Fault Tolerance in Multi Agent Systems

Savitha Suresh, Akshay Narayan

National University of Singapore
savitha_suresh@u.nus.edu, akshay.narayan @nus.edu.sg

Abstract

Multi-Agent Reinforcement Learning (MARL) has demon-
strated strong performance in cooperative and competitive
environments, but its deployment in real-world systems re-
mains limited by vulnerability to faulty agents. This work
investigates mechanisms for fault tolerance in MARL sys-
tems, with a focus on preserving stability, efficiency, and
cooperative behavior when subsets of agents fail or behave
unpredictably. We propose a framework that integrates be-
havior masking, reward shaping, and attention mechanisms
to mitigate the impact of faulty agents. The masking com-
ponent enables the policy to selectively downweight agents
exhibiting faulty behavior, preventing corrupted trajectories
from dominating the learning signal. This is combined with
reward shaping strategies, such as penalties for oscillations
and inactivity, that guide learning away from failure-prone
trajectories. Experimental results in cooperative benchmarks
show that our approach significantly improves performance
compared to standard MARL baselines. Agents are able to
maintain task performance when faced with agent failures.
When agents are faulty from the start of an episode, our at-
tention mechanism with behaviour masking achieves a 22%
improvement over the baseline RNN at 20 million steps. In
more challenging scenarios where agents become faulty mid-
episode, our method achieves a 28% improvement com-
pared to the baseline, demonstrating stronger robustness un-
der dynamic faults. We further conduct ablation studies to iso-
late the contribution of behavior masking, showcasing its role
in stabilizing training and improving fault tolerance.

Introduction

Reinforcement learning (RL) has emerged as a powerful
paradigm for sequential decision-making, where an agent
interacts with an environment and learns to maximize cu-
mulative rewards through trial and error. In recent years,
the extension of RL to multi-agent reinforcement learning
(MARL) has attracted increasing attention. In MARL, mul-
tiple agents learn simultaneously while interacting with each
other and the environment. This setting is particularly rele-
vant for real-world scenarios, where multiple autonomous
systems must coordinate or compete to achieve individual
or collective goals. The distributed and interactive nature
of MARL makes it both powerful and challenging: agents

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

must learn not only how to optimize their own policies, but
also how to anticipate, adapt to, and collaborate with other
agents.

Despite the progress in MARL, most approaches assume
idealized conditions where all agents function correctly and
communication channels are reliable. However, real-world
systems are far from perfect. Agents may fail due to hard-
ware breakdown, sensor malfunctions, software errors, or
adversarial attacks. A single faulty agent may not only de-
grade its own performance but can also negatively affect the
collective behavior of the entire system.

This work explores methods for incorporating fault tol-
erance into reinforcement learning, with a particular focus
on the multi-agent co-ordination. The key idea is that agents
should not only maximize rewards under ideal conditions
but should also maintain robust performance when some
agents are faulty.

The specific research directions pursued in this work in-
clude:

* Designing mechanisms for detecting and mitigating
faulty agents in MARL environments.

* Developing architectural modifications (e.g., masking,
attention mechanisms, transformer-based models) that
allow agents to adapt dynamically to faults.

* Incorporating reward shaping strategies that promote re-
silience, such as penalizing oscillations or rewarding ro-
bustness.

* Evaluating the proposed methods on established multi-
agent environments, including Resource Gathering
(RWARE) and Level-Based Foraging (LBF), with sce-
narios that simulate agent failures.

Related Work

One of the major challenges in multi-agent systems is ensur-
ing robustness when some agents behave unpredictably or
fail. Existing literature has approached this issue from per-
spectives such as fault-tolerant control, adversarial robust-
ness, and cooperative learning. In this section, we review
key works that form the foundation for our study.

Work on fault tolerance in MARL has only recently be-
gun to emerge. A notable example is the paper *Toward
fault tolerance in multi-agent reinforcement learning’ (Shi
et al. 2025), which introduces a new fault-tolerant MARL

environment based on predator—prey tasks. The authors de-
sign four variations: abandonment, where one agent per-
manently fails; recovery, where surviving agents must re-
trieve resources from the failed one; navigation, which re-
quires agents to dynamically reschedule tasks in the pres-
ence of failures; and patrol, where adversaries can disable
agents and the system must adapt. The evaluation shows
that conventional MARL algorithms fail to maintain perfor-
mance under such fault conditions, illustrating the need for
approaches explicitly designed with fault tolerance in mind.
They employ attention based mechanisms to both the actor
and critic and use a priority based replay buffer to aid the
agents in tolerating faults.

