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ABSTRACT

A popular paradigm in Al modeling, including computer vision, natural language
processing, and graph modeling, is applying a large pre-trained model that has
been fine-tuned for a particular task on novel datasets. However, many such mod-
els are published in model repositories, fine-tuned using different types of source
data. Consequently, practitioners face the problem of model selection — choosing
the best model for their task from a repository of models. Model performance in
a target domain depends on factors including task definition, model architecture,
data distribution, and the model transfer method. Previous model selection meth-
ods in transfer learning focus on task definition when assessing transferability,
and often require a labeled dataset in the target domain. We formulate the transfer
problem as label-agnostic model selection, where the goal is to choose the best-
performing model on a target domain without access to labeled data. Specifically,
we analyze the impact of source domain training data on model transferability. To
measure this transferability, we introduce a new type of quantitative measure, the
T-Measure, which correlates with the test-time performance of a model on an un-
labeled target domain. We propose a T-Measure estimation method which incor-
porates distributional measures of the source domain’s training data instances, the
distribution of the target domain’s instances, and the base performance of a task-
specific model to create a ranking of models. We then adapt previous task-centric
transferability measures for data-centric selection and compare them against T-
Measure. We thoroughly evaluate the T-Measure performance for 4 tasks and 11
datasets and show its effectiveness in ranking models for model selection com-
pared to baselines.

1 INTRODUCTION

The emergence of pre-trained models have led to a substantial improvement in different machine
learning domains such as computer vision, natural language processing (NLP), and graph predic-
tion. A common paradigm is that a model is first pre-trained in an unsupervised manner on a vast
corpus, and afterward the resulting model parameters are used as a starting point for training (fine-
tuning) models to complete various tasks using a much smaller set of labeled data. In NLP, for
example, a single pre-trained model (Devlin et al.l|2019) has been fine-tuned for tasks including text
classification, emotion detection, question answering, inference, etc. In this paradigm, models share
the same pre-trained model and differ primarily on the dataset used during fine-tuning. Practitioners
seeking to reuse fine-tuned models in a new domain face the problem of model selection — choos-
ing an appropriate model configuration to apply to their problem. In this paper we introduce the
T-Measure, a measure of model transferability that is label-agnostic and can guide practitioners in
model selection. T-Measure focuses on the model transferability from the perspective of data.

Model selection is the problem of selecting a model most appropriate for a specific task. Model
selection is challenging for practitioners for several reasons. The sheer number of models available
makes evaluating models a time-consuming and computationally intensive process. For example,
a practitioner looking for a text classification model is faced with 780 options when searching a
popular model repository, huggingface [ﬂ Many model selection approaches require a labeled de-
velopment set to evaluate models. Researchers exploring new domains may have no labeled data
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available, making model evaluation difficult without a laborious labeling effort. These challenges
can result in haphazard model selection conducted through trial and error. To address these model
selection challenges, we propose a principled model selection approach based on unsupervised rep-
resentation learning that requires no labeled data while remaining computationally efficient.

Model transferability, the performance of the model after transfer learning, is an important problem
given the computational costs of training large, parameter-dense models. Recently there have been
a few measures introduced to estimate the transferability of the models. A key assumption of these
measures is the availability of a labeled development dataset for the target domain making them
computationally expensive and incompatible in label agnostic setting (Zamir et al., [2018)). Another
shortcoming of these prior works is the narrowness of their evaluation, which have focused on
computer vision tasks on the CIFAR (Krizhevsky et al., |2009) and ImageNet (Deng et al., [2009)
datasets. The limited evaluation of these measure in the context of only few datasets raises concerns
regarding the generalizability of them across different tasks and domains. In particular the effect
of the source dataset on transfer is overlooked in all of those measures. Some recent body of work
suggest that source dataset is an important factor in transfer: (Zhao et al.| 2022)) suggests that some
datasets are intrinsically harder than other datasets for any task. (Ethayarajh et al.| 2021)) show that
training datasets have different amount of useful information for trained models.

In this paper, we propose T-Measure as a criteria for model selection for machine learning tasks. T-
Measure estimates the transferability of the models from the dataset perspective. It utilizes unsuper-
vised representation learning to gain insight from datasets without requiring any label. It leverages
the representation learning to quantify the effect of datasets during transfer. To the best of our knowl-
edge T-Measure is the first data-centric transfer measure in zero-shot transfer. We adapt the pre-
viously used transfer measures to the data-centric zero-shot setting, compare T-Measure with them,
and evaluate T-Measure on 4 different tasks and 11 different datasets. We show that T-Measure has
better performance compared to other transfer measures and is more robust. Our contributions are:

* We introduce the novel problem of label-agnostic model selection.

e We present T-Measure as a transfer measure.

* We use representation learning and introduce a method to compute T-Measure in a zero-
shot transfer setting.

* We adapt the previous transfer measures to the zero-shot constraint.

* We analyze the performance of T-Measure among 4 different tasks and 11 datasets.

2 PROBLEM DEFINITIONS

In this section, we formally define the problem of model selection in zero-shot transfer learning.
First, we introduce the general problem of model selection. Second, we focus on the model selection
and its challenges in transfer learning. Then we introduce transfer measure for model selection.
Finally, we scope the problem by focusing on the model selection in zero-shot transfer learning.

