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Abstract

The Lottery Ticket Hypothesis suggests that for001
any over-parameterized model, a small subnet-002
work exists to achieve competitive performance003
compared to the backbone architecture. In this004
paper, we study whether there is a winning005
lottery ticket for pre-trained language models,006
which allow the practitioners to fine-tune the007
parameters in the ticket but achieve good down-008
stream performance. To achieve this, we regu-009
larize the fine-tuning process with L1 distance010
and explore the subnetwork structure (what we011
refer to as the "dominant winning ticket"). Em-012
pirically, we show that (a) the dominant win-013
ning ticket can achieve performance that is com-014
parable with that of the full-parameter model,015
(b) the dominant winning ticket is transferable016
across different tasks, (c) and the dominant win-017
ning ticket has a natural structure within each018
parameter matrix. Strikingly, we find that a019
dominant winning ticket that takes up 0.05%020
of the parameters can already achieve satisfac-021
tory performance, indicating that the PLM is022
significantly reducible during fine-tuning.023

1 Introduction024

Figure 1: An illustration of the structure of the dominant
winning ticket.

Pre-trained Language Models (PLMs) have025

shown significant performance on various natural026

language processing (NLP) tasks (Devlin et al.,027

2018; Liu et al., 2019). However, as the number028

of model parameters gets huge, fine-tuning such 029

models becomes inefficient. Many previous works 030

target parameter-efficient fine-tuning approaches 031

by freezing the PLM parameters. One can either 032

freeze a subset of the parameters (Zaken et al., 033

2021) and fine-tune the remainings or freeze all 034

of them and plug in light modules with new learn- 035

able parameters (Houlsby et al., 2019; Mahabadi 036

et al., 2021; Hu et al., 2021). 037

In parallel to this line of study, an emerging sub- 038

field has explored the possibility of training smaller 039

subnetworks in place of the full models without 040

hurting performance (Lee et al., 2018; Wang et al., 041

2020). Among them, the lottery ticket hypothe- 042

sis (LTH) (Frankle and Carbin, 2018) has attracted 043

much attention. LTH demonstrates that an over- 044

parameterized network contains "winning tickets" 045

(small-scale subnetworks) that can 1) match the 046

performance of the full model; and 2) outper- 047

form randomly sampled subnetworks of the same 048

size. Winning tickets have been verified to exist in 049

PLMs (Prasanna et al., 2020). 050

In this paper, we provide an interesting result by 051

showing that a subnetwork, which we refer to as 052

the dominant winning ticket, exists in the PLM. It 053

can make us to freeze all other parameters but only 054

train the parameters of the subnetwork and obtain 055

competitive performance for any downstream tasks. 056

To achieve this, we fine-tune the PLM on one task 057

(e.g., MNLI) and enforce the parameter weights 058

close to their initial weights (pre-trained weights) 059

by using the L1-distance penalty. This allows us 060

to identify which parts of the model parameters 061

change greater from the pre-trained weights during 062

fine-tuning. We observe this ticket has some novel 063

properties: 064

• The dominant winning ticket (i.e., the sub- 065

network) is extremely sparse, which only 066

takes up to 0.05% of the total parameters on 067

RoBERTa-large. But fine-tuning the subnet- 068

work can achieve comparable performance 069
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with fine-tuning the whole model.070