To tackle mutli agent systems in noisy environments,
Kilinc and Montana introduce Multi-agent Deep Deter-
ministic Policy Gradient with a Communication Medium
(MADDPG-M) (Kilinc and Montana 2018). This algo-
rithm allows agents to learn to share information through
a communication medium, enabling better policy learning.
MADDPG-M operates with a two-level, concurrent learn-
ing mechanism, where agents determine when to share pri-
vate observations and learn main task policies, supported by
intrinsic rewards. The approach demonstrated performance
gains in non-stationary environments compared to estab-
lished baselines.

Gu et al’s paper on, "Attention-Based Fault-Tolerant
Approach for Multi-Agent Reinforcement Learning Sys-
tems” (Gu, Geng, and Lan 2021), addresses crucial security
challenges in multi-agent reinforcement learning (MARL)
where agents may exhibit arbitrary faulty or malicious
behaviour in harsh environments. Previous state-of-the-art
methods, such as MADDPG-M (Kilinc and Montana 2018),
were limited by their reliance on prior knowledge of en-
vironmental noise intensity, requiring configuration adjust-
ments when noise levels changed. To overcome this, the
authors introduce the Attention-based Fault-Tolerant (FT-
Attn) model, which employs a multihead attention mecha-
nism to enable agents to selectively identify not only cor-
rect but also relevant information from other agents at each
time step. This mechanism allows agents to learn effec-
tive communication policies alongside their action policies,
critically without requiring prior knowledge of the envi-
ronment’s noise intensity. Empirical results demonstrated
that FT-Attn consistently surpassed previous methods like
MADDPG-M in extremely noisy environments, across both
cooperative and competitive scenarios. They analyze cases
where a single “true” agent possesses accurate information,
and study configurations where this agent is fixed, alternates
across episodes, or is positioned in worst-case locations.
While the framework contributes insights into robustness
against noise and uncertainty, it primarily addresses partial
observability rather than explicit agent failures. The connec-
tion to fault tolerance is therefore indirect, but the scenarios
lay the groundwork for testing how algorithms adapt when
reliable information sources become unavailable.

Stankovi¢ et al (Stankovi¢ and Stula 2013) present a hi-
erarchical multi-agent system designed with fault tolerance
in mind. In their framework, worker agents are responsible
for task execution, while arbiter agents handle fault detec-

tion, mitigation, and recovery. When a worker fails, a dis-
tributor delegates fault information to an arbiter, which can
recreate failed agents by leveraging stored parent—child task
structures. The system ensures that critical information is
not lost by replicating it at higher levels of the hierarchy.
Experimental results show that the proposed design signif-
icantly reduces network and CPU loads under fault condi-
tions compared to baseline solutions. This approach draws
heavily from distributed systems principles but demonstrates
how hierarchical structures can be adapted for fault-tolerant
MARL.

The role of transformers in reinforcement learning has
been comprehensively explored by Li et al. in a recent
survey (Li et al. 2023). The authors systematically review
the motivations and progress behind the growing use of
Transformer architectures in Reinforcement Learning (RL),
a domain where their evolution has not been well doc-
umented. The authors provide a comprehensive overview
of Transformer-based RL, offering a taxonomy of existing
works and discussing various sub-fields.

Parisotto et al. introduced the Gated Transformer-XL
(GTrXL) architecture to address the instability of transform-
ers in reinforcement learning (Parisotto et al. 2020). Unlike
conventional Transformer-XL, which often failed to outper-
form LSTM baselines in RL tasks, GTrXL incorporated gat-
ing mechanisms into residual connections and restructured
layer normalization to stabilize optimization. Through ex-
tensive experiments on DMLab-30 and other partially ob-
servable tasks, GTrXL demonstrated superior performance
compared to LSTMs and MERLIN, particularly in memory-
intensive environments. This work established GTrXL as
a stable and expressive sequence model for reinforcement
learning, providing a foundation for transformer adoption in
both single-agent and multi-agent RL.

