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Abstract— Neural Motion Planners (NMPs) have emerged
as a promising tool for solving robot tasks in complex envi-
ronments. However, these methods often require expert data
for learning, which limits their application to scenarios where
data generation is time-consuming. Recent developments have
also led to physics-informed deep learning models capable of
representing complex Partial Differential Equations (PDEs).
Inspired by these developments, we propose physics-informed
neural motion planning methods for robot navigation and
manipulation. Our framework represents a wave propagation
model generating continuous arrival time to find path solutions
informed by a nonlinear first-order PDE called the Eikonal
equation. We evaluate our method in various robot navigation
and manipulation tasks, including 3D robot navigation in the
Gibson dataset, and 6-DOF robot manipulators constrained
motion planning. Furthermore, the results show that our
method exhibits high success rates and significantly lower com-
putational times than the state-of-the-art methods, including
NMPs that require training data from classical planners.

I. INTRODUCTION

Motion Planning (MP) is one of the core components
of an autonomous robot system that aims to interact with
its surrounding environments physically. MP algorithms find
path solutions from the robot’s start state to the goal state
while respecting all constraints, such as collision avoidance.
The quest for fast, scalable MP methods has led from
traditional approaches such as RRT* [10], Informed-RRT*
[3], and FMT* [8] to NMPs [5]–[7], [9], [11], [16], [17] that
exhibit promising performance in high-dimensional spaces.
However, a significant bottleneck in state-of-the-art NMPs is
their need for expert trajectories from traditional MP meth-
ods, limiting their application to high-dimensional scenarios
where large-scale data generation is time-consuming.

Recent developments have provided us with ways to have
physics-informed deep learning models [12], [18], [20] that
can directly solve complex PDEs such as Navier-Stokes,
Burgers, and Schrodinger equations. Inspired by these neural
PDE solvers and to overcome the expert data needs of NMPs,
this paper introduces Neural Time Fields (NTFields) [13]–
[15] for robot motion planning in cluttered environments.
Our NTFields are generated by a physics-informed neural
model driven by a first-order, non-linear PDE called the
Eikonal equation, whose solution represents the shortest ar-
rival time from a source to a destination location under a pre-
defined speed model, and leads to the continuous shortest-
path between two locations [1], [19]. Our model generates
a continuous time field between the robot’s given start and
goal configurations while respecting collision avoidance and
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other kinematic constraints, leading to a path solution in sub-
seconds.

Our method’s salient features and contributions are sum-
marized as follows: 1) A novel physics-informed Eikonal
equation formulation for robot motion planning under
collision-avoidance constraints in high-dimensional spaces.
2) A novel neural architecture design that encapsulates
various properties of our PDE, resulting in a scalable, fast
NMP method. 3) A novel bidirectional algorithm that quickly
finds path solutions by iteratively following the gradient of
neural time fields, marching towards each other from the
start and goal configurations. 4) Unlike prior, state-of-the-art
NMP methods requiring extensive expert motion trajectories,
NTFields only require randomly sampled robot start and
goal configurations and learn robot motion time fields by
directly solving the PDE formulation to find path solutions
in sub-second times. Our data generation takes less than 3
minutes, even in complex high-dimensional scenarios, and
yet, our method computes paths significantly faster than
traditional planners while retaining high success rates. 5)
We demonstrate our method in various 3D environments,
including the Gibson dataset, and also solve constraint ma-
nipulation problems for 6-DOF robot manipulators where
traditional grid-based Eikonal planners such as the Fast
Marching Method (FMM) [19] struggle due to computational
time complexity. 6) Finally, we compare our method against
state-of-the-art NMP methods, which require expert motion
trajectories, and against existing neural PDE solvers for the
Eikonal equation to highlight their limitations in solving
complex motion planning problems.

II. BACKGROUND

This section formally presents the background to robot
motion planning problems and their solutions through
physics-informed NMPs.

A. Robot Motion Planning

Let the robot’s configuration and environment space be
denoted as Q ⊂ Rd and X ⊂ Rm, where {m,d} ∈ N repre-
sents their dimensionality. The obstacles in the environment,
denoted as Xobs ⊂ X , form a formidable robot configuration
space (c-space) defined as Qobs ⊂ Q. Finally, the feasible
space in the environment and c-space is represented as
Xfree = X /Xobs and Qfree = Q/Qobs, respectively. The
objective of robot motion planning algorithms is to find a
trajectory τ ⊂ Qfree that connects the given robot start
qs ∈ Qfree and goal qg ∈ Qfree configurations.