• Compared with randomly sampled subnet-071

works of the same size, the dominant winning072

ticket can achieve better performance with a073

faster convergence rate.074

• The dominant winning ticket is insensitive to075

random seed and transferable across different076

downstream tasks. In other words, it is intrin-077

sically determined by the pre-trained weights078

and can adapt to various downstream tasks.079

• The dominant winning ticket is highly struc-080

tured. It is like the "skeleton" of the network,081

which may give us some insights into the082

mechanism of PLMs.083

We organize the paper as follows. After a brief084

overview of related works in section 2, we intro-085

duce how we are aware of the existence of the dom-086

inant winning ticket in PLMs and how we identify087

and extract it in section 3. Then we experiment088

on the dominant winning ticket in section 4. In089

section 5, we do further discussions about the dom-090

inant winning ticket. Section 6 is about some im-091

plications and future directions of the work.092

2 Related Work093

2.1 Pruning094

Multiple studies of BERT concluded that it is con-095

siderably overparametrized (Kovaleva et al., 2019;096

Michel et al., 2019). In particular, it is possible097

to ablate elements of its architecture without loss098

in performance or even with slight gains (Voita099

et al., 2019; Li et al., 2021). There has been much100

recent work on compressing PLM. See overviews101

by Ganesh et al. (2021). Pruning is a promising line102

of work for model compression which involves ob-103

taining smaller subnetworks with minimal perfor-104

mance loss (Gordon et al., 2020; Sajjad et al., 2020).105

A common approach is selecting the weights to be106

pruned by magnitude (Han et al., 2015).107

Previous work has found that there exist subnet-108

works inside the neural network, which is called109

the lottery ticket hypothesis (Frankle and Carbin,110

2018). Some of the recent findings are that the lot-111

tery ticket hypothesis holds for PLMs: inside large-112

scale pre-trained model there exist subnetworks113

that can be retrained alone to reach the performance114

close to that of the full model (Chen et al., 2020;115

Prasanna et al., 2020; Liang et al., 2021). Prasanna116

et al. (2020) claimed that "When BERT plays the 117

lottery, all tickets are winning". Liang et al. (2021) 118

shows that there exist super tickets inside PLMs 119

that can improve generalization. 120

2.2 Parameter-efficient Fine-tune 121

Parameter-efficient fine-tuning aims at reducing the 122

number of trainable parameters when fine-tuning 123

the models across different downstream domains. 124

Various approaches are invented to achieve the goal. 125

Some inserted and only trained adapters, which 126

have much lesser trainable parameters, between ex- 127

isting layers (Houlsby et al., 2019; Mahabadi et al., 128

2021; Rebuffi et al., 2017). Another line of the 129

study proposed to update only a subset of parame- 130

ters when fine-tuning. For example, Gordon et al. 131

(2020) leveraged L0 regularization to limit the non- 132

zero elements in the update vectors. Zaken et al. 133

(2021) proposed that only tune bias terms can reach 134

a decent performance. Zhao et al. (2020) applied 135

the sparse binary mask to the pre-trained weights to 136

reduce the trainable parameter size. Besides, some 137

proposed that the PLM has a low intrinsic dimen- 138

sionality (Aghajanyan et al., 2020). Hu et al. (2021) 139

proposed a low-rank decomposition-based method 140

that can also significantly reduce the number of 141

trainable parameters. Chen et al. (2021) combined 142

low-rank decomposition and sparse mask during 143

fine-tuning. 144

3 The Dominant Winning Ticket in PLMs 145

We start with a question: which parts of the model 146

parameters are more important when adapting 147

PLMs to downstream tasks? To answer this ques- 148

tion, we design the L1-regularized fine-tuning ap- 149

proach and then analyze the L1-regularized weights 150

and reveal the existence of the dominant winning 151

ticket. 152

3.1 L1-regularized Fine-tuning 153

To identify the subnetwork, we apply L1 regulariza- 154

tion to all the transformer parameters. Specifically, 155

we modify the original training objective, which 156

results in the following minimization problem, 157

min
θ

L(D, f,θ) + λ||θ − θ0||1, (1) 158

where D represents for the task-specific data, θ 159

is the model configuration(i.e., parameters), and 160

θ0 is the pre-trained model, which is fixed. λ is a 161

hyper-parameter to control the weight of the reg- 162

ularization term, i.e., the strength of the sparsity. 163
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Figure 2: Visualization of out weighted parameters in RoBERTa-large. Each row is a model fine-tuned on different
downstream tasks. Each column is the parameter matrix of different layers. For example, the top left block represents
the value projection matrix of the 5th transformer layer from the model fine-tuned with the MNLI dataset. ("K",
"Q", "V", "O" stand for the key, query, value, and output projection metrics of the self-attention module, "FC1" and
"FC2" stand for the successive two fully-connected transformation metrics in each layer.)

