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Abstract001

Large vision-language models (LVLMs) have002
shown remarkable performance in visual-003
language understanding for downstream mul-004
timodal tasks. While their capabilities are005
improving, problems emerge simultaneously.006
Among those problems, the hallucinations have007
attracted much attention, which stands for the008
phenomenon where LVLMs generate contra-009
dictory content to their input visual and text010
contents. Many approaches have been pro-011
posed to deal with this issue, such as con-012
trastive decoding and attention manipulation.013
However, contrastive decoding methods strug-014
gle in constructing appropriate contrastive sam-015
ples, and attention manipulation methods are016
highly sensitive, lacking stability. In this work,017
we propose image head Masked Contrastive018
Decoding (MaskCD). Our approach utilizes019
the "image heads" in LVLMs, masking them020
to construct contrastive samples for contrastive021
decoding. We evaluated MaskCD on LLaVA-022
1.5-7b and Qwen-VL-7b, using various bench-023
marks such as CHAIR, POPE, and MME. The024
results demonstrate that MaskCD effectively al-025
leviates the phenomenon of hallucinations and026
retains the general capabilities of LVLMs.027

1 Introduction028

Large Language Models (LLMs) (Brown et al.,029

2020,Brown et al., 2020,OpenAI, 2023) have030

achieved remarkable success in understanding hu-031

man instructions and performing diverse tasks.032

Building on this progress, recent efforts have ex-033

tended LLMs to develop Large Vision-Language034

Models (LVLMs) (Bai et al., 2023b,Li et al.,035

2023a,Dai et al., 2023,Zhu et al., 2023,Ye et al.,036

2023,Liu et al., 2023b), which integrate visual and037

textual modalities for multimodal reasoning. Al-038

though researchers have already achieved remark-039

able success in applying LVLMs into several tasks,040

problems have emerged as well. Within these prob-041

lems, the hallucination (Zhang et al., 2024,Kamath042

Figure 1: Pipeline of MaskCD.The upper part shows
the first step. The image head mask is constructed by
querying LVLM with images and prompt texts. Then,
the lower part shows how to use the image head mask
in the process of contrastive decoding.

et al., 2023,Li et al., 2023b) has attracted significant 043

attention. 044

The hallucination of LVLMs is a phenomenon in 045

which models tend to generate contradictory con- 046

tents for the inputs, especially images. This may 047

manifest as generating non-existent objects, mistak- 048

enly described attributes, or non-sense sentences. 049

All kinds of hallucinations enormously lower users’ 050

trust in the model and even cause fatal damage 051

when applied in real-world tasks like auto-driving 052

and medical image processing. 053

To mitigating the hallucination phenomenon, re- 054

searchers have promoted multiple methods, which 055

could be classified into two main categories ac- 056

cording to whether training is needed. Firstly, 057

training-involved methods (Lee et al., 2024,Chen 058

et al., 2024,Liu et al., 2024a) collect massive 059

delicately-constructed data to fine-tune or post- 060

train the LVLMs, so as to teach models to generate 061

less hallucinated content. It features with a high- 062
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Figure 2: Visualization of image heads in LLaVA-1.5-7b. The left figure shows the image head distribution of
real-world images, while the right one represents the results of Dall-E generated artificial images. It is evident that
there are certain heads that tend to pay high attention on image tokens, therefore we name them with "image head".

