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Abstract

Large vision-language models (LVLMs) have
shown remarkable performance in visual-
language understanding for downstream mul-
timodal tasks. While their capabilities are
improving, problems emerge simultaneously.
Among those problems, the hallucinations have
attracted much attention, which stands for the
phenomenon where LVLMs generate contra-
dictory content to their input visual and text
contents. Many approaches have been pro-
posed to deal with this issue, such as con-
trastive decoding and attention manipulation.
However, contrastive decoding methods strug-
gle in constructing appropriate contrastive sam-
ples, and attention manipulation methods are
highly sensitive, lacking stability. In this work,
we propose image head Masked Contrastive
Decoding (MaskCD). Our approach utilizes
the "image heads" in LVLMs, masking them
to construct contrastive samples for contrastive
decoding. We evaluated MaskCD on LLaVA-
1.5-7b and Qwen-VL-7b, using various bench-
marks such as CHAIR, POPE, and MME. The
results demonstrate that MaskCD effectively al-
leviates the phenomenon of hallucinations and
retains the general capabilities of LVLMs.

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020,Brown et al., 2020,0penAl, 2023) have
achieved remarkable success in understanding hu-
man instructions and performing diverse tasks.
Building on this progress, recent efforts have ex-
tended LLMs to develop Large Vision-Language
Models (LVLMs) (Bai et al., 2023b,Li et al.,
2023a,Dai et al., 2023,Zhu et al., 2023,Ye et al.,
2023,Liu et al., 2023b), which integrate visual and
textual modalities for multimodal reasoning. Al-
though researchers have already achieved remark-
able success in applying LVLMs into several tasks,
problems have emerged as well. Within these prob-
lems, the hallucination (Zhang et al., 2024 ,Kamath
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Figure 1: Pipeline of MaskCD.The upper part shows
the first step. The image head mask is constructed by
querying LVLM with images and prompt texts. Then,
the lower part shows how to use the image head mask
in the process of contrastive decoding.

etal.,2023,Li et al., 2023b) has attracted significant
attention.

The hallucination of LVLMs is a phenomenon in
which models tend to generate contradictory con-
tents for the inputs, especially images. This may
manifest as generating non-existent objects, mistak-
enly described attributes, or non-sense sentences.
All kinds of hallucinations enormously lower users’
trust in the model and even cause fatal damage
when applied in real-world tasks like auto-driving
and medical image processing.

To mitigating the hallucination phenomenon, re-
searchers have promoted multiple methods, which
could be classified into two main categories ac-
cording to whether training is needed. Firstly,
training-involved methods (Lee et al., 2024,Chen
et al., 2024,Liu et al., 2024a) collect massive
delicately-constructed data to fine-tune or post-
train the LVLMs, so as to teach models to generate
less hallucinated content. It features with a high-
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Figure 2: Visualization of image heads in LLaVA-1.5-7b. The left figure shows the image head distribution of
real-world images, while the right one represents the results of Dall-E generated artificial images. It is evident that
there are certain heads that tend to pay high attention on image tokens, therefore we name them with "image head".

cost of computation resources and massive human
labor. On the contrary, training-free methods are
developed to alleviate hallucination at a lower cost.
Prevailing methods include contrastive decoding
(CD) (Leng et al., 2024,Favero et al., 2024,Woo
et al., 2024) and attention manipulation (Tu et al.,
2025,Huang et al., 2024 ,Liu et al., 2024b). CD
methods need an injured input as the bad sample,
whose output logits will be subtract from the orig-
inal one. It would take two times of inference
cost, one for the original input, the other for the
injured one. But with delicately constructed bad
samples, CD methods have presented prominent
performance in mitigating the LVLMs’ hallucina-
tion phenomenon. Recently, with the progress in
understanding models’ inner working mechanisms,
methods of attention manipulation have come up.
Specifically, abnormal attention map phenomena,
such as excessive local attention in the attention
sink phenomenon (Favero et al., 2024,Xiao et al.,
2024), will be directly reduced or redistributed.
This method features in better align visual and text
modal, enabling models to better and truly utilize
visual information.

