU.

Stage Model Size Time Memory/Throughput Est. Cost

Dataset Gen. 12B (gemma-3) 1.5 hours 1,506 tok/sec* ∼$3.00
(2,000 samples) (69% reduction vs baseline)

FTPO Training 12B (gemma-3) 2.3 hours 42 GB VRAM ∼$4.50
(10k samples) 27B 6.8 hours 68 GB VRAM ∼$13.30

Total Pipeline Cost: The complete workflow for a 12B model requires approximately 4
hours and $7.50 in compute credits. This is comparable to standard
supervised fine-tuning (SFT) workflows.

Resource Requirements: Training the 12B model requires 42 GB of VRAM (using LoRA r =
256 and 4-bit quantization), fitting comfortably on a single A100/H100
(80GB). The 27B model requires 68 GB under similar settings.

Scalability: FTPO Training exhibits similar scalability properties to DPO. Because
the method operates on final-token preference pairs rather than full-
sequence generation during training, it scales efficiently to larger mod-
els (e.g., 70B+) provided sufficient GPU memory is available to hold
the base model weights and optimizer states.

Energy Consumption: We estimate the average power draw of an H100 GPU at peak load to
be approximately 700W. Given a total pipeline duration of 3.8 hours
(1.5h generation + 2.3h training), the total energy demand to fine-tune
the model is approximately 2,660 Wh (∼2.6 kWh).
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D LONG-RANGE CONSTRAINT ENFORCEMENT VIA REGEX BANS

Some models exhibit stylistic slop such as the “not x, but y” family of constructions, which standard
quality metrics rarely penalize and which are difficult to unlearn post hoc. We prevent these forms
at inference by compiling a small set of regular expressions into one alternation and scanning the
full generated text each validation pass. On a match we locate the earliest offending span, map its
first character to the corresponding generated-token index, and trigger backtracking at that position.
Backtracking resamples from the cached top-logprob lists with the same decoding hyperparameters
(temperature, top-p, top-k, min p), yielding a coherent alternative continuation without another API
call.

Figure 8 shows an example where the baseline qwen3-4b overuses the pattern, while Antislop with
regex bans reduces its rate to zero.

Figure 8: Occurrences per 1k characters of the “not x, but y” family across several models. The
Antislop variant of qwen3-4b enforces regex bans with backtracking and yields 0.00 hits.
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E HYPERPARAMETER ABLATIONS

The FTPO trainer exposes some tunable hyperparameters:

clip epsilon logits: Clips the preference-loss component of the training signal for chosen logits that
are already beating the rejected logit by this margin.

lambda mse target: The strength of the tethering to reference logits, specifically applied to the
target (chosen & rejected) logits. Higher values prevent the target logits straying too far from refer-
ence, but also make it harder for the trainer to achieve high preference accuracy. Lower values allow
the model to learn more easily, but may lead to degradation or model collapse.

In this ablation, we train gemma-3-12b with FTPO on 10k samples with early stopping at 95% pref-
erence accuracy. We vary clip epsilon logits from 2 (default) to 16 while keeping other parameters
at defaults, to demonstrate the protective effect of this feature of the trainer. We also ablate the
lambda mse target parameter, setting it at 0, 0.05 (default) and 0.4 while keeping other parameters
at defaults. We measure the impact on writing quality, average divergence of logits from reference,
and the percent of training examples processed before the 95% preference accuracy early stopping
condition is triggered.

Table 4: FTPO ablation results for clip epsilon logits and lambda mse target.

experiment writing qual ban % early stop ∆chosen ∆rejected ∆other

gemma-3-12b baseline 67.80 0.00 N/A N/A N/A N/A
default params 67.89 84.51 66.00 1.23 -3.93 -0.26
no margin clipping 19.57 98.24 37.00 1.48 -7.02 -0.35
no target mse loss 39.65 94.54 46.00 -2.91 -8.31 -3.17
strong target mse loss 69.68 55.86 100.00 1.18 -1.50 0.07

We find that setting the clip epsilon logits parameter (the margin clip point that switches off prefer-
ence loss for winning logits) to 16 – effectively disabled – results in model collapse. Logits diverge
much further from reference, and output degrades to single-word repetitions. With this parameter
set to 2 (the default), the model reaches the 95% preference accuracy stopping point with writing
quality preserved.

With lambda mse target reduced to 0, disabling the reference tether for target logits, we ob-
serve faster training and logits diverging farther from reference. Writing quality degrades 71%
from the baseline per our rubric, illustrating the protective effect of this loss component. When
lambda mse target is set to 0.4, logits diverged much less from reference, but the model was only
able to achieve 74% preference accuracy by training completion. At the default value of 0.05, the
model reached the 95% preference accuracy target without any substantial output degradation.

Hyperparameter Robustness. While FTPO operates in logit space, we find that our default hyper-
parameters transfer well across diverse model families (gemma3, llama3, mistral-small, glm-4).
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F DPO β HYPERPARAMETER ABLATION
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Figure 9: We examine the impact of DPO’s β hyperparameter, training gemma-3-12b on our final-
token preference set with several values of β: 0.01, 0.1, 0.3 and 1.0. This training set suppresses a
banlist of 1,000 items. With DPO, we observe an expected tradeoff in learnability vs degradation
(Wu et al., 2024). DPO manages a < 1% reduction in output quality at β = 1.0, but at the expense of
significantly impaired banlist suppression (74.7%). At lower values of β, output quality is markedly
reduced for the DPO-trained models. In comparison, the FTPO model trained on the same dataset
achieves the highest suppression rate of 94.4% suppression, with neglibible (< 1%) degradation in
longform writing score.