2.1 MODEL SELECTION Table 1: Symbol descriptions

Suppose ® = {¢;} , is a set of n models, each trained
on a task T;. Each task T; is represented by a labeled

Symbol | Description

dataset D; = D" | ] Dtest and has an evaluation met- D, | Dataset x
R v, ! . DT | Training subset of the dataset D
ric F; to measure its performance. Let /3; be the archi- T, | Taskx
tecture of the model ¢;. Therefore each trained model is E; | Evaluation metric i
identified with three variables (7}, D;, 3;) and its perfor- Be I%/[Ode} "’mh“}ef“;".e X
. test [e7] ranster method 2
mance is denoted by E; (T}, D%, ¢;). ¢ Model
Rp Representation space based on dataset D

Let T}, be the target task with dataset Dy,., and evalua-
tion metric 4. In general, model selection for T}, is
the problem of selecting a model ¢* € ® which has the best performance on target:

¢* = Argmax Etrg (nrg, Df£2t7 (rb) (1)
PpeD
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2.2 MODEL SELECTION IN TRANSFER -

In this subsection, we specify the model selection prob-
lem in a transfer setting. Let T}, be a target task with la- 2l "
beled dataset D,y = Dj74" | Djcs!. Let a be amodel _—
transfer method characterized as a function that transfers ¢ e ¢
a model ¢ based on the target task and dataset and creates .

a new model ¢' = (T}, DE:;“'”, ¢). Figure |1| shows Task T_
parameters of the transfer method. B . g“,

The model selection problem in this transfer setting be-

comes the problem of finding a model ¢* € ® which Figure 1: Components in model transfer
shows the best performance after transfer on a target from a source model to a target model

dataset. Ideally the selected model is ¢*:

¢* = A/47’§,77”fLC74‘r Etrg(Ttrga D%ﬁ;tv d)/) )
forstod

. t . . . . t t
In reality, D, ., is not accessible during model selection. However, we assume that D;_?, and D%

are sampled from the similar underlying distribution. Therefore, model performance on D}, is cor-

related with D¢, . And model selection chooses the model ¢ with best performance on Do, ie:

¢ = Argmaz Eiyg(Tirg, Djty:;ina ¢) 3)
peP

Where ¢’ is the model ¢ transferred with method « using Dfﬁ‘g“'" dataset for the task T},4.

2.3 TRANSFER MEASURE

In this subsection, we define an abstract transfer measure for model selection in a transfer setting,
and describe our approach in[3] A transfer measure is a proxy that estimates the relative performance
of different models on a target dataset after model transfer. The value of a transfer measure assigned
to models, facilitates the selection of the best performing model on target dataset. Without loss of
generality, we identify a transfer measure as a function of a model ¢, a target task T%,., and dataset
Dyyg. ldeally, the value of a transfer measure is highly correlated with the performance of the

transferred model g{) on the target.
Transfer — Measure(Tirg, Dirg, @) < Etrg(Tirg, Dirg, @) 4)

where Eig(Tirg, Dirg, ¢') € R is the value indicating the performance of ¢ on the target. Ideally,
a transfer measure enables us to compare the performance of different models in a transfer. For
example, for the two transferred models ¢, ¢ the inequality:

Transfer — Measure(Tiyq, Dirg, 91) < Transfer — Measure(Tirg, Dirg, 92) 5)

means that ¢ is predicted to have a better performance on target task T3, and dataset Dy, and is
a better choice for model selection compared to ¢-.

In general, a transfer measure has four confounders: dataset, task, transfer method and model archi-
tecture. Figure[2]shows examples for confounders. In this paper, we focus on the dataset confounder
and assume the other confounders are invariant, i.e. we isolate the dataset confounder to assess
dataset effect on transfer. This assumption causes the proposed transfer measure to rely on the
training dataset characteristics which are easier to quantify.

2.4 MODEL SELECTION IN ZERO-SHOT TRANSFER

We specify the model selection problem in zero-shot transfer when the only variable confounder of
transfer is dataset. Let T}, Dyyg, Eyrg be a target task, dataset and evaluation metric respectively.
Let ® = {¢}; be a family of models with the same architecture 3 and task T's,.. where each is trained
on D;. Let o be a transfer method. We represent ¢ = a(T', D{;4"™, ¢;) as the transferred model
by the method « using D74

. In this paper, the transfer method is zero-shot: Dfﬁgm is unlabeled
and « is the identity function, i.e., ¢; = a(T, D{;%"", ¢;) = ¢;. Furthermore, models are trained,
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transferred and evaluated for the same task i.e,: T, = Ttyg, Esrc = Eyrg. For simplicity we denote

task and evaluation metric with T', E respectively. Ideally the model selection chooses ¢* € {¢}; :

¢* = Argmax E(T, Digs', ¢). In reality, Df¢5" is not available in transfer and assume that Dyys*
ped

and D}¢5" are from the same distribution. Consequently E (T, Df¢s!, ¢) oc E(T, D{73"™, ¢) and the

model selection, finds é:

¢ = Argmaz E(T, Dirain ¢) = Argmax Transfer — Measure(T, Dirain ?) (6)

trg trg
Transfer
Performance

ped D
mage Classification, Image Task (T)

3 MODEL ISegrienlation, C;bieclIDetgeclion
Figure 2: Confounders of transferred model
performance with examples on the left side.