To tackle the problem of heterogeneous agent behavior,
Wang et al. introduced a personalized behavior-aware frame-
work that integrates both shared knowledge and individual
behavior embeddings (Wang et al. 2020). This design al-
lows agents to learn policies that are both collaborative and
personalized, ensuring robustness in diverse environments.
Their results showed improved adaptability and generaliza-
tion in cooperative MARL benchmarks. Such personaliza-
tion aligns with fault tolerance objectives, as it ensures that
the learning framework can adapt to agents with distinct
or degraded capabilities without collapsing global perfor-
mance.

Problem Setup

This work was conducted using the EPyMARL library, cho-
sen for its modularity and the availability of boilerplate code,
which aided in experimentation across different environ-
ments and algorithms. Two environments were chosen for
our experiments - RWARE (Multi-Robot Warehouse) and
LBF (Level-Based Foraging). The RWARE environment
was selected for its close resemblance to real-world ware-
house scenarios, featuring delayed rewards and task struc-
tures that align with practical robotics applications. In addi-
tion, the Level-Based Foraging (LBF) environment was used
to explore multi-agent coordination challenges. (Papoudakis

et al. 2021).

Multi-Robot Warehouse The Multi-Robot Warehouse
(RWARE) environment is a cooperative, partially observ-
able setting characterized by sparse rewards. It simulates a
grid-world warehouse in which multiple robots must locate
and transport requested shelves to designated workstations,
before returning them to their original positions. Agents re-
ceive rewards only upon the successful completion of an en-
tire delivery, which requires executing a precise sequence
of actions. Each agent’s observation is limited to a local
3x3 grid, containing information about nearby agents and
shelves. The observation for each agent comprises a (1,75)
tensor: Agent location, carrying status, direction, and 9x7
elements for local surroundings (agents, shelves). The ac-
tion space A is defined as: {No-op, Turn Left, Turn Right,
Forward, Load/Unload Shelf }. Agents receive a reward of
1 for successfully transporting a requested shelf to a desig-
nated goal location at the bottom of the warehouse. For the
experiments, we use the rware-tiny-4ag-v2 configu-
ration.

Level Based Foraging In the Level-Based Foraging
(LBF) environment (Albrecht and Ramamoorthy 2013), (Al-
brecht and Stone 2017), agents are required to collect food
items scattered randomly across a grid-world. Both agents
and items are assigned levels, and an item can be collected
if the combined levels of one or more agents meet or ex-
ceed the item’s level. At each timestep, agents receive ob-
servations that either represent the full state of the environ-
ment or a restricted view under partial observability. Agents
in Level-Based Foraging can choose between six discrete
actions at each timestep: {Noop, Move North, Move South,
Move West, Move East, Pickup}.

Non-zero rewards are only assigned when food is success-
fully collected. The reward is determined by both the level
of the food item and the levels of the contributing agents.
Rewards are normalised such that the total return across all
agents in a solved episode equals one, ensuring fair distribu-
tion of cooperative outcomes. For the experiments, we use
the Foraging—-10x10-4p-4£f-v3 configuration.

Fault Models

To simulate faults, one agent is randomly selected with uni-
form probability. Once selected, the agent is made perma-
nently faulty by forcing it to always take a no-op action. This
is achieved by manipulating its action logits and setting an
extremely high logit for action O and suppressing all others,
effectively freezing the agent.

Random Faults By default, faulty agents remain stuck
from the beginning of the episode to provide a consistent
baseline. To better represent realistic scenarios, we also in-
troduce faults randomly. The chosen agent has a probability
p of becoming faulty per timestep. Once triggered, the fault
is permanent: the agent is forced into a No—op state for the
remainder of the episode.

Agent Architectures
GRU EPyMARL uses a GRU-based policy architecture
by default. Let x; be the observation at time ¢. The computa-
tion proceeds as follows:

B = ¢ (Wyx; +by)
h; = GRU(h,_1,h")
ar =Wah; + by

where ¢ denotes a non-linear activation function (e.g.,
ReLU), and a; are the raw action logits.

