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Abstract

Building on the success of human-in-the-loop,001
where human wisdom is integrated into the002
development of machine learning algorithms,003
this position paper takes the initiative to en-004
vision an innovative and promising paradigm,005
LLM-in-the-loop (LLM-ITL), which lever-006
ages the unique advantages of LLMs to repli-007
cate human involvement and offer a more flex-008
ible and cost-efficient solution to real-world009
challenges. Through a comprehensive review010
of LLM research from 2020 to 2025, we re-011
veal that many existing LLM applications in-012
herently align with LLM-ITL, with researchers013
rapidly claiming their superiority over machine014
learning baselines and LLM-native solutions;015
however, no universal definition exists, hinder-016
ing its further advancement and application. In017
this paper, we define and categorize LLM-ITL018
methodologies for data, model, and task-centric019
applications, discuss their underlying rationale,020
and highlight emerging areas where LLMs can021
be further integrated into the loop. Furthermore,022
we present opportunities for developing bet-023
ter LLM-ITL solutions with technical advance-024
ments, such as LLM crowdsourcing and text-to-025
solution, establishing the proposed paradigm026
as a promising avenue for the future of LLM027
applications and machine learning research.028

1 Introduction029

Human-in-the-loop has gained increasing popular-030

ity for solving real-world problems by integrating031

human knowledge and expertise into the devel-032

opment of machine learning models (Wu et al.,033

2022; Fang et al., 2023). With the recent emer-034

gence of Large Language Models (LLMs) and their035

products, such as ChatGPT and Claude, many re-036

searchers argue that LLMs not only significantly037

outperform traditional machine learning baselines,038

but also surpass human experts in many tasks039

(Pu et al., 2023; Törnberg, 2023; Gilardi et al.,040

2023). As LLMs evolve to become more agent-041

Figure 1: Overview: LLM-in-the-loop Paradigm

like and with the proven effectiveness of the “in- 042

the-loop” techniques, a novel application paradigm, 043

“LLM-in-the-loop” (abbreviated as LLM-ITL), 044

has emerged as a focal point of interest for both 045

academia and industry. 046

The term “LLM-in-the-loop” attracted consid- 047

erable attention due to the expanding capabilities 048

and popularity of LLMs, yet no universal definition 049

exists in the current research landscape. Interpre- 050

tations vary from narrowly defining it for specific 051

tasks or methods (Yang et al., 2024b; Kholodna 052

et al., 2024) to adopting an overly broad scope that 053

might generalize the concept (Sudhakar et al., 2024; 054

Zhang et al., 2024b; Bartolo et al., 2020). This con- 055

cept has also become a catchphrase to align with 056

LLM application trends (Wu et al., 2024; Keles 057

et al., 2024), leading to ambiguity and confusion. 058

Appendix A presents a comprehensive list of re- 059

search papers collected up to May 1, 2025, featur- 060

ing the keywords LLM-in-the-loop” or LLM-ITL” 061

in their titles or abstracts. These examples under- 062

score the increasing interest in LLM-ITL applica- 063

tions. However, without a clear definition, there 064

is a lack of understanding of how to effectively 065

utilize LLMs. This lack of clarity limits their gen- 066

eralizability and hinders the recognition of their 067

broader potential to enhance various stages of the 068

problem-solving pipeline. 069

In this position paper, we envision the fu- 070

ture of LLM applications and position that the 071

LLM-in-the-loop paradigm, which harnesses 072

the strengths of both LLMs and conventional 073
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machine learning algorithms, presents prevail-074

ing research opportunities and practical ad-075

vantages. Through comprehensive literature re-076

views and detailed case study analyses, we demon-077

strate the growing popularity and effectiveness of078

this framework, as evidenced by the widespread,079

although often unconscious, application of its080

methodologies and the resulting state-of-the-art per-081

formances. However, this increased visibility also082

highlights concerns about a lack of public under-083

standing, motivating our efforts in providing the084

first formal definition, various motivations, and a085

comprehensive taxonomy of methodologies.086

Contribution. This paper is the first to provide087

an in-depth discussion on the LLM-in-the-loop088

paradigm, establishing it as a promising framework089

for the future of LLM applications in addressing090

real-world problems. The key contributions in-091

clude: 1) We present practical scenarios where di-092

rectly applying LLMs for problem-solving results093

in suboptimal outcomes, highlighting the impor-094

tance of integrating conventional machine learning095

algorithms in the era of LLMs1; 2) By synthesiz-096

ing insights from related concepts and examining097

the implementation of existing in-the-loop method-098

ologies, we formulate the LLM-in-the-loop frame-099

work from three perspectives, providing a founda-100

tion for future research; 3) We identify challenges101

in developing effective LLM-in-the-loop solutions102

and present promising avenues for future research103

and impactful applications, guiding the research104

community towards an underexplored landscape of105

LLM application and machine learning research.106

2 Background107

2.1 LLMs: Trends and Challenges108

LLM Applications. Among diverse areas of109

LLM research, the study of “Applications of110

LLMs/ChatGPT” has emerged as the fastest-111

growing topic since 2023 (Movva et al., 2024).112

These applications increasingly adopt a Model-as-113

a-Service (MaaS) paradigm (Sun et al., 2022;114

Gan et al., 2023), also referred to as LLM-native115

solutions (Liang et al., 2024), which deliver a116

broad range of functionalities through easily ac-117

cessible interfaces. As generative language models,118

LLMs excel in tasks that are inherently sequence-119

to-sequence (seq2seq) (Vaswani et al., 2017), such120

as natural language comprehension, translation,121

1Code and reading list are available at GitHub repository.

and generation (Sottana et al., 2023; Bahdanau 122

et al., 2015; Sutskever et al., 2014; Lewis et al., 123

2020a). However, extending their application to 124

real-world problem-solving presents significant 125

challenges (Chen et al., 2025a), as these tasks often 126

diverge from the fundamental nature of language 127

modeling and extend beyond the scope of NLP 128

(Srivatsa and Kochmar, 2024; Chen et al., 2024d). 129

Even for tasks that appear NLP-relevant, such as 130

text clustering and topic modeling, the underlying 131

processes do not naturally conform to a seq2seq set- 132

ting, often relying more on representation learning 133

and optimization rather than generative capabilities 134

(Bengio et al., 2013). 135

While much of the application-driven research 136

advancements focus on developing better LLMs 137

and innovative engineering techniques (Chen et al., 138

2023), such as prompt engineering (Song et al., 139

2024; Brown et al., 2020), model fine-tuning 140

(Hu et al., 2022), and Retrieval Augmented Gen- 141

eration (Lewis et al., 2020b), commendable re- 142

search efforts are also being made to explore the 143

use of existing state-of-the-art LLMs or smaller, 144

more cost-efficient models (Xu et al., 2024), 145

within better-designed problem-solving work- 146

flows, such as LLM-chaining (Grunde-McLaughlin 147

et al., 2024) and multi-agent collaboration (Hong 148

et al., 2024c). Task decomposition techniques have 149

further emerged as a promising solution for com- 150

plex, multi-step tasks (e.g., planning a wedding) 151

(Yuan et al., 2025; Huang et al., 2023), where 152

prompting-based LLMs and machine learning al- 153

gorithms collaborate effectively in solving well- 154

structured sub-tasks (Khot et al., 2023). 155

LLM vs. Human. With LLMs demonstrating 156

increasing capabilities across various benchmark 157

evaluations, especially when provided with clear 158

instructions and demonstrations, He et al. (2024) 159

pose a critical and significant inquiry: Can LLMs 160

potentially replace crowdsourced annotators? 161

Törnberg (2023) finds that GPT-4 achieves higher 162

accuracy, greater reliability, and equal or lower 163

bias than human classifiers when given the same 164

instructions for tweet classification. This empha- 165

sizes the relatively low technical requirements of 166

deploying LLM, as the instructions initially pro- 167

vided to human workers can be reused. Similarly, 168

Gilardi et al. (2023) demonstrates that zero-shot 169

GPT-3.5 outperforms certified “MTurk Masters” 170

high-ability crowd workers in text-annotation tasks. 171

Cegin et al. (2023) suggests that ChatGPT can per- 172
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form data augmentation with greater lexical and173

