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ABSTRACT

Deep networks are frequently tuned to novel tasks and continue learning from
ongoing data streams. Such sequential training requires consolidation of new
and past information, a challenge predominantly addressed by retaining the most
important data points - formally known as coresets. Traditionally, these coresets
consist of entire samples, such as images or sentences. However, recent transformer
architectures operate on tokens, leading to the famous assertion that an image is
worth 16x16 words. Intuitively, not all of these tokens are equally informative or
memorable. Going beyond coresets, we thus propose to construct a deeper-level
data summary on the level of tokens. Our respectively named core tokensets both
select the most informative data points and leverage feature attribution to store
only their most relevant features. We demonstrate that core tokensets yield signifi-
cant performance retention in incremental image classification, open-ended visual
question answering, and continual image captioning with significantly reduced
memory. In fact, we empirically find that a core tokenset of 1% of the data performs
comparably to at least a twice as large and up to 10 times larger coreset.

1 INTRODUCTION

Deep learning models are rarely deployed in static environments and instead need to be continuously
adjusted to their ever-changing surroundings. As distribution shifts occur over time, we require
models to retain their performance on previous settings while accommodating new examples (Hadsell
et al., 2020; Kudithipudi et al., 2022; Mundt et al., 2023). Naively, re-training a model from scratch
for every change in the environment quickly becomes unfeasible for complex architectures with
billions of parameters (Touvron et al., 2023; Brown et al., 2020). Consequently, research has focused
on identifying small, representative subsets of the training data (Lopez-Paz & Ranzato, 2017), which
can later be replayed continuously to avoid (catastrophic) forgetting (McCloskey & Cohen, 1989) of
previously acquired information (Graham et al., 2021; Hassani et al., 2021; Xu et al., 2021). Formally,
these (weighted) subsets can be described as coresets; data summaries that approximate the original
loss function with a negligible loss in performance (Bachem et al., 2015; Blömer et al., 2016; Trapp
et al., 2022). However, whereas multiple successful coreset selection techniques were proposed
(Mirzasoleiman et al., 2020; Killamsetty et al., 2021a), we argue that modern architecture advances
now allow for a yet to be leveraged level of data summarization. In particular, (vision) transformers
now conveniently define each data input as an ordered set of tokens Vaswani et al. (2017); Dosovitskiy
et al. (2020). In turn, we posit that it is not only a subset of the data instances that allows effective
summarization but also only a handful of features within every data point that may be relevant to
generalizing the task at hand. We refer to the latter as core tokens and, respectively, the subset of
most meaningful tokens of important data instances as core tokensets.

Core tokensets build on the general principle of coresets, where we aim to identify the tokens that
approximate the loss within a negligible error margin of the full dataset. To this end, we demonstrate
that the attribution maps calculated using the attention scores across the transformer layers, as a
means to understand the relevance of each token, can serve as the basis for core token selection. In
practice, we thus explore different strategies to determine the token’s relevance, e.g. by exploiting
the gradients or perturbing the attention scores. Our first interesting insight is that naively retaining
only core tokens from each data sample at a specified rate results in a similar cost as an involved
coreset (that selects a subset of data instances) with an identical retention rate. However, and more
importantly, we can couple techniques in a two-fold subset selection approach, i.e., our so-called
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Figure 1: Continued training with core tokensets. In sequential training, forgetting previous tasks is
mitigated by selecting the most meaningful previously observed data points and storing only their
most influential tokens (yellow shaded parts; left side). The resulting core tokenset is then interleaved
in the training of new tasks (blue shaded parts; right side), where random input dropout is further
employed to render the model susceptible to observing partial inputs.

core tokensets, where we first identify a subset of samples using coreset selection methods and then
select core tokens of those samples. A schematic overview of our framework is depicted in Fig. 1.
We demonstrate the benefits of core tokensets in the scope of sequential training tasks, where we
show that storing only the relevant partial inputs yields informative summaries with both improved
performance as well as significantly reduced memory buffer size in comparison to state-of-the-art
traditional core sets. In summary, we make the following contributions:

• We introduce the notion of core tokensets, a sub-data summary that selects a subset of most
important tokens for a subset of most important data instances of a dataset.

• We show how to leverage the attribution maps computed across the transformer layers in an
exploration of various strategies to select the most influential tokes.

• Finally, we extensively highlight the empirical performance and memory benefits of core
tokensets in different sequential task setups in image classification, multi-modal image
captioning, and multi-modal visual question-answering (VQA).

2 PRELIMINARIES AND RELATED WORK

Coresets: Conventional dataset summaries are constructed as instance-wise (weighted) subsets of the
entire training data. These coresets are comprised of the most informative instances with an aim to
approximate the full dataset with a negligible difference in the cost function. That is, we wish to find
the subset Cx of D, assuming an additively, into non-negative functions decomposable, cost function
for our given dataset D (Bachem et al., 2015; 2017), such that for any solution (parameters) Q:

|cost(D,Q)− cost(Cx, Q)| ≤ ϵ · cost(D,Q), where ϵ > 0 (1)

In practice, coresets were primarily designed to demonstrate dataset approximation capabilities for
traditional machine learning models such as K-means(Blömer et al., 2016; Feldman et al., 2007;
Har-Peled & Kushal, 2005), SVM (Dong et al., 2005), and logistic regression (Huggins et al., 2016),
with very few works aimed at deep neural networks (DNNs). For the latter, Killamsetty et al. (2021b)
resorts to bi-level optimization with coresets selection as an outer objective and the generalization of
model parameters as an inner objective. However, it requires several optimization steps, which can
be impractical for complex architectures. As an alternative to bi-level optimization, gradient-based
coreset approaches have thus emerged with an aim to solve an alternative to Eq. 1 that operates on
the gradients of the loss rather than approximating the loss directly. CRAIG (Mirzasoleiman et al.,
2020) thereby, aims to identify the optimal coreset by converting the gradient matching problem to a
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monotone submodular function optimization problem and solving it with a pre-defined error bound.
Similarly, GradMatch (Killamsetty et al., 2021a) employs full dataset gradients while additionally
employing L2 regularization to reduce dependency on any specific data sample.

