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Abstract
Detecting factual inconsistency for long doc-001
ument summarization remains challenging,002
given the complex structure of the source ar-003
ticle and long summary length. In this work,004
we study factual inconsistency errors and con-005
nect them with a line of discourse analysis. We006
find that errors are more common in complex007
sentences and are associated with several dis-008
course features. We propose a framework that009
decomposes long texts into discourse-inspired010
chunks and utilizes discourse information to011
better aggregate sentence-level scores predicted012
by NLI models. Our approach shows improved013
performance on top of different model base-014
lines over several evaluation benchmarks, in-015
cluding DIVERSUMM, LONGSCIVERIFY, and016
LONGEVAL, focusing on long document sum-017
marization. This underscores the significance018
of incorporating discourse features in develop-019
ing models for scoring summaries with respect020
to long document factual inconsistency.021

1 Introduction022

Current state-of-the-art summarization systems can023

generate fluent summaries; however, their ability024

to produce factually consistent summaries that ad-025

here to the source content or world knowledge re-026

mains questionable. This phenomenon is known027

as factual inconsistency, one type of “hallucina-028

tion” problem (Maynez et al., 2020; Zhang et al.,029

2023; Durmus et al., 2020; Cao and Wang, 2021;030

Kryscinski et al., 2020). A rigorous line of research031

approaches this problem by developing models to032

detect unfaithful summary content, including uti-033

lizing pre-trained models such as natural language034

inference (NLI) (Kryscinski et al., 2020; Laban035

et al., 2022; Zha et al., 2023) and question answer-036

ing (Scialom et al., 2021; Fabbri et al., 2022). Such037

approaches are tested on rich benchmark datasets,038

such as TRUE (Honovich et al., 2022), SUMMAC039

(Laban et al., 2022), and AGGREFACT (Tang et al.,040

2023), etc.041

However, such benchmark datasets only include 042

short documents (< 1000 words) and summaries 043

with a few sentences. While the aforementioned 044

methods perform well with short texts, they strug- 045

gle with longer documents (Schuster et al., 2022). 046

Recent work using NLI addresses this by select- 047

ing the input and breaking down the summary. 048

Lengthy summaries are split into individual sen- 049

tences or more minor claims, while small chunks 050

of the source document are extracted as premises. 051

This approach reduces the task to multiple short 052

evaluations, which are then aggregated to provide 053

an overall summary-level label (Zha et al., 2023; 054

Zhang et al., 2024; Scirè et al., 2024; Yang et al., 055

2024). 056

Out of the existing NLI-based methods, ALIGN- 057

SCORE demonstrated superior performance on mul- 058

tiple benchmarks. It breaks the input document 059

into continuous chunks of text to tackle the input 060

restriction. However, this exhaustive approach may 061

break the structure of the context (section and para- 062

graph split), thus reducing the chances that the 063

summary sentence can be correctly verified with its 064

factual consistency. On the other hand, most fac- 065

tuality evaluation metrics aggregate the sentence- 066

level aligning scores through averaging or selecting 067

the minimum, disregarding that sentences are not 068

equally important (Krishna et al., 2023). For in- 069

stance, people can remember the big picture more 070

easily but struggle to retain low-level details when 071

retelling a story. The natural questions would be: 072

do system-generated summaries carry a similar pat- 073

tern? If so, how can we utilize the text organization 074

information to help detect the inconsistencies be- 075

tween the summary and the source document? 076

In this work, we study the factual inconsistency 077

problem through discourse analysis. By analyz- 078

ing the structure (here we use Rhetorical Structure 079

Theory (Mann and Thompson, 1988)) of the orig- 080

inal articles and the summaries, we uncover the 081

importance of preserving the article structure and 082
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studying the connections between discourse struc-083