syntactic diversity than human workers, resulting174

in reliable downstream performance where models175

trained on ChatGPT-generated data exhibit compa-176

rable robustness to those trained on data from hu-177

man crowds. With comparable performance, the re-178

source efficiency of LLM demonstrates substantial179

advantages. Gilardi et al. (2023) reveals that em-180

ploying an LLM for data labeling is cost-effective,181

with the per-annotation cost of ChatGPT being 30182

times cheaper than MTurk. Additionally, Cegin183

et al. (2023) claims that substituting human work-184

ers with LLMs for generating new data instances185

is 600 times cheaper.186

Incapabilities of LLM. While LLMs excel in nu-187

merous tasks, practical scenarios exist where they188

either underperform or prove infeasible compared189

to traditional machine learning methods (Liu et al.,190

2024b). Besides common issues like hallucina-191

tion and bias, LLMs also face issues in generating192

answers within a deterministic space (Kholodna193

et al., 2024). This has been observed in many stud-194

ies (see example in Section 3) but remains largely195

unexplored by the research community due to a196

lack of clear problem formulation. We argue that197

the misbehavior of LLM is largely due to the ab-198

sence of a hard-coded solution space, which is of-199

ten weakly specified through instruction prompts200

(Zeng et al., 2024), unlike traditional machine learn-201

ing that strictly binds the solution space and model202

behavior. To formally define this limitation and mo-203

tivate further research, we formulate the problem204

abstraction as follows:205

Definition 2.1. Given input data D, targeted so-206

lution space S, and an instruction prompt P(S)207

specifying solution space, the failure occurs when:208

LLM(P(S),D) ⊆ R209

where ||R − S||2 > ϵ (1)210

where the generated result space deviates signifi-211

cantly from the targeted solution space, exceeding212

a threshold ϵ, which can be numerical discrepan-213

cies (e.g., answer counts or ranges) or qualitative214

inconsistencies (e.g., misalignment in format).215

2.2 In-the-loop Methodologies216

Human-in-the-loop. Human-in-the-loop, with217

“loop” generally implies the problem-solving pro-218

cess, is a well-established approach for incorpo-219

rating human expertise (Agarwal et al., 2023) into220

automated modeling processes to enhance the accu- 221

racy of predictive models (Kumar et al., 2019), with 222

proven performance improvement and enhanced 223

interpretability in various tasks such as sentence 224

parsing (He et al., 2016), topic modeling (Kumar 225

et al., 2019), and text classification (Arous et al., 226

2021). Extensive research efforts have explored 227

HITL workflows in machine learning, focusing on 228

data preprocessing, model training, and system- 229

independent application (Wu et al., 2022). More- 230

over, HITL is particularly beneficial when machine 231

learning models encounter difficulties with com- 232

plex, nuanced, or ambiguous tasks that demand 233

prior knowledge (Diligenti et al., 2017) and contex- 234

tual understanding (Mosqueira-Rey et al., 2022). 235

Definition of LLM-in-the-loop. Drawing inspi- 236

ration from the close relationship with human-in- 237

the-loop, the LLM-in-the-loop paradigm is de- 238

fined as the integration of LLM interaction, in- 239

tervention, and judgment to guide or modify the 240

training and inference processes of a machine 241

learning model. While it mirrors the human-in-the- 242

loop process by substituting human participation 243

with LLM agents, the inference remains the respon- 244

sibility of the machine learning model rather than 245

the LLM agent, distinguishing it from LLM-native 246

or LLM-ML collaboration, where the LLM plays 247

the central role. Notably, given the widespread 248

availability and scalability of LLM agents com- 249

pared to human workers, we argue that LLM- 250

in-the-loop offers broader applicability across 251

training, inference, and deployment stages, po- 252

sitioning it as a more general framework that 253

encompasses and extends existing in-the-loop 254

methodologies. In the following discussion, we 255

demonstrate how LLMs can effectively replace the 256

human role and provide additional benefits to the 257

development of machine learning algorithms. 258

3 Case Study: LLM-ITL Text Clustering 259

Human-in-the-loop methodologies have been ex- 260

tensively applied in clustering problems to integrate 261

prior knowledge into unsupervised learning (Co- 262

den et al., 2017; Srivastava et al., 2016; Holzinger, 263

2016). Recently, the development of LLM-in- 264

the-loop solutions for text clustering has rapidly 265

emerged, achieving state-of-the-art performance by 266

leveraging the language understanding capabilities 267

of LLMs. This serves as a great starting point in 268

analyzing existing methods for guiding the future 269

design of LLM-ITL solutions. 270
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Observation and Motivation. The research com-271