G SUPPRESSION PERFORMANCE VS WRITING QUALITY FOR EQ-BENCH
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Figure 10: We replicate 6.2 with an out-of-distribution writing prompts dataset. While a smaller
dataset size of 96 prompts (and correspondingly larger error bars), we observe a similar pattern of
banlist suppression rates and impact on writing quality for each method.
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H MOST COMMON OVER-REPRESENTED WORDS AND TRIGRAMS ACROSS
MODELS

pattern percent models
flickered 98.5
flicker 94.0
flickering 92.5
leaned 82.1
muttered 82.1
gaze 80.6
grinned 80.6
containment 77.6
gestured 77.6
addendum 74.6
murmured 73.1
nodded 73.1
glint 68.7
hesitated 68.7
whispered 68.7
blinked 64.2
hummed 64.2
faintly 62.7
leans 62.7
unreadable 62.7

Table 5: Top overlapping words across 67 AI models. Each entry shows the % of models in which
the token appears among their top 120 most over-represented words (relative to a human baseline).

pattern percent models
voice barely whisper 68.7
said voice low 61.2
air thick scent 49.3
took deep breath 44.8
smile playing lips 43.3
something else something 37.3
said voice barely 35.8
voice barely audible 35.8
take deep breath 32.8
could shake feeling 31.3
eyes never leaving 29.9
casting long shadows 28.4
says voice low 26.9
something else entirely 26.9
heart pounding chest 25.4
one last time 23.9
spreading across face 22.4
air thick smell 19.4
could help feel 19.4
long shadows across 19.4

Table 6: Top overlapping trigrams across 67 AI models. Each entry shows the % of models in which
the phrase appears among their top 40 most over-represented trigrams (relative to a human baseline).
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I WRITING QUALITY RUBRIC PROMPT

You are an expert in assessing creative writing. Your task is to
score the test model's response below, by several metrics, on a
0-20 scale.

[PROMPT START]

{writing_prompt}

[PROMPT END]

[TEST MODEL RESPONSE]

{test_model_response}

[TEST MODEL RESPONSE END]

[Task]

You are an expert in assessing creative writing. Your task is to
score the model's response below, by several metrics, on a 0-20
scale.

Scoring notes:

- In the output, write the metric names exactly as below so they can
be parsed.

- Use the designated output format exactly.

- All criteria are "higher is better"

- You are a critic, and your job is to be critical, especially of any
failings or amateurish elements.

- Output format is:

[Scores]

Metric 1 name: [Score 0-20]

Metric 2 name: ...

---

Now, rate the supplied model output on the following criteria:

Spelling/grammar
Formatting issues & artifacts
Coherence
Consistency of tense, pronouns, perspective
Repetition issues
Overall quality of the piece

Figure 11: Writing quality rubric prompt: This prompt was used to assess the overall quality of
creative writing outputs in our experiments, with a particular focus on the common modes of degra-
dation.
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J IMPACT ON METRICS BY BANLIST SIZE
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Figure 12: Impact on writing quality per our LLM-judged rubric at several banlist sizes, for each
suppression method (Token banning, FTPO, Antislop Sampler and DPO).
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Figure 13: Impact on banlist suppression rates at several banlist sizes, for each suppression method
(Token banning, FTPO, Antislop Sampler and DPO).
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Figure 14: Impact on lexical diversity at several banlist sizes, for each suppression method (Token
banning, FTPO, Antislop Sampler and DPO).
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K FTPO LOSS FUNCTION DEFINITION

Preference Loss Component:

For each chosen token index c against a rejected token index r, define the logit gap

∆ = y[c]− y[r].

The margin requirement is m. A smooth penalty is applied if the gap is smaller than m:

ℓpref = log
(
1 + e(m−∆)/τ

)
,

with τ = 1 here. A taper weight

w = clamp
(

m−∆
m , 0, 1

)
shrinks the contribution as ∆ approaches the margin. The preference loss is the weighted mean over
chosen tokens:

Lpref =

∑
w ℓpref∑
w

.

6 4 2 0 2
 = logit_chosen  logit_rejected
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Figure 15: Preference loss component as a function of the logit gap ∆. When ∆ < 0 (chosen
losing), the penalty is large. As ∆ increases toward the margin m, the penalty smoothly tapers.
Once ∆ ≥ m, the weight goes to zero and the preference loss no longer contributes.

MSE tether terms:

Let deviations be dj = y[j]− yref [j]. Define:

• Target set T = {c} ∪ {r} (chosen and rejected indices).

• Non-target set N = {1, . . . , V } \ T .

Non-target MSE loss term:

Lnontarget =

∑
j∈N d 2

j

|N |
.