: Model ‘
AlexNet, YOLO, ResNet | Architecture (B) ‘

| Transfer Method (@)

In this section, we introduce T-Measure, a transfer
measure for zero-shot model transfer. T-Measure MNISTCIPAR, TmageNET
is data-centric, i.e. it is characterized by a pair of
datasets: a source dataset D,,. which the model is
trained on and a target dataset Dy,4. Intuitively T-
Measure assesses the similarity of datasets Dy,.. and
D4 in terms of a task. We propose a representation
space that quantifies characteristics of datasets and hypothesize that it determines datasets transfer-
ability. We introduce a self-supervised representation learning approach to achieve a representation
space for Dg,.. Then, we utilize it to compute T-Measure for task-agnostic model selection in a
zero-shot setting. More specifically the task, model architecture and transfer method are invariant
in this transfer setting. By using the learned representation space, we identify a subset of datapoints
from Dy, which have similar characteristics to Dy, ,. We estimate T-Measure using the identified
subset. The components of our method, creating source dataset representation space and T-Measure
estimation, are shown in Figures [3] ] respectively.

Zero-shot, Few-shot

3.1 SOURCE DATASET REPRESENTATION SPACE

In this section, we introduce a representation space for decomposable datasets. A dataset D is de-
composable if we can represent an instnace P in the dataset as a union of smaller units (datapoints).
Moreover, datapoints in each instance are dependent on each other and independent of datapoints in
other instances.

For each source dataset, we identify a representation space at datapoint level. The identified repre-
sentation should have the following objectives to capture dataset structure and specifics:The relative
distance of datapoints should be preserved in this representation space. The representation should
be smooth, i.e. a small difference in datapoints should result in a small difference in their repre-
sentation. Dependency of datapoints should be manifested as distance in their representations, i.e.
dependent datapoints (datapoints in the same instance) should be closer to each other compared to
independent datapoints. We say a representation is aligned with a dataset if it meets these conditions.

Dataset Representation Alignment We describe our approach for finding a representation space
which characterizes a decomposable dataset D. Our approach leverages contrastive learning (Liu
et al, [2021) to model the dependencies in the dataset. Specifically, we construct triplets to capture
the relation of datapoints in the dataset. Then we use the triplet loss objective(Schroff et al.,[2015)) to
find a representation space aligned with these triplets. In other words, given an initial representation
space R and a dataset D, an aligned representation space is created by fine-tuning the space with the
triplet loss objective in the dataset. Let D = | P;. We describe the triplet construction process for
D in the next paragraph.

Triplet Construction A triplet (a,p,n) contains three points from D: anchor, positive, negative.
Datapoints in a triplet are sampled with the goal of making the distance of the anchor and the positive
sample relatively less than distance of the anchor and the negative sample. The goal of the triplet
construction step is to sample triplets that capture the dependency structure of datapoints. Therefore
given a pair of dependent datapoints (a, p’), we create a triplet by adding an independent datapoint
to the pair. Since D is decomposable, triplets are: {(a,p,n)|a,p € P;,n € P;}.

Ideally in an aligned space with D, the relative distance constraint of triplets is satisfied, i.e. for
any triplet (a,p,n) : d(a,p) < d(a,n). Triplet loss objective is a proxy to estimate this distance
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constraint among a set of triplets in a representation space R. For a triplet (a, p,n):
TripletLoss = Max(||R(a) — R(p)|| — ||R(a) — R(n)|| + €,0) (7

where R(a) is the representation of the anchor, ||.|| is a distance metric and € is a margin. For
a dataset D and a representation space R, we identify an aligned representation space(Rp) by
minimizing the triplet loss objective on triplets from D. Figure [3|shows steps of this process.

3.2 T-MEASURE ESTIMATION

———_— Base
. . . . . = e

In this subsection, we describe T-Measure estimation
in zero-shot transfer for decomposable datasets. Our

. . Model Triplet loss
method leverages dataset aligned representation spaces Trainer Minimizer
from the previous subsection to represent Dg,. and
Dyrq. We identify a subset of D,,. which is highly ) R

similar to Dy,4. Then, we compute T-Measure by as- P .

sessing the effect of this subset in the trained model.
For every model ¢; (identified by (T, D, 3)) and tar-
get dataset Dy, and the representation space aligned
with the source dataset R,,., T-Measure is estimated
via the following steps:

Figure 3: The steps for creating an aligned
representation space for a data source D.
¢p is the model trained on D and Rp is
the representation space aligned with D.

Step 1: Intuitively the performance of a trained model is close for similar input datasets. Also,
similar subsets of training data are expected to have similar effects on a model during training.
Therefore the task of estimating the effect of Dy,., on a trained model is reduced to finding a subset
of D, similar to Dy, and computing its effect on the trained model. In this step, we seek a subset
Ssre,trg from the source dataset which is similar to the Dy, i.e.:

Sereirg = |J {8 = Argmin||R(d) — R(s)|[} ®)
d€Dyrg SEDg,c

Where R is the representation space used for datapoints. We use the R, which is the Dy, aligned
representation space in finding the similarity for T-Measure estimation since this representation
space captures the structure of the Dy, and is more accurate in finding similar datapoints.

Step 2: We use Ss,¢ g, the most similar subset of the source dataset to the target dataset, to
estimate T-Measure. We compute T-Measure by estimating the effect of Ss,¢ ¢y On the model
during training. In (Ethayarajh et al., 2021), the authors introduced V-Usabiltiy and Pointwise V-
Information(PVI). We briefly describe PVI in the next paragraph. First, we describe predictive
entropry then we describe PVI.

Definition Let X, Y denote random variables with sample spaces X', ) respectively. Let 6 denote a
null input that provides no information about Y. Given a predictive family V Cc Q = {f : X |0 —
P(Y)}, the predictive V-entropy(Hy (Y')) and the conditional V-entropy are:

Hy(Y) = infrev Ellog, f6](Y)] ©)
Hy (Y|X) = infrev Ellog, fIX](Y)] (10)
where f[X] and f[f] produce a probability distribution over the labels.

