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Abstract

This paper presents Triangulation Residual loss (TR loss) for multiview 3D pose
estimation in a data-efficient manner. Existing 3D supervised models usually
require large-scale 3D annotated datasets, but the amount of existing data is still
insufficient to train supervised models to achieve ideal performance, especially for
animal pose estimation. To employ unlabeled multiview data for training, previous
epipolar-based consistency provides a self-supervised loss that considers only the
local consistency in pairwise views, resulting in limited performance and heavy
calculations. In contrast, TR loss enables self-supervision with global multiview
geometric consistency. Starting from initial 2D keypoint estimates, the TR loss
can fine-tune the corresponding 2D detector without 3D supervision by simply
minimizing the smallest singular value of the triangulation matrix in an end-to-end
fashion. Our method achieves the state-of-the-art 25.8mm MPJPE and competitive
28.7mm MPJPE with only 5% 2D labeled training data on the Human3.6M dataset.
Experiments on animals such as mice demonstrate our TR loss’s data-efficient
training ability.

1 Introduction

Multiview 3D human/animal pose estimation is a crucial and challenging task with wide application
in mixed reality telepresence, animation, and neuroscience. Most existing animal pose estimation
(APE) methods are transferred from the highly developed human pose estimation (HPE) methods
[1, 2]. The success of HPE depends on large-scale datasets [3–5] and high-quality 3D modelS [6].
However, these conditions are not met in APE tasks. On the one hand, labeling large-scale datasets
for each species requires significant user effort but cannot obtain the same commercial benefits as
HPE. On the other hand, obtaining 3D ground truth via sticky marks is not feasible since the animal’s
body could be tiny and animals tend to destroy the markers.

Triangulation is a crucial approach for multiview pose estimation due to its efficiency and effectiveness.
However, traditional triangulation involves a non-differentiable argmax and RANSAC process
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disabling the end-to-end training. The learnable triangulation methods [7–10] have been proposed
to perform triangulation in an end-to-end fashion. Its typical pipeline is (1) generating the 2D joint
heatmaps for each view, (2) using soft-argmax to get 2D joint coordinates from the heatmaps, and (3)
performing triangulation to estimate 3D joint coordinates. Finally, the MAE loss between the ground
truth and the predicted 3D positions is used to train the model as shown in Figure 1 (a). Several
works introduce learnable weights [9], and stochastic frameworks [10] to improve performance and
generalization. However, 3D supervision needs large-scale labeled data which is usually unavailable
for APE.

Some papers [11–14] introduce epipolar geometry as a supervisory signal to eliminate 3D ground
truth. Its key idea is shown in Figure 1 (b). The epipolar geometry restricts that the 2D keypoint in
view 2 must lie in the corresponding epipolar line l′1 from view 1. To enable the epipolar constraint to
be trained end-to-end, Yao et al. [12] propose the epipolar divergence which measures the distribution
distance between epipolar lines. These epipolar-based methods pursue local consistency in pairwise
views, so most of them involve trivial pairing and reprojection processes. They may also suffer from
heavy computation when the view number is large.

Figure 1: (a) Supervised triangulation trained with MSE loss between 3D estimation and 3D ground
truth. (b) Unsupervised triangulation with pairwise epipolar consistency. (c) Self-supervised triangu-
lation with TR loss. The TR loss realigns the predicted heatmap locations to the accurate point using
multi-view consistency. Geometrically, TR loss can be viewed as the sum of distances between 3D
estimate and view rays as shown in the figure. Algebraically, TR loss can be simply formulated as the
smallest singular value of the triangulation matrix.

The paper tackles these challenges by leveraging global multiview geometric consistency. The core
of our methods is a simple but powerful loss function, called Triangulation Residual Loss (TR loss),
which is defined as the sum of distances between the 3D estimate and view rays as shown in Figure 1
(c). Supervised methods aim to minimize the absolute error between the 3D estimate and 3D ground
truth. Differently, our goal is to minimize the residual between the 3D estimate and 2D observations,
where 2D observation is represented by the view ray from the camera center to the 2D keypoint in the
image. In every single iteration in Figure 1 (c), we estimate the optimal 3D estimate by triangulation,
but there must be residuals, i.e. the distances between 3D estimate and view rays, since the 3D
estimate doesn’t lie in all view rays. Iterative minimizing the residual will lead the 3D estimate to
converge to a geometrically consistent position. Moreover, we use algebraic errors to approximate
geometric errors, TR loss is simplified to the smallest singular value of the triangulation matrix
without any reprojection processes.
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The contributions can be summarized as follows: (1) A simple yet effective loss function, TR
loss, for multiview 3D pose estimation. It achieves data-efficient training by using the multiview
geometrical consistency without 3D supervision and any reprojection processes. It can be sim-
ply formulated as minimizing the smallest singular value of the triangulation matrix. (2) A new
benchmark for laboratory mouse 3D pose estimation based on existing datasets (CalMS21 and
Dannce) and THmouse data collected by ourselves. (3) Our method achieves state-of-the-art MPJPE
performance for single-frame 3D pose estimation on the Human3.6M dataset and obtains com-
petitive performance with only 5% 2D labeled training data. Code has been made available at
https://github.com/zhaojiachen1994/Triangulation-Residual-Loss.