The constraint motion planning (CMP) problem extends
the standard motion planning problem by incorporating ad-



ditional kinematic constraints. These constraints induce a
thin manifold inside the robot C-space, which is denoted
as M ⊂ Q. Like the C-space, the manifold also comprises
the obstacle,Mobs ⊂ Qobs, and obstacle-free space,Mfree ⊂
Qfree. Finally, the objective of CMP is to find a robot motion
path, σ = {qs,⋯, qg}, between the given start, qs ∈Mfree,
and goal, qg ∈Mfree, such that σ ⊂Mfree.

B. Eikonal Equation Formulation

The Eikonal equation is a first-order, nonlinear PDE
approximating wave propagation. Its solution is the shortest
arrival time from a source to a destination location under a
pre-defined speed model, which corresponds to the continu-
ous shortest path problem [1], [19]. Let S(x) and T (x, y)
represent the speed model on point x and the corresponding
wave arrival time from the given source x to the target y.
Then, the Eikonal Equation relates the speed and arrival time
as

1/S(qg) = ∥∇qgT (qs, qg)∥ (1)

, where S(y) is the speed at target point y, and ∇yT (x, y)
is a partial derivative of the arrival time model with respect
to the target point y. However, the solutions to the Eikonal
equation have singularity near the source point when the
arrival time is almost zero. Also, the speed inside obstacles,
i.e., formidable space Qobs, needs to be zero, making arrival
time infinity.

Therefore, we factorize the arrival time T in the following
form and introduce the factorized time τ(qs, qg) as:

T (qs, qg) = ∥qs − qg∥/τ(qs, qg) (2)

In the above equation, the model time field T (qs, qg) = 0
when qs = qg . As we require speed in formidable obstacle
space to be almost zero, we can explicitly make τ(qs, qg)→
0 for any arbitrary configurations in obstacle-space, i.e.,
{qs, qg} ∈ Qobs. Therefore, T (qs, qg) ∈ [0,∞) and by our
factorization in Equation 2, τ(qs, qg)’s value range from 0
to 1.

III. PROPOSED METHOD

We model the physics governed by Eq. 1 using a deep
neural network. Our neural architecture outputs the factorized
time τ for the given robot configurations’ representation
concerning the given environment. We also introduce novel
neural architecture to capture the property of time field w.r.t
motion planning. In addition, we introduce a speed model
respecting collision and kinematic constraints.

A. Expert Speed Model for Constraints

We define our ground truth speed model, denoted as
S∗(q), at any robot configuration q ∈ Q as

S∗(q) =
sconst

dmax
× clip(dc(p(q),Xobs), dmin, dmax), (3)

where p ⊂ Rm represents robot surface obtained via forward
kinematics for the given configuration q ∈ Qfree, and dc

computes a distance between robot surface p and obstacles
Xobs in workspace. The dmin and dmax are minimum

and maximum distance thresholds, and sconst is a user-
defined speed constant. The clip functions bound the distance
function with range [dmin, dmax]. We assume constant speed
if a robot’s distance from obstacles exceeds dmax.

Furthermore, we define the speed model for general kine-
matic and collision avoidance constraints. The objective is to
assign a maximum speed value to configuration samples on
the collision-free constraint manifold, Mfree, and a lower
speed value to collision and off-manifold samples. Let a
function d(q,M,Xobs, ϵ) determine the distance of a given
configuration, q, from the collision-free constraint manifold,
and ϵ be a predefined safety margin around obstacles. We
define this function as:

d(q,Xobs, ϵ) =max(dM(q), ϵ − dc(p(q),Xobs)) (4)

In the above formulation, the distance dM measures the
distance of a given configuration to the constraint manifold.
We compute this distance following the f(⋅). Moreover, the
function dc determines the minimum distance of a given
robot configuration from the obstacles. The two distance
functions, (dM,dc), and safety margin, ϵ are combined
using the max operator. The safety margin allows slow-speed
maneuvering around obstacles, which is usually preferred
over sharp turns offered by traditional planners. Moreover,
in Eq. 4, if the distance of collision surpasses the margin
and creates a negative term ϵ − dc, the max operator will
return the distance to the manifold since it is more important
as the configuration is already far from the obstacle. Next,
we define our speed model based on distance function d as
follows:

S∗(q) = exp(−d(q,Xobs, ϵ)2
λϵ2

), (5)

where λ ∈ R+ is a predefined scaling factor. This speed model
uses the negative exponential, which smoothly decays as the
distance of the robot configuration from the collision-free
manifold increases.