This training objective can make a large part of the164

parameters being close to their initial weights.165

3.2 Regularized Weights Analysis166

We use L1-regularized fine-tuning to answer the167

previous proposed question: which parts of the168

model parameters are more important when adapt-169

ing PLMs to downstream tasks? We compute the170

difference between the post-fine-tune weights and171

the pre-trained weights to see how the weights172

change. Specifically, we get ∆θ = θ − θ0. In-173

spired by magnitude weight pruning (Han et al.,174

2015), we hypothesize that the magnitude of ∆θ175

can be an indicator. We observe that the magnitude176

of ∆θ is very small for most of the parameters177

(smaller than 1e-5 for 99% parameters), indicating178

that the L1 regularization does take effect. How-179

ever, while most of the parameters remain close to180

their initial weights during fine-tuning, a very small181

fraction of parameters have much greater change.182

We define these parameters as out weighted pa-183

rameters. Intuitively, we can choose a threshold σ184

to select out weighted parameters. Formally, we185

define σ-bounded out weighted parameters:186

θσ = mσ ⊙ θ, mσ ∈ {0, 1}|θ| (2)187

where mσ is a binary mask vector, mσ,i =188

1{|∆θi| > σ}.189

We try to understand the mechanism of fine-190

tuning by analyzing the distribution of σ-bounded191

out weighted parameters. We visualize the distri- 192

butions of the out weighted parameters on several 193

different tasks (MNLI, QNLI, SST-2, QQP) as seen 194

in Figure 2, where the parameter matrics are 195

WQ,WK ,W V ,WO ∈ Rdmodel×dmodel

WFC1 ∈ Rdmodel×dfc ,WFC2 ∈ Rdfc×dmodel

(3) 196

For RoBERTa-large, dmodel is 1024 and dfc is 197

4096. 198

Observations 1. The locations of the out 199

weighted parameters have strong correlations 200

among different tasks. Each column in Figure 2 201

shows the out weighted parameters of the same 202

matrix on different tasks, which has a very similar 203

phenomenon. This high similarity indicates that 204

the location of the out weighted parameters may be 205

downstream task-agnostic. That is to say, the PLM 206

itself determines which parameters tend to be out 207

weighted. 208

Observations 2. If looking into each block in 209

Figure 2, we can see that the out weighted parame- 210

ters are distributed along with the output dimension. 211

The out weighted parameters in the matrix tend to 212

be dominated by a few output dimensions, what 213

we refer to as dominated dimensions. We identify 214

dominated dimensions by counting the number of 215

out weighted parameters in each dimension and 216

observe that this phenomenon exists in most of the 217

parameter matrices in the PLM. We list all the dom- 218
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Table 1: The structure of the dominated ticket. For each matrix, we select the top 3 dominated dimensions. We
highlight several "popular" dimensions across different layers with colors. Dimension 4096 in WFC2 and 1024
in WK , WQ, WV , WO, WFC1 are the symbol for the bias term.

Layer WQ WK WV WO WFC1 WFC2

0 981 673 304 1019 781 108 673 981 472 647 766 986 673 981 1019 487 584 3291
1 981 673 106 106 981 673 673 981 106 593 929 587 673 106 981 1559 3646 1995
2 673 981 106 981 106 673 673 106 981 1024 579 237 673 106 981 3708 3058 2753
3 673 106 981 981 106 673 673 106 981 810 819 784 673 106 981 1591 480 609
4 673 106 981 981 673 106 106 673 981 101 1024 76 673 106 981 3445 1906 2828
5 673 106 981 673 106 981 673 106 981 1024 579 189 673 106 981 682 2123 841
6 673 106 981 673 106 981 673 106 981 1024 430 498 673 106 981 1267 2920 2686
7 673 106 981 673 474 106 673 106 412 692 670 699 673 106 412 2058 3485 1660
8 673 106 412 474 673 547 673 412 474 1024 534 69 673 106 412 2780 2387 1015
9 673 412 2 474 673 256 673 474 412 11 1024 608 673 2 412 3892 448 616
10 673 412 474 474 673 256 673 474 412 254 534 1024 673 412 2 1028 592 1462
11 673 2 93 474 256 623 673 474 412 330 758 1024 673 474 547 1014 3730 2157
12 673 547 93 474 256 673 673 474 547 151 909 1024 673 474 547 145 2436 2338
13 673 547 2 474 256 673 673 474 547 113 1024 151 673 547 474 902 2503 1700
14 673 547 631 474 256 673 673 474 547 141 1024 307 673 631 547 1219 1318 1535
15 673 631 547 631 673 474 673 631 474 1024 523 724 673 631 547 2413 608 15
16 673 631 547 673 631 256 631 673 547 1024 657 819 631 673 547 3454 4096 1288
17 631 673 547 673 631 256 631 673 547 254 640 209 631 673 547 3433 2 3962
18 631 673 547 673 631 256 631 673 547 986 999 966 631 673 547 628 2617 4096
19 631 673 547 673 631 256 631 673 399 657 1 845 631 673 399 1221 827 4096
20 631 673 547 673 631 256 631 673 399 975 453 1006 631 673 914 1442 4096 1669
21 631 673 None 673 631 None 631 673 547 1024 975 400 631 673 914 3290 4096 2850
22 631 None None None None None 631 673 547 559 1024 46 631 673 914 3341 3176 1078
23 631 673 None 631 673 None 631 673 914 167 871 891 631 673 422 2498 2596 1565

inated dimensions of the model to further analyze.219

Details can be found in Table 2. An interesting220

finding is that some dimensions consistently domi-221

nate several successive layers. For example, dimen-222

sion 6731 and 631 dominate WQ, WK , W V , and223

WFC1 for more than 10 successive transformer224

layers. These dimensions are like the skeleton of225

the PLM that exists from bottom to top.226

With the above observations, now we can pro-227

pose our hypothesis about the dominant winning228

ticket of PLMs.229

Hypothesis. There exists a dominant winning230

ticket inside a PLM that is intrinsically determined231

by the pre-trained weights. When fine-tuned in232

isolation, we can only finetune the parameters of233

this ticket which can match the performance of full-234

parameter fine-tuning while converging faster than235

other methods.236

3.3 Extracting the Dominant Winning Ticket237

When it comes to extracting the dominant winning238

ticket, the first question is to decide the sparsity of239

the subnetwork (the number of trainable parame-240

ters). Generally, we extract the dominant winning241

ticket with algorithm 1.242

We use hyperparameter k to control the spar-243

sity of the subnetwork. We empirically find that244

the scale of the subnetwork is extremely small. k245

1All dimensions in the paper are zero-indexed.

Algorithm 1 Extracting the dominant winning
ticket

1: Fine-tune a PLM f(x; θ0) with L1 regulariza-
tion on any dowmstream task dataset D, get
f(x; θ).