In sequential learning, coresets can effectively be used as replay buffers to interleave in continual
training (Mundt et al., 2023) to avoid catastrophic forgetting (McCloskey & Cohen, 1989). However,
prominent replay strategies rely on ad-hoc subset selection, such as reservoir or random sampling
(Rolnick et al., 2019; Kumari et al., 2022; Tiwari et al., 2022), to retain previously acquired infor-
mation over the course of training. In our work, we evaluate the impact on transformers to solve
more complicated tasks beyond standard classification problems, such as sequential VQA & image
captioning and propose an advanced data summarization technique, referred to as core tokensets.

Transformer preliminaries: Given a sample X , transformers (Vaswani et al., 2017) make use of a
sequence of tokens xp, where each token captures distinctive features of the data sample. Usually, for
images, the samples are transformed into T equally sized P × P flattened 2D patches xpϵR

T×(P2F)

(F : number of feature channels). Subsequently, each patch is encoded into a single token embedding
Et ∈ E; every embedded patch is then concatenated with its corresponding positional embedding
vector Et

pos ∈ Epos. The self-attention layers then process these sequences of token embeddings z0:

z0 = [xcls;x
1
p;x

2
p; ...;x

T
p ]E + Epos (2)

3 CORE TOKENSETS: SUMMARIZING DATASETS WITH INFORMATIVE TOKENS

As transformers are now capable of processing data inputs as a sequence of multiple tokens, we now
present a novel way to summarize datasets even more efficiently than traditional coresets.

Definition 3.1 (Core tokensets). A core tokenset Ct is a subset of tokens (⊆ T ) of a dataset D, such
that a solution Q found on the core tokenset approximates the cost of the full dataset within negligible
error margin: |cost(T,Q)− cost(Ct, Q)| ≤ ϵ · cost(T,Q).

This definition is a modification of core set equation 1. Instead of being based on data instances,
it is now based on tokens and we can thus leverage the unique architectural properties of modern
transformers to process inputs at a sub-data point level. In order to identify the core tokens, we
associate each input token xt

p with a binary importance variable vt:

Ct := {(xt
p, t)|vt = 1, 0 <= t < |z0|} s.t.|Ct| < T (3)

Note that each stored core token remains associated with its position t, preserved in the form of
integer indexes of the extracted tokens. This will later be used to preserve the original structure in
continued training. The importance variable will typically be regulated by the relevance of the token
to its current task, but we can also think of straightforward selection methods. For instance, a naive
(random) selection can be realized by sampling the importance variable from a Bernoulli distribution:
vt ∼ Bernoulli(r). Here, r naturally maps to our key hyperparameter, i.e. the retention rate that
reflects the percentage of tokens retained from T .

Whereas there exist well-defined strategies to determine coresets, methods to select core tokens are
yet to be explored. Even though random sampling is a feasible baseline in forming memory Hayes
et al. (2021), randomly selecting core tokens can easily lead to storing redundant tokens. In particular,
in images, the object of interest often only occupies tiny regions of an input sample; storing the
background alone is unlikely to approximate the true loss well. As a remedy, we propose leveraging
attribution techniques and investigating the attention maps for token relevance to construct our set
of core tokens. First, each token is assigned a relevance score, determining its contribution towards
the prediction. We then draw inspiration from “explainability” techniques (XAI) (Chefer et al.,
2021b; Deiseroth et al., 2023) to elevate the efficacy of attribution maps further to calculate the token
relevance score. For instance, we can perturb the attention scores across the blocks or calculate the
gradients across the transformer blocks to quantify the contribution towards the final prediction.

Let us specifically outline the gradient-based approach to select core tokens. Given a transformer
model with B blocks, we first calculate the attention map (Ab) for each block (b ∈ B) comprising
h attention heads. We consider the Hadamard product of the gradients of the attention map (∇Ab)
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Figure 2: Visualization of the token relevance map constructed with the help of different core token
strategies as we gradually reduce the retention rates (R) for the tokens to be retained from a sample

and the layer-wise relevance score (LR) (Bach et al., 2015) with respect to a target class. The final
attribution map Āb is achieved by calculating the mean (Eh) of the product across h attention heads
in addition to an identity matrix to account for skip connections in transformers. The final influence
matrix ST×T is then defined by multiplying all the attention head scores, where each row consists of
the relevancy score of each token compared to the other token.

Āb = I + Eh(∇Ab ⊙ LR); S(T×T ) =
¯A(1) · ¯A(2) · ¯A(3) · ¯A(B) (4)

From the influence matrix, we extract the relevance of each token, which will ultimately determine
the individual binarized vt (see Fig. 2). For classification, we only consider the class token in the
first row. The top values then lead to extraction of the core token into our set. The cardinality of the
set is pre-determined based on the chosen retention rate R such that |Ct|

|T | = R. Intuitively, such a
gradient-based core token selection strategy is related to earlier described gradient matching strategies
for core set selection. We determine the most influential tokens of each data point via analysis of the
gradients and store a subset that approximately leads to the same outcomes as the entirety of tokens.

4 SEQUENTIAL TRAINING WITH CORE TOKENSETS

When we train our transformer sequentially over time, we optimize our model simultaneously on
newly arriving data of the novel task and the memory buffer data as modeled through the core tokenset.
The training loss L is thus:

L = E(x,y) L(f(x), y) + E(xc
p,y)∈Ct

L(f(xc
p), y) (5)

where L(., .) denotes an arbitrary loss (e.g. the cross-entropy), f denotes the model predictions
f = z(g(x)) and g(x) is the shared encoder model. Similarly, f(xc

p) denotes the predictions made on
the core tokenset memory buffer. Before we proceed to experimentally corroborate our core tokensets,
let us first consider two further imperative aspects: 1.) how to make transformers susceptible to the
partial inputs (subset of tokens) stored in our data summary, and 2.) provide an intuition for the
trade-offs and interplay between storing a traditional core set and a subset of tokens.