munity appears inherently aware of the limitations272

in directly applying LLMs for text clustering, as273

evidenced by the observation that existing stud-274

ies rarely consider LLM-native baselines but com-275

pare solely with conventional machine learning276

algorithms when developing LLM-ITL solutions277

(Viswanathan et al., 2024; Hong et al., 2024a;278

Zhang et al., 2023b). To fill in the gap of missing279

LLM-native results, we present an empirical study280

in Appendix B. Notably, the clustering problem281

has a strict solution space defined by n instances k282

candidate labels. Our findings reveal that over 90%283

of the LLM-generated results fail to capture the tar-284

geted number of labels and are misaligned with the285

input instances. Both the instruction prompt and in-286

put data affect inference behavior, yet the problem287

remains unsolved even with state-of-the-art prompt288

tuning techniques (Agarwal et al., 2024) and in289

simple clustering settings. This motivates the de-290

velopment of LLM-in-the-loop solutions that rely291

on machine learning algorithms to produce cluster292

assignments under the targeted solution space.293

LLM-in-the-loop Solutions. ClusterLLM rep-294

resents a pioneering LLM-in-the-loop solution for295

text clustering (Zhang et al., 2023b), addressing the296

limitations of LLM-native approaches in having re-297

stricted access to embedding vectors. API-based298

LLM is prompted to respond to pairwise preference299

questions structured as a triplet, consisting of two300

candidate instances and a reference anchor. These301

preferences are used to fine-tune an embedder, en-302

suring the input corpus is mapped to a refined em-303

bedding space for better clustering. This outlines304

a typical in-the-loop methodology where the in-305

put data is preprocessed before the modeling306

process. For instance, Viswanathan et al. (2024)307

augmented the input data through a keyphrase ex-308

pansion strategy, generating a set of keyphrases that309

could describe document intent with LLM. The sen-310

tence and keyphrase embeddings are then concate-311

nated to create a task-dependent data representation312

for better intent clustering. Similarly, Pattnaik et al.313

(2024) prompted a fine-tuned LLM to generate a314

concise cluster name and description for each clus-315

ter, then combining these embeddings with the clus-316

ter centroid embedding to create weighted multi-317

view representations, enhancing the performance318

of the agglomerative clustering algorithm in deriv-319

ing topical categories within the documents.320

Besides incorporating LLMs into the data pre-321

processing phase, Hong et al. (2024a) proposed the 322

idea of iterative clustering with LLMs feedback, 323

where initial cluster assignments obtained from K- 324

means are evaluated by a fine-tuned LLM based on 325

semantic coherence, and the poorly formed clusters 326

are refined to enhance the final result. Similarly, 327

Viswanathan et al. (2024) prompted LLM to se- 328

lect data instances that must be linked or cannot 329

be linked, forming a pairwise constraint clustering 330

with the PCKMeans algorithm. These approaches 331

transform the original nature of unsupervised learn- 332

ing into an interactive or semi-supervised learn- 333

ing process, embodying a philosophy of designing 334

LLM-in-the-loop solutions that modify the model- 335

ing process with LLM-driven utilities. 336

Furthermore, developing task-specific applica- 337

tions requires a task-oriented design. In the in- 338

tent clustering problem, Hong et al. (2024a) pro- 339

posed using LLMs to name clusters in the “action- 340

objective” form, which enhances the usability of 341

the clustered results and allows for further refine- 342

ment based on either the action or the objective. 343

Likewise, Viswanathan et al. (2024) utilized the 344

reasoning capability of LLMs to assess whether a 345

given low-confidence point belongs to the current 346

cluster, performing post-correction on relocating 347

the data point based on the LLM’s judgment. These 348

methods enable further refinement of the model- 349

ing results with task-dependent LLM utilities. 350

4 LLM-in-the-loop Methodologies 351

Based on the case study of LLM-in-the-loop solu- 352

tions in text clustering, the methodologies can be 353

categorized according to the specific purposes of 354

LLM integration, namely: data-centric, model- 355

centric, or task-centric. This framework enables 356

a comprehensive exploration of the associated tech- 357

niques and highlights opportunities for applying 358

LLM-ITL methods in underutilized domains. Fur- 359

ther discussions are presented in Appendix D, and 360

extra case study is presented in Appendix C. 361

4.1 Data-Centric LLM-in-the-loop 362

The data-centric approach employs LLMs during 363

the data preprocessing stage of machine learning 364

modeling, with the goal of improving data quality, 365

diversity, and representation to facilitate effective 366

model training and address challenges inherent in 367

traditional data preparation workflows. 368

Definition 4.1. Given an original dataset D0, learn- 369

ing function F , and a LLM-driven transforma- 370
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tion function ΦLLM guided by prompt P , the data-371

centric approach aims to improve the task-specific372

loss L through data enhancement:373

Preprocess: Dtf = ΦLLM(D0,P),374

Train: Mtf = F (Dtf),375

Target: L(Mtf) < L(M0) (2)376

where the preprocessed dataset Dtf enables the377

training of model Mtf to achieve superior perfor-378

mance compared to the model trained on the origi-379

nal dataset, denoted as M0.380

Data Annotation. Data annotation is a funda-381

mental step in supervised machine learning; how-382

ever, the annotation process is labor-intensive and383

often suffers from inconsistent quality due to in-384

herent biases and a lack of expertise (Pandey et al.,385

2022; Hettiachchi et al., 2021). Recent advance-386

ments demonstrate the potential of LLMs to revo-387

lutionize this process by offering efficient, high-388

quality, and scalable annotation solutions (Tan389

et al., 2024b), often matching or exceeding the390

quality achieved by crowdsourced annotators and391

domain experts (Gilardi et al., 2023; Kuzman392

et al., 2023; Törnberg, 2023). For instance, Chen393

et al. (2024c) showcased their effectiveness in394

event extraction, and Kuzman et al. (2023) high-395

lighted ChatGPT’s superior performance in auto-396

matic genre identification on unseen datasets. Inno-397

vative strategies, such as Chain-of-Thought (CoT)398

prompting combined with explain-then-annotate399

workflows (He et al., 2024), and CoT with majority400

voting (Choi et al., 2024), have further advanced401

LLM-based annotation methods, enabling human-402

like precision in complex tasks. Moreover, Smith403

et al. (2024) introduced the Prompted Weak Super-404

vision, which leverages LLMs to generate proba-405

bilistic labels, reducing the need for manual inter-406

vention while maintaining high annotation quality.407

Data Augmentation. Data augmentation is a crit-408

ical yet complex task that goes beyond basic label-409

ing, requiring the generation of diverse fundamen-410

tal and auxiliary information tailored to specific411

task requirements (Rebuffi et al., 2021; Hong et al.,412

2024b). Although crowdsourcing can be used to ad-413

dress this need, producing reliable and high-quality414

augmented data poses a far greater challenge than415

data annotation, whereas conventional generative416

models also fall short of meeting these demands417

(Yang et al., 2023). In this context, LLMs present a418

transformative solution by generating diverse, con-419

textually enriched synthetic datasets, significantly420

reducing the dependence on manual data collection. 421

For example, Yu et al. (2024) introduced the use 422

of attributed prompts to generate attribute-specific 423

synthetic data, while Zou et al. (2024) proposed a 424

collaborative framework utilizing multiple LLMs 425

to create high-quality synthetic datasets. In ad- 426

dition, Choi et al. (2024) demonstrated the capa- 427

bility of LLMs to create domain-agnostic datasets, 428

paving the way for universal domain generalization. 429

Ba et al. (2024) also illustrated how synthetic data 430

generation with LLMs can reduce calibration errors 431

and improve accuracy on real-world test datasets. 432

Feature Engineering. Feature engineering trans- 433

forms raw data into interpretable representations 434

that enhance model performance (Hollmann et al., 435

2024). Traditional methods rely primarily on do- 436

main expertise, but the combinatorial complex- 437

ity of manually exploring feature spaces renders 438

this approach impractical (Gu et al., 2024). Re- 439

cent advances leverage LLMs to automate and 440

refine feature generation, producing semantically 441

rich, context-aware features aligned with dataset 442

characteristics and task objectives. For instance, 443

Zhang et al. (2024c) introduced an LLM-driven 444

framework for iterative feature generation and 445

performance-guided refinement. Balek et al. (2024) 446

further demonstrated that LLMs generate inter- 447

pretable textual features surpassing traditional rep- 448

resentations like bag-of-words or dense embed- 449

dings in discriminative power. Beyond text, LLMs 450

can align diverse representations for structured 451

learning tasks, such as converting environmental 452

data into structured domain-specific language for 453

agent learning (Spiegel et al., 2024) or encoding 454

conversational turns into canonical forms to sup- 455

port domain-general dialogue policies (Sreedhar 456

et al., 2024). Furthermore, Yang et al. (2024a) 457

emphasized LLMs’ versatility to generate task- 458

relevant, linguistically grounded features, such as 459

extracting subject-object pairs. 460

Our position: From a data-centric perspective, LLM-in-
the-loop benefits model training by alleviating data scarcity
and enriching data features. The integration of LLMs in
a crowdsourcing-like fashion has proven particularly ef-
fective, providing a valuable framework for developing
“labor-free” in-the-loop solutions. Future research should
focus on 1) identifying innovative approaches to integrate
prior knowledge from LLMs into data features and 2) de-
signing robust crowdsourcing approaches with LLM agent
collaboration. These advancements hold the potential to
significantly address the long-standing challenges of data
availability and quality assurance.

