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Abstract

In most practical applications such as recommendation systems, display advertising,
and so forth, the collected data often contains missing values and those missing
values are generally missing-not-at-random, which deteriorates the prediction
performance of models. Some existing estimators and regularizers attempt to
achieve unbiased estimation to improve the predictive performance. However,
variances and generalization bound of these methods are generally unbounded when
the propensity scores tend to zero, compromising their stability and robustness. In
this paper, we first theoretically reveal that limitations of regularization techniques.
Besides, we further illustrate that, for more general estimators, unbiasedness
will inevitably lead to unbounded variance. These general laws inspire us that
the estimator designs is not merely about eliminating bias, reducing variance,
or simply achieve a bias-variance trade-off. Instead, it involves a quantitative
joint optimization of bias and variance. Then, we develop a systematic fine-
grained dynamic learning framework to jointly optimize bias and variance, which
adaptively selects an appropriate estimator for each user-item pair according to the
predefined objective function. With this operation, the generalization bounds and
variances of models are reduced and bounded with theoretical guarantees. Extensive
experiments are conducted to verify the theoretical results and the effectiveness of
the proposed dynamic learning framework.

1 Introduction

In virtually all real-world applications, the pieces of data we collected are partially missing with
certain probabilities. A special case with the identical missing probability is known as missing at
random (MAR) [1]. However, in online recommendation, search, and display advertising, there are
lots of missing-not-at-random (MNAR) click, conversion, and rating records [2, 3, 4], which are
missing with different probabilities, i.e., propensities. For example, in recommendation systems,
a user usually clicks the items that she/he is likely to purchase and ignores other items with a low
willingness to buy. Therefore, the observed click and conversion data is MNAR, which are not
representative samples of all the events [5]. When the MNAR data is used to train a model, the
prediction performance of this model on the MAR data is generally unacceptable. This is because
MNAR data introduces sample selection bias [3, 6] into the prediction model. To eliminate sample
selection bias, lots of debiasing estimators [3, 6, 7, 8, 9] have been developed, e.g., Error-Imputation-
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Based (EIB) approach [10], Inverse Propensity-Scoring (IPS) technique [6], Doubly Robust (DR)
method [11], and so forth.

However, in almost all debiased methods, the existence of propensities results in the high variance and
generalization bound. [11, 12]. Therefore, various methods [5, 8, 12] have been developed to reduce
estimation variances and improve the model stability. Even so, they still suffer from unbounded
variances and generalization bounds when the propensity tends to zero. For the high variance and
generalization bound caused by small propensities, some approaches compromise to self-normalized
technique [12, 13] at the expense of unbiasedness. In addition, the overwhelming majority of previous
works focus on the specific designs of the estimators or regularizers to reduce variance or eliminate
bias while neglecting both the bias-variance relationship of estimators and the essence of the estimator
designs.

In this paper, we reveal limitations of general regularization techniques. We find that it is impossible to
reduce variance without sacrificing unbiasedness by introducing regularizers, and that regularization
cannot guarantee estimators to have bounded variance and generalization bound. Besides, for general
estimators, unbiasedness will inevitably result in unbounded variance and generalization bound.
To some extent, the generalization bound can reflect the predictive performance of an estimator.
Therefore, reducing and bounding the generalization bound can assist in improving the predictive
performance of models. Since the generalization bounds of estimators contain the bias and variance
terms, the essence of estimator design is not merely about eliminating bias, reducing variance, or
simply achieving a bias-variance trade-off but about the quantitative joint optimization of bias and
variance. Then, we develop a systematic dynamic learning framework to achieve this objective.
To the best of our knowledge, this is the first work to systematically reveal limitations of general
regularizers and the design perspective of the quantitative bias-variance joint optimization. Our main
contributions can be summarized as follows:

1) We theoretically elaborate limitations of regularization techniques, and the relationship of
unbiasedness, variance and generalization bound of general estimators.

2) Based on the general laws, we elaborate a novel design perspective for the estimator, namely
the quantitative bias-variance joint optimization;

3) We develop a comprehensive dynamic learning framework with the bounded variances
and generalization error to optimize a weighted objective with respect to bias and variance
for each user-item pair (u, i), which dynamically selects different estimators for different
user-item pair from a family of estimators according to the given objective function;

4) We conduct extensive experiments to verify the theoretical results and the performance of
the dynamic regularizer and estimators.

2 Preliminaries

Data missing not at random. Denote the sets of users and items as U = {u1, u2, . . . , uM} and
I = {i1, i2, . . . , iN}, respectively. The set of all user-item pairs is denoted as D = U × I. Define
the true and prediction matrices as Y ∈ RM×N and Ŷ ∈ RM×N , where prediction tasks include
rating, CTR and CVR predictions, and so forth. Each element yu,i in Y and each entry ŷu,i in Ŷ are
the true label and predicted output of a user u to an item i. In general, it is impossible to observe all
entries in the matrix Y . The indicator entry of revealed elements is defined as ou,i ∈ {0, 1}. If the
true label yu,i is revealed, the indicator entry of (u, i) satisfies ou,i = 1. If an entry in Y is missing,
then ou,i = 0. The corresponding indicator set is denoted as O = {ou,i = 1}. Considering the case
that no entries are missing, the prediction inaccuracy [11] of Ŷ is defined as

Lreal(Ŷ , Y ) =
1

MN

M∑
u=1

N∑
i=1

eu,i =
1

|D|
∑

(u,i)∈D

eu,i,

where eu,i is the prediction error. eu,i can be selected as mean absolute error (MAE), mean square
error (MSE) or other measures. The objective of prediction problems is to minimize the prediction
inaccuracy Lreal(Ŷ , Y ) [5, 7, 8, 11, 12, 14]. Actually, only the observed label set Y o can be used to
establish the prediction model. The naive approach uses Y o to minimize the following prediction
inaccuracy:

Lnaive(Ŷ , Y o) =
1

|O|
∑

(u,i)∈O

eu,i =
1

|O|
∑

(u,i)∈D

ou,ieu,i.
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As mentioned in [11], if the probability of every entry yu,i in Y being missing is identical, then
the naive estimator is unbiased, that is EO[Lnaive] = Lreal, where O is taken to represent the random
variable of observation. The unbiased estimation property of the naive approach is no longer valid
when the data is MNAR, which even results in a large difference between Lreal and EO[Lnaive].

Quantitative Bias-Variance Joint Optimization. Considering the large difference between Lreal
and EO[Lnaive], various unbiased estimation methods have been developed to overcome this problem,
such as EIB [10], IPS estimator [6], DR method [11], and various variations of them [5, 7, 8, 12, 13,
15]. The corresponding estimators are given as follows:

LEIB(Ŷ , Y o) =
1

|D|
∑

(u,i)∈D

[ou,ieu,i + (1− ou,i)êu,i],

LIPS(Ŷ , Y o) =
1

|D|
∑

(u,i)∈D

ou,i
p̂u,i

eu,i,

LDR(Ŷ , Y o) =
1

|D|
∑

(u,i)∈D

[
êu,i +

ou,i
p̂u,i

(eu,i − êu,i)
]
,

where êu,i = w|ŷu,i − γ| for MAE or êu,i = w(ŷu,i − γ)2 for MSE of missing entries yu,i is
the imputed errors, and p̂u,i ∈ (0, 1) is the estimation of the observation propensity, i.e., pu,i =
Pr(ou,i = 1) ∈ (0, 1). Note that w and γ are hyper-parameters [10]. For the naive, EIB, IPS, and
DR estimators, their biases, variances and generalization bounds are summarized in Table 4 (see
Appendix A for more details), where ∆u,i = 1− pu,i

p̂u,i
and δu,i = eu,i − êu,i. In general, the learning

of the imputation model also involves the MNAR problem. Some joint learning algorithms [11, 12]
employ the propensity model to overcome this problem. Therefore, propensity estimation has a
crucial role in unbiasedness and robustness. Besides, it is difficult to accurately estimate imputed
errors for all user-item pair (u, i) in the sense that it is difficult to achieve the unbiasedness of the EIB
estimator. If the propensity estimation p̂u,i is accurate, that is p̂u,i = pu,i, then IPS and DR estimators
are unbiased. For a new dataset, we cannot know in advance the range of the propensities in this
dataset. Therefore, a new dataset may introduce extremely small propensities to lead to unbounded
variances of IPS and DR, which will disrupt the stability of estimators, especially for larger datasets.
It is unacceptable for real industrial scenarios. Specifically, the smaller the propensity, the larger the
variance. When the propensity tends to zero, the variance tends to infinity (see Appendix B for more
details). Similarly, variances of other IPS-based and DR-based unbiased estimation methods [15] are
also unbounded. On the other hand, although the variances of naive and EIB methods are bounded
when the prediction error eu,i is bounded, it is difficult and even impossible to achieve an unbiased
estimation. Other variance reduction estimation methods [5, 7, 8, 12] are generally biased. According
to the expressions of estimators and Table 4, the bias and variance of an estimation are determined by
the random variable O. We found that slightly relaxing the requirements for unbiasedness will lead
to a bounded variance for all propensities. Therefore, the core problem of estimation on MNAR data
is the bias-variance joint optimization.