cost of computation resources and massive human063

labor. On the contrary, training-free methods are064

developed to alleviate hallucination at a lower cost.065

Prevailing methods include contrastive decoding066

(CD) (Leng et al., 2024,Favero et al., 2024,Woo067

et al., 2024) and attention manipulation (Tu et al.,068

2025,Huang et al., 2024,Liu et al., 2024b). CD069

methods need an injured input as the bad sample,070

whose output logits will be subtract from the orig-071

inal one. It would take two times of inference072

cost, one for the original input, the other for the073

injured one. But with delicately constructed bad074

samples, CD methods have presented prominent075

performance in mitigating the LVLMs’ hallucina-076

tion phenomenon. Recently, with the progress in077

understanding models’ inner working mechanisms,078

methods of attention manipulation have come up.079

Specifically, abnormal attention map phenomena,080

such as excessive local attention in the attention081

sink phenomenon (Favero et al., 2024,Xiao et al.,082

2024), will be directly reduced or redistributed.083

This method features in better align visual and text084

modal, enabling models to better and truly utilize085

visual information.086

Although the need for training has been elim-087

inated, both the CD and attention manipulation088

methods have their drawbacks. The performance089

of CD methods is heavily depended on the qual-090

ity of the constructed bad sample. If the injured091

sample still contains a lot of useful information,092

then the contrast operation may even cause worse093

results. For the attention manipulation methods,094

models are highly sensitive to changes in the atten- 095

tion score and are not as stable as CD methods in 096

terms of overall testing scenarios. 097

Therefore, we hope to construct high-quality bad 098

samples through the angle of attention distribution, 099

thereby combining the advantages of CD meth- 100

ods and attention manipulation methods, balancing 101

stability and hallucination-mitigating performance. 102

To observe the model’s attention preference to im- 103

ages at head-level, we randomly select 500 images 104

in the validation set of COCO 2014(Lin et al., 2014) 105

and 500 Dall-E generated artificial images from 106

MMrel (Nie et al., 2024). Put them into LLaVA-1.5- 107

7b (Liu et al., 2023b) with the prompt text "Please 108

describe this image in detail." and record the sum 109

of the attention scores obtained by each head in 110

each layer of the model for each token generation. 111

Finally, under different thresholds, the number of 112

times each head pays excessive attention to the im- 113

age token during the generation of each token is 114

calculated. 115

The normalized result is visualized in Figure 116

2. We observed that whether real-world images 117

or AI-generated images, there are certain heads 118

in LLaVA-1.5-7b that prefer to give image to- 119

kens comparably high attention scores. Since they 120

present an inclined focus on visual information, we 121

name them "image heads". Given that the essence 122

of CD methods is making the subtracted samples 123

contain only invalid information as much as pos- 124

sible, we choose to mask these image heads to 125

construct bad samples, so as to prevent the bad 126
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samples from accessing useful visual information127

more precisely.128

In this way, we proposed image head Masked129

Contrast Decoding (MaskCD), which uses image130

head attention masks to construct delicate bad sam-131

ples and attain significant hallucination-mitigating132

performance.133

Our contributions can be summarized as follows:134

• We identify "image heads" in LVLMs that135

disproportionately attend to image tokens.136

• We propose MaskCD, a contrastive decod-137

ing method that features in using image head138

masking to construct degraded visual inputs.139

• We demonstrate, through extensive experi-140

ments, that MaskCD outperforms existing hal-141

lucination mitigation methods across multiple142

benchmarks while preserving general model143

capabilities.144

2 Related Work145

2.1 Large Vision-Language Model146

Recently, efforts have been made to enhance Large147

Vision-Language Models, aiming to equip LLMs148

with the ability to process visual information like149

images or videos. LVLMs are typically constructed150

by three components: a visual encoder to extract151

visual features, a modality connection module to152

bridge visual and text modal, and an LLM for fur-153

ther tasks. The visual encoder and LLM are typi-154

cally fixed pretrained models; common choices are155

CLIP model (Radford et al., 2021) variants for the156

visual encoder, and LLaMA (Touvron et al., 2023)157

or Vicuna (Chiang et al., 2023) for the LLM.158

Research focuses on optimizing modality con-159

nection modules, so as to better utilize visual and160

text information at the same time. Different con-161

nection modules lead to diffent LVLM types: cross-162

attention module in Flamingo(Alayrac et al., 2022),163

Q-former in BLIP-2(Li et al., 2023a), and simple164

linear layer in LLaVA(Liu et al., 2023b) model165

series.166

2.2 Hallucination in LVLMs167

Multimodal hallucination phenomenon, typically168

presented as LVLM generates inconsistent content169

from the input, especially those it contradictory170

with visual information. For example, in the image171

captioning task, LVLM may generate objects that172

do not exist in the input images (Li et al., 2023b), or173

mistakenly describe attribution of existing objects 174

like counts, color and spatial relationship (Kamath 175

et al., 2023). 176

The methods for alleviating LVLM hallucina- 177

tions can be classified according to whether train- 178

ing is required. Training-involved methods typ- 179

ically uses constructed data to fine-tune or post- 180

train LVLMs. For example, Hu et al. (2023), Liu 181

et al. (2023a) uses contrastive question-answer 182

pairs to fine-tune LVLMs, and Sun et al. (2024) em- 183

ploys Reinforcement Learning from Human Feed- 184

back (RLHF) to enhance multimodal connections. 185

Training-free methods are prevailed by contrastive 186

decoding and attention manipulation. The core 187

of CD methods is constructing bad samples that 188

contain useful information as less as possible. Dif- 189

ferent constructing means like image editing(Woo 190

et al., 2024,Leng et al., 2024), text editing(Wang 191

et al., 2024) and model bias(Zhu et al., 2024) are 192

developed to achieve this goal. Attention manip- 193

ulation method would reduce(Huang et al., 2024) 194

or redistribute(Tu et al., 2025) excessive attention 195

scores, so as to steer LVLMs to pay more attention 196

to visual information. 197

CD methods perform well in hallucination- 198

mitigating tasks but are highly dependent on the 199

quality of the bad samples constructed. If the in- 200

jured sample still contains a lot of useful infor- 201

mation, the contracting operation may cause an 202

even worse result. Attention manipulation methods 203

cost fewer computation resources but are highly 204

sensitive to parameters, presenting unstable perfor- 205

mances. Our research constructs bad samples from 206

the perspective of attention, filtering out useful in- 207

formation so that the bad samples only carry the 208

information that needs to be offset, thereby achiev- 209

ing a stable and high-quality effect. 210

3 Methodology 211

3.1 Task Formation 212

Typically, LVLMs aim to generate proper text out- 213

puts from multi-modal inputs, especially combined 214

visual and textual data. The visual encoder extracts 215

visual features, then passes them to the modal con- 216

nection module, where visual features are mapped 217

into the text semantic space. The mapped features 218

are combined with textual tokens, either through 219

concatenation(Liu et al., 2023b) or cross-modal fu- 220

sion(Dai et al., 2023). The final combined features 221

are then passed into the LLM to generate outputs 222

autoregressively. Formally, given an input image 223
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I , corresponding question text Q, and already gen-224