Definition Given random variables X, Y and a predictive family V, the pointwise V-information
(PVI) of an instance (z,y) is:

PVI(x — y) = —log, g[0](y) + log, g'[](y) (11
where g € V s.t. E[logg[0](Y)] = Hy(Y) and ¢’ € V s.t. E[log ¢'[X]|(Y)] = Hv (Y] X).

They used V-Usabiltiy and Pointwise V-Information(PVI) as a proxy to estimate the difficulty of
datapoints and their effect on a model during training. V-usability of a random variable is defined
as the expected change in the predictive entropy of the label distribution caused by conditioning on
that random variable, i.e. how much information the random variable contains and how it changes
the label distribution. Pointwise V-Information computes the change of label distribution predictive
entropy given a single datapoint. Therefore, more difficult datapoints have less V-Usable information
and have less effect on the trained model. Intuitively higher Pointwise V-Information (PVI) of
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Sere,trg ON the trained model indicates the higher similarity of ¢ (trained on D) to a hypothetical
model trained on Dy,.,. The T-Measure value of the Dy,  is achieved by finding the average PVI of
Ssre,trg for model ¢. FigureE] shows this process.

Y(e,y)€Surerg PV Is(T — )

T-Measure(T, Dyyq, ¢) = (12)

|Ssrc,trg|

4 EVALUATION

In this section we describe our experiments to evaluate the
performance of T-Measure. First, we describe implemen-
tation details common to all experiments. Then, we de-
scribe evaluation metrics. Finally, we describe the model ~Figure 4: T-Measure estimation step

selection experiment scenario to evaluate T-Measure. 1: given Dy, and a model trained on
DSTC‘ .S§rc7.tTg is the subset of Dy,
4.1 IMPLEMENTATION which is similar to Dy;..

As described in section T-Measure requires a dataset specific representation space for each
source dataset. We describe the process and parameters used to identify dataset specific spaces
for source datasets introduced in Table The introduced source datasets are all decomposable
to documents. For example, DailyDialog is perfectly decomposed to independent conversations.
Furthermore, the decomposed documents have a sequential structure and can be viewed as a se-
quence of smaller dependent units, i.e. sentences in paragraphs or utterances in the conversations.
We represent each document d € Dy, as a sequence. For example, a conversation can be repre-
sented as ui, U, ..., U, Where u; is the it utterance. Let Dy, be an arbitrary source dataset, and
d = uq,...,u, be a document in Dy,.. Following (Zhou et al., [2022b)), for every pair (u;, w; 1),
we create 20 triplets (u;, u;41,u’) by randomly sampling ' from other documents in that dataset
ieu € d € Dy, — {d}. After creating triplets for the Dy,.., we use SentenceBERT(Reimers &
Gurevych, [2019) for the initial representation of the utterances (or sentences in non-conversational
datasets). We use the Sentence-Transformer library E] and triplet loss objective to fine-tune the
sentence-transformer. We continue the process for 5 epochs. We repeat the same process for source
datasets in Table[??]and identify an aligned representation space for each of them.

Table 2: Dataset Statistics. The last column

4.2 EVALUATION METRIC shows tasks for which the dataset is labeled.

The principal goal of T-Measure is to provide a quan- Dataset | Dataset Size | Avg Doc Size |  Tasks
titative score for trained models that helps with select- ~ Peronachac| 19,893 s RS
ing the best model for a target dataset. In other words, MuTual 6371 47 RS

: 3 : DailyDialog 11,118 8 RS, ERC
the relative value pf T Measure for tral.ned models Empathetic 24850 43 RS, ERC
should correlate with their performance in the target Friends 897 14 RS, ERC, QA

3 CIDER 807 15 QA

datasqt. Therefore,' we e\{alll.ate T-Measure as a model DREAM 6.444 63 OA
selection and ranking criteria. We evaluate the rank- DialogRE 1,788 12.9 RC
: . ReDocRED 3,053 79 RC
ing of models based on T-Measure and compare it to DDRel 6300 84 RC

the ranking of the model performances on the target

set. We use the Kendall—7 correlation to evaluate the ranking, computed as:

#Concordant Pairs — #Discordant Pairs
# Pairs

Therefore higher value of Kendall—7 is an indicator of better ranking. We also compare the F'1 of

the best selected model by each transfer measure and compare it against the ground truth in Figure
6

Kendall — 7 =

13)

4.3 MODEL SELECTION EXPERIMENT

We evaluate the performance of T-Measure as a transfer measure. We compare the performance of
T-Measure with two baselines and a set of transfer measures created based on previous task-centric

Zwww.sbert.net
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Response Selection Emotion Recognition Question Answering Relation Classification All Tasks

i ::: PR A
Qd TR e TR T A T

T

i

Naive V-Usability PARC T-Measure Naive V-Usability PARC T-Measure Naive V-Usability PARC T-Measure Naive V-Usability PARC T-Measure Naive V-Usability PARC T-Measure

Figure 5: Kendall-7 of model ranking based on transfer measures. From left to right transfer mea-
sures in each plot are: Naive, V-Usability, PARC, T-Measure.

transfer measures i.e. PARC based models |Bolya et al.| (2021). Naive baseline for model
selection, chooses the model with the best performance on the corresponding source dataset. The V-
UsabilityEthayarajh et al.[(2021) baseline chooses the source dataset with highest V-Usability value
which is interpreted as the easiest source dataset for the given task. We conduct the experiment for
4 tasks:

Emotion Recognition in Conversation (ERC) is the task of assigning an emotion label to each
utterance in a conversation. Since the datasets for ERC were annotated using different granularity of
emotions, we relabeled the emotions to basic emotions (Ekman et al.,[1999) using the feeling wheel
(Willcox, |1982)). Therefore the task is modeled as assigning an emotion label from {”happy”, "sad”,
“anger”, surprise”, “fear”, ”disgust” ,’no emotion”} to each utterance.