Although the need for training has been elim-
inated, both the CD and attention manipulation
methods have their drawbacks. The performance
of CD methods is heavily depended on the qual-
ity of the constructed bad sample. If the injured
sample still contains a lot of useful information,
then the contrast operation may even cause worse
results. For the attention manipulation methods,

models are highly sensitive to changes in the atten-
tion score and are not as stable as CD methods in
terms of overall testing scenarios.

Therefore, we hope to construct high-quality bad
samples through the angle of attention distribution,
thereby combining the advantages of CD meth-
ods and attention manipulation methods, balancing
stability and hallucination-mitigating performance.
To observe the model’s attention preference to im-
ages at head-level, we randomly select 500 images
in the validation set of COCO 2014(Lin et al., 2014)
and 500 Dall-E generated artificial images from
MMrel (Nie et al., 2024). Put them into LLaVA-1.5-
7b (Liu et al., 2023b) with the prompt text "Please
describe this image in detail." and record the sum
of the attention scores obtained by each head in
each layer of the model for each token generation.
Finally, under different thresholds, the number of
times each head pays excessive attention to the im-
age token during the generation of each token is
calculated.

The normalized result is visualized in Figure
2. We observed that whether real-world images
or Al-generated images, there are certain heads
in LLaVA-1.5-7b that prefer to give image to-
kens comparably high attention scores. Since they
present an inclined focus on visual information, we
name them "image heads". Given that the essence
of CD methods is making the subtracted samples
contain only invalid information as much as pos-
sible, we choose to mask these image heads to
construct bad samples, so as to prevent the bad



samples from accessing useful visual information
more precisely.

In this way, we proposed image head Masked
Contrast Decoding (MaskCD), which uses image
head attention masks to construct delicate bad sam-
ples and attain significant hallucination-mitigating
performance.

Our contributions can be summarized as follows:

* We identify "image heads" in LVLMs that
disproportionately attend to image tokens.

* We propose MaskCD, a contrastive decod-
ing method that features in using image head
masking to construct degraded visual inputs.

* We demonstrate, through extensive experi-
ments, that MaskCD outperforms existing hal-
lucination mitigation methods across multiple
benchmarks while preserving general model
capabilities.

2 Related Work
2.1 Large Vision-Language Model

Recently, efforts have been made to enhance Large
Vision-Language Models, aiming to equip LLMs
with the ability to process visual information like
images or videos. LVLMs are typically constructed
by three components: a visual encoder to extract
visual features, a modality connection module to
bridge visual and text modal, and an LLM for fur-
ther tasks. The visual encoder and LLM are typi-
cally fixed pretrained models; common choices are
CLIP model (Radford et al., 2021) variants for the
visual encoder, and LLaMA (Touvron et al., 2023)
or Vicuna (Chiang et al., 2023) for the LLM.

Research focuses on optimizing modality con-
nection modules, so as to better utilize visual and
text information at the same time. Different con-
nection modules lead to diffent LVLM types: cross-
attention module in Flamingo(Alayrac et al., 2022),
Q-former in BLIP-2(Li et al., 2023a), and simple
linear layer in LLaVA(Liu et al., 2023b) model
series.

2.2 Hallucination in LVLMs

Multimodal hallucination phenomenon, typically
presented as LVLM generates inconsistent content
from the input, especially those it contradictory
with visual information. For example, in the image
captioning task, LVLM may generate objects that
do not exist in the input images (Li et al., 2023b), or

mistakenly describe attribution of existing objects
like counts, color and spatial relationship (Kamath
et al., 2023).