Target MSE loss term with zero-penalty window

ej = max
(
|dj | − τtarget, 0

)
, Ltarget =

∑
j∈T e 2

j

|T |
.
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Figure 16: MSE loss components as functions of logit deviation from the reference. The non-
target term (blue) penalizes any deviation quadratically. The target term (orange) allows a dead
zone around zero, where no penalty applies, then grows quadratically once the deviation exceeds the
zero-penalty window.

Here τtarget is a zero-penalty window: if the chosen or rejected logits are within ±τtarget of the refer-
ence, no penalty is applied.

Total objective:

With weighting coefficients λnontarget and λtarget, the total FTPO loss is

L = Lpref + λnontarget Lnontarget + λtarget Ltarget.

This formulation allows the model to learn a clear preference signal while preventing uncontrolled
drift of the logit distribution.
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L SLOP PROFILE CLUSTERING BETWEEN MODELS

Figure 17: Top 200 over-represented words and
bigrams/trigrams were extracted for each model
relative to a human baseline, for a set of creative
writing outputs. For included human authors, a
selection of their works were used. A dendrogram
was generated with cluster distance as the aver-
age ranking distance of the top over-represented
words & n-grams list between models. Our FTPO
antislop finetune of gemma-3-12b is highlighted,
clustering closer to human authors than any other
tested model.

Colloquially, slop may refer to over-used
words, phrases, themes or writing styles. Here
we focus on over-used words and n-grams
as they are relatively straightforward to ex-
tract. For a given model, we generate outputs
from a creative writing prompts dataset (Paech,
2023) and a writing prompts dataset sourced
from Reddit (Nitral-AI, 2024). We then com-
pute a list of the most over-represented words
and bigrams/trigrams relative to a human base-
line. The human baseline we use for individual
words is the Python library wordfreq (Speer
et al., 2018). For bigrams/trigrams, we com-
pute a human baseline from a mix of sources in-
cluding a large Reddit creative writing dataset,
and a selection of public domain works from
the Gutenberg Library (Project Gutenberg). For
n-gram extraction, we remove stop-words.

A ”slop fingerprint” is collated from the top
120 most over-represented words and the top
40 most over-represented bigrams and tri-
grams. To avoid over-indexing on high-
frequency words & phrases in single texts (e.g.
a character name), we require the pattern to oc-
cur from at least 3 writing prompts indepen-
dently. To examine the relationship of this fin-
gerprint between models, we perform hierar-
chical clustering on these top-200 lists per the
average rank-distance between each model pair
(Figure 17).

It’s important to distinguish between counting
the frequency of words and n-grams in a text,
and calculating their frequency relative to a hu-
man baseline, as we are doing here. The for-
mer simply surfaces patterns that are common
in writing; the latter surfaces repetitive writing
tendencies of a model that begin to stand out
across multiple generations, leading to the per-
ception of ”slop”. In some models this repeti-
tion is extreme: mistral-small-3.1-24b-instruct-
2503 produced 102 ”eyes never leaving” tri-
grams and 62 ”voice barely whisper” trigrams
across just 96 writing prompts.

We find a high correlation in words and n-grams found on the top most over-represented lists across
the models tested, with ”flickered” appearing on 98.5% of lists, and the trigram ”voice barely whis-
per” appearing on 68.7% of lists. See Table 5 for the most commonly co-occurring word patterns
across slop fingerprints, and Table 6 for trigram patterns.

We utilise this method for identifying over-represented usages to compile a target list for slop re-
duction with the Antislop Sampler and FTPO fine-tuning. It should be noted that this method of
identifying slop is domain-specific; the over-used patterns in creative writing will differ from pro-
fessional writing, for instance. Here, we focus on creative writing, however the method can be
applied to other domains by choosing a different set of prompts from which to derive the slop list.
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M ASSESSING EMERGENCE OF NEW SLOP

A natural concern with any suppression method is a “whack-a-mole” effect: once a set of over-
represented patterns is pushed down, the model might simply substitute a different set of equally
extreme over-used patterns. Here we describe the experiments we ran to check whether FTPO is
just trading one slop fingerprint for another, or whether it actually reduces the overall amount of
slop.

M.1 SETUP

We focus on gemma-3-27b and its FTPO-finetuned variant (gemma-3-27b-antislop). The
pipeline is:

1. Generate creative-writing outputs from the Reddit Writing Prompts dataset for both models, using
the same prompt set and decoding settings as in the main experiments.

2. For each model, compute token-level frequencies for words and n-grams (n ∈ {2, 3}), removing
stop-words for n-grams as in Section ??.

3. Compute over-representation ratios

ρ(p) =
fLLM(p)

fhuman(p)

using the same human baselines as in our primary experiments (wordfreq for unigrams, curated
Reddit+Gutenberg corpus for bigrams/trigrams).

4. For each model separately, rank patterns by ρ(p) and extract the top-40 words and top-40 tri-
grams. This is done without consulting the training banlist, so that any new slop introduced by
FTPO can surface.

All statistics reported below are computed on these “top-k” lists for the baseline vs FTPO model.