Relation Classification (RC) is the task of assigning a relation type between two named entities
given a document. We selected the subset of relationships common in available datasets. These rela-
tionships are {”spouse”, “sibling”,’boss”, ”child—parent”, "girl/boyfriend”, “other”}. We merged
the rest of the relations in each dataset to the “other” relation class.

Question Answering (QA) includes a document and a set of questions which can be answered
based on the given document. In this paper, we modeled this task as the task of choosing the correct
answer from a set of provided options.

Response Selection (RS) is the task of choosing the next utterance in a conversation based on the
conversation history. We created response selection datasets for experiments from available con-
versation datasets: For each utterance in a dataset we randomly sampled 5 utterances from other
conversations and used them as wrong options while the next utterance was the correct option. To
ensure consistency, we adopt a uniform architecture for all task models, treating each task as a clas-
sification problem. In Question Answering and Response Selection, we format the training data as
a binary classification task, i.e. given a context, a question (or current utterance) and an option, the
task is to determine whether the given option is correct or not. For each task, we trained models
with similar architecture and training parameters on different source datasets. We used the publicly
available BERT based architecture for all models. The details of the performance of these models
on different datasets are available in the appendix To evaluate the model selection based on
different transfer measures, we include at least three target datasets for each task. Table|??|contains
statistics of these datasets. More details are available in the appendix In this experiment, the
probe set of target datasets consists of 100 instances. The results of this experiment are presented
in Table[3] where we report the Kendall-7 of model rankings based on different measures. We also
present the relative performance of the selected model compared to the ground truth in Figure[6]

5 ANALYSIS

Table [3| shows the results of the model selection experi-
ment. The key observations are: g
Average Kendall-7 of T-Measure is always positive.
We observe that T-Measure average Kendall—7 is al- ..
ways positive for all tasks, i.e. the ranking based on T-

Measure robustly contains more concordant pairs com- 233292922222 02¢22¢2
pared to discordant pairs. £33 £

. . 38& &d9g2z" 88 §
T-Measure ranks better than Naive method. Naive £z €8 5§ 3

Target Dataset

method, ranks models based on their performance on the
source dataset. This observation suggests the benefit of
using a T-Measure instead of the Naive method.
T-Measure achieves the best transferability estimation and ranking model for three tasks. We
observe that for three tasks of Response Selection, Emotion Recognition and Question Answering
T-Measure achieves the best transferability estimation and ranking of models with Kendall-7 of 0.14,
0.33,0.77.

T-Measure average performance is at least as good as V-Usability We observe that T-Measure

Figure 6: F1 score of the best selected
model based on transfer measures.
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Table 3: The result of model ranking based on different transfer measures. The reported numbers are
the Kendall-7 of the ranked models based on the given transfer measure compared to the ranking of
models based on their performance on the target dataset. The size of the probe set in this experiment
for targets is 100. The PARC model uses SentenceBERT for data representation.

Task ‘ Target Dataset ‘ Naive ‘ V-Usability ‘ T-Measure ‘ PARC
DailyDialog 0.4 -0.8 0.0 -0.2

Friends 02 0.6 0.0 0.0

Empathetic 0.0 -0.4 0.8 -0.6

PersonaChat 0.2 -0.6 0.0 0.6

Response Selection Casino 0.6 -0.6 0.2 0.4
6 Models DailyDialog++ | 0.0 0.4 0.6 02
MuTual 0.0 0.4 0.6 0.2

| AVGT | 014 | 014 | 014 | -0.02

. . Empathetic 0.33 033 033 1.0
EmOt‘g“MRZ“{gmt"’" DailyDialog | -0.33 0.33 033 1.0
odels Friends 0.33 -0.33 1.0 1.0

| AVGr | 01l | 011 | 033 | -033

. . Dream 0.33 1.0 1.0 0.33
Q“e“g’l‘\‘dAﬁwermg CIDER 1.0 0.33 0.33 033
odels Friends 0.33 1.0 1.0 0.33

| AVGT | 055 | 077 | 077 | 033

. e DDRel 0.66 1.0 1.0 0.66
Relation Classification | pialogRE 0.0 0.33 0.33 1.0
ReDocRED 0.0 0.33 0.33 0.66

| AVGT | 022 | 055 | 055 | 077

average performance is at least as good as V-Usability and Naive method in all tasks. Its perfor-
mance is similar to V-Usability in Question Answering and Relation Classification. However it
shows a better average performance on Emotion Recognition (+0.44 in 7), and Response Selection
(+0.28 in 1), which supports the idea of selecting a subset of the source dataset based on the target
dataset and computing their V-Usability can lead to better transferability estimation.