B. Viscosity Eikonal Equation Formulation

The Eikonal equation is ill-posed, i.e., the solution of
Eq. 1 around low-speed regions is not unique. To fix these
problems, we propose to use a viscosity term that can
provide a differentiable and unique approximation of the
Eikonal equation’s solution. The viscosity term comes from
the vanishing viscosity method [2]. It adds the Laplacian
∆qgT (qs, qg) to the Eikonal equation, leading to a semi-
linear elliptic PDE with a unique solution.

1/S(qg) = ∥∇qgT (qs, qg)∥ + η∆qgT (qs, qg), (6)

where η ∈ R is a scaling coefficient. We use the above for-
mulation in our setting to overcome the challenges induced
by the collision and kinematic constraints. Furthermore, we
use ∆qgτ(qs, qg) instead of ∆qgT (qs, qg) for computational
simplification. Finally, the above equation has a unique
solution and aids in training our PINN.
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Fig. 1: The neural architecture comprises the Fourier-based
C-space Encoder, symmetric operator, and time-field gener-
ator. Three images on the top left show we progressively
decrease the speed around a bunny-shaped obstacle to guide
the neural network training. The image on the top right shows
the final time field from start to goal generated by the trained
model.

C. Neural Network Architecture

Our neural architecture can be formalized as follows and
Fig. 1:

τ(qs, qg) = g(f(γ(qs, Z))⊗ f(γ(qg, Z))) (7)

In the above formulation, γ is the Fourier transform-based
environment and C-space encoder. It takes as an input
the start and goal configurations, (qs, qg), and pre-defined
environment latent code Z, and outputs the high-frequency
Fourier features:

γ(qs, Z) = [cos(2πZT qs), sin(2πZT qs)]
γ(qg, Z) = [cos(2πZT qg), sin(2πZT qg)]

(8)

The output features, (γ(qs, Z), γ(qg, Z)), are then further
embedded by a ResNet-style encoder, f , with skip con-
nections [4]. Next, a symmetry operator, ⊗, combines the
features using the max and min operators. For instance,
some arbitrary inputs, a and b, are combined as a⊗ b =
[max(a, b),min(a, b)] and [⋅] is a concatenation operator,
which maintains the symmetric property of arrival time, i.e.,
the arrival time from start to goal and from goal to start
must be the same. Finally, the arrival time neural network,
g, takes the symmetrically combined features and outputs
the τ(qs, qg). This module also leverages the ResNet-style
neural network with skip connections. Finally, using the auto-
differentiation, we compute the gradient ∇qgτ(qs, qg) and
the Laplacian ∆qgτ(qs, qg) to determine S(qs) and S(qg),
as described in Eq. 6.

D. Training Procedure

Given the start and goal configuration samples dataset
generated on the manifolds and nearby, we train our above-
mentioned neural network framework in an end-to-end man-
ner. The NN module takes as an input the environment
embedding (Z), the start and goal configurations (q0, qT ),
and outputs the factorized time τ(q0, qT ). This factorized
time is then used to predict the speed using Equation X. In
addition, we also compute the ground truth speed using Eq.

Gibson time (sec) length safe margin sr(%)
Ours 0.01 ± 0.00 11.68 ± 29.69 0.88 ± 0.16 98.3

IEF3D 0.05 ± 0.00 11.47 ± 27.69 0.87 ± 0.18 92.5
FMM 0.69 ± 0.00 11.21 ± 24.79 0.93 ± 0.13 97.4
RRT* 3.17 ± 0.00 10.36 ± 26.28 0.57 ± 0.29 89.8

LazyPRM* 2.63 ± 25.09 9.94 ± 16.27 0.53 ± 0.35 92.9
RRT-Connect 0.44 ± 0.28 11.95 ± 32.88 0.56 ± 0.34 100

Fig. 2: Comparison in two Gibson environments. The figures
show six paths generated by our method (orange), IEF3D
(cyan), FMM (green), LazyPRM* (pink), and RRT-Connect
(yellow). The statistical results on 2×500 different starts and
goals for two Gibson environments.

3 or Eq. 5. Finally, the NN can be trained by minimizing the
following isotropic loss between the predicted and ground
speed at the given configurations:

S∗β(e)(qs)/S(qs) + S(qs)/S∗β(e)(qs)+
S∗β(e)(qg)/S(qg) + S(qg)/S∗β(e)(qg) − 4

(9)

Furthermore, we use the progressive speed scheduling ap-
proach to train our networks and prevent them from con-
verging to incorrect local minima. The scheduling approach
gradually scales down the ground truth speed from higher
to lower value over the training epoch, e, using the param-
eter β(e), i.e., S∗β(e)(q) = (1 − β(e)) + β(e)S∗(q). This
approach overcomes the complex loss landscape of physics-
based objective functions and leads to better convergence in
low-speed environments such as those with thin manifolds.
Additionally, we employ a random batch buffer strategy to
train our PINN method. Our findings suggest that selecting
a random, smaller data batch for each training epoch is a
more efficient and effective approach.