The methods for alleviating LVLM hallucina-
tions can be classified according to whether train-
ing is required. Training-involved methods typ-
ically uses constructed data to fine-tune or post-
train LVLMs. For example, Hu et al. (2023), Liu
et al. (2023a) uses contrastive question-answer
pairs to fine-tune LVLMs, and Sun et al. (2024) em-
ploys Reinforcement Learning from Human Feed-
back (RLHF) to enhance multimodal connections.
Training-free methods are prevailed by contrastive
decoding and attention manipulation. The core
of CD methods is constructing bad samples that
contain useful information as less as possible. Dif-
ferent constructing means like image editing(Woo
et al., 2024,Leng et al., 2024), text editing(Wang
et al., 2024) and model bias(Zhu et al., 2024) are
developed to achieve this goal. Attention manip-
ulation method would reduce(Huang et al., 2024)
or redistribute(Tu et al., 2025) excessive attention
scores, so as to steer LVLMs to pay more attention
to visual information.

CD methods perform well in hallucination-
mitigating tasks but are highly dependent on the
quality of the bad samples constructed. If the in-
jured sample still contains a lot of useful infor-
mation, the contracting operation may cause an
even worse result. Attention manipulation methods
cost fewer computation resources but are highly
sensitive to parameters, presenting unstable perfor-
mances. Our research constructs bad samples from
the perspective of attention, filtering out useful in-
formation so that the bad samples only carry the
information that needs to be offset, thereby achiev-
ing a stable and high-quality effect.

3 Methodology

3.1 Task Formation

Typically, LVLMs aim to generate proper text out-
puts from multi-modal inputs, especially combined
visual and textual data. The visual encoder extracts
visual features, then passes them to the modal con-
nection module, where visual features are mapped
into the text semantic space. The mapped features
are combined with textual tokens, either through
concatenation(Liu et al., 2023b) or cross-modal fu-
sion(Dai et al., 2023). The final combined features
are then passed into the LLLM to generate outputs
autoregressively. Formally, given an input image



1, corresponding question text (), and already gen-
erated tokens y., the next token g, is decoded
according to the probability distribution:

p(ye) = po(ye | I, Q. y<t) (1)

where 0 represents the parameters of the LVLM.
The goal of hallucination mitigation is to make out-
put sequences contain less contradictory content.

3.2 Formulating image heads masks

LLM:s in prevailing LVLMs are most decoder-only,
use an attention mechanism to capture the blend-
ing of textual and visual features. Formally, the
attention matrix A is calculated by:

QKT
Vi

where () and K denotes queries and keys respec-
tively, d represents the dimension of key vectors.
Each row of the attention matrix A indicates the
proportion of attention that the current token has
invested in the previously generated token. We be-
lieve that the higher the sum of the values obtained
by the image tokens in the attention matrix is, the
more attention the visual information will receive.

There are multiple attention heads in each layer
of the LLM, each of which calculates its own at-
tention matrix. We randomly selected 500 images
from the validation set of COCO 2014(Lin et al.,
2014), input them into LVLMs with the text *Please
describe this image in detail’, then record the sum
of the attention scores for the image token in the
attention matrix of each head in each layer of the
model when each token is generated. With a thresh-
old 7, we obtain the attention head matrix where
each element represents how many times this at-
tention head has paid over-threshold attention pro-
portion to image tokens (as shown in Figure 2).
After normalization, the non-zero attention heads
in the attention head matrix are named image heads.
Lastly, by masking the selected image heads, the
image head mask is constructed.

Apparently, the number of image heads varies
with the change of 7. Table 1 shows the number
of image heads of LLaVA-1.5-7b and Qwen-VL-
7b(Bai et al., 2023b) given different threshold 7
values. Intuitively, if the threshold is too high and
too few bad samples are masked, then useful infor-
mation will still be contained in the bad samples; If
the threshold is too low, causing the heads that do
not pay much attention to the image to be masked

A = softmax( ) (2)

Model T # image heads proportion
0.95 192 18.75%
0.9 238 23.24%
0.8 315 30.76%
LLaVA-1.5-7b 5 364 35.55%
0.6 424 41.41%
0.5 506 49.41%
0.99 248 24.22%
0.975 317 30.96%
Qwen-VL-7b ) o5 395 38.57%
0.9 473 46.19%

Table 1: The number and proportion of image heads
corresponding to the variation of 7. T represents the
threshold of considering "high" attention scores paid on
image tokens of a head.

as well, the reduction effect of the CD method on
semantic information will be weakened. Therefore,
choosing the appropriate threshold is an important
issue.