Gated Transformer We followed the gated transformer
model as described in literature (Parisotto et al. 2020), uti-
lizing relative multi-head attention and positional encoding.
This architecture was chosen for its potential to capture tem-
poral dependencies and model long-range context. Attention
heads are expected to focus on past states where agents en-
countered obstacles or resolved coordination successfully.
Let x, € R¥n denote the observation at time 7, and let X =
{X_¢41,---,%} € RPn be the input sequence of length /.
The Transformer agent processes this sequence as follows:

Input Projection and Normalization. The input se-
quence is first projected into a higher-dimensional fea-
ture space and normalized: Hy = LayerNorm (¢ (W, X + b)),
where W, € R¥model Xlin by € R¥model | and ¢ denotes a non-

linear activation function (e.g., ReLU). The result is Hy €
Ré deodel .

Stacked Decoder Blocks with Gated Residuals. The
model consists of L decoder blocks. Each block integrates
contextual information using a gated residual connection
over a relative self-attention mechanism. For each layer
le{l,...,L}:

A =Grul (Hl_l,SelfAttnU) (LN(H,_1), K, v,)) :

H, = GRUY (ﬁ,,FFNW (LN(ﬁ,))) :

where:
* K;,V; € RO %dmodel gre key/value sequences formed by
concatenating memory and current input,
. GRU(II), GRUg) are GRU-inspired gating modules,
« FENU) is a feedforward network (typically a linear layer
followed by ReLU),
* LN is LayerNorm and Sel fAttn is Self Attention.

Output Projection. Finally, the output of the top decoder
block is normalized and projected to raw action logits:

Hout = LayerNorm(H}),
ar = WoHou + bZ;

= where Wy € Réoutxdmodel | py € Réout and g, € RE>dou gre
the output logits over actions at each timestep.

Training Algorithm
All agents were trained using the MAPPO (Multi-Agent

Proximal Policy Optimization) algorithm as implemented in
EPyMARL.

Multi-Agent Proximal Policy Optimization (MAPPO).
Proximal Policy Optimization (PPO) is a widely used on-
policy policy gradient method that updates the policy by
maximizing a clipped surrogate objective, which ensures
stable learning by preventing large policy updates. In the
multi-agent setting, Multi-Agent PPO (MAPPO) extends
PPO to cooperative or mixed cooperative-competitive envi-
ronments with multiple agents. Each agent i maintains its
own policy 7g,(a;]0;), where o; is the local observation and
a; is the action. A centralized critic is often employed dur-
ing training, which estimates the value function V(s) or the
action-value function Q(s,a) using the global state s and
potentially the joint action a = (ay,...,a,). MAPPO has
shown strong empirical performance in a range of bench-
mark multi-agent environments by stabilizing training while
maintaining sample efficiency.

Fault Tolerance Aiding Methods

Reward Shaping To discourage agents from becoming
stuck or oscillating between positions, we introduced two
types of reward penalties:

Stuck Penalty: Applies an exponential penalty that in-
creases the longer an agent remains stationary.

Oscillation Penalty: Penalizes agents revisiting the same
set of positions in quick succession, indicating back-and-
forth movement.

These penalties are computed post-environment step and
subtracted from the environment-provided rewards.

Proposed Method

We propose a transformer-based multi-agent architecture in
the policy network that integrates self-attention, behavior-
conditioned cross-attention, and gating to effectively model
temporal and inter-agent dynamics. (GrtXL-BCA)

Overview Let X € RENXTxdn denote the input observa-
tions, where B is the batch size, N the number of agents,
T the sequence length, and d;, the input dimension. Each
agent’s trajectory is processed through the following key
components:

1. Self-Attention with Relative Positional Encoding

2. GRU-inspired Gating Mechanism

3. Cross-Attention Conditioned on Behavioral Similarity
4. Feedforward Network

Self-Attention with Relative Positional Encoding Each
agent processes its own temporal sequence via a relative
multi-head attention mechanism. For input sequence X €
RT*4 (per agent), the model first derives the standard query,
key, and value representations. The attention score between
timestep ¢ and ¢’ is computed as:

1
A== [(@+0) Ky + (@) R (D
where u,v € R? are global learnable vectors for content and
position-based attention, respectively. The attention weights
o, are computed by applying a softmax to the attention
scores A, across all timesteps. The output of the self-
attention layer at timestep ¢, denoted as SelfAttn(X),, is then

obtained as a weighted sum of the value vectors V, using
these attention weights.
This output is gated using a GRU-like gating unit:

H") = GRUGate(X, SelfAttn(X)) 2)

Cross-Agent Attention via Behavior Clustering To en-
able inter-agent coordination, we introduce a cross-attention
mechanism where each agent attends to behaviorally simi-
lar agents. Since faulty agents are anomalous, attending to
agents which behave similarly will stabilize learning and
help in achieveing good perfomance. To enable the policy
to adapt dynamically, each agent receives an input sequence
that includes observations of other agents, interleaved such
that more recent timesteps appear later in the sequence.
The resulting input tensor for a single agent is denoted as
X € RWVT)*d where N is the number of agents, 7' the tem-
poral horizon, and d the feature dimension.

First, a similarity network ¢ (-) encodes each agent’s cur-

rent observation x; into an embedding e; € RY:
o €
ei = Q(x; éi=
1 (1)7 1 ||€iH2

The pairwise cosine similarity matrix S € RV*¥ is com-
puted:

3)

Sij=2l¢)
A binary attention mask M € {0, 1}V is derived:
M,'jZI[(S,'j>’L') 5

We denote each agent’s temporally encoded representa-
tion as H; € RT*¢ The standard query (Q), key (K), and
value (V) matrices are calculated using the input sequence
and temporal representation. For agent i, cross-attention is
computed over other agents j where M;; = 1:

T
exp(Q; K1)
Zj’,t” GXp(Q;K]-/JN)
The cross-attention output, denoted as CrossAttn; (), is ob-
tained as a weighted sum of the value representations V; s,
where the attention score ¢, determines the contribution

of each agent j at timestep #'.
This output is again gated using a GRU:
H' = GRUGate(H", CrossAttn;) 7

i

Qiry =

M;; (6)

Feedforward and Output Projection The agent repre-
sentation is refined with a feedforward network:

H® = GRUGate(H” ReLU(H>'W, +b1)Ws +by) (8)
The final action logits for agent i are computed by applying a
linear transformation to its final hidden representation H; 3,

Memory Mechanism A limited-length memory bank is
maintained per layer, allowing temporal context to persist
across episodes. After each forward pass, hidden states are
appended to the memory, truncated to a fixed size Lpem-

Auxiliary Loss for Clustering If ground-truth agent clus-
ter labels y; are available, the similarity network is trained

with an auxiliary contrastive loss:
£ =Y Myi=y;)(1—Sij) +1(yi # ;) -ReLU(S;j — m)]
i<j
9

where m is a margin hyperparameter.

Experiments

All the experiments were conducted in H100 or A100 GPUs.
All results represent the values during evaluation except the
figures representing the convergence of the networks.

No Faults Both RNN and transformer were run with 4
agents and for 40M timesteps without any faults to estab-
lish a baseline in RWARE. In LBF the same experiments
were done for 20M timesteps. Table 1 illustrates the reward
obtained from the different architectures. We used simple ar-
chitecture for the transformers with 1 layer and 2 heads for
the experiments.

Environment Architecture Reward
rware-tiny-4a RNN 47.8
y-4ag Transformer 494
RNN 0.94
Ibf4p-4f Transformer 0.95

Table 1: Total reward for different architectures in RWARE
and LBF environments.

Training with a single agent being faulty The faults
are induced during training to understand how the existing
model learns to tolerate faults without any changes.

The raw Transformer underperforms relative to the RNN
baseline. While it converges quickly, it plateaus at a lower
reward, indicating poorer overall performance. In contrast,
our proposed solution not only achieves higher rewards early
in training, but also converges to a higher final reward than
RNN. This demonstrates improved learning efficiency. Fig-
ure: 1 represents the evaluation reward curves for the vari-
ous architectures. Table: 2 gives the reward of the different
architectures in RWARE and LBF. Rware environments are
trained for 40M and LBF environments are trained for 20M
timesteps.