M.2 OVER-REPRESENTATION BEFORE AND AFTER FTPO

For the baseline gemma-3-27b, the top over-represented words show extreme usage relative to
human text. Concretely, the top 5 most over-represented words (with human-normalized ratios and
raw counts across our sample) is:

Gemma-3-27b (baseline):

1. elara: ratio 18,861×, count 355
2. logline: ratio 3,739×, count 109
3. worldbuilding: ratio 3,121×, count 240
4. grimdark: ratio 2,819×, count 70
5. unsettlingly: ratio 2,275×, count 54

For gemma-3-27b-antislop, the corresponding top-5 looks like:

1. elara: ratio 1,552×, count 39
2. unusualness: ratio 1,496×, count 18
3. lysandra: ratio 1,330×, count 35
4. outlandishness: ratio 1,169×, count 12
5. logline: ratio 1,028×, count 40

Two things are happening:

• The same tokens that were severely over-used before (e.g., elara, logline) are now much
closer to human baseline.
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• Some new tokens appear in the top-5, but their ratios and counts are much smaller than the worst
offenders in the baseline.

Aggregating across the full top-40 lists for these two models, we see:

• The mean over-representation ratio for the top-40 words drops by 73% (from 1,439× to 394×).
• The mean over-representation ratio for the top-40 trigrams drops by 36%.

This indicates that FTPO does not simply swap in a new set of equally over-represented words: the
overall mass of slop, as measured by the degree of over-use relative to human text, goes down.

This pattern is consistent with the design of the FTPO loss. At each suppression site, gradients are
spread over multiple chosen alternatives instead of pushing probability into a single replacement
token, and the margin-based switch-off stops training once the chosen tokens win by the specified
gap. Both design choices make it hard for any single alternative to become the new “Elara.”

M.3 ENTROPY AT SUPPRESSION SITES

We also measure how the local token distribution changes at the positions where a banned pattern
would have begun (i.e., the positions that generate FTPO training pairs). For each such position we
compute the Shannon entropy of the top-k token distribution.

For gemma-3-27b, we see:

• Entropy at suppression sites: 1.34 (baseline) → 1.93 (FTPO).
• Entropy at random positions: 0.59 (baseline) → 0.89 (FTPO).

So at the exact locations where a slop pattern would be selected in the baseline model, our finetuned
model has a flatter distribution. At random positions, entropy also rises, but by a smaller amount.
This is consistent with FTPO increasing the probability mass of a set of viable continuations instead
of merely shifting probability from one fixed phrase to another.

M.4 SEMANTIC SHIFT VS. SEMANTIC COLLAPSE

To check for broader semantic drift, we embed outputs from the baseline and FTPO models and
compare them in cosine space.

The procedure is:

1. Sample a set of prompts.
2. For each prompt, generate one completion with the baseline model and one with the FTPO model

under the same decoding settings.
3. Compute embeddings for each completion (using gemini-embedding-001) and measure:

• The mean cosine distance between baseline and FTPO outputs.
• The mean cosine distance between two independent baseline samples for the same prompt (as

a “natural variability” baseline).
• The mean cosine distance between baseline completions with and without a strong style in-

struction (e.g., “Write in the style of Hunter S. Thompson”) as a reference for a deliberate
semantic shift.

We observe:

• Baseline vs baseline (two temperature samples): average cosine distance ≈ 0.079.
• Baseline vs FTPO: average cosine distance ≈ 0.098.
• Baseline vs baseline+style-prompt: average cosine distance ≈ 0.18.

So the FTPO model is slightly farther from the baseline than two random baseline samples are from
each other, but much closer than a deliberate style shift. Combined with the entropy results and the
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over-representation analysis, this suggests that FTPO is not pushing the model into a completely
different stylistic regime; it is shaving down a specific set of over-used continuations while keeping
overall semantics in roughly the same region.

N EMBEDDING-BASED SEMANTIC SHIFT ANALYSIS

We also ran an embedding-based check to see whether FTPO causes a large shift in the model’s
stylistic or semantic content.

N.1 SETUP

We used the same prompt distribution as in our creative-writing experiments and drew 500 prompts.
For each prompt, we generated using temperature=1.0:

• 10 completions from the baseline model (gemma-3-27b),

• 10 completions from the FTPO-finetuned model (gemma-3-27b-antislop),

• 10 completions from the baseline model with an added style instruction (“Write in the style of
Hunter S. Thompson”).

For each completion, we computed an embedding using google/gemini-embedding-001
(via the OpenRouter embeddings API). All distances below are cosine distances, i.e. 1 − cos(θ)
between embedding vectors.

We then computed three quantities:

1. Within-model diversity: For each model separately, and for each prompt, we took all pairwise
distances between that model’s 10 embeddings and averaged them. Averaging those per-prompt
values gives a single within-model distance.

2. Baseline vs FTPO distance: For each prompt, we took all cross distances between the 10 base-
line embeddings and the 10 FTPO embeddings, averaged them, then averaged across prompts.

3. Baseline vs style-prompt distance: Same as above, but comparing baseline completions to
baseline+style completions.

N.2 RESULTS

Table 7 summarizes the mean cosine distances:

Comparison Mean cosine distance
Baseline (within-model) 0.079
FTPO (within-model) 0.087
Baseline vs FTPO 0.098
Baseline vs baseline+style instruction 0.180

Table 7: Embedding-based distances averaged over 500 prompts and 10 generations per prompt.
Lower is closer in embedding space.