461
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4.2 Model-Centric LLM-in-the-loop462

Incorporating rich human knowledge into machine463

learning models has been a longstanding research464

focus, as machine learning alone cannot fully cap-465

ture the depth of human domain expertise (Wu466

et al., 2022). To address this, human-in-the-loop467

approaches integrate human insights by iteratively468

refining the model for knowledge-enhanced learn-469

ing. In this section, we explore how LLMs can sub-470

stitute for the human role to provide model-centric471

support.472

Definition 4.2. Given a trained machine learning473

model M and LLM-driven utility ΦLLM guided by474

instruction prompt P , the model-centric approach475

aims to improve the task-specific loss L through476

model refinements:477

Refine: Mtf = ΦLLM(M,P),478

Target: L(Mtf) < L(M) (3)479

such that the refined model Mtf outperforms the480

original model M .481

Active Learning and Iterative Refinement. Ac-482

tive learning is a crucial technique for integrat-483

ing human wisdom and prior knowledge into it-484

erative learning frameworks, especially in low-485

resource learning settings (Zhang et al., 2023a).486

Recently, there has been a growing interest in lever-487

aging LLMs for both annotation and uncertainty488

estimation in an integrated active learning setting489

across various NLP tasks, such as text classifica-490

tion (Rouzegar and Makrehchi, 2024), named en-491

tity recognition, and relation extraction (Zhang492

et al., 2023a). Unlike data augmentation with493

LLMs, active learning is a model-based approach494

that focuses on uncertainty sampling - selecting495

data points where the model is most uncertain,496

thus allowing it to learn from challenging instances497

(Rouzegar and Makrehchi, 2024). While sample498

selection can be complex and necessitates human499

judgment, the concept of LLM confidence estima-500

tion offers a valuable alternative (Xiong et al., 2024;501

Geng et al., 2024), enabling verbalized confidence502

scores to assist the sampling process.503

Beyond direct annotation, LLMs also provide a504

feedback mechanism in an iterative setting, address-505

ing limitations in tasks where direct annotation is506

challenging (e.g., clustering). For instance, An et al.507

(2024) queried LLMs to identify true neighbors of508

selected samples from multiple candidates, leverag-509

ing this information for contrastive learning to im-510

prove base model representation. Similarly, Hong511

et al. (2024a) employed LLMs to iteratively refine 512

poorly formed clusters through coherence evalu- 513

ation at each iteration. In topic modeling, Yang 514

et al. (2024b) used LLMs to refine topics generated 515

by the base model, aligning the model with LLM- 516

provided refinements through fine-tuning. These 517

applications share the commonality of involving 518

LLMs not only in the model training process but 519

also in the inference and deployment stages, as 520

most discussed applications pertain to unsupervised 521

learning. This underscores another unique advan- 522

tage of LLM-in-the-loop: its inherent model-in-the- 523

loop nature, which offers deployment flexibility 524

and facilitates application across diverse scenarios. 525

Reinforcement Learning. Reinforcement learn- 526

ing (RL) is a crucial segment of machine learning 527

that seeks to align model behaviors with human ex- 528

pectations through a feedback mechanism (Cao 529

et al., 2024). As LLM agents are increasingly 530

calibrated to human behaviors and preferences 531

through alignment techniques (Liu et al., 2024a; 532

Wang et al., 2023), LLM-in-the-loop reinforcement 533

learning has gained significant momentum. Ex- 534

isting research suggests that the prior knowledge 535

of LLMs can be integrated into the RL process 536

by serving as dynamic feedback sources, such as 537

natural language instructions, demonstrations, eval- 538

uative signals, and informative guidance (Laleh and 539

Ahmadabadi, 2024). For instance, Du et al. (2023) 540

leveraged pre-trained LLMs to provide intrinsic 541

motivation for RL agents by setting exploration 542

goals and issuing rewards upon their completion. 543

Similarly, Kwon and Michael (2023) employed 544

LLMs as reward functions, where agent behaviors 545

are evaluated against desired outcomes, generating 546

corresponding reward signals. Barj and Sautory 547

(2024) used LLM feedback to refine RL policies, 548

particularly in scenarios where agents struggled to 549

generalize to out-of-distribution environments. 550

In addition to reward setting, Karimpanal et al. 551

(2023) utilized LLMs to generate decision-making 552

behaviors, thereby accelerating the learning pro- 553

cess. Similarly, Prakash et al. (2023) guided agent 554

exploration by evaluating actions and behaviors 555

based on observed states and task descriptions. In 556

scenarios where RL agents need access to confiden- 557

tial information, Moradi et al. (2023) proposed in- 558

tegrating human-in-the-loop with Federated Learn- 559

ing. However, human involvement may still com- 560

promise data privacy and increase the cost of pre- 561

ventive measures. By introducing LLM-in-the-loop 562
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with locally deployed open-source LLMs, data pri-563

vacy can be significantly enhanced, ensuring com-564

pliance with the principle of “keeping original data565

within the domain and making data available and566

invisible” (Yang et al., 2019). This approach further567

highlights the unique advantage of having a (large568

language) model-in-the-loop in constrained scenar-569

ios where human involvement is not preferred.570

Our position: LLMs demonstrate transformative potential
in supporting knowledge-enhanced machine learning with
iterative updating. They offer scalable and cost-efficient
alternatives to traditional human involvement, facilitating
deployable solutions due to their automated nature. How-
ever, the limitations of LLMs can be amplified by their
direct interaction with the modeling process, leading to
issues such as 1) poorly calibrated LLMs generating biased
feedback and 2) failures in data sampling and labeling that
create outliers in the iterative refinement process. These
issues are difficult for machine learning models to unlearn
and are hard to detect, unlike errors in data preprocessing.