ture and the factual consistency of model-generated084

summaries. Our analysis shows that complex sen-085

tences built by multiple elementary discourse units086

(EDUs, the basic units used in the discourse theory)087

have a higher chance of containing errors, and we088

also find several discourse features connected to089

the factual consistency of summary sentences.090

Motivated by the analyses mentioned above, we091

propose a new evaluation method, STRUCTSCORE,092

based on the NLI-based approaches to better093

detect factual inconsistency. Our algorithm in-094

cludes two steps: (1) leveraging the discourse095

information when aggregating the sentence-level096

alignment scores of the target summary and (2)097

decomposing the long input article into multi-098

ple discourse-inspired chunks. We tested our099

proposed approach on multiple document sum-100

marization benchmarks, including AGGREFACT-101

FtSOTA split, DIVERSUMM, LONGSCIVERIFY,102

and LONGEVAL, with a focus on long document103

summarization. Our proposed approach obtained a104

performance gain on multiple tasks. We will make105

our models and model outputs publicly available.106

To sum up, two research questions are addressed:107

1. How and what discourse features are connected108

to the factual inconsistency evaluation? 2. Can our109

discourse-inspired approach improve the detection110

performance on long document summarization?111

2 Related Work112

Factual Inconsistency Detection in Long Doc-113

ument Summarization Despite the numerous114

datasets released in the news domain (Kryscinski115

et al., 2020; Cao and Wang, 2021; Goyal and Dur-116

rett, 2021; Laban et al., 2022; Tang et al., 2023),117

research on automatic factual inconsistency evalua-118

tion metrics and resources for long document sum-119

marization is limited. Recently, Koh et al. (2022a)120

surveyed the progress of long document summa-121

rization evaluation and called for better metrics and122

corpora to evaluate long document summaries. Koh123

et al. (2022b) released annotated model-generated124

summaries assessing factual consistency at the sen-125

tence and summary levels for GovReport (Huang126

et al., 2021) and arXiv (Cohan et al., 2018). Fur-127

thermore, Bishop et al. (2024) and Zhang et al.128

(2024) introduced benchmarks of LONGSCIVER-129

IFY and DIVERSUMM that cover diverse domains130

respectively, and further proposed different frame-131

works to utilize the context of source sentences132

for evaluating the factual consistency of generated 133

summaries. However, their approaches relied on 134

extracting context through computing similarities 135

with the summary sentence. The summary-level 136

score is a simple average of all sentence-level pre- 137

dictions. Our work analyzed a subset of DIVER- 138

SUMM and AGGREFACT (Tang et al., 2023) that 139

have sentence-level factual inconsistency types and 140

introduced a generalizable approach to better de- 141

tect such inconsistency errors across domains. 142

Aggregation of Sentence-level Evaluations 143

Text summaries are usually composed of multi- 144

ple sentences. Most factual inconsistency eval- 145

uation metrics first compute the sentence-level 146

scores for individual summaries, then aggregate 147

them by either soft aggregation in computing the 148

unweighted-average (Zha et al., 2023; Glover 149

et al., 2022; Scirè et al., 2024; Zhang et al., 2024) or 150

hard aggregation with the minimum score (Schus- 151

ter et al., 2022; Yang et al., 2024). However, these 152

approaches have primarily been validated on older 153

benchmarks, consisting of shorter texts (a few hun- 154

dred input words and summaries of 2-3 sentences). 155

There is a lack of systematic study in the context of 156

long document summarization. Our work dives into 157

the discourse structure of system-generated sum- 158

maries with span/sentence-level factuality annota- 159

tions. We introduce a discourse-structure-inspired 160

re-weighting algorithm that calibrates the softly 161

aggregated scores. 162

Discourse-assisted Text Summarization Dis- 163

course factors have been known for long to play 164

an important role in the summarization task (Ono 165

et al., 1994; Marcu, 1998; Kikuchi et al., 2014; 166

Xu et al., 2020; Hewett and Stede, 2022; Pu et al., 167

2023). Louis et al. (2010) conducted comprehen- 168

sive experiments to examine the power of different 169

discourse features for context selection. We carry 170

a similar analysis but focus on summary sentences 171

that contain factual inconsistency errors. On ad- 172

justing the weight of EDUs, Huber et al. (2021) 173

proposed a weighted RST style discourse frame- 174

work that derives the discourse units’ continuous 175

weights from auxiliary summarization task (Xiao 176

et al., 2021). Differently, our re-weighting algo- 177

rithm is built on top of the trained parser’s parsed 178

discourse tree and applies to the final aggregation 179

of scores. To the best of our knowledge, our work is 180

the first that studies the connections between RST 181

discourse structure and the factual consistency of 182

model-generated summaries. 183
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Dataset Sum.Task Size Doc.Word Doc.Sent Sum.Sent Sum.Word

AGGREFACT FTSOTA XSum (Tang et al., 2023) 558 360.54 16.09 1.01 20.09
CNNDM (Tang et al., 2023) 559 518.85 23.31 2.72 52.21

DIVERSUMM

Multi-news (Fabbri et al., 2019) 90 669.20 27.2 6.81 152.20
QMSUM (Zhong et al., 2021) 90 1138.72 72.80 3.04 65.22

Government (Huang et al., 2021) 147 2008.16 71.35 15.1 391.22
ArXiv (Cohan et al., 2018) 146 4406.99 195.18 6.18 149.70

ChemSumm (Adams et al., 2023b) 90 4612.40 188.80 7.36 172.79

LONGSCIVERIFY
PubMed (Cohan et al., 2018) 45 3776.80 125.00 8.60 225.60
ArXiv (Cohan et al., 2018) 45 6236.40 282.93 7.28 210.93

LONGEVAL* PubMed (Krishna et al., 2023) 40 3158.35 110.00 10.38 193.55

Table 1: Summary-level task statistics on AGGREFACT FTSOTA, DIVERSUMM, LONGSCIVERIFY, and
LONGEVAL. We report the number of annotated doc-summary pairs of the test split (Size), document length
in the average number of words (Doc.Word) and the average number of sentences (Doc.Sent), summary length in
the average number of sentences (Sum.Sent), and words (Sum.Word). LONGEVAL* is the processed version from
Bishop et al. (2024), where summary-level labels are obtained by averaging fine-grained labels.

3 Datasets184

This section describes the datasets used to explore185

our research questions. We begin with the dis-186

course analysis dataset, which includes sentence-187

level fine-grained labels of errors introduced in188

(Pagnoni et al., 2021), enabling systematic analy-189

sis of the relationships between different features190

and their labels. We then discuss the benchmark191

datasets, which provide summary-level labels in192

either binary or continuous scores, and evaluate193

our approach and baselines on them.194

Discourse Analysis Dataset Our discourse anal-195

ysis harnessed the subsets of ARXIV and GOV-196

REPORT from DIVERSUMM (Zhang et al., 2024),197

which come with annotated sentence-level errors198

labels. Following (Zhang et al., 2024), we denote199

it as DIVERSUMM-SENT. It covers 293 document-200

summary pairs of which 3138 summary sentences201

have sentence-level annotations.1202

Summary-level Factuality Detection Datasets203

We test our approach on the AGGREFACT FTSOTA204

split (Tang et al., 2023), which similar work has205

done as well (Scirè et al., 2024; Yang et al., 2024;206

Zhang et al., 2024), DIVERSUMM (Zhang et al.,207

2024), LONGSCIVERIFY and LONGEVAL from208

(Bishop et al., 2024). Table 1 presents a careful209

comparison of datasets from different perspectives.210

We conduct analysis on the document’s structure in211

§4.2 using these datasets. Except for AGGREFACT,212

all remaining datasets are focused on long docu-213

ments and summary pairs.214

1We include analysis of the short document summariza-
tion datasets in Appendix A.1.

4 Discourse Analysis 215

Preliminaries Discourse analysis with Rhetori- 216

cal Structure Theory (RST) is helpful for different 217

downstream tasks, such as argument mining (Peld- 218

szus and Stede, 2016; Hewett et al., 2019), text 219

simplification (Zhong et al., 2020), and summariza- 220

tion tasks (Marcu, 1998; Xu et al., 2020). RST 221

predicts tree structures on the grounds of underly- 222

ing coherence relations that is primarily defined in 223

speaker intentions (Mann and Thompson, 1988). 224

The discourse tree comprises lower-level Elemen- 225

tary Discourse Units (EDUs), each corresponding 226

to a phrase within a sentence. These units are then 227

integrated into more complex structures, such as 228

sentences and paragraphs, to form the full discourse 229

tree. Discourse labels (i.e., elaboration, contrast, 230

condition, etc.) are assigned as the relation be- 231

tween nodes. Additionally, a nuclearity attribute 232

is assigned to every internal node of the discourse 233

tree, aiming to encode the relative importance be- 234

tween the pairs of sub-trees (nucleus roughly im- 235

plying primary importance and a satellite means 236

supplemental).2 237

We first parse the summaries from the datasets 238

as mentioned earlier in Section 3 with an open- 239

sourced DMRST model (Liu et al., 2021), follow- 240

ing similar work which utilizes the same model for 241

discourse parsing (Adams et al., 2023a; Pu et al., 242

2023; Kim et al., 2024b). In the following para- 243

graphs, we propose and verify multiple hypotheses 244

that inspired our discourse-structure-aware factual 245

inconsistency detection approach. Figure 1 summa- 246

rized our findings in §4.1 and §4.2. 247
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 Discourse Structure Tree of the Source Article