The FTPO model shows slightly higher within-model diversity than the baseline (0.087 vs 0.079,
about a 10.1% increase), which is consistent with the entropy and diversity gains we see elsewhere.
The baseline vs FTPO distance (0.098) is only modestly higher than baseline’s own within-model
variability, and much smaller than the distance induced by a simple style prompt (0.18).

Taken together, this suggests that FTPO is not pushing the model into a new semantic regime; it is
making targeted, local adjustments while keeping responses in roughly the same semantic neigh-
bourhood as the original model.
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O INFERENCE-TIME BASELINES: DRY AND XTC

We also compared our methods against two decoding-time approaches that target repetition and
diversity: XTC and DRY (Weidmann, 2024b;a). The goal here is to see whether they reduce the
same kind of global over-use that shows up in our slop fingerprints, not just short-range repetition.

O.1 SETUP

We use gemma-3-27b and generate 2,000 creative-writing outputs under four settings:

• baseline sampler (standard top-p/temperature),

• FTPO-finetuned model (same decoding as baseline),

• XTC sampler on the baseline model,

• DRY sampler on the baseline model.

For each setting we recompute the slop fingerprint: the top-40 most over-represented words and the
top-40 most over-represented trigrams, measured as the ratio

ρ(p) =
fLLM(p)

fhuman(p)

against the same human baselines as in the main text. We then take the average ρ(p) over the top-40
words and the top-40 trigrams.

O.2 RESULTS

Table 8 summarizes the average over-use of the top-40 patterns:

Method Top-40 words avg ratio Top-40 trigrams avg ratio
Baseline gemma-3-27b 1439× 173×
FTPO-finetuned gemma-3-27b 394× 111×
XTC sampler (on baseline) 1267× 205×
DRY sampler (on baseline) 1442× 168×

Table 8: Average over-representation ratios (model vs human writing) for the top-40 most over-used
words and trigrams, under different inference-time methods. Lower is better.

XTC and DRY do what they are designed to do locally: they reduce obvious near-term repetition and
looping. But from the perspective of global over-use, they leave the slop fingerprint essentially in-
tact. The average over-representation for the top-40 words stays in the same ballpark as the baseline,
and the trigram ratios are unchanged or slightly worse.

By contrast, the FTPO-finetuned model shows a large drop in average over-use for both words and
trigrams while using the same simple sampler as the baseline. This is consistent with the idea
that decoding-time tricks are not enough to fix model-wide over-representation; you have to move
probability mass in the weights if you want the fingerprint itself to change.

P REGEX BLOCKLIST USED FOR “NOT x, BUT y”

regex_patterns: [
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"\\b(?:\\w+n(?:[']t)|not\\s+(?:just|only|merely|because))\\s+(?:(?![.; ⌋
:?!]).){1,100}?[.;:?!]\\s*(?:it|they|you)(?:['](?:s|re|m))?\\b(?!\ ⌋
\s+(?:was|were|is|are|wasn[']t|weren[']t|isn[']t|aren[']t|ain[']t) ⌋
\\b)(?:\\s*[*]?\\s*)?(?!when\\b|then\\b|but\\b|and\\b|yet\\b)(?!ri ⌋
ght\\b)(?!normal\\b)(?!true\\b)(?!sure\\b)(?!only\\b)(?!still\\b)( ⌋
?!rarely\\b)(?!already\\b)(?!wrong\\b)(?!want\\b)(?!just\\b)(?!cou ⌋
ldn\\b)(?!could\\b)(?!saw\\b)(?!started\\b)(?!remember\\b)(?!strug ⌋
gled\\b)(?!watched\\b)(?!goal\\b)(?!took\\b)(?!kept\\b)(?!reminded ⌋
\\b)(?!time\\b)(?!have\\b)(?!acted\\b)(?!smiled\\b)(?!think\\b)(?! ⌋
give\\b)(?!grab\\b)(?!gave\\b)(?!turn\\b)(?!justify\\b)(?!\\w+ly\\ ⌋
b)(?=[a-z]{4,}\\b)[a-z]+\\w*",

"\\b(?:\\w+n(?:[']t)|not)\\s+(?:just|only|merely)?\\s*(?:(?![-]|[.?!]) ⌋
.){1,80}?[-]{1,2}\\s*\\w+(?:[']\\w+)?\\s+",

"\\b(?:wasn[']t|weren[']t|isn[']t|aren[']t|ain[']t|not)\\s+(?!\\b(?:mi ⌋
nute|minutes|hour|hours|day|days|year|years|second|seconds)\\b)(?! ⌋
with\\b)(?!even\\b)(?:(?![.;:?!]).){2,120}?[.;:?!]\\s*(?:it|they|y ⌋
ou|that)(?:\\s+(?:was|were|is|are)\\b(?:\\s+[*_˜]?\\w+[*_˜]?)?|(?: ⌋
['](?:s|re|m))\\b(?:\\s+[*_˜]?\\w+[*_˜]?)?)",

"\\bno\\s+longer\\s+(?:just|only|merely)?\\s+[ˆ.;:?!]{1,120}[.;:?!]\\s ⌋
*(?:it|they|you)\\s+(?:is|are|was|were)\\b(?:\\s+[*_˜]?\\w+[*_˜]?) ⌋
?",

"\\b(?:wasn[']t|weren[']t|isn[']t|aren[']t|ain[']t|not)\\s+(?:just|onl ⌋
y|merely)?\\s*(?:(?!\\bbut\\b|[.?!]).){1,80}?[,;:\\-]\\s*but\\s+(? ⌋
!I\\b)(?:also\\s+)?"