2: Calculate ∆θ = θ − θ0, then select out out
weighted parameters θσ with threshold σ.

3: Select the k most dominated dimensions each
matrix, which forms the dominant winning
ticket.

equals 1 (at most one dominated dimension for 246

each matrix) is enough to achieve comparable re- 247

sults to full-parameter fine-tuning for most of the 248

tasks. 249

It is worth noticing that our extracted dominant 250

winning ticket excludes embedding and layer nor- 251

malization. Besides, as bias terms are vital to some 252

extend (Zaken et al., 2021), we include bias terms 253

when identifying the dominated dimensions, so the 254

bias term in each matrix also has a chance to be 255

selected. 256

4 Testing the Dominant Winning Ticket 257

for Fine-tuning 258

The previous section is about how we identify and 259

extract the dominant winning ticket. In this section, 260

we discuss the properties of the dominant winning 261
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Figure 3: (Left) The training loss curves. (Middle) The training accuracy curves. (Right) The validation accracy
curve. We visualize the training process for QNLI, MRPC, and RTE. For MPRC and RTE, early stopping is triggered
if the validation accuracy does not increase for 8 successive epochs.
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Table 2: The dominant winning ticket vs random ticket. We report the overall (matched and mismatched) accuracy
for MNLI, Matthew’s correlation for CoLA, Pearson correlation for STS-B, and accuracy for other tasks. All results
are the average of 5 trials.

Sparsity QNLI SST-2 MNLI CoLA MRPC STS-B RTE QQP
105k 67k 393k 8.6k 3.7k 5.8k 2.5k 364k

Full-ft 100% 94.7 96.4 90.4 68 90.9 92.4 86.4 92.2
Random-3 0.19% 94.1 96.2 89.8 68.6 89.4 91.8 72.2 91.1
Dominant-3 0.19% 94.3 96.3 90.5 69 90.2 92.2 86.6 91.7
BitFit (Zaken et al., 2021) 0.06% 94.5 96 86.7 66.3 89.7 92 86.3 88.9
Random-1 0.05% 91.7 94.4 85.4 51.4 74.8 88.7 68.5 88.3
Dominant-1 0.05% 94.6 96.1 90.4 69.7 90.9 92.2 87.7 91

ticket by conducting systematic experiments.262

To extract the dominant winning tickets, we per-263

form L1-regularized fine-tuning on MNLI, QNLI,264

SST-2, and QQP respectively. We find that the265

dominant winning tickets corresponding to differ-266

ent downstream tasks look very close to each other267

(detailed statistics can be found in Appendix A.1),268

which matches the observation in Section 3.2. So,269

for simplicity, we regard the subnetwork extracted270

from MNLI as the standard dominant winning271

ticket. Our evaluation experiments are conducted272

upon it.273

We compare the dominant winning ticket with274

the subnetwork that has the same size as the275

dominant winning ticket, denoted as Dominant-276

k and Random-k respectively. The dimensions277

of Random-k are chosen from uniform distribu-278

tion. As the scale of the extracted subnetwork is279

adjustable by choosing different k, we consider280

two different compression ratios, i.e., k = 1 (one281

dimension per matrix at most) and k = 3 (three282

dimension per matrix at most).283

4.1 Exprimental Setup284

Datasets and models. We conduct experiments285

on the GLUE benchmark (Wang et al., 2018). The286

evaluation is performed on the GLUE dev sets. We287

use the publicly available RoBERTa-large2 (Liu288

et al., 2019) as pre-trained language models in all289

our experiments.290

Implementation details. Our implementation291

is based on the fairseq toolkit3 (Ott et al.,292

2019). We fine-tune on the GLUE tasks fol-293

lowing the standard procedures. We optimize294

using AdamW (Loshchilov and Hutter, 2018),295

with batch size of 16. For L1-regularized fine-296

tuning, we empirically set the weight of L1 reg-297

2The dominant winning ticket in the paper
is extracted from this specific model checkpoint.
https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz

3https://github.com/pytorch/fairseq

ularizer λ to 0.001, and the threshold σ to 5e-5. 298

For dominant winning ticket fine-tuning, we per- 299

form a hyperparameter search over initial learning 300

rate in {5e-5, 1e-4, 2e-4, 4e-4}. For full-parameter 301

fine-tuning, we search initial learning rate in 302

{1e-5, 2e-5, 3e-5, 5e-5}. 303

4.2 Performance 304

Our main results on the GLUE benchmark are 305

shown in Table 2. Fine-tuning the dominant win- 306

ning ticket can match the performance of fine- 307

tuning the whole model while only requiring less 308

than 0.2% trainable parameters per task. Perfor- 309

mance of Dominant-3 and Dominant-1 has no sig- 310

nificant difference for most of the tasks. For small 311

datasets like MRPC and RTE, the smaller subnet- 312

work even performs slightly better because less 313

trainable parameters means free from overfitting. 314

This phenomenon also indicates that the scale of 315

the dominant winning ticket inside the PLMs can 316

be extremely small. When comparing the domi- 317

nant winning ticket with random tickets that has 318

the same size, we can see that Random-3 performs 319

pretty well. We think this benifits from the strong 320

reducibility of PLMs. However, when the spar- 321

sity grows, the performance of Random-1 is much 322

worse than Dominant-1, indicating that randomly 323

sampled subnetworks unavoidable deletes useful 324

information and become less expressive at such a 325

level of sparsity. 326

Figure 3 shows the training and evaluation 327

curves of different methods. We can clearly see 328

that the dominant winning ticket has advantages 329

over random subnetworks in terms of convergence 330

rate. For large datasets like QNLI, Dominant-1 and 331

Dominant-3 reach the best validation accuracy in 332

the first several epochs, while random subnetworks 333

require much more training steps to warm up. The 334

dominant winning ticket also gets lower training 335

losses in all tasks, indicating it fits the data better. 336
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Table 3: Performance comparison of full-parameter fine-
tuning and 5%-parameter fine-tuning.

Params 100% 5%
QNLI 94.7 94.8
SST-2 96.4 96.6
MNLI 90.4 90.6
CoLA 68 69.7
MRPC 90.9 91.7
STS-B 92.4 92.2
RTE 86.4 88
QQP 91.9 91.6

Another observation is that, though Dominant-3337

and Random-3 have no significant performance338

gaps in most of the tasks as seen in Table 2, their339

learning behaviors vary quite a lot. Random-3 gets340

satisfactory results eventually, but it requires much341

more efforts to train. Meanwhile, there is no obvi-342

ous difference between Dominant-1 and Dominant-343

3 from Figure 3, which is a good sign. This phe-344

nomenon suggests that when shrinking the parame-345

ter size from 0.19% to 0.05%, the capacity of the346

model almost keeps unchanged.347

4.3 Stability of the Dominant Winning Ticket348

We expect that subnetworks extracted from differ-349

ent L1-regularized fine-tuning runs (with differ-350

ent random seeds and different tasks) have similar351

structures. We use Jaccard similarity to measure352

the similarity between different tickets. Specifi-353

cally, the Jaccard similarity between two sets is354

defined as:355

J(A,B) =
|A ∩B|
|A ∪B|

. (4)356

We test four random seeds and four tasks (MNLI,357

QNLI, QQP, and SST-2). The average Jaccard358

similarity is 0.69 across seeds and 0.67 across359

tasks while the similarity between random tickets360

is nearly 0. This means that the dominant ticket has361

a stable structure that utilize a certain portion of362

pre-trained weights. This structure is task-agnostic363

and irrelevant to random seeds as observed in Sec-364

tion 3.2. Details about the structures of subnet-365

works can be found in Appendix A.1.366

5 Discussions367

5.1 When BERT Plays the Lottery, Are All368

Tickets Winning?369

The lottery ticket hypothesis (LTH) states that370

dense, randomly-initialized networks contain sub-371

networks (winning tickets) that–when trained in372

Table 4: Dominated dimensions of WO and WFC2.
Bias terms are highlighted with blue color.

Layer WO WFC2

0 647 766 986 487 584 3291
1 593 929 587 1559 3646 1995
2 1024 579 237 3708 3058 2753
3 810 819 784 1591 480 609
4 101 1024 76 3445 1906 2828
5 1024 579 189 682 2123 841
6 1024 430 498 1267 2920 2686
7 692 670 699 2058 3485 1660
8 1024 534 69 2780 2387 1015
9 11 1024 608 3892 448 616
10 254 534 1024 1028 592 1462
11 330 758 1024 1014 3730 2157
12 151 909 1024 145 2436 2338
13 113 1024 151 902 2503 1700
14 141 1024 307 1219 1318 1535
15 1024 523 724 2413 608 15
16 1024 657 819 3454 4096 1288
17 254 640 209 3433 2 3962
18 986 999 966 628 2617 4096
19 657 1 845 1221 827 4096
20 975 453 1006 1442 4096 1669
21 1024 975 400 3290 4096 2850
22 559 1024 46 3341 3176 1078
23 167 871 891 2498 2596 1565

isolation–reach performance comparable to the 373

original network. 374

Initialization is an important factor in LTH as 375

the winning ticket extracted from a specific initial- 376

ization generally behaviors poorly on other random 377

reinitialized networks (Frankle and Carbin, 2018). 378

This phenomenon is often ignored when discussing 379

LTH in PLMs as the initialization of PLMs is deter- 380

ministic. PLMs initialize via pre-training weights, 381

which contain rich information and are potentially 382

useful. As a result, many subnetworks inside PLMs 383

are potential winning tickets 384

Indeed, Prasanna et al. (2020) claimed that 385

even the "bad" subnetworks in BERT (“good” and 386

“bad”) have acceptable performance. We further 387

argue that any randomly sampled subnetwork with 388

the sparsity of 95% can serve as the winning ticket. 389

We randomly select 5% of the parameters in each 390

matrix and freeze the rest of the model, surprisingly 391

finding that the performance is comparable with 392

full-parameter fine-tuning. As seen in Table 3, a 393

simple random subnetwork requiring no sophisti- 394

cated pruning techniques can already match with 395

fine-tuning. 396

However, we still argue that not all tickets are 397

winning. The smaller the ticket is, the rarer the 398

winning ticket is. When the sparsity of the subnet- 399

work increases, the performance of subnetworks 400

begins to vary. For RoBERTa-large, at the sparsity 401
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of 99.95%, most of the "ticket" fail to win while a402