3 Fine-Grained Dynamic Framework for Quantitative Bias-Variance Joint
Optimization

In this section, we first discuss limitations of regularization techniques and the relationship between
unbiasedness of the generalized estimator and its generalization bound, which illustrate the core of the
fine-grained estimator design. Then, the dynamic estimation framework for quantitative bias-variance
optimization is present. Its generalization bounds and variances are reduced and bounded with
theoretical guarantees.

3.1 Limitations of Regularization Techniques

Define the general form of the estimator with regularization as

LEst+Reg =
1

|D|
∑

(u,i)∈D

[
f(ou,i, p̂u,i)eu,i + g(ou,i, p̂u,i)êu,i

]
︸ ︷︷ ︸

LEst

+λ
1

|D|
∑

(u,i)∈D

h(ou,i, p̂u,i)︸ ︷︷ ︸
LReg

,
(1)
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where f(·, ·) ̸= 0 with f(0, p̂u,i) = 0, g(·, ·), and h(·, ·) are functions with respect to o and p̂. LEst
and LReg are prediction inaccuracies of the estimator and regularizer, respectively. For all (u, i) pairs,
they satisfy f(ou,i, p̂u,i)eu,i + g(ou,i, p̂u,i)êu,i ≥ 0 and h(ou,i, p̂u,i) ≥ 0. λ > 0 is a scalar weight.
The generalized estimator form LEst given in Eq. (1) covers the vast majority of existing estimators
involving EIB [10], IPS [6], DR [11], More Robust DR (MRDR) [5], Targeted DR (TDR) [15], MIS
[16], IPS/DR-SV [16], and other IPS-based and DR-based methods. On the other hand, almost all
existing regularization designs, including the Sample Variance (SV) [16], mean inverse square (MIS)
[16], Balancing-Mean-Square Error (BMSE) [8], and so forth, can be transformed into the form LReg
given in (1). In previous works, the regularization technique plays a critical role in variance reduction
of estimators and improvement of the generalization performance to a certain extent. However, it still
have some inevitable limitations described in the following box.

Core Results

1) For the general estimator with regularization LEst+Reg, it is impossible to reduce variance
without sacrificing unbiasedness.

2) Regularization LReg cannot guarantee a bounded variance and generalization bound.

In what follows, we provide a detailed theoretical analysis to reveal the aforementioned limitations of
the regularization technique. Considering the variance of LEst+Reg, we have

VO[LEst+Reg] = VO[LEst] + 2λCov(LEst, LReg) + λ2VO[LReg].

As mentioned in [8], when the parameter λ is set as the optimal parameter λopt = −Cov(LEst,LReg)
VO[LReg]

,
the variance VO[LEst+Reg] achieves its minimum and satisfies VO[LEst+Reg] ≤ VO[LEst] in the sense
that the regularization term λLReg enables the estimator LEst+Reg to reduce its variance. However,
the covariance Cov(LEst, LReg) needs to fulfill Cov(LEst, LReg) < 0 as λ > 0. Otherwise, an
inappropriate parameter will result in an increased variance. The formal theoretical results are
provided by Theorems 3.1 and Corollary 3.2, which reveal the limitation 1) (see Appendix D for
proofs). Corollary 3.2 is the contrapositive of Theorems 3.1.

Theorem 3.1. Let LEst+Reg be defined in (1) and the estimator LEst be unbiased. If LEst+Reg is
unbiased, then the variance of LEst+Reg is greater than the variance of the original estimator LEst.

Corollary 3.2. If the variance of LEst+Reg is less than the variance of the original estimator LEst, then
LEst+Reg is not unbiased.

We further find that, if the variance of the original estimator is unbounded, the variances of estimators
cannot be bounded by introducing a regularizer even if p̂u,i = pu,i. The theoretical results are shown
in Theorem 3.3(see Appendix D for proofs).

Theorem 3.3. Let the bias of LEst+Reg be bounded and the variance of LEst satisfy
limpu,i→0 VO[LEst|p̂u,i = pu,i] = ∞. Then, there exists no regularizer LReg that enables the
variance and generalization bound of the estimator bounded even the learned imputed errors or
propensities are accurate.

According to the previous works and the present Theorem 3.3, regularizers enable variance reduction
to a certain extent while cannot enable estimators to possess bounded variances and generalization
bounds. In other words, regularization techniques have limited impact on improving the predictive
performance of the model. In the next subsection, a novel perspective of dynamic estimator designs
is proposed, which not only achieves quantitative bias-variance joint optimization but also guarantees
bounded variances and generalization bounds.

3.2 Dynamic Estimator Designs With Quantitative Optimization

Most of the existing estimators are based on IPS and DR methods, which are elaborately designed
to reduce bias or variance. However, all these estimators are static estimators in the sense that they
cannot achieve bias-variance joint optimization for each user-item pair (u, i). Even though some
methods [5, 8] can effectively reduce the variance of estimators, the estimators are biased and the
corresponding variances are unbounded. In this subsection, the core results are provided in the
following box. Also, based on theses results, we develop a fine-grained dynamic framework with
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(a) (b) (c) (d)

𝑓 𝑝#!,# = 𝑝#!,#

𝑓 𝑝#!,# =
sin(𝑝#!,#)
sin(1)

𝑓 𝑝#!,# =
log(𝑝#!,# +1)

log2

𝑓 𝑝#!,# =
tanh(𝑝#!,#)
tanh1

𝑓 𝑝#!,# = 𝑝#!,#

𝑓 𝑝#!,# =
sin(𝑝#!,#)
sin(1)

𝑓 𝑝#!,# =
log(𝑝#!,# +1)

log2

𝑓 𝑝#!,# =
tanh(𝑝#!,#)
tanh1

Figure 1: The surfaces of determining factors and the objective function of dynamic estimators, and
the optimal objective values: (a) hEst

B ; (b) hEst
V ; (c) w1(h

Est
B )2 + w2h

Est
V ; (d) Objectiveopt.

quantitative optimization to guarantee the reduction and boundedness of variances and generalization
bounds

Core Results

3) For the generalized estimator LEst, unbiasedness of the estimator will inevitably lead to
the unbounded variance and generalization bound.

4) The core of the estimator design involves not merely a simple bias-variance trade-off, but
rather a quantitative joint optimization of both bias and variance.

We find that the unbiased estimators with general form generally possess unbounded variances, which
is formally derived in Theorem 3.4. Its proofs are provided in Appendix D.

Theorem 3.4 (Limitation of Static Estimator). Given prediction errors eu,i, imputed errors êu,i, and
learned propensities p̂u,i for all user-item pairs (u, i), if for any eu,i − g(0, p̂u,i)êu,i ̸= 0, LEst given
in (1) is unbiased, then the corresponding variance and generalization bound are unbounded.

According to Theorem 3.4, the core objective of estimators is not merely about eliminating bias,
reducing variance, or simply achieving a bias-variance trade-off but about a quantitative joint op-
timization between bias and variance. Therefore, as mentioned in Core Results, it is necessary to
develop a dynamic estimation framework to achieve the quantitative joint optimization.

Design Principle of Dynamic Estimators. The IPS-based and DR-based dynamic learning frame-
works are designed as

LD-IPS =
1

|D|
∑

(u,i)∈D

ou,i
fαu,i(p̂u,i)

eu,i, LD-DR =
1

|D|
∑

(u,i)∈D

(
êu,i +

ou,i
fαu,i(p̂u,i)

δu,i

)
, (2)

where f(·) is a designed function and αu,i ∈ [0, 1] is optimizable parameters. When f(p̂u,i) = p̂u,i
and ∀αu,i = 1, D-IPS and D-DR are equivalent to the original IPS and DR estimators, respectively,
which possess unbiasedness. When f(p̂u,i) = p̂u,i and ∀αu,i = 0, D-IPS and D-DR are equivalent to
|O|
|D|Lnaive and EIB estimators, which have bounded variances and generalization bounds. The function
f(p̂u,i) in (2) is actually a mapping, which balances the bias and variance of estimators. The design
principles of f(p̂u,i) are provided as follows:

• (Isotonic Propensity) f(p̂u,i) with f(0) = 0, f(1) = 1, and f(p̂u,i) > p̂u,i is a monotoni-
cally increasing function.

• (Same Order) lim
p̂u,i→0

p̂u,i

f(p̂u,i)
= C, where C is a positive constant.