3.3 MaskCD

When using an image head mask to construct a bad
sample, the masked heads’ attention output will
be set to zero. Since this method is equivalent to
setting the parameters of the corresponding head
to zero, we use #,, to represent the model where
the image heads are masked. However, in actual
operation, only the attention value is changed; no
model parameter will be modified.
Then MaskCD is formulated as equation 3:

p(yr) = softmax((l + ) - logitsy (y: |1, Q, y<t)

— o -logitsy (|1, Q, y<t))
3)

where logits represents the value of p(y|1, Q, y<¢)
before softmax operation. « is a hyperparameter
that controls the intensity of contrast.

By subtracting the output logits of bad samples
from the original one, MaskCD enables the final
output logits to utilize only the truly useful vi-
sual and textual information as much as possible,
thereby alleviating the hallucination phenomenon
of LVLMs.

4 Experiment Settings

4.1 Benchmarks

CHAIR The Caption Hallucination Assessment
with Image Relevance (CHAIR) (Rohrbach et al.,
2018) is a widely used metric for evaluating object



hallucination in image captioning tasks. CHAIR is
used to measure the hallucination proportion of the
model’s generated texts. It evaluates hallucination
on two aspects: CHAIRg and CHAIR;. The former
calculates the proportion of sentences containing
hallucinations at the sentence level, while the latter
computes the hallucinated ratio at the object level.
The two metrics can be formulated as:

CHAIRs — |{sentences w/ hallucinated objects}|
|{all captions sentences }|

|{hallucinated objects} |

|{all mentioned objects} |

CHAIR; =

“)

We randomly selected 500 images from the vali-
dation set of COCO 2014(Lin et al., 2014) and used
the prompt "Please describe this image in detail."
to obtain the generated captions.

POPE The Polling-based Object Probing Eval-
uation (POPE) (Li et al., 2023b) is a benchmark
for assessing object hallucination. LVLMs are re-
quired to answer formatted questions like "Is there
a <object> in the image?" with "Yes" or "No". The
answers’ yes-no ratio is designed to be 50% for
each response. The complete POPE test is divided
into three splits: random, popular and adversar-
ial, in which missing objects are randomly selected,
most frequently occurring in the dataset, and highly
correlated with those present in the image, respec-
tively.

We choose MSCOCO dateset for POPE evalu-
ation. The key evaluation metrics are: Accuracy,
Precision, Recall, and F1 score.

MME The Multimodal Large Language Model
Evaluation (MME) (Fu et al.,, 2023) assesses
LVLMs using set of comprehensive metrics. MME
benchmark contains 14 subsets, so as to evalu-
ate LVLMs’ general capabilities. Following the
methodologies of (Yin et al., 2023), when pre-
senting the test results of all subsets of MME,
we divide them into two groups: hallucination
and non-hallucination. The hallucination group
includes "existence", "counts", "color" and "po-
sition", which evaluate LVLMs at the object and

attribute level,s respectively.

4.2 Models

LVLM Models We select LLaVA-1.5-7b and
Qwen-VL-7b for evaluation. Each model utilizes
Vision Transformer (ViT) as the backbone of its

visual encoder, but employs different modal con-
nection module and LLMs. LLaVA-1.5-7b directly
projects visual embeddings into semantic space
through multi-layer perception(MLP), while Qwen-
VL-7b utilizes a position-aware vision-language
adapter to compress image features. As for the
LLM part, LLaVA-1.5-7b utilizes vicuna as LLM
backbone, while Qwen-VL-7b’s counterpart is
Qwen(Bai et al., 2023a). The LLM backbones are
both constructed by 32 layers of decoder blocks,
and each layer contains 32 heads, resulting in 1024
heads in total.