T-Measure is more robust compared to Naive method. We observe that Naive method is only
creating a reasonable ranking of models for the task of Response Selection. While it fails in order-
ing the trained models for more challenging tasks of Emotion Recognition, Question Answering and
Relation Classification. This failure is more prominent in the scenario where the available trained
models have high variability in their reported source performance. For example, in the task of Emo-
tion Recognition, the model trained on the DailyDialog dataset achieves 80% accuracy while the
models trained on Empathetic and Friends datasets achieve 44% and 38% accuracy on their corre-
sponding sources. However DailyDialog is not always the best performing model for a new target
dataset. Tables [4] [6] contain the model ranking scenario for the Emotion Recognition task which
provides justification for employing a T-Measure rather than ranking based on model performance
on source datasets. Although the naive model performs better than random ranking for all tasks on
average. Refer to the appendix for the table of model accuracy for all datasets and tasks.
T-Measure presents less performance variation in comparison to PARC. We observe that T-
Measure presents less variation compared to PARC. Figure [6] presents boxplots of ranking perfor-
mance of the methods. We observe that except Relation Classification tasks, the interquartile range
of T-Measure is above the other measures. Moreover the interquartile range of T-Measure is smaller
than PARC across Response Selection, Emotion Recognition and Question Answering indicating
a more robust performance compared to the PARC family. We observe that PARC based transfer
measures do not show consistent advantage over T-Measure in Table[I2] Though they have a better
performance on Relation Classification, their performance on the rest of tasks is not competitive to
T-Measure. We believe this issue is mainly rooted in the zero-shot characteristics of our problem.
Relative F1 score of the selected model is high for most measures. Relative F1 score of T-
Measure based selected model is always better than PARC. We observe that for the Response
Selection task, the reported relative F1 is high for all the methods. This is mainly because of the
high performance of all source models on all targets. In other words, the difference between per-
formance of the best model and other models for every target was not high which resulted in high
values of relative F1 for all methods. Therefore, for the Response Selection task, not choosing the
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best performing model has negligible impact. However in Emotion Recognition, Question Answer-
ing and Relation Classification, the performance of the best performing model is higher compared
to the other methods. We observe that for Question Answering and Relation Classification, model
selection based on T-Measure has resulted in getting a model with relative F1 > 0.9. Which makes
T-Measure a more reliable criteria compared to PARC based methods. Furthermore, we can con-
clude that for all tasks except Emotion Recognition, T-Measure failure cases in choosing the best
performing model happens when the difference in performance of the best model and another model
is not high. T-Measure failure in Emotion Recognition is mostly due to the difference in label distri-
bution of the datasets, i.e. the DailyDialog dataset frequently includes “no emotion” label whereas
the Empathetic dataset rarely has a ’no emotion” label.

6 RELATED WORK

As pre-trained models and transfer learning gain traction, the issue of model selection in trans-
fer learning has recently garnered significant attention. Transferability is a complex combination
of model parameters (Jiang et al.l 2019b; [Yang et al.| [2022), training, task definition, and dataset
Sinapov et al., 2015 A number of contemporary studies have concentrated on evaluating and es-
timating the transferability of models across various transfer settings. Specifically, (Bolya et al.,
2021} [Kornblith et al.l[2018)) examined trained models to discern features that optimize transfer ca-
pabilities. (Bolya et al., [2021)) introduced a scalable framework designed to predict the accuracy of
a model on a specific dataset post-fine-tuning, while (Kornblith et al., 2018)) demonstrated a corre-
lation between the accuracy of pre-trained and fine-tuned models.

Another body of work, including (Bao et al.,2019;|Nguyen et al., 2020; [Tran et al., 2019), has zeroed
in on quantifying and characterizing different tasks, with (Achille et al.|[2019) shedding light on task
transfers in particular. Among these, (Bao et al.,[2019) introduced an innovative metric, the H-score,
which provides a straightforward evaluation method for gauging the efficacy of transferring repre-
sentations between tasks in classification contexts. LEEP, as detailed in (Nguyen et al., 2020)), offers
a quantitative metric for the ease of transferring knowledge between classification tasks. (Tran et al.,
2019), on the other hand, evaluates the complexity of supervised classification tasks by analyzing
label statistics as if they were random variables. Additionally, (Albalak et al., 2022)) established a
benchmark specifically for task transfers in dialogue systems. Recently, (Tan et al.,2021) introduced
a transferability measure which takes into account data difficulty and task difficulty.

Previous transfer measures, are built on the assumption of having enough labeled data in the target
task and domain. However, in the real world, there often isn’t readily available annotated data,
or creating such datasets can be prohibitively costly (Tan et al., 2018). This situation highlights
the practical significance of transfer learning, particularly in cases where labeled data is scarce or
expensive to obtain. A body of work Ben-David et al.| (2010); Huang et al.| (2021); L1 et al.| (2020)
has focused on methods for unsupervised domain adaptation. More recent works, such as (Huh et al.,
2016; |Yan et al., [2020; Zhao et al.| [2022; [lyas et al., |2022), delved into quantifying the attributes
of the source dataset and its influence on transferability. For instance, (Yan et al., [2020) developed
a data server that identifies the most pertinent subset of source data for a novel dataset, and (Zhao
et al} |2022) investigated the specific characteristics of data that enhance its suitability for few-shot
learning and questioned if these are independent of adaptation methods.

Recent research has been looking at pre-trained models and the representation they learn (Peters
et al., [2019). More specifically, it’s trying to understand and predict how these models behave in
transfer learning(You et al., [2021} Jiang et al., 2019a; |Peters et al., | 2019).