Some specific expressions of f(p̂u,i) fulfilling the above design principles are summarized in Table
1. The corresponding biases, variances and tail bounds of D-IPS and D-DR estimators are formally
formulated in Lemmas D.1–D.4 given in Appendix D. From the biases and variances of the D-IPS
and D-DR methods given as

Bias(LD-IPS) =
1

|D|

∣∣∣∣ ∑
(u,i)∈D

hEst
B (p̂u,i, pu,i, αu,i)eu,i

∣∣∣∣, Bias(LD-DR) =
1

|D|

∣∣∣∣ ∑
(u,i)∈D

hEst
B (p̂u,i, pu,i, αu,i)δu,i

∣∣∣∣,
VO[LD-IPS] =

1

|D|2
∑

(u,i)∈D

hEst
V (p̂u,i, pu,i, αu,i)e

2
u,i, VO[LD-DR] =

1

|D|2
∑

(u,i)∈D

hEst
V (p̂u,i, pu,i, αu,i)δ

2
u,i,
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Table 1: The specific expressions of fαu,i(p̂u,i) and their determining factors of the bias and variance.

f(p̂u,i) p̂u,i
sin(p̂u,i)
sin(1)

log(p̂u,i+1)
log(2)

tanh(p̂u,i)
tanh(1)

hB 1− pu,i

p̂
αu,i
u,i

1− pu,i sin
αu,i (1)

sinαu,i (p̂u,i)
1− pu,i log

αu,i (2)
logαu,i (p̂u,i+1)

1− pu,i tanh
αu,i (1)

tanhαu,i (p̂u,i)

hV
pu,i(1−pu,i)

p̂
2αu,i
u,i

pu,i(1−pu,i) sin
2αu,i (1)

sin2αu,i (p̂u,i)

pu,i(1−pu,i) log
2αu,i (2)

log2αu,i (p̂u,i+1)

pu,i(1−pu,i) tanh
2αu,i (1)

tanh2αu,i (p̂u,i)

where hEst
B (p̂u,i, pu,i, αu,i) = 1− pu,i

fαu,i (p̂u,i)
and hEst

V (p̂u,i, pu,i, αu,i) =
pu,i(1−pu,i)

f2αu,i (p̂u,i)
, functions hEst

B

and hEst
V determine the biases and variance, respectively. hEst

B and hEst
V corresponding the specific

expressions of f(p̂u,i) are given in Table 1. The monotonicity of bias and variance are provided in
Appendix D Proposition D.3. The surfaces of hEst

B and hEst
V are plotted in Figs. 1(a) and (b). It is

observed that hEst
B is monotonically decreasing and hEst

V is monotonically increasing as the number of
αu,i increases.

Bias-Variance Quantitative Joint Optimization. According to Proposition D.3 given in Ap-
pendix D, the bias-variance trade-off problem can be quantitatively formalized as the following joint
optimization problem:

Objective = min
αu,i

{
w1Bias(L(αu,i)) + w2VO[L(αu,i)]

}
, s.t. 0 ≤ αu,i ≤ 1, (3)

where w1 and w2 are weights of the bias and variance.

According to determine factors hEst
B and hEst

V of bias and variance, respectively, the bias-variance joint
optimization problem can be defined as

Objectiveopt = min
αu,i

{
w1EB(h

Est
B (αu,i)) + w2EV (hEst

V (αu,i))
}
, s.t. 0 ≤ αu,i ≤ 1. (4)

For each user-item pair (u, i), minimizing EB(h
Est
B ) and EV (h

Est
V ) given accurate propensity es-

timations p̂u,i leads to the bias and variance reduction, respectively. Therefore, the optimal pa-
rameter αu,i ∈ [0, 1] for each user-item pair (u, i) can achieve fine-grained bias-variance joint
optimization. The function hEst

B under αu,i ∈ [0, 1], f(p̂u,i) ≥ p̂u,i and p̂u,i = pu,i satisfies
hEst
B (p̂u,i, pu,i, αu,i) ∈ [0, 1). On the other hand, hEst

V under αu,i ∈ [0, 1] and p̂u,i = pu,i satis-
fies hEst

V (p̂u,i, pu,i, αu,i) ∈ [0,∞). Therefore, the objective function in (4) can be simplified as
w1h

Est
B (αu,i) + w2h

Est
V (αu,i). The curves of objective functions under different designed functions

f(·) are given in Fig. 1(c). It can be observed that for a fixed propensity, there exists an α such that the
objective function attains the minimum value. Besides, different measure metrics are also applicable
for dynamic estimators, such as E(hEst) = (hEst(αu,i))

2, E(hEst(αu,i)) = ln(cosh(hEst(αu,i))), and
so on. In what follows, under the objective function w1h

Est
B + w2h

Est
V , the analytical solution of the

optimal parameter αopt
u,i is given in Theorem 3.5 (see Appendix D for proofs).

Theorem 3.5 (The optimal parameter αopt
u,i). Let the learned propensities be accurate, i.e., p̂u,i = pu,i.

For weights w1 and w2, the objective function w1h
Est
B + w2h

Est
V under αu,i ∈ [0, 1] achieves its

minimum at

αopt
u,i = min

{
max

{ ln
(

2w2
w1

(1− pu,i)
)

ln(f(pu,i))
, 0

}
, 1

}
. (5)

From the expression of the optimal parameter (5), the optimal solution of (4) under different weights
depends on the weight ratio w2/w1. Under different designed function f(·), the schematic diagram
of optimal objective values corresponding to the optimal parameter αopt

u,i is shown in Fig. 1(d). Next,
the generalization bounds of the developed dynamic estimator framework are further discussed. The
formalized results are derived in Theorem 3.6 (see Appendix D for more details).

Theorem 3.6 (Generalization Bounds of D-IPS and D-DR). For any finite hypothesis space H of
Ŷ and the optimal prediction matrix Ŷ −, given êu,i and p̂u,i for all (u, i) ∈ D, with probability
1− ρ, the prediction inaccuracies LD-IPS(Ŷ

−, Y ) and LD-DR(Ŷ
−, Y ) under D-IPS and D-DR have
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the following upper bounds

LD-IPS(Ŷ
−, Y O) +

∑
(u,i)∈D

|hEst
B (p̂u,i, pu,i, αu,i)e

−
u,i|

|D|︸ ︷︷ ︸
Bias Term

+hEst
G (e+u,i)︸ ︷︷ ︸

Variance Term

,

LD-DR(Ŷ
−, Y O) +

∑
(u,i)∈D

|hEst
B (p̂u,i, pu,i, αu,i)δ

−
u,i|

|D|︸ ︷︷ ︸
Bias Term

+ hEst
G (δ+u,i)︸ ︷︷ ︸

Variance Term

,

where e+u,i and δ+u,i are the error and error deviation corresponding to Ŷ + =

argmaxŶ ∈H

{∑
(u,i)∈D

(
eu,i

fαu,i (p̂u,i)

)2}
and Ŷ + = argmaxŶ ∈H

{∑
(u,i)∈D

(
δu,i

fαu,i (p̂u,i)

)2}
,

respectively, and the function hEst
G is formulated as hEst

G (z+u,i) =

√
log(

2|H|
ρ )

2|D|2
∑

(u,i)∈D

(
z+
u,i

fαu,i (p̂u,i)

)2

From Theorem 3.6, the bias-variance joint optimization is actually to minimize generalization bounds,
which include both the bias term and the variance term. Besides, the dynamic estimators with the
optimal parameter αopt

u,i make variances and generalization bounds bounded. The formal result is
given in Theorem 3.7 (The corresponding proofs and bounds of variances are given in Appendix D).

Theorem 3.7 (Boundedness of Variance and Generalization Bound). Let αopt
u,i ∈ [0, 1] be the optimal

parameter of (4). If the dynamic estimators adopt αopt
u,i as the parameter, then the corresponding

variance and generalization bounds are bounded.

4 Experiments

In this section, we conduct extensive experiments to compare the performance of the present dynamic
learning framework with existing SOTA approaches and to answer the following questions: Q1:
Does the developed dynamic learning framework improve the prediction performance compared
with the SOTA approaches? Q2: Do the present dynamic estimator designs reduce the variance and
make performance more stable compared with the SOTA approaches? Q3: How do the performance
and variance of the proposed method change under different optimization weights and estimator
functions?

4.1 Experimental Setup

Dataset and Preprocessing. Three real-world datasets with MNAR and MAR samples are used
to conduct the experiments, namely COAT with 4,640 MAR and 6,960 MNAR ratings of 290 users
to 300 coats, YAHOO! R3 with 54,000 MAR and 311,704 MNAR ratings of 15,400 users to 1,000
songs, and KUAIREC with 4,676,570 video watching ratio records of 1,411 users to 3,327 video.
Similar to literature [8, 7, 5], the rating scores in COAT and YAHOO! R3 are binarized as 1 when it is
greater than three, otherwise as 0. For the KUAIREC dataset, the video watching ratios are binarized
as 0 when it is less than two, otherwise as 1.