4.3 Baseline Methods

We compare MaskCD with three classic and effec-
tive hallucination mitigating methods: VCD(Leng
et al., 2024) uses random Gaussian noise to contam-
inate the original image, reducing the valid infor-
mation it contains and thus serving as a bad sample.
M3ID(Favero et al., 2024) deletes the image for
the bad sample input, and slightly changes the con-
trastive decode function. Both of the above meth-
ods belong to the CD category. OPERA (Huang
et al., 2024) takes advantage of the attention
sink phenomenon, punishes overly concentrated
attention, and combines it with a retrospection-
allocation strategy. It is an attention manipulation
method based on a beam search strategy. MaskCD
is a CD method that only masks the model’s inner
values to construct bad samples, distinguishing it
from other CD-class methods.

S Result and Analysis

5.1 Overall Result

CHAIR Table 2 shows the overall results for
CHAIR evaluation. MaskCD gained evidently
better performance compared with other meth-
ods. Specifically, MaskCD lowers CHAIR_s and
CHAIR_i by 19.12% and 29.87% for LLaVA-1.5-
7b, and achieves 75.59% and 50.57% decrease for
Qwen-VL-7b. This indicates that our proposed im-
age heads masks are quite effective in hallucination
mitigating. Moreover, MaskCD outperforms VCD
and M3ID, demonstrating that the bad samples con-
structed by masking the image head contain less
effective information, thereby achieving better re-
sults among similar CD methods.

POPE Table 3 shows the evaluation results of
POPE benchmark. For both LLaVA-1.5-7b and
Qwen-VL-7b, MaskCD represents comparable per-
formance with OPERA, outperforms the baseline



Method LLaVA-1.5-7b Qwen-VL-7b

CHAIR_s | CHAIR_i|] Precision Fl1 CHAIR_s | CHAIR_i| Precision Fl1
Baseline 50.20 15.40 72.10 73.50 50.8 17.4 68.3 63.0
VCD 55.6 16.4 71.7 75.2 48.4 16.7 68.1 64.6
M3ID 554 15.5 70.6 75.7 39.8 8.8 772 75.6
OPERA 45.8 13.5 76.6 77.8 42.3 11.8 75.5 76.3
MaskCD 40.6 10.8 79.1 78.2 124 8.6 88.5 64.3

Table 2: Results on benchmark CHAIR. CHIAR_s and CHAIR_i are hallucination ratio evaluation metrics, lower
scores represent better performances. The Baseline method denotes the standard decoding. The best performances
within each setting are bolded. Comparable but not the best performances are underlined.

LLaVA-1.5-7b Qwen-vl-7b

Setup  Method —r = lT FIT Acc.T Recall] FIT
Baseline 8290  72.07 80.82 8197 77.67 8LI6

VCD 8557 7627 84.09 7620 8173  77.45

o M3ID 8527 7467 8552 7460  69.67 7328
OPERA 8930 89.00 8927 6633 8173 7745

MaskCD 8877 8747 88.62 8777 7947  86.66

Baseline  81.10 7427 7922 8020 7840 79.84

VCD  83.67 7234 8236 7230 8180  74.70

popular MPID 8360 7377 8199 7207 7033 7157
OPERA 8593 8796 8686 6677 73.67 6891

MaskCD  85.67 87.53 85.83 8657 79.40 85.53

Baseline  78.60  72.35 77.10 7843  78.60 7847

VCD 8107 7624 80.11 7157  83.07 71.50

dversariy M3ID BLS7 7336 8020 7183 70.67  71.50
OPERA 79.00 88.03 8091 67.50 73.67 69.38

MaskCD  79.63  87.53 8L12 8340 7927  82.68

Baseline  80.87 7290 79.05 8020 7822 79.82

VCD 8344 7495 8219 7336 8220 75.55

il M3ID 8348 7393 8257 7283 7022 72.12

OPERA 8474 8833 8568 6687 73.67 6897

MaskCD 84.88 8820 8548 8591 7938  84.96

Table 3: Results on benchmark POPE. The Baseline method denotes the standard decoding. The best performances
within each setting are bolded. Comparable but not the best performances are underlined.