erated tokens y<t, the next token yt is decoded225

according to the probability distribution:226

p(yt) = pθ(yt | I,Q, y<t) (1)227

where θ represents the parameters of the LVLM.228

The goal of hallucination mitigation is to make out-229

put sequences contain less contradictory content.230

3.2 Formulating image heads masks231

LLMs in prevailing LVLMs are most decoder-only,232

use an attention mechanism to capture the blend-233

ing of textual and visual features. Formally, the234

attention matrix A is calculated by:235

A = softmax(
Q ·KT

√
dk

) (2)236

where Q and K denotes queries and keys respec-237

tively, dk represents the dimension of key vectors.238

Each row of the attention matrix A indicates the239

proportion of attention that the current token has240

invested in the previously generated token. We be-241

lieve that the higher the sum of the values obtained242

by the image tokens in the attention matrix is, the243

more attention the visual information will receive.244

There are multiple attention heads in each layer245

of the LLM, each of which calculates its own at-246

tention matrix. We randomly selected 500 images247

from the validation set of COCO 2014(Lin et al.,248

2014), input them into LVLMs with the text ’Please249

describe this image in detail’, then record the sum250

of the attention scores for the image token in the251

attention matrix of each head in each layer of the252

model when each token is generated. With a thresh-253

old τ , we obtain the attention head matrix where254

each element represents how many times this at-255

tention head has paid over-threshold attention pro-256

portion to image tokens (as shown in Figure 2).257

After normalization, the non-zero attention heads258

in the attention head matrix are named image heads.259

Lastly, by masking the selected image heads, the260

image head mask is constructed.261

Apparently, the number of image heads varies262

with the change of τ . Table 1 shows the number263

of image heads of LLaVA-1.5-7b and Qwen-VL-264

7b(Bai et al., 2023b) given different threshold τ265

values. Intuitively, if the threshold is too high and266

too few bad samples are masked, then useful infor-267

mation will still be contained in the bad samples; If268

the threshold is too low, causing the heads that do269

not pay much attention to the image to be masked270

Model τ # image heads proportion

LLaVA-1.5-7b

0.95 192 18.75%
0.9 238 23.24%
0.8 315 30.76%
0.7 364 35.55%
0.6 424 41.41%
0.5 506 49.41%

Qwen-VL-7b

0.99 248 24.22%
0.975 317 30.96%
0.95 395 38.57%
0.9 473 46.19%

Table 1: The number and proportion of image heads
corresponding to the variation of τ . τ represents the
threshold of considering "high" attention scores paid on
image tokens of a head.

as well, the reduction effect of the CD method on 271

semantic information will be weakened. Therefore, 272

choosing the appropriate threshold is an important 273

issue. 274

3.3 MaskCD 275

When using an image head mask to construct a bad 276

sample, the masked heads’ attention output will 277

be set to zero. Since this method is equivalent to 278

setting the parameters of the corresponding head 279

to zero, we use θm to represent the model where 280

the image heads are masked. However, in actual 281

operation, only the attention value is changed; no 282

model parameter will be modified. 283

Then MaskCD is formulated as equation 3: 284

p(yt) = softmax
(
(1 + α) · logitsθ(yt|I,Q, y<t)

− α · logitsθm(yt|I,Q, y<t)
)

(3)

285

where logits represents the value of p(yt|I,Q, y<t) 286

before softmax operation. α is a hyperparameter 287

that controls the intensity of contrast. 288

By subtracting the output logits of bad samples 289

from the original one, MaskCD enables the final 290

output logits to utilize only the truly useful vi- 291

sual and textual information as much as possible, 292

thereby alleviating the hallucination phenomenon 293

of LVLMs. 294

4 Experiment Settings 295

4.1 Benchmarks 296

CHAIR The Caption Hallucination Assessment 297

with Image Relevance (CHAIR) (Rohrbach et al., 298

2018) is a widely used metric for evaluating object 299
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hallucination in image captioning tasks. CHAIR is300

used to measure the hallucination proportion of the301

model’s generated texts. It evaluates hallucination302

on two aspects: CHAIRS and CHAIRI . The former303

calculates the proportion of sentences containing304

hallucinations at the sentence level, while the latter305

computes the hallucinated ratio at the object level.306

The two metrics can be formulated as:307

CHAIRS =
|{sentences w/ hallucinated objects}|

|{all captions sentences}|

CHAIRI =
|{hallucinated objects}|
|{all mentioned objects}|

(4)