Section 4.1: Discourse Analysis on Summary

SENT 1:  EDU 1

SENT 2: EDU 2

SENT 3: EDU 3, 4, 5

Root

[The spread of sexually transmitted diseases can be modelled by means of models that 
take into account the dynamic nature of social interactions.] [One aspect that is usually 
disregarded in the network approach is the dynamical nature of these interactions … 
epidemic. ] [In this paper , we present a model of social dynamics that can be tailored to 
give similar accumulated degree distributions to those obtained in real surveys, ]  [but it 
also allows us to obtain some very general analytical results for the influence of network 
dynamics on the propagation of infectious diseases, ]  [using mean field techniques. ]

Original Article

NS Background

S1
S2-S31

NS Background

2

S2 S3
NN Joint
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SN Manner-Means

EDU 4 & 5
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LinkE
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S2: depth = 2 
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Model Generated Summary

EDU 4EDU 3

EDU 5
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EDUs 6-107

SENT2

SENT 3

SENT 1

Discourse ParsingDiscourse Parsing

A subtree of the RST Tree  
EDU composites of 1-5: 6-107

Discourse Structure Tree of the Summary 

3

Contrast
N N

5

1-5: 6-107

6-107

[1-648] [649-688]

Background NS

1 2

N
Contrast

NS

Contrast

4

Contrast NS

Section 4.2: Source Document Structure

Finding 
Source documents can have varied structures, 
i.e. branched / chain-like linear structure.

Analysis Findings: 
 Finding 1:  Sentences with complex structures are more prone to errors. 
 Finding 2: Errors are associated with the nuclearity and discourse features.

Segmented Summary

This article has a branched structure 

Graph Details of the 
Discourse Tree 1-5: 6-107

Section 5: Our Proposed Approach — StructScore 
• Sec 5.1: We predict the factual consistency scores for individual 

sentences, while the contexts are derived from above. We further 
proposed a discourse-guided re-weighting algorithm to adjust the 
sentence importance for final aggregation, using features from Sec 4.1

• Sec 5.2: Leverage the document structures (Sec 4.2) to provide better 
linearly segmented chunks of long documents

Level 1
Level 2

Source Segmentation

[1-325] [326-648]  
[649-677] [678-688]

Figure 1: Our proposed approach to faithfulness inconsistency detection utilizes findings from discourse analysis.
We first conduct discourse analysis on parsed summary sentences (Sec. 4.1) and exploit the source document’s
discourse structure (4.2). Motivated by the findings, our proposed approach is introduced in Secs. 5.2 and 5.1.

Error Discourse Subtree Depth

-1 0 >= 1
(split link) (1 edu) shallow/deep trees

GramE 6% 28% 66%

LinkE 14% 23% 63%

OutE 15% 13% 72%

EntE 11% 10% 79%

PreE 20% 13% 67%

CorefE 11% 0% 89%

CircE 8% 8% 84%

Table 2: The distribution depths of discourse subtrees
of a sentence that are not factually consistent (depth
of sub-tree) in DIVERSUMM-SENT. “-1” means the
original sentence belongs to two sub-trees.

4.1 Discourse Analysis on Summary Errors248

Finding 1: Errors are located in sentences with249

dense discourse tree (more EDUs) RST can cap-250

ture the salience of a sentence with respect to its251

role in the larger context. Prior work finds that252

the salience of a unit or sentence does not strictly253

follow the linear order of appearance in the docu-254

ment but is more indicative through its depth in255

the tree (Zhong et al., 2020). We consider the256

depth of the current sentence in the RST tree of the257

document (viewing each sentence as a discourse258

unit). We also noted that, at times, the original259

summaries’ sentences are broken into parts and260

span two discourse subtrees (i.e., a sentence cov-261

2We provide the complete list of discourse relations in
Appendix A.2.

ers EDUs 24-28, while the parsing tree’s subtrees 262

are “22-25”’, “26-28”). In this case, we approxi- 263

mate the depth of the sentence by computing the 264

square root of the absolute distance of min and max 265

EDUs, i.e., in the above case, the depth is computed 266

as
√
(28− 24) = 2.3 267

We additionally studied the distribution of the 268

tree structure of sentences with errors. The hy- 269

pothesis is that several errors will likely appear 270

in sentences with complex structures (more EDU 271

units and dense trees). As shown in Table 2, sen- 272

tences containing factual inconsistency errors are 273

generally more complicated and cover multiple dis- 274

course units. It is worth noting that the case of 275

“-1” means the sentence is deeply intervened with 276

its neighboring sentences, and the discourse parser 277

fails to segment it independently. One example is 278

illustrated in the summary of Figure 1, where Sen- 279

tence 3 (S3) contains three EDU segments, making 280

it more complex than the other two sentences. 281

Finding 2: Errors are associated with the nucle- 282

arity and related discourse features We further 283

analyze the distribution of nuclearity and different 284

discourse features of sentences containing errors 285

from the DIVERSUMM-SENT dataset. We observe 286

that a greater number serve as satellites within the 287

discourse relation (62%) for sentences comprising 288

a single Elementary Discourse Unit (EDU). 289

We calculated several discourse feature scores: 290

3We assume that the discourse tree is nearly binary, with
each node having two children.
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RST features t-stat p-value

Ono penalty (Ono et al., 1994) 1.606 0.1089
Depth score (Marcu, 1998) -9.084 0.0000*
Promotion score (Marcu, 1998) -0.828 0.4083

Introduced in (Louis et al., 2010)
Normalized Ono penalty 2.160 0.0314*
Normalized depth score -8.919 0.0000*
Normalized promotion score -0.303 0.7617

Table 3: Two-sided t-test of significant RST-based fea-
tures comparing sentences with factual inconsistency
errors to consistent ones in DIVERSUMM-SENT. We
report the test statistics and significance levels. The
original and normalized depth scores and the normal-
ized penalty scores are significant (p-value <= 0.05).
Fine-grained per error-type results are in Table 8 of
Appendix B.