4.1 MAKING TRANSFORMERS SUSCEPTIBLE TO PARTIAL INPUTS

During regular (pre-)training, ViTs only observe complete inputs of T tokens. If we now feed them
with a subset of tokens, i.e. drop a subset of the concatenated patches, this results in an input sequence
that strongly deviates from the expected input structure. This, unfortunately, immediately leads to
unexpected model behavior and performance degradation. In fact, in Fig. 3a we report the latter,
in an experiment where we transition from training on complete samples during initial training to
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Initial training  Finetune Core Token 

(a) Naive training with core tokens

Initial training  Finetune Core Token 30%

(b) Training with random dropping of input tokens

Figure 3: Transformers are not susceptible to partial inputs. We illustrate the fine-tuning behavior of a
ViT-B/16 model on 20 random classes of ImageNet using core tokens. (a): Without countermeasures,
performance drops massively as the model is unable to handle partial inputs. (b) Randomly zeroing-
out tokens (through input dropout) of complete data points during training makes the model amenable
to learn from core tokens.

fine-tuning on partial inputs with core tokensets. Specifically, a pre-trained ImageNet (Deng et al.,
2009) Vit-B/16 model is continuously fine-tuned to 20 random classes first on all data and then on
core tokenset with different retention. For simplicity, we randomly select the core tokens. We can
observe a considerable drop in performance of roughly 15% in prediction accuracy at 30% retention.

If one were to draw premature conclusions, one would posit that core tokens are ineffective. How-
ever, this is not the case and our initial deteriorated model performance is truly due to the model
encountering unexpected input. As a remedy, we demonstrate that we need only make the model
amenable to observing partial inputs. Whereas we could conceive several notions to achieve the latter,
an effective simple strategy is to ensure that the model is always prompted with a complete sequence
of T tokens for core tokens. To that extent, the input value of left out tokens is set to 0. Crucially,
this setup preserves the input structure on which the model was pre-trained, thus ensuring that spatial
relations of patches are represented correctly. To emulate the respective sparsity of core tokensets, we
additionally randomly zero-out tokens of full data samples according to the expected retention rate,
similar to dropout (Srivastava et al., 2014) applied to the input. In Fig. 3b, we again tune a pre-trained
vision transformer (ViT) on 20 classes of ImageNet but now with random dropping and subsequently
fine-tuning on sets of core tokens. We fix the retention rate R at 30% for core tokens while varying
the drop rate used during the initial 20-class training. We see that the use of dropping tokens is
imperative to avoid performance drops. As we match the drop rate with the retention rate, the model
becomes more adept at learning from core tokens. Eventually, we retain the initial performance,
much in contrast to the earlier curve (also green, in panel a) without any training amendments.

For sequential learning on the combined token [{xt
p ∗ vt}Tt=1 ⊎ {xc

p}
Ct
c=1], we thus adopt above

practical strategy. That is, we additionally randomly sample vt ∼ Bernoulli(r) for the newly
observed complete data repeatedly during training, i.e. we randomly drop input tokens. The core
tokenset already has been attributed its relevance, i.e. a respective vc is always unity following one of
the earlier described selection strategies. It is here, where we make use of the stored integer positions
of the core tokenset in order to pad the remainder with zeros. In Fig. 4, where we sequentially tune on
ImageNet subsets sequentially, our strategy consistently retains performance, whereas naive training
on the core tokenset deteriorates heavily.

4.2 INTUITION ON EFFECTIVENESS: CORESETS VS. CORE TOKENSETS

Our definition 3.1 of core tokens naturally raises the question of whether it is more beneficial to store
subsets of tokens or subsets of data points, or whether to combine the latter. To provide intuition for
this question, we conceive two practical variants of data summarization. The first strives to identify
the most relevant subset of tokens for every data point as a data summary which we will refer to as
only extracting core tokens. Secondly, we would instead attempt to find the most important subset of
data points and respectively their most influential tokens. We will refer to this latter when we speak
of core tokensets in the remainder of the paper’s experiments. In other words, core tokenset follow
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Figure 4: Influence of token dropout. We perform
continual training (CT) on five distinct sub-tasks.
Randomly dropping tokens of novel inputs leads
to an improvement of 40% in accuracy, in contrast
to a scenario where the model is unable to handle
the partial input of core tokensets.
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Figure 5: Comparing core instances with core
tokens. The accuracy of a ViT model on a CT
task is shown. A memory buffer with core tokens
outperforms traditional core sets across different
memory sizes (x-axis), whereas their conjunction
into core tokensets provides even more benefit.

earlier Fig. 1, where we first build a coreset and then subsequently identify the core tokens for the
selected samples, whereas only selecting core tokens acts as an ablation omitting the coreset step.

In Fig. 5 we evaluate these two strategies, only core tokens and core tokensets, against traditional core
sets for our pre-trained ViT-B model on 20 random ImageNet classes with varying retention rates
(10-100%). We can observe that for all retention rates, training on core tokens outperforms traditional
core sets. However, core tokensets, identifying the most important tokens for the most important data
points, yield substantial further performance improvement. We believe this to be fairly intuitive. For
instance, consider a budget where we store only 1% of the samples in our memory buffer; coreset
techniques, most evidently, will throw away 99% of the total data instances. Meanwhile, for core
tokens, it will be possible to store 1% of information for every single item of dataset. In contrast,
for core tokensets, the combination allows us to select more instances than the coreset technique by
focusing on a few core tokens per sample. To be precise, we can store 10% of the samples (> 1%
coresets) and 10% of the tokens (> 1% core tokens) of those samples at the same memory budget.
We continue to extensively corroborate these findings in our experimental section.

5 EXPERIMENTS

We now extensively evaluate core tokensets on three diverse sequential tasks: 1) image classification,
2) open-ended visual question answering, and 3) image captioning. Specifically, we want to quantify
a) the model’s stability due to the informativeness of the memory in a comparison of various subset
selection strategies b) the relation of obtained performance to the overall cost of the memory buffer.