308

We randomly selected 500 images from the vali-309

dation set of COCO 2014(Lin et al., 2014) and used310

the prompt "Please describe this image in detail."311

to obtain the generated captions.312

POPE The Polling-based Object Probing Eval-313

uation (POPE) (Li et al., 2023b) is a benchmark314

for assessing object hallucination. LVLMs are re-315

quired to answer formatted questions like "Is there316

a <object> in the image?" with "Yes" or "No". The317

answers’ yes-no ratio is designed to be 50% for318

each response. The complete POPE test is divided319

into three splits: random, popular and adversar-320

ial, in which missing objects are randomly selected,321

most frequently occurring in the dataset, and highly322

correlated with those present in the image, respec-323

tively.324

We choose MSCOCO dateset for POPE evalu-325

ation. The key evaluation metrics are: Accuracy,326

Precision, Recall, and F1 score.327

MME The Multimodal Large Language Model328

Evaluation (MME) (Fu et al., 2023) assesses329

LVLMs using set of comprehensive metrics. MME330

benchmark contains 14 subsets, so as to evalu-331

ate LVLMs’ general capabilities. Following the332

methodologies of (Yin et al., 2023), when pre-333

senting the test results of all subsets of MME,334

we divide them into two groups: hallucination335

and non-hallucination. The hallucination group336

includes "existence", "counts", "color" and "po-337

sition", which evaluate LVLMs at the object and338

attribute level,s respectively.339

4.2 Models340

LVLM Models We select LLaVA-1.5-7b and341

Qwen-VL-7b for evaluation. Each model utilizes342

Vision Transformer (ViT) as the backbone of its343

visual encoder, but employs different modal con- 344

nection module and LLMs. LLaVA-1.5-7b directly 345

projects visual embeddings into semantic space 346

through multi-layer perception(MLP), while Qwen- 347

VL-7b utilizes a position-aware vision-language 348

adapter to compress image features. As for the 349

LLM part, LLaVA-1.5-7b utilizes vicuna as LLM 350

backbone, while Qwen-VL-7b’s counterpart is 351

Qwen(Bai et al., 2023a). The LLM backbones are 352

both constructed by 32 layers of decoder blocks, 353

and each layer contains 32 heads, resulting in 1024 354

heads in total. 355

4.3 Baseline Methods 356

We compare MaskCD with three classic and effec- 357

tive hallucination mitigating methods: VCD(Leng 358

et al., 2024) uses random Gaussian noise to contam- 359

inate the original image, reducing the valid infor- 360

mation it contains and thus serving as a bad sample. 361

M3ID(Favero et al., 2024) deletes the image for 362

the bad sample input, and slightly changes the con- 363

trastive decode function. Both of the above meth- 364

ods belong to the CD category. OPERA(Huang 365

et al., 2024) takes advantage of the attention 366

sink phenomenon, punishes overly concentrated 367

attention, and combines it with a retrospection- 368

allocation strategy. It is an attention manipulation 369

method based on a beam search strategy. MaskCD 370

is a CD method that only masks the model’s inner 371

values to construct bad samples, distinguishing it 372

from other CD-class methods. 373

5 Result and Analysis 374

5.1 Overall Result 375

CHAIR Table 2 shows the overall results for 376

CHAIR evaluation. MaskCD gained evidently 377

better performance compared with other meth- 378

ods. Specifically, MaskCD lowers CHAIR_s and 379

CHAIR_i by 19.12% and 29.87% for LLaVA-1.5- 380

7b, and achieves 75.59% and 50.57% decrease for 381

Qwen-VL-7b. This indicates that our proposed im- 382

age heads masks are quite effective in hallucination 383

mitigating. Moreover, MaskCD outperforms VCD 384

and M3ID, demonstrating that the bad samples con- 385

structed by masking the image head contain less 386

effective information, thereby achieving better re- 387

sults among similar CD methods. 388

POPE Table 3 shows the evaluation results of 389

POPE benchmark. For both LLaVA-1.5-7b and 390

Qwen-VL-7b, MaskCD represents comparable per- 391

formance with OPERA, outperforms the baseline 392
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Method LLaVA-1.5-7b Qwen-VL-7b
CHAIR_s ↓ CHAIR_i ↓ Precision F1 CHAIR_s ↓ CHAIR_i ↓ Precision F1

Baseline 50.20 15.40 72.10 73.50 50.8 17.4 68.3 63.0
VCD 55.6 16.4 71.7 75.2 48.4 16.7 68.1 64.6
M3ID 55.4 15.5 70.6 75.7 39.8 8.8 77.2 75.6
OPERA 45.8 13.5 76.6 77.8 42.3 11.8 75.5 76.3
MaskCD 40.6 10.8 79.1 78.2 12.4 8.6 88.5 64.3

Table 2: Results on benchmark CHAIR. CHIAR_s and CHAIR_i are hallucination ratio evaluation metrics, lower
scores represent better performances. The Baseline method denotes the standard decoding. The best performances
within each setting are bolded. Comparable but not the best performances are underlined.