2 Related works

Learnable triangulation Triangulation is popular in 3D multiview animal pose estimation [15,
16]. To overcome the non-differentiability of the vanilla triangulation (RANSAC), the soft and
differentiable versions of RANSAC have been proposed [7, 8, 10]. The core of these methods is to
select high-confidence 2D estimates via the probabilistic learning scheme. Karim et al. [9] utilize the
learnable weights to softly select the 2D estimates. Kristijan et al. [10] fix the pretrained 2D detector
and use the subsequent hypothesis selection process to finetune the 3D pose. Therefore, this method
heavily relies on the performance of the pretrained 2D detector. Some volumetric approaches [17, 18]
also achieve great performance on 3D pose estimation. However, all the above methods require
ground-truth 3D labels during training, so they are not suitable for APE. Some methods leverage
the epipolar geometry to learn feature consistency [11, 12] or geometry consistency [13, 14], so that
the 3D supervision is no longer required. However, all these methods involve complex reprojection
and alignment in pairwise views. Therefore, they only consider the local pairwise consistency and
become inapplicable when the number of cameras is large.

Animal pose estimation The physical behavior of animals is the most intuitive external manifestation
of neural activity. However, observing animal behavior is one of the most time-consuming operations
in biology or neuroscience research. Experimenters need to spend several hours observing and
recording the behavior of mice only to complete a trial. A research topic often requires hundreds
of trials. Fortunately, vision-based keypoint detection methods provide an efficient tool to measure
the behaviors of lab animals. However, labeling data under different experimental paradigms is still
labor-intensive. Therefore, domain-adaptation [19–22] methods have been introduced to APE. Li
et al. [19] and Cao et al. [22] design pseudo-label generation approaches to expand labeled data
during training. Jiang et al. [20] and Mu et al. [21] utilize synthetic animal images as the source
domain and reduce the domain shift to predict animal pose in real images. RegDA [23] extends the
disparity discrepancy theory from classification to keypoint detection and improves the cross-domain
keypoint detection performance. The above methods are limited to 2D pose estimation, which loses
key information in the analysis of experimental animal behavior. Further, this paper focuses on
multiview 3D APE with only a few 2D labels.

Different from existing learnable triangulation methods, our method achieves global 3D geometry
consistency without 3D supervision and reprojection operations. Moreover, the loss can be simply
formulated as minimizing the smallest eigenvalue of the triangulation matrix.

3 Methods

3.1 Problem formulation

We assume a few 2D labeled pose data are given and aim to estimate the 3D pose from multiview
images. The 2D labeled data Dl can be an existing large-scale dataset or a few annotations under the
same dataset, which contains input images Ii ∈ RH×W×3 and the corresponding ground-truth 2D
keypoint coordinates J2d

i ∈ RJ×2 for all keypoints, where J is the number of keypoints. We can
train a 2D keypoint detector on the labeled data RH×W×3 7→ RJ×2. The target multiview images
Du are simultaneously captured from C cameras but unlabeled, where Ic,i is the image captured by
the cth camera at the ith scene. Our goal is to train a 3D keypoint detector RC×H×W×3 7→ RJ×3

to predict the global 3D positions for Du. Throughout this paper, we use xc,j to indicate the 2D
coordinate of jth joint in cth view and useXj to indicate the 3D coordinate of jth joint.
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3.2 Model structure

Figure 2 presents the framework of our model including a backbone network ϕ, a heatmap head h, a
confidence head f , a differentiable triangulation head and an optional domain discriminator ψ.

Figure 2: The framework of our method containing a backbone network ϕ, a heatmap head h, a
confidence head f , a differentiable triangulation head and an optional domain discriminator ψ.