the penalty score (Ono penalty) as defined in (Ono291

et al., 1994), the maximum depth score (Depth292

score) (Marcu, 1998), and the promotion score293

(Marcu, 1998). The penalty score accounts for294

the number of satellite nodes found on the path295

from the tree’s root to that EDU. The depth score is296

determined by the proximity of an EDU’s highest297

promotion to the tree’s root. The highest promotion298

refers to the closest node to the root, including the299

EDU within its promotion set. The promotion score300

quantifies the salience of an EDU based on how301

many levels it has been promoted through within302

the tree structure. Following Louis et al. (2010), we303

compute both unnormalized and normalized ver-304

sions for the above three scores. As shown in Table305

3, we found significant differences in the distribu-306

tions of depth score and normalized Ono penalty307

and depth score between factually consistent and308

inconsistent sentences and will include them in our309

proposed approach.310

4.2 Document Structure311

We further analyzed the structure of parsed dis-312

course trees for both documents and summaries313

of different datasets. We assume that the linguis-314

tic structure of discourse can change depending315

on factors such as the writing style, domains, and316

depth of reasoning of texts. To check whether the317

structures are evenly branched or follow a more318

sequential pattern, we measure a document graph’s319

average shortest path length (ASPL) (Kim et al.,320

2024b). The intuition is that linear or chain-like321

graphs would have shorter ASPL, providing the322

linear pattern. Meanwhile, branched structures323

would have a longer ASPL, given the spread na-324

Figure 2: Average shortest path length per dataset for
document and summary discourse trees. We sort the
dataset by the average length of the document, finding
that longer document-summary (DOC, SUMM) pairs
would be more branched, and their summaries are
also complicated. AG, DS, LSV, and LE refer to AG-
GREFACT FTSOTA, DIVERSUMM, LONGSCIVER-
IFY and LONGEVAL respectively.

ture of nodes. As shown in Fig 2, for long docu- 325

ment datasets (the last seven datasets), the source 326

documents’ ASPL is longer than the news articles 327

such as CNN/DM and XSUM.4 In the meantime, 328

longer summaries also carry evenly branched com- 329

plex structures compared to short news summaries. 330

While mainstream research works segment long 331

source texts into continuous chunks with limited 332

window size, we argue that this will break the orig- 333

inal structure of texts, thus leading to information 334

loss.5 We propose utilizing the tree structure and 335

constructing the segments based on level traver- 336

sals of the discourse tree to preserve the high-level 337

segmentation. 338

5 StructScore 339

In this section, we describe the STRUCTSCORE 340

framework. The lower right part of Figure 1 341

presents the motivations for each module. 342

5.1 Tree-structure Inspired Weighting 343

Algorithm 344

Prior work (Zha et al., 2023; Scirè et al., 2024) 345

computes the aggregated summary-level prediction 346

on factual consistency score by picking the mini- 347

mum sentence-level score or selecting the average. 348

However, as indicated in Section 4.1, EDUs with 349

different discourse relations and structures can be 350

4We exclude Multi-news in DIVERSUMM as the original
document is composed of multiple related news articles,
making the ASPL reporting less accurate.

5See Appendix C for examples.
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weighted differently. We thus propose to re-weigh351

the sentences based on the features of the discourse.352

First, we examine the sentence’s nuclearity and353

relation within the discourse tree. As found in Ta-354

ble 3, the normalized depth score, which utilizes355

the given node’s nuclearity and the tree structure, is356

significantly different given the existence of factual357

inconsistency errors (p-value < 0.00001), where358

inconsistent sentences have a lower normalized359

depth score (Finding 2 in §4.1).6 Based on this360

finding, we decided to increase the weight of the361

alignment score for sentences with lower depth362

scores within their parsed tree. Since NLI methods363

generate scores within a 0-1 range, we apply an364

exponent to appropriately scale these scores. Let365

xi be the computed normalized depth score of a366

summary sentence, si the original computed align-367

ing score, and x1:j the mean of all depth scores368

from x1 to xj in the summary with length j. The369

function to re-weight the aligning score f(si) can370

be defined as follows:371

f(si) = s
1+(x1:j−xi)
i372

Secondly, observing that sentences that contain con-373

nective EDUs or have complicated discourse struc-374

tures with more EDUs are more likely to contain375

errors (Finding 1 in §4.1), we propose scaling the376

score by selecting an appropriate exponent, given377

that the original score falls within the range of 0378

to 1. We apply a tuning factor α on the discourse379

sub-tree height for the summary sentence senti:380

s∗i = f(si)
1+(height−subtree(senti)∗α)381

We conduct ablation studies on these two compo-382

nents in §7. We search for the best parameters on383

a held-out dev set of DIVERSUMM and keep the384

same across other datasets.385

5.2 Source Document Segmentation386

We parse the original article with the RST parser387

and break the long documents into linear segments.388

This is different from prior work, which either uses389

a fixed window or picks a few context sentences390

surrounding a given source sentence. Motivated391

by findings from §4.2, we follow the below ap-392

proach: (1) If the parser fails, we will use the docu-393

ment structure (paragraph/sentence hierarchies) to394

6Among the three significant features, we use the normal-
ized depth score to ensure consistent scaling. Our prelimi-
nary results also indicate that the normalized Ono penalty
score did not enhance the dev set performance as much.

group by the neighboring sentences. We then fol- 395

low the naive chunking approach in ALIGNSCORE 396

(window size 350) to prepare the input. (2) If the 397

parsing is successful, we will extract the segmen- 398

tation from the discourse tree up to level N. For 399

instance, in the top-right of Figure 1, an original 400

article has EDU segments (1-688), and the root of 401

the RST tree is split into 1-648 and 649-688; we 402

will adopt this segmentation. We apply the chunk- 403

ing approach outlined previously for segments that 404

exceed the ALIGNSCORE model’s context capacity. 405

On the second level, we break (1-648) into (1-325) 406

and (326-648), while the remainder are also broken 407

into smaller chunks. Since the RST parser could 408

break long sentences into multiple EDUs, we have 409

additional post-processing to map the EDUs back 410

to the source sentences. 411

6 Experimental Details 412

For evaluation, we adopt the mainstream evaluation 413

setups for each benchmark. For DIVERSUMM, we 414

use an 80/20 test/dev split by stratifying the labels 415

for each subtask. For AGGREFACT, we used their 416

released val/test split. For LONGSCIVERIFY and 417

LONGEVAL, we use them as test sets. 418

Baselines One of our major baselines is ALIGN- 419

SCORE (Zha et al., 2023), an NLI-based metric 420

that computes the aggregated inference score be- 421

tween a source article and generated summaries. 422

We included INFUSE (Zhang et al., 2024), which 423

set the SOTA on DIVERSUMM, MINICHECK 424

FT5 (MiniCheck-FlanT5 checkpoints) (Tang et al., 425

2024) that is a best-performed non-LLM fact- 426

checker over multiple benchmarks, and LONG- 427

DOCFACTSCORE (Bishop et al., 2024) which 428

claimed to work well on factuality validation of 429

lengthy scientific article summaries. Our experi- 430

ment notes that MINICHECK did not work well 431

over long summaries, given their design objec- 432

tives on short-statement fact-checking. We thus 433

introduce MC-FT5 (SENT), which computes 434

the individual summary sentences’ scores using 435

MINICHECK and reports their average as the fi- 436

nal summary score. We additionally include the 437

GPT4o (gpt-4o-2024-05-13) as the LLM fact- 438

checker, using a prompt adopted from Tang et al. 439

(2024) (see Table 9 in Appendix D). Given the 440

lengthy summary, we prompted the LLM to as- 441

sign a binary label (yes/no) to assess individual 442

summary sentences’ consistency with the original 443

article. Then, we reported the percentile of “yes” 444
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ID Evaluation Model AGGREFACT DIVERSUMM LSV LONGEVAL