7 CONCLUSION AND FUTURE WORK

In this paper, we defined the problem of data-centric transfer estimation in zero-shot transfer. We
introduced T-Measure and proposed the method to estimate it. We conducted experiments to show
the effect of using the introduced transfer measures for the model selection task. In the future, we
plan to expand the T-Measure estimation to estimate transferability based on other transfer con-
founders. In particular, we plan to introduce a general transfer measure and model selection tool
which can help people with choosing the best model based on their conditions and requirements.
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A APPENDIX

A.1 DATASETS

Daily Dialog (Li et al., [2017) is a dyadic text dataset containing conversations like typical daily
communication. The conversations are short and focused on a specific topic. The conversations in
this dataset have utterance level annotation for the task of emotion recognition and dialog act. The
annotation for the emotion recognition are based on six basic emotions(Ekman et al., [1999)).

Daily Dialog++ (Sai et al., 2020) is an extension of Daily Dialog that contains incorrect response
options for each utterance. The incorrect responses are two types i.e. random and adversarial. Ran-
dom incorrect responses are utterances randomly selected from other conversations. Adversarial
incorrect responses are created by human annotators.

Friends(Zahiri & Choil, [2017) is a dataset based on the popular sitcom with the same name. This
dataset contains transcript of conversations among actors and actresses for all 10 seasons of the
show. The dataset is annotated for several tasks: emotion recognition, causal entailment, question
answering, etc.

Empathetic dialogs(Rashkin et al., 2018)) includes conversations with dialog level emotion annota-
tion. The emotion labels include 32 classes.

Topical chat(Gopalakrishnan et al., [2019) is a conversational dataset, where each conversation is
focused on one topic selected from 8 specific topics. The dataset is created via MTurk.

Persona chat(Zhang et al., |2018)) is a dialog dataset collected via MTurk. In each conversation,
speakers are given a set of sentences called persona and are asked to talk and get to know the other
speaker.

CaSiNo(Chawla et al.,[2021) is a conversational dataset where speakers are negotiating for resources
in a limited domain. Each participant is given a set of requirements and preferences and negotiates
with another participant for resources such as Water. It includes utterance level annotation for the
participant strategy for negotiation.

Reflect(Zhou et al., |2022a) is a dialog dataset created based on the one-to-many property of con-
versations. It includes 5 different inference types and responses based on them for the utterances
collected by human.

MuTual(Cui et al., 2020) is a conversational dataset translated from Chinese Reading Comprehen-
sion exam. It includes multi-turn dialogues. It includes annotations for the task of response selection
in multi-turn dialogues.

CIDER (Ghosal et al., 2021)) is a conversational dataset annotated for the task of dialog explana-
tion. Additionally it includes annotation for tasks of span extraction, common sense inference and
multiple choice span selection.

DREAM (Sun et al., 2019) is a multiple choice question answering dataset. Documents are conver-
sations selected from the English-as-a-foreign-language examinations and questions are created by
human experts.

ReDocRED (Tan et al., 2022) is a revision of the DocRED dataset which is widely used for docu-
ment level relation extraction. It includes annotation for 95 different relations.

DDRel (Jia et al.,|2020) is a dataset for interpersonal relation classification in dyadic conversations.
The conversations are extracted from movie scripts in IMSDB and they include annotation for 13
classes of relations.

DialogRE (Yu et al., [2020) is a human annotated conversations extracted from Friends sitcom. It
includes annotation for 36 relation types between a pair of arguments in a dialogue.

A.2 ADAPTING TASK-CENTRIC TRANSFER MEASURES

As mentioned in 3| T-Measure is the first data-centric transfer measure in zero-shot setting. In this
section, we create semantically equivalent data-centric measures based on previous task-centric mea-
sures. Particularly, we create data-centric Pairwise Annotation Representation Comparison (PARC)
based on the task-centric PARC (Bolya et al., [2021}).
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Pairwise Annotation Representation Comparison (PARC) is a measure to compute the trans-
ferability of the model during task transfer i.e. for a trained model ¢ with parameters (Ts,¢, D, 3),
PARC estimates the transferabilty of ¢ on a target task 7},.,. To compute the transferabiltiy it re-
quires a labeled set of the dataset D for T}, which they refer to as the target probe set P. We
represent probe set P as a set of pairs (x, y) where x is a datapoint in D and y is its label for T},.,.
PARC computes the following distance matrices given the probe set P:

Ay =1—corrcoef(f(z)) , Aurg =1—corrcoef(g(y)) (14)

where correcoef is the Pearson corelation matrix, f(z) is the feature vector of the datapoint x and
g(y) is a function of the label of dataset. e.g. for the task of classification g can be the one-hot vector
of the classes. Then they compute the transfer estimation as:

PARC(¢,P) = Spearmanr({Ayi,j] : i < j}, {Awgli,j] : 1 < j}) (15)

PARC assumes that model transferability is higher if datapoints with similar features have similar
label for the target task. Therefore it estimates the corelation between distance matrices of datapoint
in the feature space and in the target label space.

We use the similar idea of pairwise distances and create data-centric PARC in zero-shot setting. For
a trained model ¢ with parameters (7', Ds,, 3), data-centric PARC, estimates the transferabiltiy of
¢ on target dataset Dy,.,. Let P be an unlabeled probe set from D;,.,. We create distance matrices:

Ay =1—corrcoef(R(x)) , Airg=1— corrcoef(¢p(z)) (16)

Where x is a datapoint in the probe set and ¢(x) is the models output for the datapoint  and R(x)
is the representation of the datapoint in a dataset representation space R. Similar to the task-centric
PARC, we compute the transferability as follows:

PARC 414(9, P) = Spearmanr({Ae[i, j] : i < 3}, {Auwgli, 4] 1 1 < j}) (17)
We implement different versions of PARC by assigning different representation space R and probe

sets.