Random faults As mentioned in the previous sections,
faults are not consistent and a healthy agent might become
faulty randomly in the middle of an episode, hence we con-
ducted experiments to measure the performance of the pro-
posed solution in such scenarios which simulate the reality
better. Since the rewards for each run has high variance for
RNN, the mean rewards with the standard deviation of RNN
and Transformer architectures with the different modifica-
tions, obtained during evaluation, has been reported in the
Table: 3 and the maximum rewards obtained are reported in
Table: 4. From the results, it is clear that our proposed solu-
tion is stable, consistent and produces much higher rewards
than RNN. Though the highest reward produced by the RNN
architecture is 25, it is rare and the training often collapses

(a) RWARE (b) LBF

Figure 1: RNN vs Transformer evaluation reward curves for
RWARE and LBF without agent ID in the observations.

Env Arch 0 1 2 3

RNN 28.56 2820 28.50 28.52
GrtXI (\woR.S) 2590 2590 2625 2575
RWARE GrtXI(\wR.S) 27.60 27.11 27.19 26.84

Ours 3143 3219 3230 31.78
RNN 081 084 076 0.56
GrtXI \woR.S) 090 0.73 0.62 0.62
LBF GrtXI (\w R.S) 098 082 067 0.72
Ours 072 0.67 082 097

Table 2: Rewards for each agent being faulty in RWARE and
LBF environments. GrtXIl = Gated Transformer, R.S = Re-
ward Shaping, Ours = Gated Transformer with Behavioural
Cross Attention. Agent ids are not encoded in the observa-
tion.

to 0. But our solution is stable and the training does not col-
lapse. Figure: 2 reports the average evaluation reward curves
for 5 different seeds for RWARE and LBF. The solid line
represents the mean curve, while the shaded region around
it indicates the variance.

AMAL Wit
\ “N,WMMVWA Wy v

J

i ' f i J‘A‘J\’U‘ | i
iR M&W"W}
i /\/, , Y 7 I

i ,

Figure 2: Average evaluation reward curves of models when
agents become faulty randomly mid-episode over 5 different
seeds. RNN = Baseline, R.S = Reward Shaping, GrtXI-BCA
= Gated Transformer with Behavioural Cross Attention

Nud “|

Multiple Faulty Agents To evaluate the consistency of the
proposed solution, we tested scenarios with multiple faulty
agents. Only the random fault scenario is reported, as it
is more realistic and effectively reflects the stability of the
models. The results are summarized in Table 5.

Overall, the results demonstrate that the proposed solution
is stable, consistently achieving high rewards across mul-
tiple runs, and generalizes well across fault scenarios. Un-

Environment Architecture 0 1 2 3

RNN 1640 16.69 1636 16.59
Transformer (\wo R.S) 17.83 17.54 17.90 17.48
RWARE Transformer (\w R.S) 16.75 16.24 16.70 16.90
Ours (GrtXI-BCA) 30.70 30.56 30.64 30.58
RNN 0.50 0.51 0.51 0.49
Transformer (\wo R.S) 0.41 0.43 0.43 0.41
LBF Transformer (\w R.S) 0.44 0.43 0.40 0.41

Ours (GrtXI-BCA) 083 081 078 0.78

Table 3: Average evaluation results for each agent ID being
faulty randomly mid-episode in RWARE and LBF environ-
ments over 5 different seeds. Transformer = Gated Trans-
former, R.S = Reward Shaping, CA = Cross Attention, Ours
= Gated Transformer with Behavioural Cross Attention.

Environment Architecture 0 1 2 3
RNN 25.07 25.00 2493 26.02
Transformer (\wo R.S) 20.82 20.70 21.25 2045

RWARE Transformer (\w R.S) 19.74 19.79 20.54 19.73
Ours (GrtXI-BCA) 3221 3149 31.80 31.89
RNN 0.73 0.76 0.77 0.70
Transformer \woR.S) 0.77 0.80 0.80 0.74

LBF Transformer (\w R.S) 0.82 0.80 0.72 0.73

Ours (GrtXI-BCA) 089 084 080 0381

Table 4: Maximum rewards during evaluation for each agent
ID being faulty randomly mid-episode in RWARE and LBF
environments over 5 different seeds. Transformer = Gated
Transformer, R.S = Reward Shaping, CA = Cross Attention,
Ours = Gated Transformer with Behavioural Cross Atten-
tion.

like the RNN baseline, which often collapses during training
or produces highly variable performance, our method main-
tains steady learning and performs reliably even when agents
are randomly or strategically faulty. This highlights the ro-
bustness and suitability of our model. Figure: 3 denotes the
average reward curves of RNN and Gated Transformer with
Behavioural Cross Attention when two agents are randomly
faulty over 5 different seeds. Other variants of the Trans-
former have been not been reported because the previous ex-
periments have already proved that our model outperforms
them.