E. Planning Procedure

Once our NN modules are trained, we use the planning
pipeline. We begin by computing the factorized arrival time
using NN, τ(qs, qg), required to travel from the starting point
qs to the destination point qg . Next, τ factorizes Eq. 2 and
Eq. 1 to compute T (qs, qg) and speed fields S(qs), S(qg).
Finally, the start and goal configurations are bidirectionally
and iteratively updated toward each other until the terminal
limit is reached, i.e., ∥qs − qg∥ < r to find a path, i.e.,

qs ← qs − αS2(qs)∇qsT (qs, qg)
qg ← qg − αS2(qg)∇qgT (qs, qg)

(10)

where parameter α ∈ R is a predefined step size and r ∈ R
is predefined the goal region.

IV. EVALUATION

In this section, we assess the performance of our method
through three sets of experiments. We conduct comparative
experiments to evaluate our method against several state-
of-the-art MP baselines. These experiments encompass the
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Fig. 3: Two different real-world manipulator cases: the first row shows the door opening task, whereas the second shows
the manipulator moving an object from the cabinet’s top shelf to the lower shelf by crossing two relatively thin obstacles.

two problem settings: (1) A complex Gibson navigation
setting in 3D space (2) A door-opening task with 6-DOF
UR5e robot manipulator and an object manipulation task
under orientation constraints with 6-DOF UR5e robot in
intricate, narrow-passage cabinet environments. Furthermore,
we perform all experiments on a computing system with
3090 RTX GPU, Core i7 CPU, and 128GB RAM.

Gibson Navigation:
Our Gibson environments (Fig. 2) demonstrate home-like

complex scenarios. We randomly sample 500 start and goal
pairs for motion planning in each environment. We com-
pare our method’s performance with IEF3D, FMM, RRT*,
LazyPRM*, and RRT-Connect. Fig. 2 shows the paths where
our method, IEF3D, FMM, LazyPRM*, and RRT-Connect
path solutions are illustrated in orange, red, cyan, green, pink,
and yellow colors, respectively. We exclude RRT* for the
cases presented in the figure as it could not find a valid within
10 seconds limit. Our method, IEF3D, and FMM results
show similar smooth paths because of the obstacle safety
margin, whereas, RRT-Connect and LazyPRM* have shorter
path lengths due to a smaller safety margin. The table in Fig.
2 presents the statistical results. Our results validate that our
approach enables physics-informed NMPs to achieve higher
performance without needing any demonstration trajectories
for learning and outperform prior methods.

Door Opening and Object Manipulation:
These two tasks, defined by distinct manifolds, are solved

through a 6-DOF UR5e Manipulator in both simulation and
real-world settings. The door-opening task requires a robot to
open the door from the current position to the open position.
On the other hand, the object manipulation task imposes
orientation constraints and requires the robot to maintain the
object upright, i.e., without tilting, while moving it from a
given start to the goal. We chose a challenging cabinet with

narrow passages as our environment for these two tasks,
which imposes significant motion planning challenges in
terms of collision avoidance and manifold constraints.

Fig. 3 shows our method’s executions in real-world ex-
periments. The environment was scanned via the RealSense
sensor. The first row shows the snapshots of opening the
door of the cabinet. This case took 0.06 seconds. The second
row shows snapshots of moving a cup of cola across cabinet
shelves: the manipulator moving from the cabinet’s top shelf
and crossing two relatively thin obstacles to another corner
of the cabinet. This case took 0.15 seconds.

V. CONCLUSIONS AND FUTURE WORK

We introduce a physics-informed neural motion planner
that requires no expert demonstration data from classical
planners and finds path solutions with significantly low com-
putation times and high success rates in complex environ-
ments. Additionally, we formulate a physics-driven objective
function and reflect it in our architecture design to directly
parameterize the Eikonal equation and generate time fields
for different scenarios, including a 6-DOF manipulator space,
under collision-avoidance and other kinematic constraints.
Our future work revolves around solving the limitations of
our proposed work. First, our method only generalizes to
the new start and goal configurations in given environments.
Hence, we also aim to extend our neural field method to
generalize across novel environment encoding architectures.
Second, aside from addressing a few limitations, we also aim
to explore novel PDE formulations to train physics-informed
NMPs to solve motion planning and control under dynamic
constraints.
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