Method Objectlevel Attributelevel Total Method Object-level Attribute-level ~ Total
existence count position  color existence count position  color
Baseline ~ 180.00 101.67 100.00 153.33 535.00 Baseline  105.00 83.33  50.00 136.67 375.00
VCD 175.00 106.67 111.67 146.67 540.01 VCD 86.67 91.67 41.67 111.67 346.00
M3ID 180.00  101.67 105.00 158.33 545.00 M3ID 11833 9833 51.67 125.00 331.68
OPERA  195.00 14833 12833 155.00 626.66 OPERA  93.67 8433 4667 12133 39333
MaskCD  195.00 168.33 133.33 150.00 646.66 MaskCD  111.67 95.00 65.00 138.33 410

Table 4: Results on benchmark MME (four hallucina-
tion subsets) of LLaVA-1.5-7b. The Baseline method
denotes the standard decoding. The best performances
within each setting are bolded. Comparable but not the
best performances are underlined.

and other CD methods, indicating its excellence in
hallucination alleviation. Furthermore, as taking

Table 5: Results on benchmark MME (four halluci-
nation subsets) of Qwen-VL-7b. The Baseline method
denotes the standard decoding. The best performances
within each setting are bolded. Comparable but not the
best performances are underlined.

computational cost into account, MaskCD achieves
a similar performance effect with a computational
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Figure 3: Visualization of MME scores of LLava-1.5-7b(left) and Qwen-VL-7b(right). Scores are normalized

by dividing maximum score of each subset.

cost lower than that of OPERA, demonstrating its
excellence.

MME Table 4 and Table 5 shows the results
on four hallucination-related MME subsets for
LLaVA-1.5-7b and Qwen-VL-7b, respectively.
MaskCD achieves best performances on every sin-
gle subset for LLaVA-1.5-7b and on attribute-level
subsets for Qwen-VL-7b. The evaluation on object-
level subsets of Qwen-VL-7b also achieves the
second-best results, representing the effectiveness
of MaskCD in alleviating hallucinations. Mean-
while, Figure 3 shows the overall results for all 14
subsets of the MME benchmark. It is evident that
besides the capability of mitigating hallucination,
MaskCD also retains or even partially improves the
model’s ability in general evaluation.

5.2 Ablation Study

In this subsection, we present ablation studies to
examine the impact of mask selecting and other
hyper-parameters. We conduct these experiments
with LLaVA-1.5-7b.

Mask selection To demonstrate the necessity of
masking the image heads rather than other heads,
for each image head mask in the settings, we ran-
domly select an equal number from other heads
to form a random mask. The method of using
these random masks for MaskCD is denoted as
MaskCD_r. Table 6, 7, and 8 show the performance
of MaskCD and MaskCD_r on CHAIR, POPE and
MME, respectively. The results show that masking
random heads also has a slight effect on alleviating
hallucinations, but it cannot compete with the re-
sults of masking image heads. It indicates that the
image heads indeed contain more useful and nec-

Method  CHAIR_s| CHAIR_i| Pre. Fl
Baseline 50.2 15.4 72.1 73.5
MaskCD 40.6 10.8 79.1 78.2
MaskCD_r 44.0 14.3 713 74.0

Table 6: Results of MaskCD and MaskCD_r on
CHAIR evaluation. "Pre." is the abbreviation for "Pre-
cision". It is evident that MaskCD_r indeed helps miti-
gate hallucination, but cannot compete with MaskCD.

Method ~ Accuracy Precision Recall Fl1
Baseline 80.87 87.62 72.07  79.05
All  MaskCD 84.88 83.11 88.20 85.48
MaskCD_r  83.61 90.67 7553 82.38

Table 7: Results of MaskCD and MaskCD_r on
POPE benchmark. MaskCD_r performs best on Preci-
sion metrics, but fails in Recall.

essary information, so it is rational to mask them
rather than other heads.