Setup Method LLaVA-1.5-7b Qwen-vl-7b
Acc. ↑ Recall ↑ F1 ↑ Acc. ↑ Recall ↑ F1 ↑

random

Baseline 82.90 72.07 80.82 81.97 77.67 81.16
VCD 85.57 76.27 84.09 76.20 81.73 77.45
M3ID 85.27 74.67 85.52 74.60 69.67 73.28

OPERA 89.30 89.00 89.27 66.33 81.73 77.45
MaskCD 88.77 87.47 88.62 87.77 79.47 86.66

popular

Baseline 81.10 74.27 79.22 80.20 78.40 79.84
VCD 83.67 72.34 82.36 72.30 81.80 74.70
M3ID 83.60 73.77 81.99 72.07 70.33 71.57

OPERA 85.93 87.96 86.86 66.77 73.67 68.91
MaskCD 85.67 87.53 85.83 86.57 79.40 85.53

adversarial

Baseline 78.60 72.35 77.10 78.43 78.60 78.47
VCD 81.07 76.24 80.11 71.57 83.07 71.50
M3ID 81.57 73.36 80.20 71.83 70.67 71.50

OPERA 79.00 88.03 80.91 67.50 73.67 69.38
MaskCD 79.63 87.53 81.12 83.40 79.27 82.68

All

Baseline 80.87 72.90 79.05 80.20 78.22 79.82
VCD 83.44 74.95 82.19 73.36 82.20 75.55
M3ID 83.48 73.93 82.57 72.83 70.22 72.12

OPERA 84.74 88.33 85.68 66.87 73.67 68.97
MaskCD 84.88 88.20 85.48 85.91 79.38 84.96

Table 3: Results on benchmark POPE. The Baseline method denotes the standard decoding. The best performances
within each setting are bolded. Comparable but not the best performances are underlined.

Method Objectlevel Attributelevel Total
existence count position color

Baseline 180.00 101.67 100.00 153.33 535.00
VCD 175.00 106.67 111.67 146.67 540.01
M3ID 180.00 101.67 105.00 158.33 545.00

OPERA 195.00 148.33 128.33 155.00 626.66
MaskCD 195.00 168.33 133.33 150.00 646.66

Table 4: Results on benchmark MME (four hallucina-
tion subsets) of LLaVA-1.5-7b. The Baseline method
denotes the standard decoding. The best performances
within each setting are bolded. Comparable but not the
best performances are underlined.

and other CD methods, indicating its excellence in393

hallucination alleviation. Furthermore, as taking394

Method Object-level Attribute-level Total
existence count position color

Baseline 105.00 83.33 50.00 136.67 375.00
VCD 86.67 91.67 41.67 111.67 346.00
M3ID 118.33 98.33 51.67 125.00 331.68

OPERA 93.67 84.33 46.67 121.33 393.33
MaskCD 111.67 95.00 65.00 138.33 410

Table 5: Results on benchmark MME (four halluci-
nation subsets) of Qwen-VL-7b. The Baseline method
denotes the standard decoding. The best performances
within each setting are bolded. Comparable but not the
best performances are underlined.

computational cost into account, MaskCD achieves 395

a similar performance effect with a computational 396

6



Figure 3: Visualization of MME scores of LLava-1.5-7b(left) and Qwen-VL-7b(right). Scores are normalized
by dividing maximum score of each subset.

cost lower than that of OPERA, demonstrating its397

excellence.398

MME Table 4 and Table 5 shows the results399

on four hallucination-related MME subsets for400

LLaVA-1.5-7b and Qwen-VL-7b, respectively.401

MaskCD achieves best performances on every sin-402

gle subset for LLaVA-1.5-7b and on attribute-level403

subsets for Qwen-VL-7b. The evaluation on object-404

level subsets of Qwen-VL-7b also achieves the405

second-best results, representing the effectiveness406

of MaskCD in alleviating hallucinations. Mean-407

while, Figure 3 shows the overall results for all 14408

subsets of the MME benchmark. It is evident that409

besides the capability of mitigating hallucination,410

MaskCD also retains or even partially improves the411

model’s ability in general evaluation.412

5.2 Ablation Study413

In this subsection, we present ablation studies to414

examine the impact of mask selecting and other415

hyper-parameters. We conduct these experiments416

with LLaVA-1.5-7b.417

Mask selection To demonstrate the necessity of418

masking the image heads rather than other heads,419

for each image head mask in the settings, we ran-420

domly select an equal number from other heads421

to form a random mask. The method of using422

these random masks for MaskCD is denoted as423

MaskCD_r. Table 6, 7, and 8 show the performance424

of MaskCD and MaskCD_r on CHAIR, POPE and425

MME, respectively. The results show that masking426

random heads also has a slight effect on alleviating427

hallucinations, but it cannot compete with the re-428

sults of masking image heads. It indicates that the429

image heads indeed contain more useful and nec-430

Method CHAIR_s ↓ CHAIR_i ↓ Pre. F1
Baseline 50.2 15.4 72.1 73.5
MaskCD 40.6 10.8 79.1 78.2
MaskCD_r 44.0 14.3 77.3 74.0

Table 6: Results of MaskCD and MaskCD_r on
CHAIR evaluation. "Pre." is the abbreviation for "Pre-
cision". It is evident that MaskCD_r indeed helps miti-
gate hallucination, but cannot compete with MaskCD.