5.1 EXPERIMENTAL DETAILS

Datasets and Models. We use ImageNet100 (Deng et al., 2009) for classification, which we
sequentially segment into five tasks with 20 unique classes each. For VQA, we train on three separate
datasets in sequence, namely VQA 2.0 (Antol et al., 2015), CLEVR (Johnson et al., 2017), and Visual
Genome (Krishna et al., 2017). For the image captioning experiments, we rely on MS COCO (Lin
et al., 2014), which we segment into five equally sized tasks based on the object classes. We start
with a pre-trained VIT-B/16 trained on ImageNet21k as our base model (Wightman, 2019) for image
classification to focus our investigation on data summary efficiency and knowledge retention. Lastly,
we use a pre-trained BLIP model (Li et al., 2022) as initialization for both VQA and image captioning
tasks. More details for datasets and training set-ups are provided in Appendix A.2. Depending on the
complexity of the task, we have trained our models on 8-12 Nvidia A100 GPUs.

Strategies. We evaluate two recent state-of-the-art coreset approaches, namely CRAIG (Mirza-
soleiman et al., 2020) and GradMatch (Killamsetty et al., 2021a), both relying on gradients for their
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Table 1: Obtained final accuracy in sequential image classification for different subset selection
strategies as a function of retained data percentage. Extraction of core tokens performs comparably
to modern core set selection methods. However, the conjunction into core tokensets, here specifically
combining GradMatch and Atman, consistently yields large accuracy improvements. Color coding is
further used to highlight similar performance of a traditional state-of-the-art coreset and our proposed
core tokensets. Across various retention rates, core tokensets can even be observed to perform
comparably or favorably to much larger sized alternative approaches.

Retention rates: Sequential Image Classification
Methods 80% 60% 40% 20% 10% 1%

C
or

es
et Random 81.91±0.09 78.19±0.15 75.61±0.24 71.21±0.87 69.22±0.43 67.21±0.61

CRAIG 82.97±0.02 81.42±0.02 79.34±0.02 74.82±0.05 73.99±0.06 71.23±0.08

GradMatch 82.99±0.02 81.58±0.02 79.84±0.02 74.92±0.05 74.21±0.08 71.67±0.11

C
or

e
To

ke
n GradCam 82.19±0.09 78.69±0.12 76.21±0.01 71.33±0.23 69.81±0.31 67.81±0.31

Rollout 82.89±0.09 79.98±0.15 78.97±0.04 72.23±0.13 71.11±0.23 69.24±0.23

GradLRP 83.43±0.09 81.55±0.09 80.03±0.06 75.12±0.21 74.23±0.23 72.03±0.23

Atman 83.67±0.05 82.11±0.05 81.87±0.07 76.98±0.12 75.42±0.12 72.43±0.12

Core Tokenset 84.11±0.02 83.02±0.03 82.74±0.03 77.87±0.06 76.63±0.11 73.63±0.11

data selection. In addition, we consider four distinct feature attribution methods to derive attention
maps, based on which core tokens are selected. Rollout considers the information flow from the input
layer to deeper ones (Abnar & Zuidema, 2022). In contrast, Grad-Cam relies on the gradients for each
input token with respect to the ground-truth output. Going a step further, gradients with layer-wise
relevance propagation (Grad-LRP) (Chefer et al., 2021b;a) considers the respective relevance of each
layer individually. Finally, AtMan (Deiseroth et al., 2023) calculates the influence of each token by
perturbing the attention scores. We provide detailed descriptions for each strategy in Appendix A.1.

Evaluation Metrics. In all incremental setups, we report the corresponding metrics averaged over all
the tasks. We report averaged accuracy for image classification and VQA. However, note that we do
not train VQA as a classification task. Instead, we open-endedly generate answers in natural language.
Consequently, an answer is counted as correct if the generated text is the same as the ground-truth
label. For image captioning, we report BLEU-4 (Papineni et al., 2002) and ROUGE (Lin, 2004),
which measure the similarity between the model-generated text and the reference text.

5.2 SEQUENTIAL IMAGE CLASSIFICATION

In our sequential classification task, we specifically evaluate the informativeness of our memory buffer

1 2 3 4 5
Number of tasks

70

75

80

85

90

95

100

Ac
cu

ra
cy

 [%
]

Cumulative
Random
Coreset

GradLRP-CTS
Atman-CTS

GradCam-CTS
Rollout-CTS

Figure 6: Comparison of core tokenset selec-
tion techniques for sequential image classification.
Methods vary through feature attribution technique,
yet all demonstrate improvements over a traditional
GradMatch-based core set.

in preserving the old information by comparing
two variants of coreset strategies with four ways
of selecting core tokens. Tab. 1 compares the
methods as a function of the stored proportion
of the dataset. Here, we contrast coresets that se-
lect a subset of data points with pure extraction
of core tokens that select a subset of tokens for
all data points. These are then compared to core
tokensets, which are based on the conjunction
of the best-performing coreset and core token
strategy. As a reference, the model achieves a
top accuracy of 85.4% when we sequentially
train it on all accumulated data of every time
step, i.e., data gets added into a growing dataset
over time. We first notice a significant drop in
performance with a gradual decline in retention
rates when data is randomly selected. Here, the
more sophisticated coreset selection techniques
offer substantial improvement, with GradMatch
being the slightly better approach. Turning to
the specific approaches to identify influential
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Table 2: Obtained final accuracy in incremental ImageNet-R, which we divided into 10 and 20
sequential tasks. We report results averaged over three trials. ACC denotes the achieved accuracy
on the final task, whereas ACC represents the averaged accuracy over all tasks. Core tokensets are
competitive with other approaches, even though we emphasize that they are complementary in nature.