XSMAG CNDAG MNW QMS GOV AXV CSM Macro- PUB AXV PUB
evaluation metric AUC AUC AVG Kendal’s τ Kendal’s τ
avg src. len 360.54 518.85 669.20 1138.72 2008.16 4406.99 4612.40 – 3776.80 6236.40 3158.35

Baselines

1 LONGDOCFACTSCORE 50.47 65.27 61.20 40.69 83.52 65.36 60.06 62.17 61.0 61.0 29.0
2 MINICHECK-FT5 75.04 72.62 48.68 45.31 70.26 61.77 52.93 55.79 26.5 38.1 17.4
3 GPT4o 75.36 70.47 51.11 70.22 86.81 67.78 61.53 67.49 54.7 51.8 51.2

Apply our approach with different baselines(↑ means improved the performance compared to the baseline with significance.)

4 ALIGNSCORE 75.66 69.50 46.74 56.48 87.02 77.46 61.03 65.75 54.9 53.9 36.9
5 + re-weighting 75.67 69.20 45.33 53.95 87.29↑ 81.15↑ 60.55 65.65 53.0 54.3↑ 34.8

6 + LV1 SEGMENT 76.23↑ 69.25† 45.86† 61.25↑ 86.74† 79.47↑ 64.15↑ 67.49↑ 51.9 52.8 43.6↑
7 STRUCTS-LV1 76.20↑ 69.03 46.21† 60.06↑ 86.04 82.78↑ 64.47↑ 67.91↑ 50.4 53.9† 43.4↑

8 + LV2 SEGMENT 74.27 70.30↑ 46.03† 55.74 85.10 76.79 63.11↑ 65.35 58.1↑ 51.1 43.9↑
9 STRUCTS-LV2 74.28 69.85↑ 45.33 51.86 85.65 80.00↑ 63.59↑ 65.29 55.3↑ 54.1↑ 43.7↑

10 MC-FT5 (SENT) 79.62 70.95 57.67 60.66 83.24 78.66 59.74 67.99 55.7 52.7 30.2
11 + re-weighting 79.73 70.76† 56.79 60.36† 84.75↑ 79.38↑ 60.06↑ 68.27↑ 52.8 55.1↑ 31.4↑

12 + LV1 SEGMENT 77.84 73.48↑ 44.80 61.10↑ 87.50↑ 85.22↑ 63.59↑ 68.44↑ 57.5↑ 51.4 33.0↑
13 STRUCTS-LV1 76.75 73.40↑ 38.45 60.66† 88.05↑ 86.32↑ 63.11↑ 67.31 56.2↑ 53.8↑ 30.7↑

14 + LV2 SEGMENT 73.70 72.30↑ 47.80 57.53 86.26↑ 83.73↑ 62.07↑ 67.48 56.0↑ 52.9↑ 35.6↑
15 STRUCTS-LV2 71.31 72.30↑ 41.27 59.02 87.16↑ 84.78↑ 61.75↑ 66.80 53.4 54.2↑ 33.0↑

16 INFUSE 68.48 72.52 54.14 39.64 84.41 68.13 57.82 60.83 59.4 55.9 36.9
17 + re-weighting 67.30 72.37 53.44 40.54↑ 84.68↑ 74.31↑ 59.82↑ 62.56↑ 58.3 56.3↑ 34.6

Table 4: Results for all summarization tasks in AGGREFACT-FTSOTA (AGGREFACT), DIVERSUMM,
LONGSCIVERIFY (LSV) and LONGEVAL on Pubmed. For AGGREFACT, we report the overall ROCAUC on
XSum and CNN/DM. respectively. In DIVERSUMM, CSM, MNW, QMS, AXV, and GOV refer to ChemSum,
MultiNews, QMSUM, ArXiv, and GovReport. We also report the macro-average of DIVERSUMM AUC. We
highlight the best performed approach where multiple greens indicate systems indistinguishable from the best
according to a paired bootstrap test with p-value < 0.05, and the second-best system for each column. The six
baseline models are bolded. Cells with † mean the result is indistinguishable from the raw baseline according to
the bootstrap test. We report the average of 3 runs for GPT4o, given the randomness in LLM inference.

answers as the summary-level rating. Unless es-445

pecially noticed, we reran the baseline models on446

our datasets using the original authors’ released447

codebase and checkpoints. Implementation details448

can be found in Appendix D.449

Our Approach We re-utilized baseline models450

to compute the scores between context chunks and451

summary sentences, including ALIGNSCORE (Zha452

et al., 2023), MINICHECK-FT5 (SENT) and IN-453

FUSE (Zhang et al., 2024), and experimented with454

below settings to apply our proposed approaches:455

• + re-weighting: we apply the discourse-456

inspired re-weighting algorithm to adjust the457

sentence-level scores. We tune the factor α on458

height-subtree weighting as 1 over the valida-459

tion set of DIVERSUMM and apply it to other460

benchmark datasets.461

• + LvN. SEGMENT: Instead of using the default462

chunking approach, we segmented the source463

documents with the algorithms introduced in464

Sec. 5.2 with different levels of granularity.465

• STRUCTS-LvN: Combining top two methods.466

The reweighting and segmentation can not be467

applied to LONGDOCFACTSCORE, as it produced 468

negative scores on all enumeration of source-target 469

sentence pairs, which does not utilize the structural 470

information. INFUSE utilizes the ranked list of 471

entailment scores for all document sentences as- 472

sociated with each summary sentence. Thus, the 473

segmentation approach does not affect. 474

Evaluation Metrics For experiments with 475

AGGREFACT-FTSOTA and DIVERSUMM, follow- 476

ing (Laban et al., 2022; Zhang et al., 2024), we 477

adopt ROCAUC (Bradley, 1997) which measures 478

classification performance with varied thresholds 479

as our evaluation metric.7 On LONGSCIVERIFY 480

and LONGEVAL, we report Kendall’s Tau τ , 481

following the original paper (Bishop et al., 2024). 482

7 Results 483

Overall Performance Table 4 presents our main 484

results with detailed setups. Overall, our pro- 485

7To determine the statistical significance of performance
differences, following Zhang et al. (2024), we randomly
re-sample 70% of the test instances 100 times and evaluate
the models on these sets.
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posed approach (with different combinations of486