]

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Q AUTO-ANTISLOP CONFIGURATION FILE FOR GEMMA-3-12B-IT 2K
BANLIST SIZE

####################################################################
# MAIN AUTO-ANTISLOP CONFIGURATION
####################################################################

####################################################################
# RUN SETUP
####################################################################
experiment_base_dir: "results/auto_antislop_runs" # Base for timestamped

run directories
human_profile_path: "data/human_writing_profile.json"
log_level: "INFO"
# Iteration 0: Generates the baseline dataset & computes slop

strings/ngrams to ban
# Iteration 1: Generates a dataset using antislop, banning those strings

& ngrams. Recomputes the slop strings/ngrams at the end & adds any
new slop to the banlists

# Iteration 2+: Extra iterations catch slop that emerges after the
initial set is banned

num_iterations: 2 # Minimum 2 iterations (this is enough to catch most
slop)

model_id: "google/gemma-3-12b-it" # Global model id for the pipeline. Can
be overridden on individual steps.

####################################################################
# VLLM SERVER MANAGEMENT (Conditional: if --manage-vllm is True)
####################################################################
manage_vllm: true
vllm_model_id: null # Model served by vLLM (if unset, will use model_id)
vllm_port: 8000
vllm_hf_token: null # Optional: Your Hugging Face token if model is gated
vllm_cuda_visible_devices: "0" # set to e.g. "0,1,2,3" for multiple gpus
vllm_gpu_memory_utilization: 0.85 # leave some room for the refusal

classifier if you are using it (about 3gb)
vllm_max_model_len: 4500
vllm_dtype: "bfloat16"
# Additional raw CLI arguments for vLLM server, e.g.,

["--tensor-parallel-size", "4"] for multiple gpus
vllm_extra_args: [] # each param as a separate string, e.g.

["--quantization", "bitsandbytes"]
vllm_env: # env vars for the vLLM process

# VLLM_USE_V1: "1" # may be needed for amd gpus

####################################################################
# GENERATION PARAMETERS (using antislop-vllm)
####################################################################
generation_step_enabled: true

# --- API & Model Configuration ---
# If you set manage_vllm=true, leave the base url unset
#generation_api_base_url: "http://localhost:8000/v1"
#generation_api_base_url:

"https://apjmbtwbrb8t61-8888.proxy.runpod.net/v1"
generation_model_id: null # Model id for generation requests (if unset,

uses model_id)
generation_api_key: "xxx" # API key for the vLLM server

# --- Core Generation Settings ---
generation_max_new_tokens: 1000
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generation_threads: 50 # Number of parallel threads for API queries in
antislop-vllm. Note: vllm can become very inefficient if you go over
some concurrency threshold (depending on vram)

generation_max_prompts: 2000 # Number of samples to generate from the
prompts in the dataset

# --- Dataset & Chat Template ---
generation_hf_dataset_name:

'Nitral-AI/Reddit-SFW-Writing_Prompts_ShareGPT'
generation_hf_dataset_split: 'train'
# A huggingface model id or local dir containing the tokeniser you want

to use to apply chat templates.
# This is important if you are generating a ftpo dataset for later

training.
generation_chat_template_model_id: null # (if unset, uses model_id)

# --- Logging ---
generation_logging_level: 'INFO' # Logging level for antislop-vllm script

# --- Advanced Sampling Parameters (passed as individual CLI args to
antislop-vllm's generation_params) ---

generation_param_chunk_size: 20
generation_param_top_logprobs_count: 20
generation_param_temperature: 1
generation_param_top_p: 1.0
generation_param_top_k: 50
generation_param_min_p: 0.01
generation_param_timeout: 480
generation_param_stop_sequences: [] # e.g., ["\n\n", "---"]

# --- Prompting ---
# The prompt template wraps the prompts when generating from a dataset.
# To use the original prompt exactly, set the template to "{prompt}"
generation_prompt_template: "Writing prompt: {prompt}\n\nWrite 1000 words

to this prompt. Your response:\n"
generation_system_prompt: "You are an uncensored writer." #

optional; left empty no system prompt

# --- Antislop Generation Features ---
# generation_force_backtrack:
# If set to true:

# when resampling after backtracking, if we don't find a valid
replacement token

# we progressively disable sampling options (temp, then min_p, then
top_p, then top_k)

# until we find a non-banned replacement or run out of candidates.
# When set to false, some slop will not be removed if the sampler

thinks there are no
# alternative coherent continuations.

generation_force_backtrack: false

# --- N-gram Validator Settings (for antislop-vllm) ---
# N-gram banlist file is managed by auto-antislop's iterative process.
generation_ngram_remove_stopwords: true
generation_ngram_language: "english"