well-selected subnetwork (the dominant winning403

ticket) can suffer little performance drops. In this404

sense, the dominant winning ticket we found can405

be regarded as the smallest winning ticket.406

5.2 Structured Winning Ticket407

One astonishing fact about the dominant winning408

ticket is that it is naturally structured. When we409

perform L1-regularized fine-tuning, the L1 regu-410

larization is equally applied to all parameters. But411

weights in some dimensions tend to deviate from412

the pre-trained weights more than others. These413

dimensions, which we refer to as dominated dimen-414

sions, are shared among different layers (like the415

673, 631, 474, and 106 dimensions in Table 1).416

It seems like there is a "skeleton" inside the PLM417

that can serve as the dominant winning ticket.418

The structure of the dominant winning ticket is419

different from other structured pruning studies in420

two ways. First, while their structures usually re-421

fer to certain parts of the model (e.g., channels in422

convolutional layers and attention heads in Trans-423

formers), the structure of the dominant winning424

ticket is micro within each parameter matrix. Sec-425

ond, while most of the structured subnetworks rely426

on structured pruning methods (Liang et al., 2021),427

we do not apply structure-aware regularization tech-428

niques. In other words, the structure of the domi-429

nant winning ticket is naturally formed, waiting to430

be found.431

5.3 Connections with Bias-terms Fine-tuning432

The dominant winning ticket has some connections433

with bias-terms fine-tuning (BitFit) (Zaken et al.,434

2021). The idea of BitFit is to fine-tune only the435

bias terms in the transformer, which only requires436

updating a very small subset of parameters. If we437

treat the bias term of an extended dimension of438

the weight matrix, then the subnetwork forms by439

the bias terms have a similar structure with the440

dominant winning ticket when k equals one (one441

trainable dimension per matrix). And the trainable442

parameter size is close too.443

As can be seen in Table 2, BitFit is quite promis-444

ing with small-to-medium training data. When445

the size of the training data is large, it still has ac-446

ceptable performance. The overall performance of447

BitFit is much better than Random-1, indicating448

that the bias terms indeed catch some additional449

semantics. We find that the subnetwork of bias450

terms overlaps the dominant winning ticket. As451

shown in Table 4, the bias term serves as one of 452

the dominated dimensions in WO and WFC2 a lot. 453

We think this might be an explanation of why only 454

tuning the bias terms works well. 455

6 Implications and Future Work 456

The dominant winning ticket can be utilized for 457

parameter-efficient fine-tuning. As the dominant 458

winning ticket is stable across different tasks, when 459

deploying PLMs on different scenarios, we only 460

need to record the same small group of parame- 461

ters. Besides, benefiting from the structure of the 462

ticket, we only need to store the optimizer states 463

for certain dimensions of each parameter matrix. 464

With decent code implementation, we can promis- 465

ingly reduce memory usage and speed up the train- 466

ing process. In future work, we would examine 467

the memory reduction and speedup abilities of the 468

dominant winning ticket. 469

Besides the practical value, the dominant win- 470

ning ticket raises some interesting questions about 471

PLMs. Now that the dominant winning ticket is 472

intrinsically determined by the pre-trained weights, 473

then how does the subnetwork emerge during pre- 474

training? Another worth investigating point lies 475

in the natural structure of the ticket. Why certain 476

dimensions of parameter matrices behave so differ- 477

ently from others? We still know little about the 478

mechanism behind these phenomenons. We aim to 479

study these questions in future work. 480

7 Conclusion 481

In this paper, we reveal the existence of the domi- 482

nant winning ticket inside pre-trained models and 483

introduce the L1-regularized fine-tuning to extract 484

it. The dominant ticket is an extremely sparse sub- 485

network that can reach comparable performance 486

with fine-tuning the whole model. We observe 487

that the ticket has some novel properties. First, it 488

is stable across different random seeds and tasks, 489

which means once identified on one task, it can be 490

transferred to other tasks with no performance loss. 491

Second, the ticket has a natural structure within 492

each parameter matrix, and this structure is shared 493

across layers. Our study not only has practical 494

values for parameter-efficient fine-tuning but also 495

raises some questions about the pre-trained models. 496
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Table 5: Structure comparison of WQ.