Environment Architecture Rewards
RNN 1.26

RWARE Ours (GrtXI-BCA) 10.25

LBF RNN 0.26

Ours (GrtX1-BCA) 0.411

Table 5: Average Evaluation results for two agents being
randomly faulty in RWARE and LBF environments over 5
different seeds. Ours = Gated Transformer with Behavioural
Cross Attention.

Training Curves (Mean = std)

/V‘\/\’” /\'\/w\v

(2) RWARE ()
Figure 3: Average evaluation reward curves of models when
two agents become faulty randomly mid-episode over 5
different seeds. RNN = Baseline, R.S = Reward Shaping,

GrtX1-BCA = Gated Transformer with Behavioural Cross
Attention

Conlucsion and Future Work

This work investigated the integration of fault tolerance into
reinforcement learning (RL) and, in particular, multi-agent
reinforcement learning (MARL). Modern RL has achieved
significant success in diverse domains ranging from Atari
games to robotic control. However, the majority of exist-
ing frameworks assume idealized settings where agents and
their interactions are perfectly reliable. In contrast, real-
world systems, such as autonomous driving fleets, surgical
and distributed robotics, must contend with the possibility of
agent failures, noisy communication, and degraded perfor-
mance. Addressing these issues requires explicitly embed-
ding fault tolerance into the design of learning algorithms.

The primary contribution of this work was to explore
methods that allow multi-agent systems to remain robust
in the presence of faulty agents. To this end, we exam-
ined strategies such as behaviour masking mechanisms,
which can filter out unreliable features or agents, and
attention-based architectures such as Gated Transformer-
XL (GTrXL), which offer stability and long-range depen-
dency modeling. By combining these architectural innova-
tions with policy gradient methods like Multi-Agent PPO
(MAPPO), we designed a framework where agents can
adaptively ignore or compensate for failures in their peers,
thereby improving the system’s overall resilience.

Through empirical studies on benchmark environments
such as the Multi-Robot Warehouse (RWARE) and Level-
Based Foraging (LBF), this work demonstrated that incor-
porating fault tolerance mechanisms can mitigate the nega-
tive impact of failed agents. In scenarios where one or more
agents were constrained to perform no actions - simulating
hardware failures, the remaining agents were able to adapt
and continue fulfilling collective objectives. These findings
underline the importance of embedding fault-awareness into
MARL and provide a pathway toward safer and more reli-
able deployment of such systems in practical applications.

Limitations Despite these promising results, several lim-
itations remain. The environments RWARE and LBF, while
widely used benchmarks, are still relatively simple com-

pared to real-world applications. The notion of “fault” in
these experiments was modeled primarily as no-op behavior,
whereas in practice, faults may take on more complex forms
such as adversarial behavior, stochastic dropouts, or partial
communication failures. Extending fault tolerance mecha-
nisms to these more challenging conditions is a natural next
step.

Another limitation is in the computational demands of
transformer-based architectures. Although GTrXL stabi-
lized training, it also introduced higher model complexity
and resource requirements compared to recurrent baselines.
This constraint may hinder scalability in large multi-agent
systems or in real-time applications where inference speed is
critical. Balancing model expressiveness with computational
efficiency will therefore be essential for future progress.

Third is the stabilization of the critic network - all the ar-
chitecture changes were done only to the policy network. As
the faults become more random, the training gets destabi-
lized and collapses. To prevent this the critic has to incorpo-
rate techniques to handle the distribution shfit.