571

4.3 Task-Centric LLM-in-the-loop572

The task-centric approach employs LLMs as ver-573

satile and powerful utilities tailored for specific574

tasks or applications, focusing on enhancing task575

performance (e.g., prediction accuracy and inter-576

pretability). This section examines how LLMs can577

be strategically integrated into the inference and578

post-inference stages of problem-solving.579

Definition 4.3. Given a trained machine learning580

model M , inference task T , and LLM-driven util-581

ity ΦLLM guided by prompts P , the task-centric ap-582

proach aims to enhance task-specific performance583

evaluation U (e.g., accuracy, coherence) by incor-584

porating LLMs during inference or post-inference585

evaluation stage:586

Inference: O = M(T ),587

Support: O∗ = ΦLLM(M,O,P)588

Target: U(O∗) > U(O) (4)589

where the LLM integration interacts with the model590

output and provides task-specific support, such as591

post-correction and explainability enhancement.592

Post-Correction. Post-correction aims to im-593

prove machine learning predictions after the train-594

ing process by refining model outputs with mini-595

mal local changes, a task where traditional meth-596

ods often fall short due to their limited contextual597

understanding and scalability (Wei et al., 2024).598

With the extensive pre-trained knowledge in LLMs,599

Zhong et al. (2024) proposed using LLMs with600

in-context learning as post-hoc correctors to pro-601

pose corrections for the predictions of machine602

learning models, enabling them to integrate con- 603

textual knowledge and deliver dynamic, context- 604

aware corrections. In automatic speech recognition 605

(ASR), CHEN et al. (2023) demonstrated the util- 606

ity of LLMs in leveraging N-best hypothesis lists 607

to predict the final output and found that LLM 608

can correct errors even for tokens absent from the 609

hypothesis list. Similarly, Hu et al. (2024) em- 610

ployed LLMs to synthesize diverse translation out- 611

puts from multiple N-best hypotheses, resulting 612

in a substantial enhancement in translation quality. 613

Beyond ASR, LLMs have been applied in clus- 614

tering, where Viswanathan et al. (2024) re-ranked 615

low-confidence points by querying their correct- 616

ness against representative points, and Hong et al. 617

(2024a) refined clusters by generating descriptive 618

names and summaries using LLMs. In topic mod- 619

eling, Chang et al. (2024) used LLMs to iteratively 620

refine topics by identifying misaligned terms and 621

replacing them with contextually appropriate alter- 622

natives. These attempts effectively integrate LLM 623

in enhancing the task performance. 624

Model Interpretability. Machine learning mod- 625

els frequently struggle with interpretability, espe- 626

cially when generating natural language explana- 627

tions or extracting actionable insights from out- 628

puts. Conventional techniques like feature impor- 629

tance scores and attribution maps focus on explain- 630

ing model decisions but lack the capacity to in- 631

terpret outputs through human-intuitive narratives 632

(Pang et al., 2024). LLMs mitigate this gap by 633

synthesizing their natural language understanding 634

and generative capabilities to contextualize model 635

outputs. For instance, Pattnaik et al. (2024) em- 636

ployed LLMs to generate descriptive cluster labels 637

and summaries, while Hong et al. (2024a) and An 638

et al. (2024) assign semantically meaningful names 639

to clusters. In social media analysis, Islam and 640

Goldwasser (2024) leveraged LLMs to summarize 641

high-impact instances within clusters, producing 642

cohesive “talking points” that directly supported 643

downstream tasks like stance detection and demo- 644

graphic inference. Liu et al. (2023) explored the 645

application of LLMs in evaluating text quality and 646

open-ended responses, providing enriched insights 647

by extracting additional features for metric eval- 648

uation. Additionally, Bhattacharjee et al. (2024) 649

enabled causal explainability via LLMs by gen- 650

erating counterfactual explanations in black-box 651

text classifiers, enhancing interpretability across 652

complex ML workflows. 653
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Our position: Designing better task-centric LLM-ITL so-
lutions is becoming a scientific endeavor, presenting nu-
merous new challenges and research opportunities. These
include 1) replicating human-in-the-loop strategies while
adapting to the unique characteristics of LLMs and 2) in-
novating LLM techniques to enhance their involvement in
task-centric applications. Notably, LLMs often struggle
with tasks involving token-level manipulation (Chen et al.,
2024d), self-reflection (Xiong et al., 2024), and perceiving
physical worlds (Fu et al., 2025), such as complex counting
and verbalized confidence. These capabilities are believed
to play an important role in developing trustworthy and
explainable LLM-ITL solutions.

654

5 Discussion: Where Next655

While LLMs have demonstrated significant poten-656

tial in “in-the-loop” solutions, persistent limitations657

hinder their effectiveness in specialized sub-tasks.658

For instance, they struggle with direct computa-659

tional tasks such as optimization and quantitative660

trading (Zhao et al., 2024), where precise numeri-661

cal reasoning is critical. Furthermore, studies sug-662

gest that single LLM agents may underperform663

human experts in forecasting accuracy (Schoeneg-664

ger and Park, 2023) and exhibit reliability con-665

cerns due to inherent model variability and biases666

(Kholodna et al., 2024). These limitations raise667

questions about the consistency of generated out-668

puts - such as rewards or feedback - in high-stakes669

applications (Cegin et al., 2023). Motivated by670

these challenges, we highlight key future research671

directions to advance LLM-in-the-loop frameworks672

and bridge gaps in reliability and adaptability.673

Crowdsourcing with LLM. In human-in-the-674

loop applications, crowdsourcing is often em-675

ployed to leverage the “wisdom of the crowd”676

in solving problems through collaborative efforts677

(Tong et al., 2019; Zhang et al., 2013, 2014). With678

the increasing use of ChatGPT by crowd work-679

ers on MTurk (Veselovsky et al., 2023), we argue680

that the emergence of LLM-driven crowds, such as681

“LMTurk” (Zhao et al., 2022), offers a promising682

foundation for developing more robust LLM-in-the-683

loop solutions and benefiting the implementation684

of the aforementioned techniques and applications.685

This approach harnesses diverse knowledge from686

different LLMs, helping to reduce biases and errors687

that might occur when relying on a single model688

(Kholodna et al., 2024). Recognizing the growing689

popularity of multi-agent LLM systems (Guo et al.,690

2024; Hong et al., 2024c), designing LLM crowd-691

sourcing solutions from a multi-agent perspective692

is a promising research avenue (Jiang et al., 2018).693

Additionally, leveraging well-established theories694

in crowdsourcing, such as crowd selection, task de- 695

composition, and result aggregation (Zhang et al., 696

2024a; Bhatti et al., 2020), provides a comprehen- 697

sive framework to guide future research directions 698

and technical advancements in LLM multi-agent 699

systems and the “science of LLM-in-the-loop.” 700

Text-to-Solution with LLM. Recent advance- 701

ments in text-to-code generation (natural language 702

to code) have demonstrated its efficacy in automat- 703

ing problem-solving through code synthesis, requir- 704

ing minimal programming expertise (Guo et al., 705

2023; Nijkamp et al., 2023; Ni et al., 2023). How- 706

ever, designing effective LLM-ITL solutions de- 707

mands significant domain knowledge, such as cre- 708

ating optimal LLM utilities and integrated work- 709

flows. Automating this process via a novel “Text-to- 710

Solution” framework could significantly enhance 711

the accessibility of the LLM-ITL methodologies. 712

As shown in Appendix E, under a zero-shot set- 713

ting, the LLM is capable of: 1) capturing the con- 714

cept of LLM integration and LLM-ITL without 715

explicit definition, 2) identifying suitable phases 716

of LLM integration, and 3) deriving concrete im- 717

plementation plans. However, the generated code 718

quality remains inconsistent, and there is a lack of 719

sufficient understanding of in-the-loop techniques, 720

which limits the diversity of solutions and still ne- 721

cessitates human experts to design the high-level 722

framework. Inspired by the success of AutoML 723

in automatically designing machine learning ap- 724

plications (Lindauer et al., 2024), further research 725

is encouraged to explore Automated In-the-loop 726

(AutoITL) as a promising “text-to-solution” frame- 727

work to automate LLM utility selection and work- 728

flow construction, streamlining the creation of ef- 729

fective LLM-ITL solutions. 730

6 Conclusion 731

This paper introduces a novel paradigm, LLM-in- 732

the-loop (LLM-ITL), offering the first formal def- 733

inition, motivations, and application scenarios to 734

guide future advancements and exploration. We 735

present a comprehensive taxonomy of methodolo- 736

gies for integrating LLMs into machine learning de- 737

velopment, highlighting underexplored techniques 738

and underutilized domains. As the research com- 739

munity refines LLM-ITL methodologies, this paper 740

establishes a foundation for leveraging the full po- 741

tential of LLMs, not only in direct problem-solving 742

but through their combined efforts with machine 743

learning models to tackle complex problems. 744
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Limitations745