Baselines and Experimental Details. To avoid the uncertainty caused by the prediction and observe
the performance of the prediction model, we take the matrix factorization (MF) [17] as the base model
and compare the present dynamic learning framework with the following representative IPS-based
and DR-based approaches: naive MF [17], IPS [6], SNIPS [13], IPS-AT [18], CVIB [19], IPS-V2
[8], DR [11], DR-JL [11], MRDR-JL [5], Stable DR [12], Stable MRDR [12], TDR-CL [15],
TMRDR-CL [15], DR-V2 [8]. Here, we adopt the two common metrics used in recommender
system, i.e., area under the ROC curve (AUC), and normalized discounted cumulative gain (NDCG),
to evaluate the performance of prediction models. To guarantee the fair comparison, we set the same
parameters for all approaches. The learning rates are tuned in {0.001, 0.005, 0.01, 0.05} and weight
decay is tuned in {1, 1e − 1, 1e − 2, 1e − 3, 1e − 4, 1e − 5, 1e − 6}. Note that, for XX and D-XX
approaches, their model structures and parameters are identical. Every approach is preformed 10
times to record its mean and standard deviation.
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4.2 Performance Comparison (for Q1 and Q2)

The MNAR records in datasets are used to train the prediction model and the MAR data is employed to
evaluate the present dynamic learning approaches and the existing SOTA approaches. The function in
proposed D-XX approaches is select as

( log(p̂u,i+1)
log(2)

)α
. The performance of other functions provided

in Table 1 are discussed in subsection 4.3. The performances of the developed dynamic estimators
and the SOTA approaches are shown in Table 2, where GainAUC = (AUCXX − AUCD-XX)/AUCXX
and GainN = (NDCGXX −NDCGD-XX)/NDCGXX, e.g. GainAUC = (AUCIPS −AUCD-IPS)/AUCIPS,
GainN = (NDCGIPS − NDCGD-IPS)/NDCGIPS. The weights in bias-variance joint optimization are
set as w1 = 1 and w2 = 0.1. For almost all of metrics and datasets, the performances of IPS, IPS-AT,
CVIB, IPS-V2, DR, DR-JL, MRDR, DR-V2 outperform the naive method while the naive approach
has smaller variance, which implies that unbiased estimators possess high variance. Besides, it can be
observed that estimators with the dynamic learning mechanism greatly improve the performances and
reduce the variances of various debiased approaches, such as IPS and D-IPS, DR and D-DR, DR-JL
and D-DR-JL. Meanwhile, for SNIPS, MRDR-JL, the variance reduction of dynamic estimators do
not seem obvious. One possible reason is that these approaches themselves can effectively reduce the
variances of estimators by sacrificing unbiasedness. These experiment results further verify Theorem
3.4.

Table 2: Performances of the proposed method and baselines (mean ± standard deviation across 10
runs).

Coat Yahoo! R3 KuaiRec

Methods AUC GainAUC NDCG@5 GainN AUC GainAUC NDCG@5 GainN AUC GainAUC NDCG@50 GainN

naive 0.7429±0.0046 – 0.6173±0.0065 – 0.6619±0.0011 – 0.6798±0.0019 – 0.7498±0.0010 – 0.7356±0.0012 –
IPS 0.7539±0.0058 – 0.6496±0.0093 – 0.6624±0.0025 – 0.6583±0.0020 – 0.7314±0.0023 – 0.7450±0.0015 –
SNIPS 0.7423±0.0038 – 0.6110±0.0056 – 0.6727±0.0022 – 0.6647±0.0019 – 0.8015±0.0020 – 0.8082±0.0007 –
IPS-AT 0.7692±0.0023 – 0.6290±0.0069 – 0.6570±0.0072 – 0.6720±0.0019 – 0.7733±0.0063 – 0.8003±0.0037 –
CVIB 0.7448±0.0032 – 0.6123±0.0082 – 0.6119±0.0020 – 0.6766±0.0017 – 0.7727±0.0064 – 0.7852±0.0065 –
IPS-V2 0.7737±0.0024 – 0.6514±0.0056 – 0.6656±0.0022 – 0.6434±0.0026 – 0.7787±0.0016 – 0.7905±0.0029 –
D-IPS (Ours) 0.7777±0.0015 3.16% 0.6584±0.0049 1.35% 0.6767±0.0024 2.16% 0.6630±0.0027 0.71% 0.7947±0.0005 8.65% 0.7876±0.0009 5.71%
D-SNIPS (Ours) 0.7429±0.0036 0.08% 0.6096±0.0062 -0.23% 0.7018±0.0012 4.33% 0.6899±0.0025 3.79% 0.8026±0.0017 0.137% 0.8084±0.0005 0.247%
D-IPS-AT (Ours) 0.7705±0.0012 0.17% 0.6367±0.0052 1.22% 0.6913±0.0029 4.33% 0.6769±0.0047 0.73% 0.7882±0.0042 1.93% 0.8143±0.0023 1.75%

DR 0.7538±0.0032 – 0.6425±0.0096 – 0.6863±0.0013 – 0.6738±0.0033 – 0.7701±0.0058 – 0.7818±0.0029 –
DR-JL 0.7574±0.0046 – 0.6496±0.0141 – 0.6853±0.0012 – 0.6707±0.0019 – 0.7808±0.0034 – 0.7930±0.0033 –
MRDR-JL 0.7590±0.0031 – 0.6502±0.0074 – 0.6851±0.0017 – 0.6708±0.0024 – 0.7735±0.0008 – 0.8121±0.0013 –
Stable DR 0.7648±0.0013 – 0.6315±0.0040 – 0.6925±0.0019 – 0.6749±0.0023 – 0.7812±0.0007 – 0.7928±0.0040 –
Stable MRDR 0.7645± 0.0009 – 0.6318±0.0025 – 0.6929±0.0016 – 0.6753±0.0011 – 0.7844±0.0013 – 0.7752±0.0021 –
TDR-CL 0.7639±0.0032 – 0.6541±0.0102 – 0.6797±0.0006 – 0.6842±0.0011 – 0.7858±0.0016 – 0.7776±0.0015 –
TMRDR-CL 0.7690±0.0016 – 0.6363±0.0041 – 0.6597±0.0016 – 0.6877±0.0009 – 0.7801±0.0017 – 0.8047±0.0013 –
DR-V2 0.7749±0.0024 – 0.6625±0.0092 – 0.6846±0.0043 – 0.6613±0.0054 – 0.7839±0.0027 – 0.7923±0.0056 –
D-DR (Ours) 0.7804±0.0023 3.53% 0.6671±0.0051 3.83% 0.6999±0.0026 1.98% 0.7043±0.0042 4.53% 0.7956±0.0064 3.31% 0.7835±0.0040 2.17%
D-DR-JL (Ours) 0.7775±0.0016 2.65% 0.6577±0.0036 1.25% 0.6913±0.0014 0.88% 0.6721±0.0028 0.21% 0.7742±0.0011 -0.845% 0.7897±0.0017 -0.416%
D-MRDR-JL (Ours) 0.7786±0.0025 2.58% 0.6616±0.0044 1.75% 0.6917±0.0027 0.96% 0.6735±0.0038 0.40% 0.7918±0.0011 2.37% 0.8105±0.0010 -0.197%

4.3 Ablation Studies (for Q3)

Effects of Different Weights and Functions in Dynamic Estimators. In subsection 3.2, we
provide four specific dynamic estimators given in Table 1. We set the weights in bias-variance joint
optimization (4) as w1 = 1 and w2 = [0.02, 0.04, 0.06, 0.08, 1] for these four dynamic estimators
to investigate the effects of weights on the performances and variances. From Eq. (5), the optimal
parameter αopt is determined by the ratio w2

w1
and αopt determines the objective function. Therefore,

we just focus on the effects of the weight ratios on the performance and variances of estimators, which
are given in Fig. 2. It can be observed that, for D-IPS, D-IPS-AT, D-DR, D-DR-JL, and D-MRDR-JL
approaches, the performances increased at first and then decreased as the number of the weight
ratio increases. Meanwhile, the variances seem to achieve their minimums when the performances
achieve their highest values. Since the smaller the weight ratio is, the smaller the bias of the dynamic
estimator is, the experimental results given in Fig. 2 reveal that the unbiasedness of estimators is not
exactly equivalent to the performances of estimators. Actually, from the generalization bounds given
in Theorem 3.6, the bias-variance joint optimization enable estimators to minimize the generalization

(a) (b) (c) (d)

Figure 2: Effects of different weight ratios w2

w1
on performances of dynamic estimators under different

functions fα(p̂u,i): (a) p̂αu,i; (b)
(

sin(p̂u,i)
sin(1)

)α

; (c)
(

log(p̂u,i+1)
log(2)

)α

; (d)
(

tanh(p̂u,i)
tanh(1)

)α

.
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Table 3: Effects of different functions on performances of dynamic estimators.

fα(p̂u,i) p̂αu,i

(
sin(p̂u,i)
sin(1)

)α

Methods AUC GainAUC NDCG@5 GainN AUC GainAUC NDCG@5 GainN

D-IPS 0.7702±0.0011 2.16% 0.6362±0.0043 -2.06% 0.7753±0.0017 2.84% 0.6475±0.0043 -0.32%
D-SNIPS 0.7413±0.0045 -0.13% 0.6146±0.0079 0.59% 0.7392±0.0038 -0.42% 0.6109±0.0089 -0.02%
D-IPS-AT 0.7711±0.0016 0.25% 0.6360±0.0051 1.11% 0.7710±0.0022 0.23% 0.6346±0.0036 0.89%
D-DR 0.7710±0.0014 2.28% 0.6384±0.0047 -0.64% 0.7763±0.0021 2.98% 0.6516±0.0052 1.42%
D-DR-JL 0.7695±0.0013 1.60% 0.6346±0.0058 -2.31% 0.7748±0.0012 2.30% 0.6444±0.0053 -0.80%
D-MRDR-JL 0.7711±0.0016 1.59% 0.6365±0.0040 -2.11% 0.7751±0.0012 2.12% 0.6470±0.0038 -0.49%

fα(p̂u,i)
(

log(p̂u,i+1)
log(2)