re-weighting and segmentation settings) achieves487

the best or second best across AGGREFACT and DI-488

VERSUMM. On LONGEVAL-PUB, excluding the489

top-performed GPT4o model, our approaches sur-490

passed the other non-LLM baselines, with a score491

of 43.9 (row 8) compared to 36.9 (row 4 and row492

16). The rest of the section addresses the following493

research questions: RQ1: Can the re-weighting494

algorithm help improve the models’ performance?495

RQ2: How does source document segmentation496

impact factual inconsistency detection? RQ3: How497

does combining both in STRUCTSCORE perform?498

RQ1. We observe that the re-weighting algorithm499

improves prediction performance on different base-500

lines (rows 4-5, 10-11, 16-17). For long source501

documents, the re-weighting approach consistently502

improves or closely matches performance on GOV,503

AXV, CSM, and LSV-AXV. On the other hand, for504

both XSM and CND, the re-weighting algorithm505

does not help much. We posit that the short sum-506

mary length (1-3 sentences) has minimally struc-507

tured information, so the scores will not change508

much from the baseline. For MNW and QMS, the509

short summaries in QMS (averaging 3 sentences)510

reduce the effectiveness of the re-weighting algo-511

rithm. Moreover, MNW’s non-factual sentences512

often receive high prediction scores, which our re-513

weighting approach tends to amplify, leading to a514

drop in performance. We also observe a slight per-515

formance drop on LSV-PUB and LongEval-PUB516

for ALIGNSCORE and INFUSE, potentially due to517

the different document structure of scientific arti-518

cles from the medical domain. These observations519

also suggested potential future work for a dynamic520

weighting algorithm based on the document struc-521

ture and domain knowledge. In Table 5, we ablate522

the two discourse factors from the re-weighting al-523

gorithm with our best baseline MC-FT5 (SENT)524

on a subset of long datasets. We noticed that both525

features are helpful, and the improvement in adding526

subtree height is greater.8527

RQ2. We find that applying document and528

discourse-structure-inspired approaches enhances529

performance across different baselines on long doc-530

ument summarization tasks. We start by apply-531

ing the level-1 and level-2 segmentation to pre-532

serve the document structures while segmenting at533

higher levels. For example, MC-FT5 (SENT) with534

LV1 SEGMENT obtains the highest macro-average535

8We include a more complete table in Appendix E.

Model GOV AXV CSM LSV-AXV

MC-FT5 (SENT) 83.24 78.66 59.74 52.73
+ subtree height 84.55 79.09 60.55 55.08
+ depth score 83.65 78.90 59.90 53.80

re-weighting 84.75 79.38 60.06 55.08

Table 5: Ablation results on a subset of datasets from
DIVERSUMM and LONGSCIVERIFY, the top and
bottom rows are rows 10 and 11 in Table 4 .

AUC on DIVERSUMM, a trend also observed with 536

ALIGNSCORE. Specifically, comparing row 10 and 537

row 12, the Lv1 SEGMENT improved the model’s 538

performance on 6 of 7 long datasets from QMS 539

to LongEval-PUB (i.e. 78.66 -> 85.22 and 83.24 540

-> 87.50 on AXV and GOV from DIVERSUMM). 541

However, the effect of fine-grained segmentation 542

can vary depending on the document’s length and 543

structure. For instance, ALIGNSCORE in row 8 544

with Lv2 segment obtained better performance than 545

Lv1 on LSV-PUB but was the worst on QMS. 546

RQ3. Combining both approaches is not univer- 547

sally beneficial across all scenarios. When both 548

individual approaches contribute positively, the 549

combined STRUCTS generally achieves better per- 550

formance, as seen in row 13 and row 7 on AXV 551

and CSM. However, when one component causes 552

a performance drop, combining both often leads 553

to weaker overall performance than the stronger 554

component alone. For instance, on GOV, row 7 555

performs worse than row 4, likely due to the seg- 556

mentation in row 6, making the model less accurate. 557

Similarly, row 13 performs slightly better than row 558

10 on LSV-PUB, but row 12’s improvement does 559

not translate into better performance gains when 560

combined with row 11. Differences in evaluation 561

metrics (AUC vs. correlation) and dataset sizes 562

may also have influenced these outcomes (i.e., row 563

13 does not improve much on LE-PUB while both 564

rows 11 and 12 have larger gains). 565

8 Conclusion 566

In this work, we approach the factual inconsistency 567

detection of long document summarization through 568

the lens of discourse analysis. We find that dis- 569

course factors, with regard to sentence structure, 570

are related to the factual level of sentences. We fur- 571

ther propose a framework that leverages the source 572

document structure and introduces re-weighting 573

the sentence-level predictions on top of different 574

NLI-based models to obtain performance gains on 575

multiple long document summarization datasets. 576
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Limitations577

Our work contributed to understanding the unfaith-578

ful errors in machine-generated summaries from579

the lens of discourse analysis. Our experiments’580

validity and subsequent findings rely on the parsed581

discourse trees generated by an existing parser, fol-582

lowing prior work (Adams et al., 2023a; Pu et al.,583

2023; Kim et al., 2024b). It is important to note584

that parsed results may also be suboptimal given585

the challenges of complex hierarchical structures586

of long documents and the differences between the587

model’s training corpora and our tested domains.588

We call for more robust RST parsers that can lever-589

age recently contributed annotated discourse cor-590

pora with the help of advances in LLM modeling.591

Our current approach leaves discourse-relation592

information unused on the system level; it would be593

interesting to utilize it to detect and resolve incon-594

sistency errors. We also acknowledge the choices595

of our current re-weighting algorithm (exponential)596

can be further studied with more motivation.597

In our analysis section, discourse analyses were598

carried out using the annotated portion of the re-599

leased dataset, which is limited by the annotation600

quality and the dataset sizes. Yet, this is by far601

the only dataset that provides the sentence-level an-602

notations on long document summarizations (i.e.,603

Krishna et al. (2023) released the fine-grained604

scores, but did not clarify how the spans annota-605

tions are collected in their document). We ver-606

ify the effectiveness of portions of our linguistic-607

inspired method on other benchmarks, including608

LONGSCIVERIFY and LONGEVAL. Future work609

would be to analyze and examine the discourse pat-610

terns in other domains, such as story summarization611

or further book-length summarization tasks (Chang612

et al., 2024; Kim et al., 2024a).613

Ethical Statement614

Throughout the paper, we have referenced datasets615

and models used in our analyses and experiments,616

ensuring that they are openly available and do not617

pose concerns with the public release or usage of618

this paper. We acknowledge the use of Grammarly619

and ChatGPT-4o for correcting sentences that are620

less fluent but not for generating or drafting new621

content.622
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A Discourse Analyses 939