Method Accuracy Precision Recall F1

All
Baseline 80.87 87.62 72.07 79.05
MaskCD 84.88 83.11 88.20 85.48
MaskCD_r 83.61 90.67 75.53 82.38

Table 7: Results of MaskCD and MaskCD_r on
POPE benchmark. MaskCD_r performs best on Preci-
sion metrics, but fails in Recall.

essary information, so it is rational to mask them 431

rather than other heads. 432

Method
Object-level Attribute-level

existence count position color
Baseline 180.00 101.67 100.00 153.33
MaskCD 195.00 168.33 133.33 150.00
MaskCD_r 190.00 133.33 123.33 150.00

Table 8: Results of MaskCD and MaskCD_r on the
hallucination-related subsets of MME. MaskCD_r
indeed helps slightly in mitigating hallucinations.

Mask proportion and CD tensity As mentioned 433

in section 3.2 and 3.3, there are two important 434

hyper-parameters in MaskCD: τ , as the threshold 435

for determining the image head, controls the num- 436

ber of masked heads; and α, which controls the 437

intensity of contrastive decoding operation. 438

We conduct ablation experiments of τ and α on 439
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Method τ CHAIR_s CHAIR_i F1
Baseline / 50.2 15.4 73.5

MaskCD

0.95 46.8 12.9 77.0
0.9 40.6 10.8 78.2
0.8 40.8 14.7 74.8
0.7 48.4 13.0 76.4
0.6 49.6 14.0 75.9
0.5 54.8 14.4 75.2

Table 9: Results of MaskCD with different threshold
τ . It can be seen that the value of τ that is either too
small or too large is not conducive to dealing with hal-
lucination problems.

Method α CHAIR_s CHAIR_i F1
Baseline / 50.2 15.4 73.5

MaskCD

0.5 43.6 11.5 78.4
1.0 40.6 10.8 78.2
2.0 45.2 12.2 77.3
3.0 44.6 11.6 77.3
4.0 42.2 11.5 77.6
5.0 41.6 11.7 77.9
6.0 41.2 11.8 77.9

Table 10: Results of MaskCD with different α. It can
be seen that even when α takes a large value, MaskCD
can still operate stably, effectively alleviating the hallu-
cination phenomenon.

LLaVA-1.5-7b with CHAIR evaluation. Table 9440

shows the results of MaskCD with different thresh-441

olds τ . It indicates that the best value of τ is 0.9,442

which means around 23% of the heads in LLaVA-443

1.5-7b’s LLM backbone are recognized as image444

heads and have been masked (according to Table445

1). Whether too small or too big the value of τ is,446

the performances tend to decline, and even fail the447

baseline when τ is 0.5. This shows that the heads448

to be masked should be delicately selected, and449

MaskCD achieves this successfully.450

Meanwhile, Table 10 shows the results of451

MaskCD on CHAIR with different α. α is a com-452

mon hyperparameter in contrastive decoding ap-453

proaches, whose value controls the intensity of the454

contrast operation. It can be seen that even when455

the value of α is quite large, MaskCD can still456

operate stably and effectively alleviate the halluci-457

nation phenomenon. It demonstrates the stability,458

reliability and practicability of MaskCD as a CD459

method.460

6 Conclusion 461

In this paper, we first introduce the image heads: 462

the heads in LVLM’s LLM backbone that tend to 463

pay comparably high attention proportion on image 464

tokens. Then we propose the image head Masked 465

Contrastive Decoding (MaskCD) method, a novel 466

contrastive decoding approach featuring in mask- 467

ing image heads to construct contrastive samples. 468

MaskCD constructs the contrastive samples of CD 469

methods from the perspective of attention score, 470

combining the effectiveness and stability of these 471

two methods. Extensive experimental results on 472

CHAIR, POPE and MME demonstrate the effec- 473

tiveness and stability of MaskCD in mitigating the 474

phenomenon of hallucinations. We hope this work 475

can provide a new perspective for exploring future 476

efforts to alleviate hallucinations in LVLMs. 477

Limitations 478

Although MaskCD achieves significant perfor- 479

mance in hallucination mitigation, it still has sev- 480

eral limitations. First, MaskCD requires the use 481

of images for inference in advance to obtain the 482

masks of image heads, which occupy computing re- 483

sources. Secondly, although the process of obtain- 484

ing the mask is simple, the obtained mask is only 485

applicable to the same family of LLM backbones. 486

For new LLM bases, the corresponding masks need 487

to be re-obtained. This limitation encourages us to 488

explore how to dynamically construct masks dur- 489

ing the model’s operation, so as to get rid of these 490

restrictions. 491

Ethical Considerations 492

The main research objects of this work are alleviat- 493

ing hallucination phenomenon, which help avoid 494

disloyal contents generated by LVLMs. Moreover, 495

we conduct experiments on the public datasets, 496

which do not contain any offensive content or infor- 497

mation with negative social impact. Our research 498

contents are completely in line with the ethical re- 499

view. 500

References 501

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, 502
Antoine Miech, Iain Barr, Yana Hasson, Karel 503
Lenc, Arthur Mensch, Katherine Millican, Malcolm 504
Reynolds, Roman Ring, Eliza Rutherford, Serkan 505
Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, 506
Marianne Monteiro, Jacob L. Menick, Sebastian 507