)α (
tanh(p̂u,i)
tanh(1)

)α

Methods AUC GainAUC NDCG@5 GainN AUC GainAUC NDCG@5 GainN

D-IPS 0.7777±0.0015 3.16% 0.6584±0.0049 1.35% 0.7771±0.0016 3.08% 0.6578±0.0048 1.26%
D-SNIPS 0.7429±0.0036 0.08% 0.6096±0.0062 -0.23% 0.7418±0.0070 -0.07% 0.6115±0.0082 0.08%
D-IPS-AT 0.7705±0.0012 0.17% 0.6367±0.0052 1.22% 0.7718±0.0011 0.34% 0.6357±0.0029 1.07%
D-DR 0.7804±0.0023 3.53% 0.6671±0.0051 3.83% 0.7792±0.0019 3.37% 0.6608±0.0053 2.85%
D-DR-JL 0.7775±0.0016 2.65% 0.6577±0.0036 1.25% 0.7782±0.0011 2.75% 0.6537±0.0039 0.63%
D-MRDR-JL 0.7786±0.0025 2.58% 0.6616±0.0044 1.75% 0.7779±0.0017 2.49% 0.6576±0.0071 1.14%

bounds and then further improve the generalization performance. Meanwhile, we find that the
variances of dynamic estimators is not decreasing when the weight ratio increases. This because,
for different ratios, the global minimum of the objective function (4) cannot be reached within the
interval α ∈ [0, 1]. For SNIPS, the property of variance reduction might lead to the non-obvious
performance and variance trends.

Under the identical weight ratio w2

w1
= 0.1, we further discuss the effects of different functions

fα(p̂u,i) on the prediction performance and variance. The experimental results are shown in Fig.
3. Nearly all dynamic estimators with different function expressions outperform the corresponding
debiased approaches given in Table 3. It further demonstrates that the proposed dynamic learning
mechanism can greatly improve the performance of the original estimator. Besides, the prediction

performance of the dynamic estimator with fα(p̂u,i) =
(

log(p̂u,i+1)
log(2)

)α

outperforms other dynamic
estimators.

5 Related Work

Aiming at the prediction model bias caused by the MNAR data, EIB [10] and IPS [6] approaches are
two classical unbiased estimators. To leverage the advantages of EIB and IPS, the DR method [11]
was designed to make the unbiasedness of estimator doubly robust. Focusing on the unbiasedness of
estimators, various estimation methods have been proposed to overcome mixed or even unknown
biases in the data [9], to solve the sample selection bias problem in the multi-task learning [20,
21, 22, 23], to improve the performance of the propensity model by different approaches [18, 14],
and so forth. A multiple robust estimator is developed in [24] by taking the advantage of multiple
candidate imputation and propensity models, which is unbiased when any of the imputation or
propensity models, or a linear combination of these models is accurate. From a novel function
balancing perspective, Li et al. propose to approximate the balancing functions in reproducing kernel
Hilbert space [25]. Moreover, aimed at limitations of miscalibrated imputation and propensity models,
Kweon and Yu [26] propose a doubly calibrated estimator and a tri-level joint learning framework
to simultaneously optimize calibration experts alongside prediction and imputation models. For
the variance of estimators, an increasing body of works have emerged to reduce the variance. The
most common estimator reducing variance is Self-Normalized IPS (SNIPS) [13]. Based on DR,
literature [5] designed a MRDR estimator to reduce the variance of the DR estimator by the present
variance expression of DR. In [15], TDR estimator is elaborated to reduce the bias and variance
of DR simultaneously by the present semi-parametric collaborative learning. Moreover, stable DR
estimator [12] achieves the bounded bias, variance, and generalization error bound simultaneously for
arbitrarily small propensities by combining SNIPS and DR methods. Various regularization designs,
such as SV [16], MIS [16], BMSE [8], and so forth, are also introduced into the estimator to achieve
variance reduction.
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6 Conclusions

To the best of our knowledge, this is the first work to reveal that the essence of estimator designs
is not merely to eliminate bias, to reduce variance, or to achieve a simple bias-variance trade-off
but to quantitatively and simultaneously optimize bias and variance. Besides, the limitations of
general regularization techniques and general static estimators are presented. Based on the general
laws with respect to the relationship between bias and variance, we propose a systematic dynamic
learning framework, which guarantees the bounded variances and generalization bounds by the
present fine-grained bias-variance joint optimization scheme. Extensive experiment results have
verified the theoretical results and the performance of the present dynamic estimators. The search
for optimal weights in the objective function and the functions in the dynamic estimation framework
remains an open question.
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A Derivation of bias and variance for naive, EIB, IPS, and DR estimators.

As mentioned in literature [11], the bias of an estimator is defined as

Bias(L) = |Lreal − EO[L]| (6)

According to the prediction inaccuracy expressions of Lnaive and the definition of bias (6), the bias of
naive estimator satisfies

Bias(Lnaive) =
1

|D|

∣∣∣∣ ∑
(u,i)∈D

eu,i − |D|EO[Lnaive]

∣∣∣∣ = 1

|D|

∣∣∣∣ ∑
(u,i)∈D

(
1− |D|

|O|pu,i
)
eu,i

∣∣∣∣. (7)

According to the definition of variance for an estimation given in [5], the variance of the naive
approach can be formulated as

VO[Lnaive] =EO[L
2
naive]− E2

O[Lnaive]

=
1

|O|2EO

[( ∑
(u,i)∈D

ou,ieu,i

)2]
− 1

|O|2
( ∑

(u,i)∈D

pu,ieu,i

)2

=
1

|O|2
∑

(u,i)∈D

pu,i(1− pu,i)e
2
u,i

The biases of EIB, IPS and DR methods have been given in Lemma 3.1 of [11]. The variance
formulations of IPS and DR estimators have been provided in [5]. For the variance of EIB, we obtain

VO[LEIB] =EO[L
2
EIB]− E2

O[LEIB]

=
1

|D|2EO

[( ∑
(u,i)∈D

[ou,ieu,i + (1− ou,i)êu,i]

)2]
− 1

|D|2
( ∑

(u,i)∈D

[pu,ieu,i + (1− pu,i)êu,i]

)2

=
1

|D|2
∑

(u,i)∈D

pu,i(1− pu,i)(eu,i − êu,i)
2.

Therefore, the bias and variance of naive, EIB, IPS, and DR estimators shown in Table 4 can be
obtained.

B Unbounded Variance

According to the definitions of variances of IPS and SR methods, if p̂u,i = pu,i, when the propensity
tends to zero, the variace of IPS and DR satisfy

lim
pu,i→0

VO[LIPS|p̂u,i = pu,i] = lim
pu,i→0

1

|D|2
∑

(u,i)∈D

1− pu,i
pu,i

e2u,i = ∞,

lim
pu,i→0

VO[LDR|p̂u,i = pu,i] = lim
pu,i→0

1

|D|2
∑

(u,i)∈D

1− pu,i
pu,i

δ2u,i = ∞.

This demonstrates that the variances of IPS and DR are unbounded even if the propensities are
accurate. If there exists one propensity going to zero then the variance tends to infinity

C Limitations of Regularization Techniques and Static Estimators

Theorem 3.1. Let LEst+Reg be defined in (1) and the estimator LEst be unbiased. If LEst+Reg is unbiased,
then the variance of LEst+Reg is greater than the one of the original estimator LEst.

Table 4: Bias and variance of naive, EIB, IPS, and DR estimators.
Model naive EIB IPS DR

Bias 1
|O|

∣∣∣∣ ∑
(u,i)∈D

(
1− pu,i

)
eu,i

∣∣∣∣ 1
|D|

∣∣∣∣ ∑
(u,i)∈D

(1− pu,i)δu,i

∣∣∣∣ 1
|D|

∣∣∣∣ ∑
(u,i)∈D

∆u,ieu,i

∣∣∣∣ 1
|D|

∣∣∣∣ ∑
(u,i)∈D

∆u,iδu,i

∣∣∣∣
Variance 1

|O|2
∑

(u,i)∈D
pu,i(1− pu,i)e

2
u,i

1
|D|2

∑
(u,i)∈D

pu,i(1− pu,i)δ
2
u,i

1
|D|2

∑
(u,i)∈D

pu,i(1−pu,i)

p̂2
u,i

e2u,i
1

|D|2
∑

(u,i)∈D

pu,i(1−pu,i)

p̂2
u,i

δ2u,i
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Proof. The variance of LEst+Reg satisfies

VO[LEst+Reg] = VO[LEst] + 2λCov(LEst, LReg) + λ2VO[LReg].