A.1 Short Summary Analysis 940

Dataset Size Gran Error Tag

AGU_CLIFF 300 word intrin./extrin./other/wld. knowl.
AGU_Goyal’22 150 span intrins./extrin./other

Table 6: Statistics of Sent/Span-level factual inconsis-
tency datasets AGGREFACT-UNIFIED (AGU) (Tang
et al., 2023). We report the size of doc-summary pairs
(Size), the granularity of annotation (Gran), and the
error labels (Error Tag).

We also conduct a discourse analysis on 941

AGGREFAC-UNITED (Tang et al., 2023), as shown 942

in Table 6. This dataset includes BART and Pega- 943

sus summaries from CLIFF (Cao and Wang, 2021) 944

and Goyal’21 (Goyal and Durrett, 2021).9 In the 945

Goyal22 split of AGGREFACT-UNITED, a total of 946

61 errors were detected. Intrinsic errors are found 947

to appear more often in satellite EDUs (18/31) with 948

the attribution relation. Regarding extrinsic errors, 949

the nucleus EDUs take the majority. We further 950

analyzed the CLIFF dataset (Cao and Wang, 2021), 951

where span-level annotations of faithful errors are 952

available. Out of 600 sentences, the parser failed 953

to parse 131 summaries, likely due to their short 954

lengths and simplistic structures. Therefore, our 955

analysis focused on the 469 summaries that were 956

successfully parsed. We observed that Elementary 957

Discourse Units (EDUs) containing errors are more 958

likely to appear at the bottom of the discourse tree. 959

These findings are similar to the long summary 960

analysis in §4. 961

A.2 Discourse Relations in RST 962

We include the complete list of coarse-grained and 963

fine-grained relation classes in the RST Discourse 964

Treebank in Table 7, as summarized in (Feng, 965

2015). 966

B Discourse Analysis on Fine-grained 967

Error Types 968

Error Types Relation Error (PreE) is when the 969

predicate in a summary sentence is inconsistent 970

with respect to the document. Entity Error (EntE) 971

is when the primary arguments of the predicate are 972

incorrect. Circumstance Error (CircE) is when the 973

predicate’s circumstantial information (i.e., name 974

9AGGREFACT-UNIFIED (AGU_CLIFF) include addi-
tional error types such as comments, other errors: noise,
grammar and world knowledge (wld. knowl.)
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Relation class Relation type list

ATTRIBUTION attribution, attribution-negative

BACKGROUND background, circumstance

CAUSE cause, result, consequence

COMPARISON comparison, preference, analogy, proportion

CONDITION condition, hypothetical, contingency, otherwise

CONTRAST contrast, concession, antithesis

ELABORATION elaboration-additional, elaboration-general-specific,
elaboration-part-whole, elaboration-process-step, elaboration-
object-attribute, elaboration-set-member, example, definition

ENABLEMENT PURPOSE purpose, enablement

EVALUATION evaluation, interpretation, conclusion, comment

EXPLANATION evidence, explanation-argumentative, reason

JOINT disjunction
MANNER-MEANS manner, means

TOPIC-COMMENT problem-solution, question-answer, statement-response, topic-
comment, comment-topic, rhetorical-question

SUMMARY summary, restatement

TEMPORAL temporal-before, temporal-after, temporal-same-time, sequence,
inverted-sequence

ELABORATION elaboration-additional, elaboration-general-specific,
TOPIC-CHANGE topic-shift, topic-drift

Table 7: The 17 coarse-grained relation classes and the corresponding 78 fine-grained relation types (53 mononu-
clear and 23 multi-nuclear) in the RST Discourse Treebank. Relation types which differ by nuclearity only, e.g.,
contrast (mononuclear) and contrast (multi-nuclear), are combined into one single type name here. Table repli-
cated from (Feng, 2015).
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RST features GramE LinkE OutE EntE PredE CorefE CircE ALL Errors
Count (83) (35) (48) (117) (15) (9) (13) (320)

Ono penalty -1.166 1.855 0.621 1.647 0.730 0.215 1.627 1.606 (0.1089)
Depth score -5.218** -7.381** -4.628** -3.252** -2.002 0.214 -0.565 -8.249 (0.0000)
Promotion score -6.519** -0.971 -0.440 1.734 -0.195 2.613* 0.629 -0.828 (0.4083)

Normalized penalty -1.742 3.051** 0.695 1.990* 0.673 -0.002 0.493 2.160 (0.0314)
Normalized depth score -6.689** -6.043** -4.823** -3.307** -1.731 -0.153 -1.986 -9.084 (0.0000)
Normalized promotion score -5.754** 0.487 -0.322 1.796 -0.087 2.206 -0.218 -0.303 (0.7617)

Table 8: Two-sided t-test statistic of significant RST-based features comparing unfaithful sentences to faithful
ones in DIVERSUMM annotated split. We report the test statistics and significance levels. For fine-grained errors,
we report the significant level in * (0.01 <= p-value <=0.05) and ** (p-value <=0.01). For All errors, we report
the p-value in parenthesis.