Layer MNLI QNLI SST QQP
0 304 673 981 673 981 1019 8 673 981 673 981 1019
1 106 673 981 106 673 981 106 673 981 106 673 981
2 106 673 981 106 673 981 106 673 981 106 673 981
3 106 673 981 106 673 981 106 673 981 106 673 981
4 106 673 981 106 673 981 106 673 981 106 673 981
5 106 673 981 106 673 981 106 673 981 106 673 981
6 106 673 981 106 673 981 106 673 981 106 673 981
7 106 673 981 106 673 981 106 412 673 106 412 673
8 106 412 673 106 412 673 106 412 673 106 412 673
9 2 412 673 2 412 673 106 412 673 2 412 673
10 412 474 673 2 412 673 2 412 673 2 412 673
11 2 93 673 2 547 673 474 623 673 2 412 673
12 93 547 673 2 547 673 474 547 673 2 547 673
13 2 547 673 2 547 673 51 547 673 2 547 673
14 547 631 673 2 547 673 2 547 673 547 631 673
15 547 631 673 547 631 673 547 631 673 547 631 673
16 547 631 673 547 631 673 547 631 673 2 631 673
17 547 631 673 547 631 673 547 631 673 547 631 673
18 547 631 673 547 631 673 547 631 673 547 631 673
19 547 631 673 256 631 673 547 631 673 547 631 673

Table 6: Structure comparison of WK .

Layer MNLI QNLI SST QQP
0 108 781 1019 673 981 1019 93 781 1019 328 981 1019
1 106 673 981 106 673 981 106 673 981 106 673 981
2 106 673 981 106 673 981 106 673 981 106 673 981
3 106 673 981 106 673 981 106 673 981 106 673 981
4 106 673 981 106 673 981 106 673 981 106 673 981
5 106 673 981 106 673 981 106 673 981 106 673 981
6 106 673 981 106 673 981 106 673 981 106 673 981
7 106 474 673 106 673 981 106 547 673 106 547 673
8 474 547 673 474 547 673 474 547 673 474 547 673
9 256 474 673 2 474 673 256 474 673 2 474 673
10 256 474 673 256 474 673 256 474 673 474 547 673
11 256 474 623 256 474 673 2 474 673 2 256 474
12 256 474 673 256 474 673 2 474 673 256 474 673
13 256 474 673 256 474 673 2 474 673 256 474 673
14 256 474 673 256 474 673 256 474 673 256 474 673
15 474 631 673 256 631 673 474 631 673 474 631 673
16 256 631 673 256 631 673 547 631 673 256 631 673
17 256 631 673 256 631 673 256 631 673 256 631 673
18 256 631 673 256 631 673 534 631 673 256 631 673
19 256 631 673 256 631 673 631 673 842 631 673 914
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Table 7: Structure comparison of WV .

Layer MNLI QNLI SST QQP
0 472 673 981 8 673 981 328 673 981 8 673 981
1 106 673 981 106 673 981 106 673 981 106 673 981
2 106 673 981 106 673 981 106 673 981 106 673 981
3 106 673 981 106 673 981 106 673 981 106 673 981
4 106 673 981 106 673 981 106 673 981 106 673 981
5 106 673 981 106 673 981 106 673 981 106 673 981
6 106 673 981 106 673 981 106 673 981 106 412 673
7 106 412 673 106 412 673 106 412 673 106 412 673
8 412 474 673 412 474 673 106 474 673 412 474 673
9 412 474 673 412 474 673 412 474 673 412 474 673
10 412 474 673 412 474 673 412 474 673 412 474 673
11 412 474 673 2 474 673 412 474 673 412 474 673
12 474 547 673 2 474 673 140 474 673 474 547 673
13 474 547 673 2 474 673 474 547 673 474 547 673
14 474 547 673 474 547 673 474 547 673 474 547 673
15 474 631 673 474 631 673 474 631 673 474 631 673
16 547 631 673 547 631 673 547 631 673 547 631 673
17 547 631 673 547 631 673 547 631 673 547 631 673
18 547 631 673 547 631 673 547 631 673 547 631 673
19 399 631 673 547 631 673 631 673 842 547 631 673
20 399 631 673 547 631 673 547 631 673 547 631 673
21 547 631 673 547 631 673 547 631 673 547 631 673
22 547 631 673 547 631 673 547 631 673 547 631 673
23 631 673 914 547 631 673 547 631 673 41 631 673

Table 8: Structure comparison of WO.