Future Work Future work entails exploration of richer
fault models, more adaptible behavioural masking tech-
niques and scale. Beyond no-op behavior, agents could
be modeled as intermittently failing, exhibiting stochas-
tic noise, or even acting adversarially. Future work should
also explore scaling these methods to more complex, high-
dimensional environments. Combining visual perception
(e.g., with vision transformers) with fault-tolerant MARL
would enable applications in robotics, autonomous driving,
and other safety-critical fields. Designing learning systems
that can adapt to these more challenging areas will bring
MARL closer to deployment in high-stakes domains such
as defense, healthcare, or financial systems.

In summary, this work has argued that fault tolerance is
not a peripheral concern but a core requirement for the de-
ployment of reinforcement learning in real-world, safety-
critical domains. By developing and testing mechanisms
such as masking strategies and transformer-based architec-
tures, we have shown that agents can remain effective even
in the presence of faults. While challenges remain, the tra-
jectory of this research suggests a future where multi-agent
reinforcement learning systems can be both powerful and
resilient. Achieving this balance will be crucial for the next
generation of artificial intelligence, where reliability and ro-
bustness are as important as raw performance.

References

Albrecht, S. V.; and Ramamoorthy, S. 2013. A Game-
Theoretic Model and Best-Response Learning Method for
Ad Hoc Coordination in Multiagent Systems. In Proceed-
ings of the 12th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 1155-1156. Saint
Paul, Minnesota, USA: International Foundation for Au-
tonomous Agents and Multiagent Systems (IFAAMAS).

Albrecht, S. V.; and Stone, P. 2017. Reasoning about
Hypothetical Agent Behaviours and their Parameters. In
Proceedings of the 16th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), 547—

556. Sdo Paulo, Brazil: International Foundation for Au-
tonomous Agents and Multiagent Systems (IFAAMAS).

Gu, S.; Geng, M.; and Lan, L. 2021. Attention-Based Fault-
Tolerant Approach for Multi-Agent Reinforcement Learning
Systems. Entropy, 23(9): 1133.

Kilinc, O.; and Montana, G. 2018. Multi-agent Deep Re-
inforcement Learning with Extremely Noisy Observations.
Technical Report arXiv:1812.00922, arXiv.

Li, W.; Luo, H.; Lin, Z.; Zhang, C.; Lu, Z.; and Ye, D.
2023. A Survey on Transformers in Reinforcement Learn-
ing. Transactions on Machine Learning Research, 2023.
Publisher Copyright: © 2023, Transactions on Machine
Learning Research. All rights reserved.

Papoudakis, G.; Christianos, F.; Schifer, L.; and Albrecht,
S. V. 2021. Benchmarking Multi-Agent Deep Reinforce-
ment Learning Algorithms in Cooperative Tasks. In Pro-
ceedings of the Neural Information Processing Systems
Track on Datasets and Benchmarks. 35th Conference
on Neural Information Processing Systems (NeurIPS) —
Datasets and Benchmarks Track.

Parisotto, E.; Song, F.; Rae, J.; Pascanu, R.; Gulcehre, C.;
Jayakumar, S.; Jaderberg, M.; Kaufman, R. L.; Clark, A.;
Noury, S.; Botvinick, M.; Heess, N.; and Hadsell, R. 2020.
Stabilizing Transformers for Reinforcement Learning. In
III, H. D.; and Singh, A., eds., Proceedings of the 37th In-
ternational Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, T7487-7498.
PMLR.

Shi, Y.; Pei, H.; Feng, L.; Zhang, Y.; and Yao, D. 2025. To-
ward Fault Tolerance in Multi-Agent Reinforcement Learn-
ing. IEEE Transactions on Automation Science and Engi-
neering, 22: 19007-19024.

Stankovié, R.; and §tula, M. 2013. Fault Tolerance
through Interaction and Mutual Cooperation in Hierarchi-
cal Multi-Agent Systems. In Proceedings of the 5th Inter-
national Conference on Agents and Artificial Intelligence
(ICAART 2013). SCITEPRESS - Science and Technology
Publications, Lda.

Wang, T.; Dong, H.; Lesser, V.; and Zhang, C. 2020. ROMA:
multi-agent reinforcement learning with emergent roles. In

Proceedings of the 37th International Conference on Ma-
chine Learning, ICML’20. JMLR.org.