Although this paper provides an extensive overview746

of the LLM-in-the-loop paradigm and organizes747

methodologies into three well-defined categories,748

it is important to acknowledge certain limitations749

that future research could address further.750

First, this paper primarily focuses on text clus-751

tering as a significant case study where LLM-in-752

the-loop methods have been effectively applied to753

enhance performance and interpretability. How-754

ever, despite an additional case study on time se-755

ries forecasting provided in Appendix C, there re-756

mains limited empirical evidence to demonstrate757

the superiority of LLM-in-the-loop solutions. Cur-758

rent research, such as LLM-based data augmenta-759

tion and reward generation, typically emphasizes760

component-specific performance rather than holis-761

tic task applications. This gap underscores the762

necessity for future studies to develop LLM-in-763

the-loop solutions tailored to diverse applications764

across various domains, enabling a deeper inves-765

tigation into task-dependent performance and fur-766

ther revealing the strengths and weaknesses of the767

LLM-in-the-loop paradigm, which is only partly768

discussed in this paper.769

Second, this paper predominantly concentrates770

on the LLM-in-the-loop machine learning appli-771

cation, similar to the conventional human-in-the-772

loop setting, where LLMs replace the human role773

in assisting machine learning models. However,774

given the advanced capabilities of LLMs, exploring775

the concept of “LLM-in-the-loop LLM” presents776

a promising avenue for research and application777

development, which this paper overlooks. In this778

scenario, smaller LLMs could address sub-tasks779

they are particularly suited for or trained on, while780

a larger LLM manages the overarching tasks. This781

approach could enhance LLM-native solutions by782

incorporating the design philosophy of LLM-in-the-783

loop. Moreover, integrating human involvement784

in the LLM-in-the-loop framework opens new op-785

portunities to study the dynamics between LLMs,786

machine learning models, and human input, a topic787

not discussed in this paper but holds potential in788

expanding the scope of future research.789
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A Rationale-centric Counterfactual Data Augmentation Method for Cross-Document Event Coreference Resolution (Ding et al., 2024)
2024 Coreference Resolution

(...we develop a rationale-centric counterfactual data augmentation method with LLM-in-the-loop)

Towards Single-System Illusion in Software-Defined Vehicles – Automated, AI-Powered Workflow (Lebioda et al., 2024)
2024 Workflow Automation

(...inclusion of modern generative AI, specifically Large Language Models (LLMs), in the loop)

Instances Need More Care: Rewriting Prompts for Instances with LLMs in the Loop Yields Better Zero-Shot Performance (Srivastava et al., 2024) 2023 Zero-Shot Learning

Table 1: Existing works that explicitly mention “LLM-in-the-loop” in their titles or abstracts can be categorized
as follows: “task-specific” includes studies that employed LLM-ITL for a single specific task, “over-generalized”
encompasses works with a broad scope extending beyond LLMs, and “referential works” comprises publications
that simply referenced the term without applying the methodology.

LLM-in-the-loop

Task-Centric

Post-Correction
(Zhong et al., 2024), (CHEN et al., 2023), (Hu
et al., 2024), (Viswanathan et al., 2024), (Hong
et al., 2024a), (Chang et al., 2024)

Model Inter-
pretability

(Pattnaik et al., 2024), (Hong et al., 2024a), (An
et al., 2024), (Islam and Goldwasser, 2024), (Liu
et al., 2023), (Bhattacharjee et al., 2024)

Model-Centric

Active Learning and
Iterative Refinement

(Zhang et al., 2023a), (Rouzegar and Makrehchi,
2024), (An et al., 2024), (Hong et al., 2024a),
(Yang et al., 2024b)

Reinforcement
Learning

(Du et al., 2023), (Kwon and Michael, 2023), (Barj
and Sautory, 2024), (Karimpanal et al., 2023),
(Prakash et al., 2023), (Moradi et al., 2023)

Data-Centric

Data Annotation
(Tan et al., 2024b), (Gilardi et al., 2023), (Kuzman
et al., 2023), (He et al., 2024), (Choi et al., 2024),
(Smith et al., 2024)

Data Augmentation (Yu et al., 2024), (Zou et al., 2024), (Choi et al.,
2024), (Ba et al., 2024)

Feature Engineering
(Zhang et al., 2024c), (Balek et al., 2024), (Spiegel
et al., 2024), (Sreedhar et al., 2024), (Yang et al.,
2024a)

Figure 2: Taxonomy of LLM-in-the-loop Methodologies

CLINC150 (Larson et al., 2019), Banking771602

(Casanueva et al., 2020), and HWU64 (Liu et al.,1603

2021). The GPT-4o is employed via the OpenAI1604

API for its broad accessibility, facilitating the re-1605

producibility of results. To mitigate the inherent1606

variability of LLMs while ensuring the significance1607

of the findings, a “resampling” technique, as pro-1608

posed in (Chen et al., 2024a), is implemented. The1609

model is run 50 times with the same prompt and in-1610

put data, with the temperature set to 0.5 to balance1611

randomness and consistency in the outputs.1612

B.1 LLM-native Text Clustering with Prompt 1613

Engineering 1614

An exploratory analysis shows that the LLM can- 1615

not handle the entire dataset due to input token 1616

constraints. Therefore, a subset of the dataset is 1617

sampled, consisting of 240 sentences divided into 1618

8 clusters. The objectives of this experiment are 1619

twofold: 1) to assess the extent to which LLMs 1620

exhibit incapabilities under different prompts, as 1621

indicated by discrepancies in the generated solu- 1622

tion space and the targeted space defined by the task 1623

17



requirement, and 2) to evaluate the clustering per-1624

formance of usable LLM-generated cluster assign-1625

ments. Three hand-crafted prompts were designed:1626

a vanilla instruction prompt with the hint “each la-1627

bel corresponds to a sentence,” based on the setup1628

from (Kholodna et al., 2024); a few-shot prompt;1629

and a chain-of-thought prompt. Additionally, the1630

state-of-the-art prompt tuning method, PromptWiz-1631

ard (Agarwal et al., 2024), was used to generate two1632

tailored prompts - one with reasoning steps and one1633

without - specifically tuned to align solution space.1634

Details of the tuning process and the experimented1635

prompts are available on GitHub repository.21636

Based on the results presented in Table 3, it is1637

evident that the LLM-naive approach underperform1638

in the clustering task, with up to 98% of responses1639

from the standard prompt and 90% from the best-1640

performing prompt failing to align with the targeted1641

label count, making these outputs largely ineffec-1642

tive and a waste of tokens. The adoption of more1643

advanced prompting techniques shows a slight im-1644

provement, with prompt tuning without reasoning1645

(i.e., “pw_wo_reasoning”) providing the highest1646

number of usable clustering results. While the ex-1647

pected generation of 240 labels remains problem-1648

atic, the second requirement of clustering into 8 dis-1649

tinct clusters (i.e., adhering to the output space) is1650

well met, with the best-performing prompt success-1651

fully generating a list with exactly 8 labels without1652

any error. However, the prompt tuning process in-1653

curs substantial costs, both during tuning and at1654

inference time, where the instruction prompt be-1655

comes excessively lengthy, posing additional chal-1656

lenges. Additionally, a notable number of samples1657

exceeded the targeted label count, contradicting the1658

“laziness” or “output truncation” behavior of LLMs,1659

which typically outputs less when asked for more.1660

With the few correct samples obtained, the clus-1661

tering performance was further evaluated against1662

K-means, which achieved a perfect Normalized1663

Mutual Information (NMI) score of 1. Analyzing1664

the best-performing result from each prompting1665

technique revealed that LLM-based clustering per-1666

forms reasonably well for this simple task, with the1667

top method achieving performance comparable to1668

K-means clustering. The poorest performance was1669

observed in the reasoning-based prompt, specifi-1670

cally tuned to instruction following, suggesting a1671

potential trade-off between strictly following in-1672

2The complete code and data are available at
https://anonymous.4open.science/r/LLM-in-the-loop-4F42/.