# --- Refusal Detection ---
# Detects refusals & doesn't include them in the training dataset. Uses

about 3GB extra VRAM.
generation_refusal_detection: true

####################################################################
# N-GRAM ANALYSIS & BANNING (within auto-antislop)
####################################################################
enable_ngram_ban: true
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min_word_len_for_analysis: 3 # Filters out words under this length in
n-gram analysis

# --- N-gram Identification Thresholds ---
top_k_bigrams: 5000
top_k_trigrams: 5000

# --- N-gram Banning Quotas (per iteration) ---
# Bigrams
dict_bigrams_initial: 300 # How many of the top over-represented

dictionary bigrams to
# ban in the first antislop iteration.
# "Dictionary" means the bigrams were also

found in the human
# writing corpus.

dict_bigrams_subsequent: 0 # How many to ban in each subsequent
iteration

nodict_bigrams_initial: 200 # "Nodict" here means the n-grams were not
found at all in the

# human corpus.
nodict_bigrams_subsequent: 0
# Trigrams
dict_trigrams_initial: 300
dict_trigrams_subsequent: 0
nodict_trigrams_initial: 200
nodict_trigrams_subsequent: 0

# --- User-Defined N-gram Bans ---
# User-supplied extra n-grams to always ban (processed by auto-antislop)
extra_ngrams_to_ban: [

# "voice barely whisper",
]

####################################################################
# OVER-REPRESENTED WORD ANALYSIS & BANNING
####################################################################
compute_overrep_words: true
top_k_words_for_overrep_analysis: 200000

# --- Quotas for Adding Over-represented Words to Slop Phrase banlist ---
dict_overrep_initial: 920 # How many of the top over-represented

dictionary words to
# ban in the first antislop iteration.
# "Dictionary" means the words were also

found in the human
# writing corpus.

dict_overrep_subsequent: 0 # How many to ban in each subsequent
iteration

nodict_overrep_initial: 80 # "Nodict" here means the n-grams were
not found at all in the

# human corpus.
nodict_overrep_subsequent: 0

####################################################################
# SLOP PHRASE BANNING
####################################################################

# Slop phrases are over-represented whole phrases extracted from the
generated texts.

enable_slop_phrase_ban: true
min_phrase_freq_to_keep: 2 # Min frequency for a new phrase from

slop-forensics to be considered
top_n_initial_slop_ban: 0 # New slop phrases from slop-forensics to ban

in iter 0
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top_n_subsequent_slop_ban: 0 # New slop phrases from slop-forensics to
ban in later iters

# --- User-Defined Slop Phrase Bans ---
# User supplied list of strings to always ban
# - case insensitive
# To trigger a ban, the sequence must not have a word-like character
# (not punctuation or whitespace) directly on either side. That is to

say, we
# are not banning disallowed sequences that occur as substrings in

longer
# words. The exception is if the banned string is already bookended by
# a non-word character.
#
# Examples:
# banned string "cat"
# - won't trigger a ban for "cation"
# - will trigger a ban on "cat[morecat]"
# banned string "cat["
# - *will* trigger a ban on "cat[morecat]", because the banned string
# ends with a non-word character.
extra_slop_phrases_to_ban: [

# "...", "...", "rain", "tapestry", "static", "regret", "rust"
]

# --- Whitelisted Strings ---
# These will be excluded from the list of slop strings that the pipeline

finds.
# Note: special tokens in the tokenizer and parts of the chat template

are
# automatically whitelisted.
whitelist_strings: [

# "think", "thinking"
]

####################################################################
# REGEX BANNING
####################################################################
# User-supplied regex patterns to ban
# Note: unoptimised regex patterns can slow down antislop generation, as

they will be called often on large texts.
extra_regex_patterns: [

# These ones ban "it's not x, it's y" type patterns:

#"\\b(?:\\w+n(?:[']t)|not\\s+(?:just|only|merely|because))\\s+(?:(?![. ⌋
;:?!]).){1,100}?[.;:?!]\\s*(?:it|they|you)(?:['](?:s|re|m))?\\b(?! ⌋
\\s+(?:was|were|is|are|wasn[']t|weren[']t|isn[']t|aren[']t|ain[']t ⌋
)\\b)(?:\\s*[*]?\\s*)?(?!when\\b|then\\b|but\\b|and\\b|yet\\b)(?!r ⌋
ight\\b)(?!normal\\b)(?!true\\b)(?!sure\\b)(?!only\\b)(?!still\\b) ⌋
(?!rarely\\b)(?!already\\b)(?!wrong\\b)(?!want\\b)(?!just\\b)(?!co ⌋
uldn\\b)(?!could\\b)(?!saw\\b)(?!started\\b)(?!remember\\b)(?!stru ⌋
ggled\\b)(?!watched\\b)(?!goal\\b)(?!took\\b)(?!kept\\b)(?!reminde ⌋
d\\b)(?!time\\b)(?!have\\b)(?!acted\\b)(?!smiled\\b)(?!think\\b)(? ⌋
!give\\b)(?!grab\\b)(?!gave\\b)(?!turn\\b)(?!justify\\b)(?!\\w+ly\ ⌋
\b)(?=[a-z]{4,}\\b)[a-z]+\\w*",