Task Splits: ImageNet-R(endition) 10 20
Method ACC10 (↑) ACC10 (↑) ACC20 (↑) ACC20 (↑)
Joint 81.14± 0.34 - 81.14± 0.34 -
Sequential 46.07± 1.15 62.91± 0.68 34.62± 0.85 51.15± 1.50
L2P Wang et al. (2022b) 62.54± 0.24 67.98± 0.27 57.92± 0.28 64.57± 0.29
DualPrompt Wang et al. (2022a) 65.41± 0.52 69.39± 0.43 61.00± 0.72 65.80± 0.67
CODA-P Smith et al. (2023b) 71.47± 0.35 75.82± 0.29 67.28± 0.30 72.34± 0.17
C-LoRA Smith et al. (2023a) 71.89± 0.45 75.33± 0.28 65.71± 0.60 70.63± 0.85
LAE Gao et al. (2023) 71.70± 0.39 76.71± 0.10 66.98± 0.35 73.72± 0.05
InfLoRA-b5 Liang & Li (2024) 74.13± 0.18 78.54± 0.14 68.41± 0.29 74.00± 0.50
InfLoRA Liang & Li (2024) 75.65 ± 0.14 80.82 ± 0.24 71.01 ± 0.45 77.28 ± 0.45
Core Tokensets 75.95 ± 0.15 81.32 ± 0.14 71.58 ± 0.22 77.59 ± 0.25

tokens, perturbing attention scores, as in Atman,
stand out as the best-performing core token selection mechanism. GradLRP follows closely behind,
whereas GradCam and Rollout fall short. We emphasize this difference through matching color
coding, where we highlight the core tokenset performance that matches or even surpasses the corre-
sponding GradMatch accuracy. The observable trend is that core tokensets yield similar performance
at greatly reduced memory cost. This is most visible when 1 % of the data is retained, where
the core tokenset performs similarly to a ten times larger core set. Both GradCam and GradLRP
by themselves outperform the coreset strategies, reinforcing our findings of earlier Fig. 5. More
importantly, our core tokenset, based on the conjunction of the best-performing GradMatch and
Atman, yields improvements of several percentage points in accuracy over any of the other methods.

To demonstrate that this obtained advantage is consistent, we combine GradMatch with all four core
token selection mechanisms to form core tokensets at a common dataset retention rate of 40 %. We
show the respective evolution of the accuracy as tasks get learned sequentially in Fig. 6. Here, it can
be seen that the Atman (yellow, triangle) and GradLRP (green, x) curves reasonably approach the
upper bound on the full dataset. However, it is particularly noteworthy that when combined into a
core tokenset with GradMatch, any core token selection mechanism improves performance over the
traditional core set approach (red, dashed).

5.3 CONTEXTUALIZATION WITH SOTA INCREMENTAL LEARNERS ON IMAGENET-R

Before evaluating core tokensets on other domains, we empirically contextualize our proposed core
tokenset approach within a wider body of current state-of-the-art incremental learning approaches.
Importantly, this comparison is primarily intended to provide a larger context of core tokensets’ ca-
pabilities. We argue not to draw simplified conclusions from these direct comparisons, since the
respective methodologies differ vastly and depend on different assumptions. Rather, they should be
interpreted as testimony to core tokensets efficacy and utility when prospectively being combined.

We chose ImageNet-R(endition) (Hendrycks et al., 2021) as a standard benchmark for challenging
and diverse continual learning tasks. We report averaged accuracy across the sequential task of 10 and
20 data subsets in Tab. 2. Based on insights from the previous experiment, we built the core tokensets
using GradMatch and AtMan at an 50% retention rate, as this choice provided a good trade-off
between memory and efficacy. The results demonstrate that core tokensets remain competitive with
best-performing methods like InfLoRA Liang & Li (2024).

5.4 OPEN-ENDED VISUAL QUESTIONING ANSWERING

We now move on to a larger-scale, multi-modal setup, where we finetune BLIP over 2 million
incremental VQA pairs. In Tab. 3, we report results over the considered selection strategies at
different retention rates. While GradMatch remains the best coreset selection strategy, GradLRP
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Table 3: Obtained final accuracy in sequential VQA for different subset selection strategies as a
function of retained data percentage. Table in analogy to Tab. 1. Color coding again highlights the
best-performing coreset and core tokensets. Similar to image classification, core tokensets perform
comparably or even better than a much larger sized core set in VQA tasks.

Retention rates: Visual Question Answering
Methods 70% 50% 30% 20% 10% 1%

C
or

es
et Random 77.02±0.11 74.86±0.07 71.23±0.04 69.88±0.25 67.23±0.33 66.03±0.34

CRAIG 78.15±0.04 76.93±0.07 74.67±0.07 73.56±0.05 71.63±0.12 70.54±0.12

GradMatch 78.17±0.04 77.03±0.04 75.03±0.03 73.93±0.06 71.77±0.10 70.62±0.11

C
or

e
To

ke
n Gradcam 77.04±0.11 75.16±0.12 71.83±0.04 70.45±0.25 68.93±0.33 67.66±0.34

Rollout 77.14±0.11 75.56±0.07 73.73±0.04 72.98±0.25 70.33±0.33 68.88±0.21

Atman 77.16±0.05 75.93±0.05 74.15±0.04 73.29±0.11 71.05±0.06 70.46±0.11

GradLRP 78.45±0.09 77.63±0.05 75.43±0.08 74.30±0.08 72.43±0.09 71.02±0.14

Core Tokenset 78.70±0.03 78.01±0.02 75.99±0.02 75.32±0.03 73.35±0.05 71.98±0.06

now takes the lead over ATMAN for the identification of core tokens. Respectively, our VQA core
tokenset combines GradMatch and GradLRP. Again, core tokensets consistently outperform all
other methods across all retention rates. Similar to our image classification table, to offer better
visualization, we have color-coded specific cells of coreset and core tokensets to highlight their
comparable performances at contrasting retention rates. Again, core tokensets can be observed to
perform much better or be significantly more memory efficient. For instance, should we wish to
achieve a performance of at least 75 %, we would have to resort to a GradMatch-based core set
that extracts a 30 % subset of the dataset. In contrast, core tokens already surpass our example
performance criterion when retaining only 20% of the data. Once more, this effect gets amplified
as we store less data, up to an astonishing performance at 1% stored data that outperforms a ten
times larger core set. Consequently, the findings of our VQA experiments are consistent with those
observed image classification.