To reduce the variance of LEst, VO[LEst+Reg] satisfies VO[LEst+Reg] ≤ VO[LEst], which implies that

2λCov(LEst, LReg) + λ2VO[LReg] ≤ 0. (8)

Therefore, the parameter λ satisfies 0 ≤ λ ≤ − 2Cov(LEst,LReg)
VO[LReg]

and the optimal parameter is λopt =

−Cov(LEst,LReg)
VO[LReg]

. On the other hand, since LEst and LEst+Reg are unbiased, we obtain EO[LReg] = 0.
Then Cov(LEst, LReg) satisfies

Cov(LEst, LReg) =EO(LEstLReg)− EO(LEst)EO(LReg)

=EO(LEstLReg)

=
1

|D|2EO

([ ∑
(u,i)∈D

(
f(ou,i, p̂u,i)eu,i + g(ou,i, p̂u,i)êu,i

)][ ∑
(u,i)∈D

h(ou,i, p̂u,i)

]) (9)

To facilitate representation, f(ou,i, p̂u,i)eu,i + g(ou,i, p̂u,i)êu,i is denoted as r(ou,i, p̂u,i, eu,i, êu,i),
which satisfies r(ou,i, p̂u,i, eu,i, êu,i) ≥ 0. Then the equation (9) can be rewritten as

Cov(LEst, LReg) =
1

|D|2EO

([ ∑
(u,i)∈D

r(ou,i, p̂u,i, eu,i, êu,i)

][ ∑
(u,i)∈D

h(ou,i, p̂u,i)

])

=
1

|D|2EO

( ∑
(u,i)∈D

[
h(ou,i, p̂u,i)

∑
(u,i)∈D

r(ou,i, p̂u,i, eu,i, êu,i)

])

=
1

|D|2EO

( |D|∑
j=1

|D|∑
k=1

h(oj , p̂j)r(ok, p̂k, ek, êk)

)

=
1

|D|2

|D|∑
j=1

|D|∑
k=1

EO[h(oj , p̂j)r(ok, p̂k, ek, êk)].

Let us consider the term EO[h(oj , p̂j)r(ok, p̂k, ek, êk)] in (10), which fulfills
EO[h(oj , p̂j)r(ok, p̂k, ek, êk)] ≥ 0. Therefore, we obtain Cov(LEst, LReg) = EO(LEstLReg) ≥
0.

Corollary 3.2. If the variance of LEst+Reg is less than the variance of the original estimator LEst, then
LEst+Reg is not unbiased.

Proof. We use the method of proof by contradiction. Assume that when VO[LEst+Reg] ≤ VO[LEst],
LEst+Reg is unbiased. According to the definition of VO[LEst+Reg] and VO[LEst+Reg] ≤ VO[LEst], we
have

VO[LEst+Reg] =VO[LEst] + 2λCov(LEst, LReg) + λ2VO[LReg]

≤VO[LEst], (10)

which implies that 2λCov(LEst, LReg) + λ2VO[LReg] ≤ 0. Therefore, the parameter λ needs to
satisfy 0 ≤ λ ≤ − 2Cov(LEst,LReg)

VO[LReg]
. Since VO[LReg] and λ ≥ 0, Cov(LEst, LReg) ≤ 0 needs to be

satisfied. On the other hand, as shown in A1, when LEst+Reg is unbiased, we have Cov(LEst, LReg) =
EO(LEstLReg) ≥ 0, which contradicts the condition Cov(LEst, LReg) ≤ 0. Therefore, Corollary 3.2
holds.

Theorem 3.3. Let the bias of LEst+Reg be bounded and the variance of LEst satisfy
limpu,i→0 VO[LEst|p̂u,i = pu,i] = ∞. Then, there exists no regularizer LReg that enables the
variance and generalization bound of the estimator bounded even the learned imputed errors or
propensities are accurate.
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Proof. According to the definition of variance, VO[LEst+Reg] satisfies

VO[LEst+Reg] =EO[(LEst + λLReg)
2]− E2

O[LEst + λLReg]

=EO[L
2
Est + λ2L2

Reg + 2λLEstLReg]− E2
O[LEst + λLReg].

(11)

Since the bias of the estimator LEst+Reg is bounded and limpu,i→0 VO[LEst|p̂u,i = pu,i] = ∞,
E2
O[LEst + λLReg] is also bounded, i.e. E2

O[LEst + λLReg] ≤ B̄. Eq. (11) satisfies

VO[LEst+Reg] =EO[L
2
Est] + λ2EO[L

2
Reg] + 2λEO[LEstLReg]− E2

O[LEst + λLReg]

≥EO[L
2
Est] + λ2EO[L

2
Reg] + 2λEO[LEstLReg]− B̄2,

which implies that limpu,i→0 VO[LEst+Reg|p̂u,i = pu,i] = ∞.

Theorem 3.4. (Limitation of Static Estimator). Given prediction errors eu,i, imputed errors êu,i, and
learned propensities p̂u,i for all user-item pairs (u, i), if for any eu,i − g(0, p̂u,i)êu,i ̸= 0, LEst given
in (1) is unbiased, then the corresponding variance and generalization bound are unbounded.

Proof. According to the formulation of the estimator (1) and f(0, p̂u,i) = 0, its bias is given as

Bias(L) =
1

|D|

∣∣∣∣ ∑
(u,i)∈D

eu,i − EO[L]

∣∣∣∣
=

1

|D|

∣∣∣∣ ∑
(u,i)∈D

[(
1− f(1, p̂u,i)pu,i

)
eu,i −

(
g(1, p̂u,i)pu,i + g(0, p̂u,i)(1− pu,i)

)
êu,i
]∣∣∣∣. (12)

From (12), it can be observed that the unbiasedness of the estimator L implies that[
1− f(1, p̂u,i)pu,i

]
eu,i −

[
g(1, p̂u,i)pu,i + g(0, p̂u,i)(1− pu,i)

]
êu,i = 0,

which is equivalent to
f(1, p̂u,i)pu,ieu,i +

[
g(1, p̂u,i)pu,i + g(0, p̂u,i)(1− pu,i)

]
êu,i = eu,i (13)

and
f(1, p̂u,i)eu,i + g(1, p̂u,i)êu,i =

eu,i − g(0, p̂u,i)(1− pu,i)êu,i
pu,i

(14)

Let us consider the variance of the estimator L. It satisfies

VO[L] =
1

|D|2EO

[( ∑
(u,i)∈D

(
f(ou,i, p̂u,i)eu,i + g(ou,i, p̂u,i)êu,i

))2
]

− 1

|D|2

( ∑
(u,i)∈D

[
f(1, p̂u,i)pu,ieu,i +

(
g(1, p̂u,i)pu,i + g(0, p̂u,i)(1− pu,i)

)
êu,i
])2

=
1

|D|2
∑

(u,i)∈D

[
EO

[(
f(ou,i, p̂u,i)eu,i + g(ou,i, p̂u,i)êu,i

)2]
−
[
f(1, p̂u,i)pu,ieu,i +

[
g(1, p̂u,i)pu,i + g(0, p̂u,i)(1− pu,i)

]
êu,i
]2]

=
1

|D|2
∑

(u,i)∈D

[
EO

[(
f(ou,i, p̂u,i)eu,i + g(ou,i, p̂u,i)êu,i

)2]
− e2u,i

]
because of (13).

(15)

Let us focus on the fist term in (15). Denote f(ou,i, p̂u,i)eu,i + g(ou,i, p̂u,i)êu,i as
r(ou,i, p̂u,i, eu,i, êu,i). Then, the first term in (15) satisfies

1

|D|2EO

[( ∑
(u,i)∈D

r(ou,i, p̂u,i, eu,i, êu,i)

)2
]

=
1

|D|2

|D|∑
j=1

|D|∑
k=1

EO

[
r(oj , p̂j , ej , êj)r(ok, p̂k, ek, êk)

]

≥ 1

|D|2

|D|∑
j=1

EO

[
r2(oj , p̂j , ej , êj)

]
because of r(ou,i, p̂u,i, eu,i, êu,i) ≥ 0

=
1

|D|2
∑

(u,i)∈D

EO

[(
f(ou,i, p̂u,i)eu,i + g(ou,i, p̂u,i)êu,i

)2]
(16)
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According to (15) and (16), the variance of the estimator L satisfies

VO[L] ≥
1

|D|2
∑

(u,i)∈D

[
EO

[(
f(ou,i, p̂u,i)eu,i + g(ou,i, p̂u,i)êu,i

)2]
−
[
f(1, p̂u,i)pu,ieu,i +

[
g(1, p̂u,i)pu,i + g(0, p̂u,i)(1− pu,i)

]
êu,i
]2]

=
1

|D|2
∑

(u,i)∈D

[
EO

[(
f(ou,i, p̂u,i)eu,i + g(ou,i, p̂u,i)êu,i

)2]
− e2u,i

]

=
1

|D|2
∑

(u,i)∈D

[[
f(1, p̂u,i)eu,i + g(1, p̂u,i)êu,i

]2
pu,i + g2(0, p̂u,i)ê

2
u,i(1− pu,i)− e2u,i

]
=

1

|D|2
∑

(u,i)∈D

1− pu,i
pu,i

[
eu,i − g(0, p̂u,i)êu,i

]2
.