#"\\b(?:\\w+n(?:[']t)|not)\\s+(?:just|only|merely)?\\s*(?:(?![-]|[.?!] ⌋
).){1,80}?[-]{1,2}\\s*\\w+(?:[']\\w+)?\\s+",

#"\\b(?:wasn[']t|weren[']t|isn[']t|aren[']t|ain[']t|not)\\s+(?!\\b(?:m ⌋
inute|minutes|hour|hours|day|days|year|years|second|seconds)\\b)(? ⌋
!with\\b)(?!even\\b)(?:(?![.;:?!]).){2,120}?[.;:?!]\\s*(?:it|they| ⌋
you|that)(?:\\s+(?:was|were|is|are)\\b(?:\\s+[*_˜]?\\w+[*_˜]?)?|(? ⌋
:['](?:s|re|m))\\b(?:\\s+[*_˜]?\\w+[*_˜]?)?)",
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#"\\bno\\s+longer\\s+(?:just|only|merely)?\\s+[ˆ.;:?!]{1,120}[.;:?!]\\ ⌋
s*(?:it|they|you)\\s+(?:is|are|was|were)\\b(?:\\s+[*_˜]?\\w+[*_˜]? ⌋
)?",

#"\\b(?:wasn[']t|weren[']t|isn[']t|aren[']t|ain[']t|not)\\s+(?:just|on ⌋
ly|merely)?\\s*(?:(?!\\bbut\\b|[.?!]).){1,80}?[,;:\\-]\\s*but\\s+( ⌋
?!I\\b)(?:also\\s+)?"

]

####################################################################
# FINETUNING
####################################################################
finetune_enabled: true

# --- General Finetuning Setup ---
finetune_use_unsloth: false
finetune_mode: "ftpo" # ftpo | dpo-final-token (final token preference

optimisation)
finetune_ftpo_dataset: "" # you can specify an existing ftpo dataset,

or leave unset to let the
# pipeline use the one produced in the

generation step
finetune_base_model_id: null # Base model for DPO (if unset, uses

model_id)
finetune_max_seq_length: 2500 # this may truncate some outputs
finetune_load_in_4bit: true # qlora

# --- Early Stopping ---
finetune_early_stopping_wins: 0.85 # Early stopping threshold for

fraction of *chosen* completions that are selected over *rejected*.
# More than 0.85 may be overtrained.

Set to > 1.0 to disable early
stopping.

finetune_early_stopping_loss: null # Loss threshold for early stopping.
Set to null to disable.

# --- LoRA Configuration ---
finetune_lora_r: 256 # the ftpo trainer works best with a high lora rank
finetune_lora_alpha: 256
finetune_lora_dropout: 0.05
finetune_weight_decay: 0.01
finetune_target_modules: ["up_proj", "down_proj", "lm_head"]

# --- Layer Freezing ---
finetune_freeze_early_layers: true
finetune_n_layers_unfrozen: 5

# --- Training Process ---
finetune_gradient_checkpointing: "unsloth"
finetune_chat_template: "" # e.g. "gemma-3" -- get the chat template from

unsloth's helper if required, otherwise leave the string blank to use
the tokeniser's chat template

finetune_batch_size: 3
finetune_gradient_accumulation_steps: 5
finetune_warmup_ratio: 0.1
finetune_num_epochs: 1

# --- Learning Rate ---
finetune_learning_rate: 0.000001
finetune_auto_learning_rate: true # true: automatically determine

learning rate based on dataset size, effective batch size & lora rank
finetune_auto_learning_rate_adjustment_scaling: 0.08 # scale the auto-lr

by this factor
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# --- DPO/FTPO Specific ---
finetune_beta: 0.1 # DPO beta

# --- Output & Saving ---
finetune_output_dir_suffix: "_ftpo_exp01" # Appended to experiment run

dir
finetune_save_merged_16bit: true
finetune_save_gguf_q8_0: false

# --- Dataset Handling for Finetuning ---
finetune_max_train_examples: 12000 # adjust as needed
finetune_shuffle_seed: 42

# --- FTPO Sample Regularization ---
# 0 = off; 0.9 strongly downsamples overrepresented rule violations
# (this is useful because the raw generated dataset is typically very

skewed)
ftpo_sample_rejected_regularisation_strength: 0.8
ftpo_sample_chosen_regularisation_strength: 0.2
ftpo_sample_min_chosen_tokens: 4 # filter out ftpo samples that have

fewer than this number in the chosen tokens list

# FTPO-specific hyper-parameters
# Leave any of these out (or set to null) to fall back to FTPOTrainer

defaults.

# Loss terms are computed separately for the target (chosen + rejected)
tokens vs the remainder of the vocab.

# This is because we want to allow more freedom of movement for the
target tokens.

# MSE loss term 1: light mse loss applied tokenwise on target tokens
ftpo_lambda_mse_target: 0.05 # Strength of MSE loss tether on the

individual logits in the
# chosen+rejected set vs

reference.
ftpo_tau_mse_target: 0.5 # Grace bandwidth (logits) before the

above MSE loss kicks in.

# MSE loss term 2: stronger mse term applied to remaining (non-target)
vocab

ftpo_lambda_mse: 0.4

ftpo_clip_epsilon_logits: 2 # For a chosen token: "after winning vs
rejected token by this margin, preference loss turns off"
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