structions to ensure usability of results and opti- 1673

mizing for task-solving performance. Despite this, 1674

concerns remain about the practicality of using 1675

LLMs for text clustering, as the number of usable 1676

results for this simple task is still significantly low, 1677

which raises doubts about their capability to man- 1678

age increasing task complexity. 1679

B.2 Input Data and Task Complexity 1680

The next step involves evaluating the impact of 1681

input data size and task complexity on the per- 1682

formance of the LLM-natie solution. The input 1683

data size varies, ranging from 60 to 600 sentences, 1684

with the objective of examining both the emergence 1685

of output failure and the variance of the solution 1686

space, measured by the difference between the tar- 1687

get label count and the predicted label count. The 1688

best-performing prompt identified in the previous 1689

discussion (i.e., pw_wo_reasoning) is utilized. 1690

From the clustering results in Table 4, we show 1691

that a simpler task with n = 60 can be easily solved 1692

with only one error occurring out of 50 runs. As 1693

task complexity rises, output failures increase sig- 1694

nificantly, appearing in a random pattern when the 1695

number of sentences exceeds 120, corresponding to 1696

approximately 5200 input tokens plus 4300 tokens 1697

from the instruction prompt. Although this is well 1698

below the maximum input token limit, the lengthy 1699

inputs to the LLM present significant challenges for 1700

instruction following during the inference process. 1701

By analyzing the variance of the generated cluster- 1702

ing results, we observe from Figure 3 that as task 1703

complexity grows, the variance also increases. This 1704

leads to more outliers, i.e., results that significantly 1705

deviate from the majority, resulting in more unin- 1706

terpretable behavior. These observations explain 1707

why existing research rarely considers LLM- 1708

native baselines, mainly due to the infeasibility 1709

and unpredictable behaviors of LLMs, motivat- 1710

ing future investigation into underlying causes. 1711

Note that the discussed problem is significantly 1712

different from the Batch Prompt (Lin et al., 2024). 1713

In Batch Prompt, while the input to the LLM con- 1714

tains n instances and expects n outputs, the tasks 1715

being solved are independent and can be easily 1716

decomposed into individual prompts. For exam- 1717

ple, solving 10 math problems in a single prompt 1718

or across ten separate prompts. The main goal of 1719

Batch Prompt is to reduce the cost of repeated in- 1720

structions. In contrast, for tasks like clustering and 1721

NER, the input must contain n instances, and the 1722

solution space is strictly bound by the input data. 1723

18
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CLINC150 Banking77 HWU64

Prompt L E G OOS NMI L E G OOS NMI L E G OOS NMI

vanilla 13 1 36 2 0.976 6 0 44 17 - 12 1 37 20 0.789
cot 19 1 30 1 0.909 13 2 35 15 0.763 7 0 43 12 -
fewshot 15 2 32 5 1 12 2 36 44 0.858 19 2 29 16 0.794
pw_wo_reasoning 15 4 31 0 1 6 3 41 25 0.760 0 2 48 17 0.823
pw_w_reasoning 14 2 34 3 0.896 5 0 45 24 - 6 0 44 27 -

Table 3: Summary of clustering results generated using various prompts, each repeated 50 times, under the clustering
setting of n = 240 and k = 8. The statistics include counts of cases that are Less Than (L), Equal to (E), or Greater
Than (G) the target number of clusters n; Out of Set (OOS) denotes misaligned label sets; and Normalized Mutual
Information (NMI) measures the clustering quality for results with correct cluster counts and label sets, when
applicable. The best results are highlighted in bold.

Task Setting L E G OOS

n = 60 0 49 1 0
n = 120 0 1 49 0
n = 180 12 8 30 8
n = 240 15 4 31 0
n = 300 12 1 37 2
n = 360 10 3 37 3
n = 420 10 1 39 6
n = 480 16 0 34 10

Table 4: Summary of clustering results generated with
different clustering settings.

Figure 3: Variance of clustering results from the tar-
geted solution space (i.e., for each specified number of
clusters, n).

C Additional Empirical Evidence on the1724

Superiority of LLM-ITL1725

Besides the widely researched text clustering prob-1726

lem, which benefits from LLM-ITL methodologies1727

due to the involvement of natural language input1728

and semantic comprehension capabilities, we pro-1729

vide additional empirical evidence for the applica-1730

tion of LLM-ITL in time series forecasting. Pre- 1731

vious studies have demonstrated that using LLMs 1732

directly for time series forecasting does not outper- 1733

form traditional methods (Tan et al., 2024a), high- 1734

lighting limitations of the LLM-native approach 1735

and motivating the use of LLM-ITL. A recent study 1736

showed that applying the LLM-ITL framework for 1737

time series prediction enhances interpretability and 1738

accuracy by leveraging LLMs to reason over multi- 1739

modal encoder outputs and refine predictions iter- 1740

atively, exemplifying a typical model-centric and 1741

task-centric approach (Jiang et al., 2025). Build- 1742

ing on these findings, we explored a data-centric 1743

method where LLMs augment input time series 1744

data with textual explanations of peaks and troughs 1745

within a window size of 15, achieving a 3.29% 1746

performance improvement over the baseline that 1747

ignores data augmentation. 1748

D Further Discussions 1749

This section analyzes the design philosophy behind 1750

each LLM-ITL approach and provides deeper in- 1751

sights for future research. It also explores when 1752

to apply LLM-ITL and how to advance existing 1753

methods to better leverage the benefits of LLM 1754

integration. 1755

Discussion on Data-Centric LLM-in-the-loop 1756

The integration of LLMs into data preprocessing 1757

offers undeniable advantages in mitigating labor- 1758

intensive workflows, and the research question of 1759

how to make LLMs better data annotators rep- 1760

resents a prominent research direction combining 1761

LLMs and data science. The development of in- 1762

the-loop solutions poses new challenges, requiring 1763

both model-specific adaptations (e.g., augmenting 1764

data embeddings to fit the particular optimization 1765

mechanism) and task-specific customizations (e.g., 1766
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crafting specific features for intended purposes).1767