(17)

Therefore, when the propensity tends to zero, for any eu,i − g(0, p̂u,i)êu,i ̸= 0, the limit of the
variance satisfies limpu,i→0 VO[L] = ∞. Since the generalization bound contains the bias and
variance terms, the generalization bound is also unbounded when the propensity tends to zero. The
proof is completed.

D Proofs of Properties for Fine-Grained Dynamic Estimators

Lemma D.1 (Bias of D-IPS and D-DR). Given prediction errors eu,i, imputed errors êu,i, and
learned propensities p̂u,i for all user-item pairs (u, i), the biases of the D-IPS and D-DR methods
are given as

Bias(LD-IPS) =
1

|D|

∣∣∣∣ ∑
(u,i)∈D

hEst
B (p̂u,i, pu,i, α)eu,i

∣∣∣∣, Bias(LD-DR) =
1

|D|

∣∣∣∣ ∑
(u,i)∈D

hEst
B (p̂u,i, pu,i, α)δu,i

∣∣∣∣,
(18)

where the function hB satisfies hEst
B (p̂u,i, pu,i, α) = 1− pu,i

fα(p̂u,i)
.

Proof. According to the definition of bias (6), the biases of D-IPS and D-DR are formulated as

Bias(LD-IPS) =
1

|D|

∣∣∣∣ ∑
(u,i)∈D

eu,i − EO[LD-IPS]

∣∣∣∣ = 1

|D|

∣∣∣∣ ∑
(u,i)∈D

(
1− pu,i

fα(p̂u,i)

)
eu,i

∣∣∣∣,
Bias(LD-DR) =

1

|D|

∣∣∣∣ ∑
(u,i)∈D

eu,i − EO[LD-DR]

∣∣∣∣ = 1

|D|

∣∣∣∣ ∑
(u,i)∈D

(
1− pu,i

fα(p̂u,i)

)
δu,i

∣∣∣∣. (19)

Lemma D.2 (Variance of D-IPS and D-DR). Given eu,i, êu,i, and p̂u,i for all (u, i) ∈ D, the
variances of the D-IPS and D-DR methods are given as

VO[LD-IPS] =
1

|D|2
∑

(u,i)∈D

hEst
V (p̂u,i, pu,i, α)e

2
u,i, VO[LD-DR] =

1

|D|2
∑

(u,i)∈D

hEst
V (p̂u,i, pu,i, α)δ

2
u,i,

where the function hV satisfies hEst
V (p̂u,i, pu,i, α) =

pu,i(1−pu,i)

f2α (p̂u,i)
.

Proof. Considering the definition of the variance, we obtain the variances of D-IPS and D-DR as

VO[LD-IPS] =EO[L
2
D-IPS]− E2

O[LD-IPS]

=
1

|D|2EO

[( ∑
(u,i)∈D

ou,i
fα(p̂u,i)

eu,i

)2]
− 1

|D|2
( ∑

(u,i)∈D

pu,i
fα(p̂u,i)

eu,i

)2

=
1

|D|2
∑

(u,i)∈D

pu,i(1− pu,i)

f2α(p̂u,i)
e2u,i
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and
VO[LD-DR] =EO[L

2
D-DR]− E2

O[LEIB]

=
1

|D|2EO

[( ∑
(u,i)∈D

ou,i
fα(p̂u,i)

δu,i

)2]
− 1

|D|2
( ∑

(u,i)∈D

pu,i
fα(p̂u,i)

δu,i

)2

=
1

|D|2
∑

(u,i)∈D

pu,i(1− pu,i)

f2α(p̂u,i)
δ2u,i.

Proposition D.3 (Monotonicity of Bias and Variance). For IPS-based and DR-based dynamic
learning frameworks, and given eu,i, êu,i, p̂u,i for all (u, i) ∈ D, if f(p̂u,i) ≥ p̂u,i and the parameter
α ∈ [0, 1] is increasing, then biases of D-IPS and D-DR are monotonically decreasing and their
variances are monotonically increasing when learned propensities are accurate.

Proof. According to the determining functions hB(p̂u,i, pu,i, α) and hV (p̂u,i, pu,i, α) in the bias and
variance, the first derivative of hB and hV versus α are derived as

∂hB(p̂u,i, pu,i, α)

∂α
=

pu,i ln(f(p̂u,i))

fα(p̂u,i)
,
∂hV (p̂u,i, pu,i, α)

∂α
= −2pu,i(1− pu,i) ln(f(p̂u,i))

f2α(p̂u,i)
. (20)

For all p̂u,i ∈ (0, 1), we have ln(f(p̂u,i)) < 0. Therefore, ∂hB(p̂u,i,pu,i,α)
∂α < 0 and

∂hV (p̂u,i,pu,i,α)
∂α > 0 result in the monotonically decreasing function hB and the monotonically

increasing hV for all user-item pairs (u, i) as the number of α ∈ [0, 1] increases. Note the function
f(p̂u,i) satisfies f(p̂u,i) ≥ p̂u,i, which implies that hB ≥ 0 and hV > 0 when learned propensities
are accurate. Therefore, biases of D-IPS and D-DR are monotonically decreasing and their variances
are monotonically increasing when learned propensities are accurate.

Lemma D.4 (Tail Bounds of D-IPS and D-DR). Given êu,i, and p̂u,i for all (u, i) ∈ D, for any
prediction results, with probability 1 − ρ, the deviation of D-IPS and D-DR estimators from their
expectations satisfy ∣∣∣LD-IPS − EO[LD-IPS]

∣∣∣ ≤
√√√√ log( 2

ρ
)

2|D|2
∑

(u,i)∈D

(
eu,i

fα(p̂u,i)

)2

,

∣∣∣LD-DR − EO[LD-DR]
∣∣∣ ≤
√√√√ log( 2

ρ
)

2|D|
∑

(u,i)∈D

(
δu,i

fα(p̂u,i)

)2

.

(21)

Proof. Let XD-IPS
u,i and XD-DR

u,i be new random variables, which are defined as XD-IPS
u,i =

ou,i

fα(p̂u,i)
eu,i

and XD-DR
u,i = êu,i +

ou,i

fα(p̂u,i)
δu,i, respectively. Considering the independent observation indicators

{ou,i|(u, i) ∈ D}, random variables {XD-IPS
u,i |(u, i) ∈ D} and {XD-DR

u,i |(u, i) ∈ D} are independent
of each other. Then, the probability distributions of XD-IPS

u,i and XD-DR
u,i can be obtained as follows:

Pr
(
XD-IPS

u,i =
eu,i

fα(p̂u,i)

)
= pu,i, Pr(XD-IPS

u,i = 0) = 1− pu,i,

Pr
(
XD-DR

u,i = êu,i +
δu,i

fα(p̂u,i)

)
= pu,i, Pr(XD-DR

u,i = êu,i) = 1− pu,i

According to the Hoeffding’s inequality, for any ε > 0, we have the following inequality

Pr
(∣∣∣∣ ∑

(u,i)∈D

Xu,i − EO

[ ∑
(u,i)∈D

Xu,i

]∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−2ε2∑

(u,i)∈D
g2(p̂u,i, zu,i)

)
, (22)

where g(p̂u,i, eu,i) =
eu,i

fα(p̂u,i)
for D-IPS and g(p̂u,i, δu,i) =

δu,i

fα(p̂u,i)
for D-DR. Let γ = ε

|D| .
Therefore, (22) can be rewritten as

Pr
(∣∣∣LD-IPS − EO[LD-IPS]

∣∣∣ ≥ γ
)
≤ 2 exp

(
−2(γ|D|)2∑

(u,i)∈D
g2(p̂u,i, zu,i)

)
. (23)

Let Pr
(∣∣∣LD-IPS − EO[LD-IPS]

∣∣∣ ≥ γ
)
= ρ. According to the inequality (23), the errors γ for D-IPS

and D-DR can be solved as in (21).
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Theorem 3.5. (The optimal parameter αopt
u,i). Let the learned propensities be accurate, i.e., p̂u,i = pu,i.

For weights w1 and w2, the objective function w1h
Est
B +w2h

Est
V under α ∈ [0, 1] achieves its minimum

at

αopt = min

{
max

{ ln
(

2w2
w1

(1− pu,i)
)

ln(f(pu,i))
, 0

}
, 1

}
. (24)

Proof. The first derivative of the objective function w1h
Est
B (αopt) + w2h

Est
V (αopt) versus α is derived

as

∂Objective(p̂u,i, pu,i, α)
∂α

= w1
∂hEst

B (p̂u,i, pu,i, α)

∂α
+ w2

∂hEst
B (p̂u,i, pu,i, α)

∂α

= w1
pu,i ln(f(p̂u,i))

fα(p̂u,i)
− w2

2pu,i(1− pu,i) ln(f(p̂u,i))

f2α(p̂u,i)
. (25)

Let ∂Objective(α|p̂u,i=pu,i)
∂α be zero. Then the optimal α satisfies

αopt =
ln

(
2w2

w1
(1− pu,i)

)
ln(f(pu,i))

. (26)

Note that α needs to fulfill 0 ≤ α ≤ 1. Therefore, the solution of the optimization problem with the
constraint can be obtained.