A.3 MODEL SELECTION EXPERIMENT

In this section, we include the additional tables used to create the final model selection evaluation
table. Tables [4] [5] [0 [IT] contain the ground truth of models performance in zero-shot transfer for
different tasks. Table|6] [7} [B] [I0] contains the T-Measure values assiged for each source task give a
target dataset.

Table 4: Accuracy of the transferred models for ERC.

\ Source Dataset

Target Dataset | Empathetic | DailyDialog | Friends

Empathetic 0.44 0.31 0.28
DailyDialog 0.11 0.8 0.35
Friends 0.18 0.49 0.38

Table 5: Accuracy of the transferred models for QA.

\ Source Dataset
Target Dataset | DREAM | CIDER | Friends

DREAM 0.43 0.54 0.58
CIDER 0.44 0.99 0.97
Friends 0.48 0.83 0.88

A.4 RESULTS
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Table 6: T-Measure for ERC.

\ Source Dataset

Target Dataset | Empathetic | DailyDialog | Friends

Empathetic 0.50 0.44 0.19
DailyDialog 0.26 0.44 0.18
Friends 0.26 0.47 0.24

Table 7: T-Measure for QA.

\ Source Dataset
Target Dataset | DREAM | CIDER | Friends

DREAM 1.13 0.56 0.63
CIDER 0.62 0.57 0.71
Friends 0.61 0.65 0.59

Table 8: T-Measure for RC.

\ Source Dataset
Target Dataset | DDRel | DialogRE | ReDocRED

DDRel 0.27 1.80 0.43
DialogRE 0.08 1.76 0.35
ReDocRED 0.13 1.83 0.51

Table 9: Accuracy of the transferred models for RC.

\ Source Dataset
Target Dataset | DDRel | DialogRE | ReDocRED

DDRel 0.29 0.49 0.23
DialogRE 0.07 0.76 0.8
ReDocRED 0.01 0.98 0.99

Table 10: Accuracy of the transferred models for RS.

\ Source Dataset

Target Dataset | DailyDialog | Friends | Empathetic | PersonaChat | Casino

DailyDialog 0.72 0.76 0.75 0.72 0.61
Friends 0.44 0.75 0.60 0.72 0.62
Empathetic 0.40 0.63 0.63 0.69 0.70
PersonaChat 0.56 0.73 0.61 0.81 0.59
Casino 0.40 0.64 0.69 0.76 0.74
DailyDialog++ 0.87 0.73 0.71 0.70 0.70
MuTual 0.63 0.66 0.59 0.72 0.73
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Table 11: Accuracy of the transferred models for RS.

Source Dataset

Target Dataset | DailyDialog | Friends | Empathetic | PersonaChat | Casino

DailyDialog
Friends
Empathetic
PersonaChat
Casino
DailyDialog++
MuTual

1
0.99
1
1
0.94
1
0.74

0.99
0.98
1
0.99
0.89
1
0.72

0.99
0.9
1
0.99
0.89
1
0.71

0.99
0.96
1
1
0.9
1
0.71

0.99
0.95
1
1
0.97
1
0.72

Table 12: The result of model selection based on different transfer measures. The reported numbers
are the Kendall-7 of the ranked models based on the given transfer measure. The size of the probe
set in this experiment for all targets is 100. The PARC(SBERT) is the PARC based model that uses
SentenceBERT for data representation. PARC(Rj,..) is a PARC based model that uses a source
dataset specific representation space. PARC(TRG) is the version which considers the point-wise

co-relation between target and source in computing the transfer measure.

Task | Target Dataset | Naive | V-Usability | T-Measure | PARC(SBERT) | PARC(R,,.) | PARC(TRG) | TM
DailyDialog | 0.4 08 0.0 0.2 0.4 08
Friends 0.2 0.6 0.0 0.0 0.4 0.2
Empathetic 0.0 04 0.8 0.6 0.4 0.4
PersonaChat 0.2 -0.6 0.0 0.6 -0.2 0.4
Response Selection Casino 0.6 -0.6 0.2 0.4 0.6 0.4
6 Models DailyDialog++ | 0.0 0.4 0.6 0.2 0.4 0.2
MuTual 0.0 0.4 0.6 0.2 0.4 0.4
AVG T 0.14 0.14 0.14 -0.02 0.09 0.05
Relative F1 | 0.994 0.994 0.949 0.913 0.904 0.904
. . Empathetic | 0.33 033 033 -1.0 -1.0 1.0
Em"“g’;vﬁzzﬁsg“‘“"" DailyDialog | -0.33 0.33 033 1.0 1.0 1.0
Friends 0.33 033 1.0 -1.0 -1.0 1.0
AVG T 0.11 0.11 0.33 033 033 0.33
Relative F1 | 0.901 0.501 0.637 0.501 0.37 0.803
. - Dream 0.33 1.0 1.0 0.33 0.33 0.33
Q“eSt;";'AA;sl:Ve"“g CIDER 1.0 0.33 033 033 033 1.0
0dels Friends 0.33 1.0 1.0 0.33 033 -0.33
AVG T 0.55 0.77 0.77 0.33 0.11 0.33
Relative F1 | 0.960 0.962 0.966 0.943 0.924 0.966
. o DDRel 0.66 1.0 1.0 0.66 0.66 0.33
Relation Classification | piyogrE | 0.0 033 0.33 1.0 0.66 10
ReDocRED 0.0 0.33 0.33 0.66 0.66 0.33
AVG 7 0.22 0.55 0.55 0.77 0.66 0.55
Relative F1 | 0.823 0.979 0.979 0.556 0.843 0.559
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