Layer MNLI QNLI SST QQP
0 647 766 986 647 725 766 304 647 725 647 725 766
1 587 593 929 593 622 929 586 616 622 587 593 929
2 237 579 1024 237 579 612 448 579 1024 488 556 579
3 784 810 819 784 824 1024 589 784 1024 784 814 1014
4 76 101 1024 10 421 1024 367 494 730 648 696 1024
5 189 579 1024 225 579 1024 133 632 1024 203 204 232
6 430 498 1024 430 498 1024 430 498 1024 430 500 1024
7 670 692 699 665 692 1024 386 399 422 133 692 1024
8 69 534 1024 67 534 1024 442 512 574 67 464 1024
9 11 608 1024 11 608 1024 608 953 1024 11 830 1024
10 254 534 1024 254 534 1024 254 534 1024 254 534 1024
11 330 758 1024 330 758 1024 330 758 1024 330 758 843
12 151 909 1024 73 909 1024 73 669 1024 73 151 1024
13 113 151 1024 113 151 1024 113 941 1024 113 941 1024
14 141 307 1024 141 307 1024 141 307 1024 141 489 506
15 523 724 1024 523 722 1024 523 643 1024 488 523 1024
16 657 819 1024 132 183 519 111 519 1024 145 183 1024
17 209 254 640 567 640 657 74 107 125 871 984 1024
18 966 986 999 633 763 1024 763 889 891 207 986 1024
19 1 657 845 1 4 57 1 657 1024 1 405 657
20 453 975 1006 293 363 453 453 1007 1020 453 1002 1024
21 400 975 1024 437 519 903 901 975 1024 320 597 986
22 46 559 1024 331 559 790 483 559 1024 180 195 626
23 167 871 891 16 660 886 87 130 147 101 238 606
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Table 9: Structure comparison of WFC1.

Layer MNLI QNLI SST QQP
0 673 981 1019 106 673 981 106 673 981 106 673 981
1 106 673 981 106 673 981 106 673 981 106 673 981
2 106 673 981 106 673 981 106 673 981 106 673 981
3 106 673 981 106 673 981 106 673 981 106 673 981
4 106 673 981 106 673 981 106 673 981 106 673 981
5 106 673 981 106 673 981 106 673 981 106 673 981
6 106 673 981 106 673 981 106 412 673 106 673 981
7 106 412 673 2 106 673 106 412 673 106 412 673
8 106 412 673 2 106 673 106 412 673 2 412 673
9 2 412 673 2 412 673 412 474 673 2 412 673
10 2 412 673 2 474 673 412 474 673 2 412 673
11 474 547 673 2 474 673 2 474 673 2 474 673
12 474 547 673 474 547 673 474 547 673 474 547 673
13 474 547 673 474 547 673 474 547 673 474 547 673
14 547 631 673 547 631 673 547 631 673 2 631 673
15 547 631 673 547 631 673 547 631 673 2 631 673
16 547 631 673 547 631 673 547 631 673 547 631 673
17 547 631 673 547 631 673 547 631 673 547 631 673
18 547 631 673 547 631 673 547 631 673 547 631 673
19 399 631 673 547 631 673 547 631 673 547 631 673
20 631 673 914 256 631 673 547 631 673 547 631 673
21 631 673 914 256 631 673 547 631 673 547 631 673
22 631 673 914 256 631 673 547 631 673 41 631 673
23 422 631 673 631 673 841 265 563 631 631 651 715

Table 10: Structure comparison of WFC2.

Layer MNLI QNLI SST QQP
0 487 584 3291 487 584 2390 487 584 3660 458 487 584
1 1559 1995 3646 1114 1559 4060 1559 3646 3912 1114 1559 4060
2 2753 3058 3708 445 3056 3708 870 3636 3708 445 3056 3708
3 480 609 1591 609 1177 1591 44 1591 1846 609 1177 1591
4 1906 2828 3445 1393 2828 3445 1773 3445 3940 1906 2828 3445
5 682 841 2123 682 841 3582 1298 1427 3624 682 841 2475
6 1267 2686 2920 425 1072 2200 909 1946 3027 425 2686 2920
7 1660 2058 3485 1660 2058 3485 317 1660 2058 1660 2058 3485
8 1015 2387 2780 1832 2780 2998 217 1247 2982 933 2387 2780
9 448 616 3892 34 1692 3892 34 1910 3892 34 1966 3892
10 592 1028 1462 592 1028 4096 592 1028 2063 592 1028 4096
11 1014 2157 3730 1014 2877 3730 1014 2877 3730 1014 2877 3730
12 145 2338 2436 145 2436 2754 145 1534 2338 145 2338 2436
13 902 1700 2503 902 1034 2503 902 1700 2503 902 1034 2503
14 1219 1318 1535 1219 1535 2787 1535 2963 3720 866 1535 3443
15 15 608 2413 15 64 2413 15 1997 2413 608 2413 3212
16 1288 3454 4096 1009 2827 3454 2639 2827 3454 1531 2827 4096
17 2 3433 3962 703 895 3235 699 2834 3475 703 1070 2588
18 628 2617 4096 1429 3091 4096 834 3130 3913 484 2982 4096
19 827 1221 4096 879 2409 3438 34 1207 4096 2556 3333 4096
20 1442 1669 4096 1299 2177 3491 1442 3329 4096 1880 2527 3894
21 2850 3290 4096 49 159 1116 2698 3290 4096 1426 3123 3290
22 1078 3176 3341 87 1669 3798 2365 2404 4096 1444 2576 3745
23 1565 2498 2596 1695 2544 3289 607 2010 2142 267 704 2084
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