5.5 IMAGE CAPTIONING

Finally, we conduct experiments on sequential image captioning tasks, comparing core tokensets
(CTS) based on the various selection strategies at an aggressive retention rate of 10%. We have
chosen this low retention rate as it already demonstrates results that are reasonably close to training
on the full dataset, making it obsolete to investigate higher percentages. Instead, we report both
BLEU-4 and ROUGE scores as a function of tasks over time in Fig. 7. Again, we report GradMatch
as the favorable coreset selection strategy and combine it with different core token selection strategies.
In full consistency with all prior findings, all CTS variants outperform the traditional coreset, whereas
the GradLRP-based CTS takes the lead and is once more closely followed by Atman. The ordering
of the methods is the same for both BLEU and ROUGE scores, with both demonstrating a marginal
drop in performance when only 10% of the data is stored with a CTS.

6 DISCUSSION

We have thoroughly evaluated core tokensets across three different sequential tasks. Despite the
different nature of these tasks, our empirical findings provide consistent insights.
The first crucial insight lies in the efficacy when comparing retention of data subsets, i.e., traditional
coresets, vs. core tokens, i.e., storing the relevant subset of tokens of each data point. If these methods
were to be viewed as separate competitors, then it appears safer to reside on the token level. Our
perhaps obvious hypothesis here is that intuitively, one loses less information when throwing away an
informative token, in contrast to throwing away an entire data point. As an example, if the memory
size is chosen to be, e.g., 10 %, it is more likely that a high amount of relevant information is still
present in the top 10 % tokens of each data point, in contrast, to fully throwing away 90 % of the data
instances (as is done in a traditional core set). This should be particularly true if the dataset features
little redundancy and every data point carries some important information.
Our second crucial insight is that the natural selection of the most critical data points and most
relevant core tokens for each data point should go hand in hand. We have demonstrated this through

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

1 2 3 4 5
Number of tasks

10

11

12

13

14

15

16

17

BL
EU

-4 Cumulative
Finetune
Coreset
GradLRP-CTS
Atman-CTS
GradCam-CTS
Rollout-CTS

1 2 3 4 5
Number of tasks

50

51

52

53

54

RO
UG

E

Cumulative
Finetune
Coreset
GradLRP-CTS
Atman-CTS
GradCam-CTS
Rollout-CTS

Figure 7: Incremental learning on image caption generation tasks. The left and right panels, respec-
tively, report the BLEU-4 and ROUGE scores for different memory construction methods based on
10% of the data as we finetune BLIP on five mutually exclusive MSCOCO tasks.

the high effectiveness and respective memory size gain in our core tokensets. Here, we hypothesize
that the large improvement in performance vs memory size obtained is a result of the cascaded nature
of selection. For example, consider a scenario where we are allowed a memory equivalent to 1% of
the data. For a traditional core set, this implies discarding 99 % of all data instances. However, for a
core tokenset, we can actually extract 10 % of the most meaningful data points and store only 10 %
of their most relevant tokens (assuming all data points have equivalent dimensions, as is typically
the case in benchmark data sets). If this respective 10 % carries the most relevant information, it is
clear why such a 1 % sized core tokensets performs comparably to a 10 % coreset. This fact has
consistently been observed throughout the various experiments in our paper.

Finally, this leads us to discuss the limitations of our work and its prospective future. The first
limitation is shared with the majority of coreset methods. Infact in its present form, the data retention
rate (or memory buffer size) must be chosen in advance unless an additional optimization problem
is to be involved. Second, we have deliberately chosen to treat the identification of essential data
points and their most informative tokens as two chained steps. This choice was motivated by
our desire to show the generality of the core tokenset principle and, respectively, to benchmark a
plethora of conceivable selection strategies. It could thus be shown that all core tokenset strategies
were beneficial in direct comparison to traditional core sets. However, some of the investigated
strategies are inherently amenable to direct combination into a single selection algorithm. In fact,
our empirically best-performing combination of GradMatch + GradLRP both rely on the gradient
signal. As such, it is conceivable that a joint gradient-based selection strategy can be formulated.
Although the computation cost of an additional backward pass is manageable, this would reduce two
computations into a single step. More importantly, it opens up the avenue for future work to derive
core tokenset guarantees and bounds for epsilon. Related to this, core tokens also share similarities
with recent works on token pruning and merging (Meng et al., 2022; Tang et al., 2022; Wei et al.,
2023). These methods utilize the notion of token importance to remove unnecessary overhead and
improve efficiency during training and inference, but could prospectively also be leveraged to build
core tokensets for sequential learning. We view these aspects as a promising future direction, along
with further experimentation in other domains.

7 CONCLUSION

We have introduced core tokensets for data summarization tailored to the unique architectural
properties of transformers. Building on the notion of coresets, we have demonstrated that each data
sample can be sufficiently summarized with only a subset of core tokens. Consequently, we have
seen the applicability of feature attribution scores in determining the relevance of each input token
on the target task. Our empirical investigation in three distinct scenarios has demonstrated that core
tokens are a cost-effective way to effectively preserve the stability of a sequentially trained model.
About future work, we envision the development of single-stage core tokenset selection strategies,
where the relevant set of samples and their informative tokens are identified concurrently.
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A APPENDIX

A.1 DETAILS OF ATTRIBUTION STRATEGIES

In this section, we detail the different selection strategies that ultimately influence the informativeness
of the core tokensets and lay out the mathematical details behind each strategy.

GradCam: Inspired by the idea proposed in the context of convolutional networks (Selvaraju et al.,
2017), we implement a gradient-based feature attribution map for transformers. In particular, we
only consider the last layer of the transformer right before the classification head to compute the
gradients of the attention heads. The corresponding feature map will obtain a shape of RT×D where
T denotes the number of the tokens and D is the embedding dimension. As a note, GradCam is purely
a class-specific approach, where we only consider the gradients concerning the [CLS] token and set
the rest of the elements in the first dimension to zero.