This introduces a high level of diversity in how1768

data can be enhanced. While LLMs demonstrate1769

emerging capabilities with in-context learning and1770

can provide domain-specific knowledge often lack-1771

ing in machine learning, the exploration of apply-1772

ing LLMs in a typical in-the-loop solution to fully1773

leverage these capabilities remains largely under-1774

explored, with limited research combining LLM-1775

driven data preprocessors and machine learning1776

models to solve real-world problems. Additionally,1777

the use of LLMs poses new concerns in assessing1778

data integrity and detecting underlying biases and1779

false information caused by potential hallucinated1780

generations (Tan et al., 2024b), thereby motivating1781

further research into two perspectives: how to de-1782

sign better LLM utility for data augmentation and1783

how to design better in-the-loop solution with more1784

effective LLM integration.1785

D.1 Discussion on Model-Centric1786

LLM-in-the-loop1787

Integrating prior knowledge into learning frame-1788

works is crucial for enhancing model performance,1789

especially in data-scarce scenarios where common1790

sense is vital. Task-specific models excel at prede-1791

fined objectives but struggle to incorporate broad1792

human-like knowledge due to resource-intensive1793

training requirements. Traditionally, human ex-1794

pertise has guided model behavior through active1795

and reinforcement learning. However, LLMs, pre-1796

trained on vast human-generated content, offer a1797

scalable and efficient alternative by providing di-1798

verse feedback to refine models. They mitigate1799

data imbalance by enhancing generalization in rare1800

scenarios and address sparse reward issues in rein-1801

forcement learning by delivering tailored signals1802

to guide exploration. Additionally, LLMs provide1803

significant time and cost efficiencies over human-1804

driven processes, offering high-quality annotations1805

and context-aware feedback at scale. By interact-1806

ing with ML models through structured prompts,1807

LLMs distill general knowledge into specialized1808

models, improving sample efficiency and learn-1809

ing trajectories. While LLM-ITL emphasizes the1810

importance of using machine learning model for1811

problem-solving, LLMs facilitate the transfer of1812

general knowledge, enabling models to handle rare,1813

complex, and evolving tasks with greater adaptabil-1814

ity and robustness.1815

D.2 Discussion on Task-Centric 1816

LLM-in-the-loop 1817

Traditional inference workflows often underutilize 1818

intermediate outputs, such as hypotheses, embed- 1819

dings, or raw predictions, leaving valuable infor- 1820

mation unexplored. Rule-based or heuristic post- 1821

processing methods lack the adaptability and con- 1822

textual understanding needed to handle complex 1823

or ambiguous scenarios effectively (CHEN et al., 1824

2023). Similarly, traditional interpretability tech- 1825

niques, such as feature importance scores or attri- 1826

bution maps, provide limited insights and fail to 1827

produce human-interpretable explanations or ac- 1828

tionable feedback (Zytek et al., 2024). LLMs ad- 1829

dress these limitations by leveraging extensive pre- 1830

trained knowledge and few-shot capabilities to dy- 1831

namically refine outputs, aligning them with task- 1832

specific requirements (Viswanathan et al., 2024). 1833

Moreover, LLMs can generate high-level abstrac- 1834

tions, such as descriptive summaries (Pattnaik et al., 1835

2024) and novel metrics (Liu et al., 2023), surpass- 1836

ing the rigid constraints of conventional approaches 1837

and enabling more flexible insights. 1838

D.3 Addressing LLM Limitations in 1839

LLM-in-the-loop Solutions 1840

Understanding the limitations of LLMs is crucial 1841

for effectively harnessing their strengths while 1842

mitigating potential drawbacks. Although LLMs 1843

demonstrate remarkable capabilities across a range 1844

of tasks, they also encounter issues such as halluci- 1845

nation, bias, and inconsistent instruction adherence, 1846

which can affect their reliability. These limita- 1847

tions form the basis for our proposed paradigm, 1848

where LLMs act as assistants, working alongside 1849

machine learning algorithms that primarily focus 1850

on task resolution. By deploying LLMs strategi- 1851

cally in areas where they are most effective, such 1852

as data annotation and text summarization, we can 1853

minimize their weaknesses and develop solutions 1854

that leverage the strengths of both LLMs and ma- 1855

chine learning models. 1856

Like human workers, LLMs can exhibit bias. 1857

Human-in-the-loop systems typically use crowd- 1858

sourcing and the “wisdom of the crowd” to ensure 1859

diverse opinions, with majority voting helping to 1860

mitigate individual biases. Similarly, we emphasize 1861

the concept of LLM crowdsourcing in Section 5, 1862

which involves employing multiple LLMs with di- 1863

verse models and prompts to reduce individual bias. 1864

We argue that bias in LLM-in-the-loop systems is 1865

20



significantly lower than in LLM-native solutions1866

since they incorporate machine learning models1867

that operate more deterministically. In contrast,1868

LLM-native approaches are entirely dependent on1869

the limitations of a single LLM. Additionally, LLM-1870

ITL naturally addresses decomposed tasks on a1871

smaller scale, which reduces the impact of LLM1872

bias on final task performance compared to LLM-1873

native solutions that approach the task as a whole.1874

D.4 Should LLM-in-the-loop replace1875

Human-in-the-loop in the future?1876

The idea of replacing human participation with1877

LLMs is appealing due to several advantages they1878

offer. LLM-ITL provides broader applicability1879

across various stages, including training, inference,1880

and deployment, making it a more general and en-1881

compassing framework. This approach extends1882

existing in-the-loop methodologies by effectively1883

enabling the development of labor-free solutions.1884

When LLMs perform comparably to human work-1885

ers in tasks such as data annotation, reward genera-1886

tion, and text processing, they present a viable al-1887

ternative. The transition to LLM-ITL can enhance1888

capabilities at inference time, offer significant cost1889

savings, and potentially protect data privacy. There-1890

fore, when LLMs match or exceed human perfor-1891

mance, adopting LLM-ITL could be ideal, offering1892

extended capabilities and efficiencies. For tasks1893

where humans demonstrate significantly superior1894

performance, such as those involving creativity or1895

specific low-resource domain knowledge, utilizing1896

human-in-the-loop would be more beneficial.1897

D.5 Should LLM-in-the-loop replace1898

LLM-native solutions in the future?1899

LLM-driven utilities facilitate in-the-loop devel-1900

opment by serving as LLM-native components1901

tailored for sub-tasks (e.g., evaluation, annotation)1902

rather than solving entire problems directly, re-1903

ferred to as LLM-native solutions. While we ac-1904

knowledge the limitations of LLM-native applica-1905

tions in many problem-solving scenarios due to1906

the inherent limitations of LLMs, they remain a1907

feasible and predominant choice for less-restricted1908

tasks like code generation and machine translation.1909

LLM-native solutions are particularly effective for1910

tasks involving multiple input sources and modal-1911

ities (Tang et al., 2024), complex reasoning (Ahn1912

et al., 2024), and heavy reliance on domain knowl-1913

edge (Bi et al., 2024). These are areas where tra-1914

ditional machine learning algorithms, even with1915

human or LLM in-the-loop, struggle to perform 1916

effectively, highlighting the need for LLM-native 1917

solutions instead of investing significant efforts in 1918

developing suitable machine learning algorithms. 1919

Regarding computational cost, while LLM-ITL 1920

may be more expensive than traditional ML meth- 1921

ods, it is more controllable than LLM-native solu- 1922

tions, which rely solely on LLMs. For example, 1923

using LLMs directly for text clustering requires N 1924

inputs and N outputs, while the semi-supervised 1925

method only requires the LLM to process sampled 1926

data points or derive pairwise constraints, which 1927

is significantly cheaper than fully relying on LLM 1928

inference. 1929

E Demonstration: Text-to-Solution for 1930

Intent Clustering 1931

In this demonstration, we aim to assess the prac- 1932

ticality of generating LLM-in-the-loop solutions 1933

with LLMs and evaluate whether the LLM can un- 1934

derstand the concept of LLM-in-the-loop based on 1935

its existing knowledge. Two state-of-the-art mod- 1936

els, DeepSeek-R1 and GPT-4o, are tested under 1937

zero-shot settings and applied to solve the task of 1938

intent clustering (see Figure 4 and 5). The discus- 1939

sion on LLM generated response is presented in 1940

Section 5. 1941
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Figure 4: Text-to-solution with DeepSeek-R1 for LLM-in-the-loop Intent Clustering

Figure 5: Text-to-solution with GPT-4o for LLM-in-the-loop Intent Clustering
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