Object-level Attribute-level

Method - —
existence count position color
Baseline 180.00 101.67 100.00 153.33
MaskCD 195.00 168.33 133.33 150.00
MaskCD_r  190.00 133.33 123.33 150.00

Table 8: Results of MaskCD and MaskCD_r on the
hallucination-related subsets of MME. MaskCD_r
indeed helps slightly in mitigating hallucinations.

Mask proportion and CD tensity As mentioned
in section 3.2 and 3.3, there are two important
hyper-parameters in MaskCD: 7, as the threshold
for determining the image head, controls the num-
ber of masked heads; and «, which controls the
intensity of contrastive decoding operation.

We conduct ablation experiments of 7 and « on



Method 7 CHAIR s CHAIR i FI

Baseline / 50.2 154 73.5
095 468 129 770
0.9 40.6 108  78.2
0.8 40.8 147 748

MaskCD ) 5 48.4 13.0 764
0.6 49.6 140 759
0.5 54.8 144 752

Table 9: Results of MaskCD with different threshold
7. It can be seen that the value of 7 that is either too
small or too large is not conducive to dealing with hal-
lucination problems.

Method «o CHAIR_s CHAIR_i Fi1

Baseline / 50.2 154 73.5
0.5 43.6 11.5 78.4
1.0 40.6 10.8 78.2
2.0 45.2 12.2 71.3

MaskCD 3.0 44.6 11.6 717.3
4.0 42.2 11.5 717.6
5.0 41.6 11.7 77.9
6.0 41.2 11.8 77.9

Table 10: Results of MaskCD with different . It can
be seen that even when « takes a large value, MaskCD
can still operate stably, effectively alleviating the hallu-
cination phenomenon.

LLaVA-1.5-7b with CHAIR evaluation. Table 9
shows the results of MaskCD with different thresh-
olds 7. It indicates that the best value of 7 is 0.9,
which means around 23% of the heads in LLaVA-
1.5-7b’s LLM backbone are recognized as image
heads and have been masked (according to Table
1). Whether too small or too big the value of 7 is,
the performances tend to decline, and even fail the
baseline when 7 is 0.5. This shows that the heads
to be masked should be delicately selected, and
MaskCD achieves this successfully.

Meanwhile, Table 10 shows the results of
MaskCD on CHAIR with different . « is a com-
mon hyperparameter in contrastive decoding ap-
proaches, whose value controls the intensity of the
contrast operation. It can be seen that even when
the value of « is quite large, MaskCD can still
operate stably and effectively alleviate the halluci-
nation phenomenon. It demonstrates the stability,
reliability and practicability of MaskCD as a CD
method.

6 Conclusion

In this paper, we first introduce the image heads:
the heads in LVLM’s LLM backbone that tend to
pay comparably high attention proportion on image
tokens. Then we propose the image head Masked
Contrastive Decoding (MaskCD) method, a novel
contrastive decoding approach featuring in mask-
ing image heads to construct contrastive samples.
MaskCD constructs the contrastive samples of CD
methods from the perspective of attention score,
combining the effectiveness and stability of these
two methods. Extensive experimental results on
CHAIR, POPE and MME demonstrate the effec-
tiveness and stability of MaskCD in mitigating the
phenomenon of hallucinations. We hope this work
can provide a new perspective for exploring future
efforts to alleviate hallucinations in LVLMs.

Limitations

Although MaskCD achieves significant perfor-
mance in hallucination mitigation, it still has sev-
eral limitations. First, MaskCD requires the use
of images for inference in advance to obtain the
masks of image heads, which occupy computing re-
sources. Secondly, although the process of obtain-
ing the mask is simple, the obtained mask is only
applicable to the same family of LLM backbones.
For new LLM bases, the corresponding masks need
to be re-obtained. This limitation encourages us to
explore how to dynamically construct masks dur-
ing the model’s operation, so as to get rid of these
restrictions.

Ethical Considerations

The main research objects of this work are alleviat-
ing hallucination phenomenon, which help avoid
disloyal contents generated by LVLMs. Moreover,
we conduct experiments on the public datasets,
which do not contain any offensive content or infor-
mation with negative social impact. Our research
contents are completely in line with the ethical re-
view.
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