Rollout: Unlike Gradcam, this strategy is purely attention-based (A). The feature relevance map S is
usually determined by multiplying the attention maps of all the blocks (b ∈ B) across the transformer
layers (Abnar & Zuidema, 2022). It is thereby:

S = A(1) ·A(2) ·A(3) ·A(B) (6)

GradLRP: GradLRP is the second gradient-based approach that amends some of GradCam’s
limitations. As the name suggests, it combines the gradients of the individual attention maps with the
layer-wise propagation score calculated from the target token to the input sample. Given a transformer
model with B blocks, we first calculate the attention map (Ab) for each block (b ∈ B) comprising
h attention heads. We then consider the Hadamard product of the gradients of the attention map
(∇Ab) and the layer-wise relevance score (LR) (Bach et al., 2015) concerning a target class. The
final attribution map Āb is achieved by calculating the mean (Eh) of the product across h attention
heads in addition to an identity matrix to account for skip connections in transformers. The final
influence matrix ST×T for a set of tokens T is then defined by multiplying all the attention head
scores, where each row consists of the relevance score of each token compared to the other token.

Āb = I + Eh(∇Ab ⊙ LR); S(T×T ) =
¯A(1) · ¯A(2) · ¯A(3) · ¯A(B) (7)

Atman: This approach follows a different route, where the relevance of a token is determined by
leveraging the perturbation technique. In particular, we perturb the pre-softmax attention score H
(ϵRh×t×d) for each token by a factor f and determine their influence over the final target loss. A
subtle advantage over its gradient counterpart is that perturbation-based approaches only require
forward passes without calculating or storing gradients. Across all heads h and the transformer blocks,
we can compute the modified pre-softmax attention scores Hh as:

˜Hh,∗,∗ = Hh,∗,∗ ⊙ ((1 − f) + f(1 − f t
k,∗) , where f t

k,∗ =

{
st,k if η ≤ st,k ≤ 1

0 otherwise,
(8)

Here, 1 denotes the matrix containing only ones [1]t×t whereas the st,k denotes the cosine similarity
matrix for the T tokens. Consistent across all the heads, we manipulate the attention scores of token t
by a factor of f. Due to the nature of the image sample and the correlation between several patches,
we also manipulate the scores of the tokens, which are correlated with the token t. For that, we
compute the similarity matrix consisting of the similarity scores for each token compared to other
tokens and consequently select column t to perturb individual tokens. We compute the difference
between the loss function with the perturbed token and the unchanged token to determine the token
relevance.

The highest I score contributes to the largest deviation in the loss function, highlighting the most
relevant token.

Itargett ≈ Ltarget(z, θ−zt)− Ltarget(z, θ) (9)

Here, θ denotes the model parameters, whereas the θ−zt gives the weight parameters with the
perturbed token. Ultimately, we consider the row of the most relevant token from the cosine similarity
matrix to construct our core tokenset.
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Figure 8: Incremental learning for VQA. Matrices show accuracy (%) of a pre-trained Image-to-Text
model (BLIP (Li et al., 2022)) trained sequentially on three datasets VQA-v2 (Antol et al., 2015),
CLEVR (Johnson et al., 2017), and VG (Krishna et al., 2017). Experiments are conducted with a
50% retention rate.

A.2 TRAINING AND DATASET DETAILS

Sequential image classification: In this particular task, we have initialized our image transformer
with a Vit-B/16 (Wightman, 2019) model pretrained on ImageNet21k. To mimic a sequential learning
task, we created a sequence of 5 sub-tasks, each consisting of instances from 20 random ImageNet
classes. We then fine-tune our models on each sub-task for 20 epochs with a mini-batch size of 512,
using SGD as an optimizer with a learning rate of 0.01 and cosine scheduler. We report the model’s
accuracy on the current task and the previously encountered sub-tasks at the end of each sub-task.

Sequential multimodal training: We have empirically evaluated our proposed approach on two
distinct tasks: visual-question answering and image captioning. In the context of this work, we have
explored the base model of BLIP, with VIT-B/16 being the image encoder (Li et al., 2022) pre-trained
on 14M images, including two human-annotated datasets (COCO and Visual Genome) and three web
datasets (Conceptual Captions, Conceptual 12M, SBU captions). We trained on 8 Nvidia-A100 GPU
nodes.

Visual-question answering (VQA): To formulate a sequential learning task, we incrementally fine-tune
our pre-trained BLIP in the order: VQA-v2 (Antol et al., 2015) → CLEVR (Johnson et al., 2017)
→ VG (Antol et al., 2015). Each sub-task is trained for 20 epochs with a mini-batch size of 32
and Adam as our optimizer with a weight decay of 0.05. The learning rate is warmed up to 3e-4.
Additionally, we have considered input images with random crops at a resolution of 480× 480. After
each sub-task, we populate our memory using one of the core token selection strategies. We treat
BLIP as a generative model to predict answers for a given input image and its corresponding question.
Finally, we compare the predicted and target answers and report the scores as our evaluation metric.

Image captioning: In the case of an incremental image captioning task, we have segmented MSCOCO
into a sequence of five sub-tasks based on the object class types (book, backpack, car, truck, and
bottle). Much like the VQA task, we have fine-tuned the model for 20 epochs with Adam as the
optimizer. Here, we have considered random crops of images with a resolution of 384× 384.

A.3 ADDITIONAL RESULTS

A.3.1 VISUAL QUESTION ANSWERING

To complement the main body, we report the plasticity and stability of the vision-language model
BLIP while being trained sequentially on our VQA task, as reported in Fig. 8. For each scenario,
a task versus task confusion matrix is shown. The diagonal from the top left to the lower right
represents the evaluation performance on a task when it is trained. Respectively, the upper right-hand
triangle shows forward transfer, i.e., when the model is evaluated on an unseen task after being trained

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

on a specific prior dataset. Finally, the lower left triangle quantifies backward transfer, where the
model is re-evaluated on an older dataset after being trained on a new dataset.