Theorem 3.6. (Generalization Bounds of D-IPS and D-DR). For any finite hypothesis space H of
Ŷ and the optimal prediction matrix Ŷ −, given êu,i and p̂u,i for all (u, i) ∈ D, with probability
1− ρ, the prediction inaccuracies LD-IPS(Ŷ

−, Y ) and LD-DR(Ŷ
−, Y ) under D-IPS and D-DR have

the following upper bounds

LD-IPS(Ŷ
−, Y O) +

∑
(u,i)∈D

|hEst
B (p̂u,i, pu,i, α)e

−
u,i|

|D| + hEst
G (e+u,i),

LD-DR(Ŷ
−, Y O) +

∑
(u,i)∈D

|hEst
B (p̂u,i, pu,i, α)δ

−
u,i|

|D| + hEst
G (δ+u,i),

where e+u,i and δ+u,i are the error and error deviation corresponding to Ŷ + =

argmaxŶ ∈H

{∑
(u,i)∈D

(
eu,i

fα(p̂u,i)

)2}
and Ŷ + = argmaxŶ ∈H

{∑
(u,i)∈D

(
δu,i

fα(p̂u,i)

)2}
, respec-

tively, and the function hEst
G is formulated as

hEst
G (z+u,i) =

√√√√ log( 2|H|
ρ

)

2|D|2
∑

(u,i)∈D

( z+u,i
fα(p̂u,i)

)2
(27)

Proof. According to the definition of bias, the differences between Lreal(Ŷ , Y ) and expectations of
LD-IPS(Ŷ

−, Y O) and LD-DR(Ŷ
−, Y O) satisfy

Lreal(Ŷ
−, Y )− LD-IPS(Ŷ

−) =Lreal(Ŷ
−, Y )− EO[LD-IPS(Ŷ

−)] + EO[LD-IPS(Ŷ
−)]− LD-IPS(Ŷ

−)

≤Bias(LD-IPS(Ŷ
−)) + EO[LD-IPS(Ŷ

−)]− LD-IPS(Ŷ
−)

(28)

and

Lreal(Ŷ
−, Y )− LD-DR(Ŷ

−) =Lreal(Ŷ
−, Y )− EO[LD-DR(Ŷ

−)] + EO[LD-DR(Ŷ
−)]− LD-DR(Ŷ

−)

≤Bias(LD-DR(Ŷ
−)) + EO[LD-DR(Ŷ

−)]− LD-DR(Ŷ
−),

(29)

respectively. From the inequalities (28) and (29), the expressions of Bias(LD-IPS(Ŷ
−)) and

Bias(LD-DR(Ŷ
−)) have been given in Lemma 3.6 and, in what follows, terms EO[LD-IPS(Ŷ

−)] −
LD-IPS(Ŷ

−) in (28) and EO[LD-IPS(Ŷ
−)]− LD-IPS(Ŷ

−) in (29) are discussed. Considering the finite
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hypothesis space H = {Ŷ 1, Ŷ 2, . . . , Ŷ |H|} and the Hoeffding’s inequality, for any ε > 0, the
following inequalities can be obtained

Pr
(∣∣∣LD-IPS(Ŷ

−)− EO[LD-IPS(Ŷ
−)]
∣∣∣ ≤ γ

)
=1− Pr

(∣∣∣LD-IPS(Ŷ
−)− EO[LD-IPS(Ŷ

−)]
∣∣∣ ≥ γ

)
≥1− Pr

(
max
Ŷ ℓ∈H

∣∣∣LD-IPS(Ŷ
ℓ)− EO[LD-IPS(Ŷ

ℓ)]
∣∣∣ ≥ γ

)
≥1−

H∑
ℓ=1

Pr
(∣∣∣LD-IPS(Ŷ

ℓ)− EO[LD-IPS(Ŷ
ℓ)]
∣∣∣ ≥ γ

)
=1−

H∑
ℓ=1

2 exp

(
−2(γ|D|)2∑

(u,i)∈D
g2(p̂u,i, eℓu,i)

)

≥1− 2|H| exp
(

−2(γ|D|)2∑
(u,i)∈D

g2(p̂u,i, e
+
u,i)

)

Pr
(∣∣∣LD-DR(Ŷ

−)− EO[LD-DR(Ŷ
−)]
∣∣∣ ≤ γ

)
≥1− 2|H| exp

(
−2(γ|D|)2∑

(u,i)∈D
g2(p̂u,i, δ

+
u,i)

)
.

(30)

Let 2|H| exp
(

−2(γ|D|)2∑
(u,i)∈D

g2(p̂u,i,Z
+
u,i)

)
be ρ. The errors γD-IPS and γD-DR for D-IPS and D-DR can be

solved as

γD-IPS =

√√√√ log( 2|H|
ρ

)

2|D|2
∑

(u,i)∈D

( e+u,i
fα(p̂u,i)

)2
, γD-DR =

√√√√ log( 2|H|
ρ

)

2|D|2
∑

(u,i)∈D

( δ+u,i
fα(p̂u,i)

)2
. (31)

Therefore, EO[LD-IPS(Ŷ
−)]−LD-IPS(Ŷ

−) in (28) and EO[LD-IPS(Ŷ
−)]−LD-IPS(Ŷ

−) in (29) fulfill

EO[LD-IPS(Ŷ
−)]− LD-IPS(Ŷ

−) ≤

√√√√ log( 2|H|
ρ

)

2|D|2
∑

(u,i)∈D

( e+u,i
fα(p̂u,i)

)2
,

EO[LD-DR(Ŷ
−)]− LD-DR(Ŷ

−) ≤

√√√√ log( 2|H|
ρ

)

2|D|2
∑

(u,i)∈D

( δ+u,i
fα(p̂u,i)

)2
.

(32)

Combining (28), (29) and (32), we can obtain the generalization bounds of D-IPS and D-DR given
in Lemma 3.11.

Theorem 3.7. (Boundedness of Variance and Generalization Bounds). Let αopt
u,i ∈ [0, 1] be the optimal

parameter of (4). If the dynamic estimators adopt αopt
u,i as the parameter, then the corresponding

variance and generalization bounds are bounded.

Proof. Considering the optimal parameter αopt
u,i for each user-item pair (u, i) and the optimization

problem (4), we can obtain the corresponding optimal objective function

Objectiveopt = w1EB(h
Est
B (αopt

u,i)) + w2EV (hEst
V (αopt

u,i)) ≤ w1EB(h
Est
B (0)) + w2EV (hEst

V (0)). (33)

Since hEst
B (p̂u,i, pu,i, α) > 0 and hEst

V (p̂u,i, pu,i, α) > 0, considering (33), we have

w2EV (hEst
V (αopt

u,i)) ≤ w1EB(h
Est
B (0)) + w2EV (hEst

V (0))

= w1EB(1− pu,i) + w2EV (pu,i(1− pu,i)),
(34)

which implies that

hEst
V (p̂u,i, pu,i, α

opt
u,i) =

pu,i(1− pu,i)

f2α
opt
u,i(p̂u,i)

≤ E−1
V

(w1EB(1− pu,i)

w2
+ EV (pu,i(1− pu,i))

)
= E−1

V

(w1EB(1)

w2
+ EV (0.25)

)
.

(35)
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Therefore, the variance of dynamic estimators are bounded by

VO[LD-IPS|α = αopt
u,i] =

1

|D|2
∑

(u,i)∈D

hEst
V (p̂u,i, pu,i, α

opt
u,i)e

2
u,i

≤ 1

|D|2
∑

(u,i)∈D

E−1
V

(w1EB(1)

w2
+ EV (0.25)

)
e2u,i,

VO[LD-DR|α = αopt
u,i] =

1

|D|2
∑

(u,i)∈D

hEst
V (p̂u,i, pu,i, α

opt
u,i)δ

2
u,i

≤ 1

|D|2
∑

(u,i)∈D

E−1
V

(w1EB(1)

w2
+ EV (0.25)

)
δ2u,i.

(36)

Considering the expression of hEst
G (z+u,i) in generalization bounds and the boundedness of

hEst
V (p̂u,i, pu,i, α

opt
u,i), it is easy to obtain that under ρ ̸= 0 the generalization bounds of LD-IPS

and LD-DR are bounded.
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Answer: [Yes]

Justification: see Introduction
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made in the paper.
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NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: see section 5 Conclusions
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Appendix
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: see section 4 Experiments
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: see section 4 Experiments
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: see subsection 4.1 Experimental Setup
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: see subsection 4.3 Ablation Studies
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: see section 4 Experiments

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Every approach in Experiments is preformed261 10 times to record its mean
and standard deviation.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: see Introduction

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Three real-world public datasets are used in Experiments.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: see Section 4 Experiments

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This problem is inapplicable to this paper.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This problem is inapplicable to this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: The datasets used in this paper are public.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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