or time) is wrong. Co-reference error (CorefE) is975

when there is a pronoun or reference with an in-976

correct or non-existing antecedent. Discourse Link977

Error (LinkE) is when multiple sentences are in-978

correctly linked. Out of Article Error (OutE) is979

when the piece of summary contains information980

not present in the document. Grammatical Error981

(GramE) indicates the existence of unreadable sen-982

tences due to grammatical errors.983

Fine-grained Error Analysis In Table 8, we984

demonstrate the breakdowns of fine-grained error985

types and report the t-test results on different dis-986

course features.987

C Example of Segmentation Failures988

This section includes one example of the ALIGN-989

SCORE’s chunking method that failed to pre-990

serve the document structure, while our discourse-991

inspired chunk addresses it.992

For example, as shown in Figure 3a, the original993

document contains two consecutive sentences: "To994

determine the extent ..." and "To develop the SMS"995

(highlighted in the orange box). These sentences996

are meant to be read together and should not be sep-997

arated. However, the default chunking approach in998

ALIGNSCORE and MINICHECK breaks this conti-999

nuity by placing them in two separate chunks, given1000

the former chunk is large enough. On the contrary,1001

our approach maintains the structural integrity of1002

the documents, keeping the sentences connected as1003

intended. Similarly, in Figure 3b, the conclusion1004

section is separated into two chunks by the default1005

chunking approach, while our method maintains1006

them in a single chunk.1007

D Implementation Details 1008

D.1 GPT4o Prompts 1009

We include our prompt for zero-shot factual consis- 1010

tency evaluation in Table 9. 1011

D.2 Baselines 1012

AlignScore (model size 355M) (Zha et al., 2023) 1013

is an entailment-based model that has been trained 1014

on data from a wide range of tasks such as NLI, QA, 1015

and fact verification tasks. It divides the source 1016

document into a set of sequential chunks at sen- 1017

tence boundaries. For a multi-sentence summary, 1018

it predicts the max scoring value of all combina- 1019

tions of source chunk and target sentence, then 1020

returns the unweighted average of all sentences as 1021

the summary prediction. We follow the original 1022

setting by setting chunk size at 350 tokens and 1023

use the default model alingsocre_large ckpt. The 1024

model outputs a score between 0 and 1. We con- 1025

duct experiments on top of their released codebase 1026

https://github.com/yuh-zha/AlignScore. 1027

MiniCheck-FT5 (model size 770M) (Tang et al., 1028

2024) is an entailment-based fact checker built 1029

on flan-t5-large. It has been further fine-tuned on 1030

21K datapoints from the ANLI dataset (Nie et al., 1031

2020) and 35k synthesized data points generated in 1032

(Tang et al., 2024) on the tasks to predict whether 1033

a given claim is supported by a document. We fol- 1034

low the authors’s setting and set the chunk size to 1035

500 tokens using white space splitting. The out- 1036

put score is between 0 and 1. We use the released 1037

code repo from https://github.com/Liyan06/ 1038

MiniCheck. 1039

LongDocFactScore (Bishop et al., 2024) is a 1040

reference-free framework for assessing factual con- 1041

sistency. It splits source documents and the gen- 1042

erated summary into sentences, then computes 1043

the pair-wise similarities by computing the cosine 1044
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(a) Example from GovReport of DIVERSUMM.

(b) Example from ArXiv of DIVERSUMM.

Figure 3: Example of segmentation failures, left is the output of chunking method used in ALIGNSCORE and
MINICHECK, right is the segments produced by our segmentation method.

similarities of sentences (they use the sentence-1045

transformers library initialized with the bert-base-1046

nmli-mean-tokens model). Afterward, for each in-1047

dividual summary sentence, K most similar source1048

sentences are picked. The method extracts the1049

neighboring source document sentences of the se- 1050

lected sentences as context, then applies a metric 1051

BARTScore to evaluate the score between source 1052

context and summary sentences. The overall sum- 1053

mary score is an unweighted average of all sen- 1054

15



Determine whether the provided claims are consistent with the corresponding document. Consistency in this context
implies that all information presented in the claim is substantiated by the document. If not, it should be
considered inconsistent.

Document: [DOCUMENT]
Claims: [CLAIMS]
Please assess the claim’s consistency with the document by responding with either "yes" or "no".
The CLAIMs are ordered in the format of a dictionary, with { index: CLAIM }. You will need to return the result in JSON format.
For instance, for a CLAIMs list of 4 items, you should return {0:yes/no, 1:yes/no, ...., 3:yes/no}.

ANSWER:

Table 9: Zero-shot factual consistency evaluation prompt for GPT4o.

tences. We follow the authors’ parameters setting1055

and utilize their released code repo from https:1056

//github.com/jbshp/LongDocFACTScore.1057

InfUsE (model size 60M) Zhang et al. (2024)1058

uses a variable premise size and breaks the sum-1059

mary into sentences or shorter hypotheses. Instead1060

of fixing the source context, it retrieves the best1061

possible context to assess the faithfulness of an1062

individual summary sentence by applying an NLI1063

model to successive expansions of the document1064

sentences. Similar to prior approaches, it outputs1065

an entailment score for each summary sentence,1066

and the summary-level score is the unweighted1067

average. We follow their settings on INFUSE1068

with summary sentences instead of INFUSESUB1069

as the authors only released the code for the for-1070

mer model. INFUSE outputs scores in the range1071

0-1. We use the author’s released codebase from1072

https://github.com/HJZnlp/Infuse.1073

GPT4o We used the version of gpt-4o-2024-05-1074

13; we set max_tokens 100, sampling temperature1075

at 0.7, and top_p as 1.0. We call the OpenAI API1076

from https://openai.com/api.1077

D.3 Machine Configuration for Models1078

We use up to 4 NVIDIA RTX 5000 GPUs, each1079

equipped with 16 GB VRAM, for model infer-1080

ences on our hardware. According to Lambda101081

(RTX5000 is depreciated), a single NVIDIA1082

Quadro RTX 6000 (the closest to our setting) GPU1083

costs $0.5 per hour and has 24 GB VRAM.1084

E Ablation Study1085

Table 10 presents the ablation results of different1086

discourse features on our baselines. We cover the1087

long document summarization tasks starting from1088

QMS in Table 4.1089

10https://lambdalabs.com/service/gpu-cloud
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Model QMS GOV AXV CSM LSV-PUB LSV-AXV LE-PUB

MC-FT5 (SENT) 60.66 83.24 78.66 59.74 55.7 52.7 30.2
+ subtree height 60.21 84.55 79.09 60.55 53.6 55.1 30.4
+ depth score 60.51 83.65 78.90 59.90 55.7 53.8 33.3

re-weighting 60.36 84.75 79.38 60.06 52.8 55.1 31.4

AlignScore 56.48 87.02 77.46 61.03 54.9 53.9 36.9
+ subtree height 52.91 87.29 81.15 60.47 51.7 55.4 34.1
+ depth score 56.63 87.29 77.66 60.30 54.3 52.4 36.6

re-weighting 53.95 87.29 81.15 60.55 53.0 54.3 34.8

Table 10: Ablation results on long document datasets from DIVERSUMM, LONGSCIVERIFY and LONGEVAL.
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