Not surprisingly, all methods show similarly limited generalization capabilities to unseen tasks, as
evident from the upper right triangle. Intuitively, any technique to store a memory of the past, whether
core sets or core tokensets, does not affect this generalization capability. The observation primarily
underpins that the chosen tasks and pre-trained model are meaningfully picked for continual learning.

The lower triangle is most relevant to evaluating core tokenset selection, as it indicates forgetting
between tasks. Here, cumulative training serves as an upper bound. On the contrary, finetuning
without replay suffers from catastrophic forgetting, thus marking the lower bound. We can observe
that all feature attribution methods improve upon random core token selection. However, a well-
picked selection strategy significantly reduces forgetting. For example, when using our core tokenset
based on GradLRP, we achieve over 75% accuracy on VQA after three tasks. This is roughly 95 % of
the initially achieved accuracy when training the task (79.8 %). In direct comparison, GradCam ends
up at 69 %, barely more than the performance of random selection at 68%.

A.3.2 SEQUENTIAL IMAGE CLASSIFICATION

To complement the main body, we further show the evolution across tasks of different feature
attribution techniques for core token selection: GradLRP, Atman, GradCam, and Rollout. The
retention rate of the tokens is fixed at 40%. In Fig. 9, the line in black represents the model’s
cumulative training performance, achieving an accuracy of 85.4%. Upon storing random tokens,
we observe a visible decline in performance, with the model only achieving 75.5%. Using feature
attribution approaches in determining the relevance of tokens certainly aids the model in preserving
their old information. Here, identifying core tokens with the help of Atman has delivered the best
results. However, a gradient-based approach such as Grad-LRP only offers a marginal performance
degradation of 1.8% in accuracy compared to the reported accuracy of 81.87% for Atman. The
baseline approaches in the form of GradCam and Rollout are observed to have a gradual decline in
performance with a deviation of 6% and 4% in accuracy, respectively. Ultimately, all techniques
improve upon random selection.
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Figure 9: Comparison of core token selection techniques for sequential image classification. Methods
vary through the feature attribution technique, yet all demonstrate improvements over a random
selection-based core set. In this case, ATMAN is the best approach to identifying core tokens.

A.4 SEQUENTIAL IMAGE CLASSIFICATION ON SKILL-102 DATASET

We further extend our experimental evaluation to a more challenging dataset with a large variance. To
this end, we have chosen a pool of 9 tasks from the continual learning benchmark dataset SKILL-102.
We have adopted a similar training scenario as in (Ge et al., 2023a) where we consider each dataset,
such as OfficeHome Clipart, Facial Expressions, Apparel Images, as a separate task (Ge et al., 2023b).
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Figure 10: Extended dataset statistics and observed per-task accuracy after training sequentially on
nine sub-tasks of SKILL-102. Core tokensets outperform all other baselines.

To better contextualize these results, we compare core tokensets (CTS) against multiple baseline
approaches (Ge et al., 2023a; Kirkpatrick et al., 2017; Cheung et al., 2019; Wortsman et al., 2020;
Verma et al., 2021; Singh et al., 2020; Li & Hoiem, 2017; Riemer et al., 2018). Fig. 10, also includes
details about each sub-dataset, i.e., number of class labels, training, and test instances. We crafted our
core tokensets using GradMatch and AtMan selection strategies at a retention rate of 50%, following
insights obtained in the main body’s experimentation. We sequentially train each baseline and core
tokensets with the datasets in a similar order from OfficeHome Clipart to Apparel Images and report
the averaged accuracy and the per-task performance at the end of the training. The results in Fig.
10 demonstrate strong performance of core tokensets. Our approach even slightly outperforms the
best-performing baseline CLR.

A.5 LATENCY CONSTRAINT OF CORE TOKENSETS

We now discuss the latency for our core tokensets and single-stage selection strategies, such as coreset
and core tokens. The latency incurred by core tokensets is primarily determined by the different core
token strategies, considering that the computation of coresets remains consistent, irrespective of the
choice of the subsequent subset selection strategy. Considering that we used only gradient-based
coresets, it will incur a time complexity of O(D × (FP +BP )) where D represents the dataset, FP
is a forward pass, and BP is a backward pass through the neural network. Meanwhile, core tokens such
as GradLRP-based incur a complexity of O(D ×H(FP +BP )) where H is the number of the at-
tention heads. In contrast, Atman does not use backward passes at all, but iterates over all N tokens. It
thus has a complexity of O(D ×N(FP )). Consequently, for core tokensets, employing a GradMatch
and Atman-based core tokenset will have a time complexity of O(D(FP +BP ) + C(N × FP )).
Here, C is the subset selected by the coreset approach, as only this set is relevant for the determination
of respective token relevance. The combination with other methods follows analogous reasoning.

A.6 FURTHER VISUALIZED EXAMPLES OF EXTRACTED TOKEN RELEVANCE WITH DIFFERENT
CORE TOKEN STRATEGIES

In this subsection, we visualize the token relevance map computed using different feature attribution
techniques to select the core tokens. To provide better intuition, we gradually reduce the retention rate
from 60% to 20% and visualize which of the core token selection strategies could preserve the target
object in consideration. We show qualitative examples in Fig. 11- Fig. 13. Referring to Fig. ??, we
observe that random selection, as speculated, fails to capture the relevant information within a sample
with the gradual decline in the retention rate. Out of all feature attribution techniques, we notice that
GradLRP successfully identifies the target object in consideration, in this case, the elephant, even at a
lower retention rate of 20%. Perturbation techniques perform well in preserving the core information
and capturing a few background patches due to the closely related patches in image samples. In the
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case of Rollout, the closest to the GradLRP approach, we observe a similar trend in establishing a
token relevance map. Lastly, Gradcam seems to offer only a marginal improvement over random
selection.

Figure 11: Visualization of the token relevance map constructed with the help of different core token
strategies. Object class: elephant.

Figure 12: Visualization of the token relevance map constructed with the help of different core token
strategies. Object class: rabbit.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 13: Visualization of the token relevance map constructed with the help of different core token
strategies. Object class: postbox.
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