8



Borgeaud, and 8 others. 2022. Flamingo: a visual508
language model for few-shot learning. In NeurIPS.509

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,510
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei511
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,512
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,513
Keming Lu, and 29 others. 2023a. Qwen technical514
report. CoRR, abs/2309.16609.515

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,516
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,517
and Jingren Zhou. 2023b. Qwen-vl: A frontier large518
vision-language model with versatile abilities. CoRR,519
abs/2308.12966.520

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie521
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind522
Neelakantan, Pranav Shyam, Girish Sastry, Amanda523
Askell, Sandhini Agarwal, Ariel Herbert-Voss,524
Gretchen Krueger, Tom Henighan, Rewon Child,525
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,526
Clemens Winter, and 12 others. 2020. Language527
models are few-shot learners. In Advances in Neural528
Information Processing Systems 33: Annual Confer-529
ence on Neural Information Processing Systems 2020,530
NeurIPS 2020, December 6-12, 2020, virtual.531

Yangyi Chen, Karan Sikka, Michael Cogswell, Heng532
Ji, and Ajay Divakaran. 2024. DRESS : Instruct-533
ing large vision-language models to align and inter-534
act with humans via natural language feedback. In535
CVPR, pages 14239–14250. IEEE.536

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,537
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan,538
Zhuang, Yonghao Zhuang, Joseph E, Gonzalez, Ion539
Stoica, and Eric P. Xing. 2023. Vicuna: An open-540
source chatbot impressing gpt-4 with 90%* chatgpt541
quality. Unpublished blog post.542

Wenliang Dai, Junnan Li, Dongxu Li, Anthony543
Meng Huat Tiong, Junqi Zhao, Weisheng Wang,544
Boyang Li, Pascale Fung, and Steven C. H. Hoi.545
2023. Instructblip: Towards general-purpose vision-546
language models with instruction tuning. In NeurIPS.547

Alessandro Favero, Luca Zancato, Matthew Trager, Sid-548
dharth Choudhary, Pramuditha Perera, Alessandro549
Achille, Ashwin Swaminathan, and Stefano Soatto.550
2024. Multi-modal hallucination control by visual in-551
formation grounding. In CVPR, pages 14303–14312.552
IEEE.553

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin,554
Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei Lin, Jin-555
rui Yang, Xiawu Zheng, Ke Li, Xing Sun, and Ron-556
grong Ji. 2023. MME: A comprehensive evaluation557
benchmark for multimodal large language models.558
CoRR, abs/2306.13394.559

Hongyu Hu, Jiyuan Zhang, Minyi Zhao, and Zhenbang560
Sun. 2023. CIEM: contrastive instruction evalua-561
tion method for better instruction tuning. CoRR,562
abs/2309.02301.563

Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang, 564
Conghui He, Jiaqi Wang, Dahua Lin, Weiming 565
Zhang, and Nenghai Yu. 2024. OPERA: alleviating 566
hallucination in multi-modal large language models 567
via over-trust penalty and retrospection-allocation. In 568
CVPR, pages 13418–13427. IEEE. 569

Amita Kamath, Jack Hessel, and Kai-Wei Chang. 2023. 570
What’s "up" with vision-language models? investigat- 571
ing their struggle with spatial reasoning. In EMNLP, 572
pages 9161–9175. Association for Computational 573
Linguistics. 574

Seongyun Lee, Sue Hyun Park, Yongrae Jo, and Min- 575
joon Seo. 2024. Volcano: Mitigating multimodal hal- 576
lucination through self-feedback guided revision. In 577
NAACL-HLT, pages 391–404. Association for Com- 578
putational Linguistics. 579

Sicong Leng, Hang Zhang, Guanzheng Chen, Xin 580
Li, Shijian Lu, Chunyan Miao, and Lidong Bing. 581
2024. Mitigating object hallucinations in large vision- 582
language models through visual contrastive decoding. 583
In CVPR, pages 13872–13882. IEEE. 584

Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H. 585
Hoi. 2023a. BLIP-2: bootstrapping language-image 586
pre-training with frozen image encoders and large lan- 587
guage models. In ICML, volume 202 of Proceedings 588
of Machine Learning Research, pages 19730–19742. 589
PMLR. 590

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, 591
Wayne Xin Zhao, and Ji-Rong Wen. 2023b. Eval- 592
uating object hallucination in large vision-language 593
models. In EMNLP, pages 292–305. Association for 594
Computational Linguistics. 595

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James 596
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, 597
and C. Lawrence Zitnick. 2014. Microsoft COCO: 598
common objects in context. In ECCV (5), volume 599
8693 of Lecture Notes in Computer Science, pages 600
740–755. Springer. 601

Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser 602
Yacoob, and Lijuan Wang. 2023a. Aligning large 603
multi-modal model with robust instruction tuning. 604
CoRR, abs/2306.14565. 605

Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser 606
Yacoob, and Lijuan Wang. 2024a. Mitigating hal- 607
lucination in large multi-modal models via robust 608
instruction tuning. In ICLR. OpenReview.net. 609

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae 610
Lee. 2023b. Improved baselines with visual instruc- 611
tion tuning. CoRR, abs/2310.03744. 612

Shi Liu, Kecheng Zheng, and Wei Chen. 2024b. Paying 613
more attention to image: A training-free method for 614
alleviating hallucination in lvlms. In ECCV (83), 615
volume 15141 of Lecture Notes in Computer Science, 616
pages 125–140. Springer. 617

9

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/


Jiahao Nie, Gongjie Zhang, Wenbin An, Yap-Peng Tan,618
Alex C. Kot, and Shijian Lu. 2024. Mmrel: A relation619
understanding dataset and benchmark in the MLLM620
era. CoRR, abs/2406.09121.621

OpenAI. 2023. GPT-4 technical report. CoRR,622
abs/2303.08774.623

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya624
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-625
try, Amanda Askell, Pamela Mishkin, Jack Clark,626
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-627
ing transferable visual models from natural language628
supervision. In ICML, volume 139 of Proceedings629
of Machine Learning Research, pages 8748–8763.630
PMLR.631

Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns,632
Trevor Darrell, and Kate Saenko. 2018. Object hal-633
lucination in image captioning. In EMNLP, pages634
4035–4045. Association for Computational Linguis-635
tics.636

Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu,637
Chunyuan Li, Yikang Shen, Chuang Gan, Liangyan638
Gui, Yu-Xiong Wang, Yiming Yang, Kurt Keutzer,639
and Trevor Darrell. 2024. Aligning large multi-640
modal models with factually augmented RLHF. In641
ACL (Findings), pages 13088–13110. Association for642
Computational Linguistics.643

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier644
Martinet, Marie-Anne Lachaux, Timothée Lacroix,645
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal646
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard647
Grave, and Guillaume Lample. 2023. Llama: Open648
and efficient foundation language models. CoRR,649
abs/2302.13971.650

Chongjun Tu, Peng Ye, Dongzhan Zhou, Lei Bai, Gang651
Yu, Tao Chen, and Wanli Ouyang. 2025. Atten-652
tion reallocation: Towards zero-cost and control-653
lable hallucination mitigation of mllms. CoRR,654
abs/2503.08342.655

Xintong Wang, Jingheng Pan, Liang Ding, and Chris656
Biemann. 2024. Mitigating hallucinations in large657
vision-language models with instruction contrastive658
decoding. In ACL (Findings), pages 15840–15853.659
Association for Computational Linguistics.660

Sangmin Woo, Jaehyuk Jang, Donguk Kim, Yubin Choi,661
and Changick Kim. 2024. RITUAL: random image662
transformations as a universal anti-hallucination lever663
in lvlms. CoRR, abs/2405.17821.664

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song665
Han, and Mike Lewis. 2024. Efficient streaming lan-666
guage models with attention sinks. In ICLR. Open-667
Review.net.668

Qinghao Ye, Haiyang Xu, Jiabo Ye, Ming Yan, Anwen669
Hu, Haowei Liu, Qi Qian, Ji Zhang, Fei Huang, and670
Jingren Zhou. 2023. mplug-owl2: Revolutionizing671
multi-modal large language model with modality col-672
laboration. CoRR, abs/2311.04257.673

Shukang Yin, Chaoyou Fu, Sirui Zhao, Tong Xu, Hao 674
Wang, Dianbo Sui, Yunhang Shen, Ke Li, Xing Sun, 675
and Enhong Chen. 2023. Woodpecker: Hallucina- 676
tion correction for multimodal large language models. 677
CoRR, abs/2310.16045. 678

Yifan Zhang, Weichen Yu, Qingsong Wen, Xue Wang, 679
Zhang Zhang, Liang Wang, Rong Jin, and Tieniu Tan. 680
2024. Debiasing multimodal large language models. 681
CoRR, abs/2403.05262. 682

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and 683
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing 684
vision-language understanding with advanced large 685
language models. CoRR, abs/2304.10592. 686

Lanyun Zhu, Deyi Ji, Tianrun Chen, Peng Xu, Jieping 687
Ye, and Jun Liu. 2024. IBD: alleviating halluci- 688
nations in large vision-language models via image- 689
biased decoding. CoRR, abs/2402.18476. 690

10

https://doi.org/10.48550/ARXIV.2303.08774

	Introduction
	Related Work
	Large Vision-Language Model
	Hallucination in LVLMs

	Methodology
	Task Formation
	Formulating image heads masks
	MaskCD

	Experiment Settings
	Benchmarks
	Models
	Baseline Methods

	Result and Analysis
	Overall Result
	Ablation Study

	Conclusion