The input data contains several 2D labeled images and unlabeled target multiview images. All input
images are fed into a CNN-based backbone ϕ to generate feature maps. Following the backbone,
a heatmap head h transforms the intermediate feature maps to keypoint heatmaps RH×W×3 7→
RH′×W ′×J×2. Then the keypoint heatmaps are transformed into 2D coordinates via a differentiable
process including spatial softmax in Eq. (1) and soft-argmax Eq. (2):

Softmax(Hc,j) = exp(Hc,j)/(

H′∑
h′

W ′∑
w′

exp(Hc,j(h
′, w′))) (1)

x̂c,j =

H′∑
h′

W ′∑
w′

[h′, w′]⊙Hc,j(h
′, w′) (2)

Here, Hc,j is the heatmap for jth joint in cth view. H ′ and W ′ are the heatmap height and width. h′

and w′ are the spatial indexes across heatmap height and width. ⊙ means the element-wise product.
We further denote the combination of Eq. (1) and Eq. (2) as κ, so the 2D keypoint detector can be
formulated as

x̂c,j = (κ ◦ h ◦ ϕ(Ic))j (3)
Parallel with the heatmap head, a confidence head f produces the triangulation confidence for each
keypoint in each view RH×W×3 7→ RJ :

wc,j = (f ◦ ϕ(Ic))j (4)

Following h and f , a triangulation head estimates the 3D positionX∗
j based on the multiview 2D

estimates by minimizing the weighted sum of reprojection errors in all views:

X∗
j = argmin

Xj

C∑
c=1

wc,j · ||x̂c,j − Pc ·Xj ||2 (5)

where || · || is the L2 norm, Pc is the projection matrix of cth view and wc,j is the learnable weight to
adjust the contribution of each view in the triangulation process so that the erroneous 2D estimates
will have little effect. However, direct solving Eq.(5) is not differentiable, so we use the linear
algebraic method, which is to solve the overdetermined system of equations on homogeneousXj :

wj ⊙Aj ·Xj = 0 (6)
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where Aj is the matrix composed of Pc and x̂c,j . We further annotate Ãj = wj ⊙ Aj as the
triangulation matrix in this paper. The details about how to formulate Ãj can be found in Appendix
A.1. The overdetermined equations Eq. (6) can be solved via SVD as Ãj = UΣV T . The optimal
estimateX∗

j is the last column of V . So far, supervised triangulation methods can train the model

with MSE loss between the 3D estimate and 3D ground truth: Lsup =
∥∥X∗

j −Xgt
j

∥∥2. Differently,
we eliminate the 3D supervision by using the TR loss presented in Section 3.3.

3.3 Triangulation residual loss

Figure 1 (c) presents the intuition of TR loss from a geometric perspective. In the first iteration, we
can estimate a preliminary 3D estimateX∗ by solving Eq. (6). Since the 2D detector is pretrained
on limited data, there must be estimation errors in the 2D position and there may be some large
deviations, such as H3. As a result, X∗ is inaccurate and does not fall on view rays. In this paper,
we minimize the sum of distances fromX∗ to each view ray so thatX∗ will converge to a reliable
position. During iterative minimization, the learnable weight wc,j is also updated in such a way that
2D estimates with less consistency (such as H3) are given smaller weights, and 2D estimates with
more consistency (such as H1 and H2) are given larger weights. To sum up, the TR loss realigns the
predicted heatmap locations to the accurate point using multi-view consistency.

From an algebraic perspective, the overdetermined Eq. (6) can not be fully established. There must
be residual as

∥∥∥Ãj ·X∗
j − 0

∥∥∥. Minimizing the sum of distances fromX∗ to each view ray can be
reduced to minimize the

Lres,j =
∥∥∥Ãj ·X∗

j

∥∥∥2 (7)

SinceX∗
j is the right singular vector corresponding to the smallest eigenvalue of Ãj . If we omit the

subscript j, Lres can be reformulated as

||ÃX∗||2 = ||Ãv4||2 = ||Σ4
i=1σiuiv

T
i v4||2 = ||σ4u4||2 = ||σ4||2 (8)

In Eq. (8), Ã with rank = 4 can be decomposed by SVD as Ã = Σ4
i=1σiuiv

T
i , where σ1 ≥ σ2 ≥

σ3 ≥ σ4 are the unit singular values ofX∗, uis and vis are the left and right singular vectors of Ã.
According to the property of SVD, both uis and vis are unit vectors and orthogonal to each other,
so Eq. (8) is established. Here, we directly use PyTorch’s built-in auto-differential SVD function,
while robust differentiable SVD [24] is also an alternative. Finally, Lres can be simply formulated as
minimizing Ãj’s smallest eigenvalue σ4:

Lres = ∥σ4∥2 (9)

Eliminate trivial solutions A straightforward way to obtain the learnable weight in Ãj is through
the sigmoid function. If so, the TR loss tends to assign high confidence (nearly 1) to only two views
and assign low confidence (nearly 0) to other views, since the fewer views involved in triangulation,
the smaller the error. The TR loss can no longer improve 2D estimates in low-confidence views.
Moreover, all weights equal to 0 is a trivial solution for Eq. (7). So we set a threshold range for the
confidence score to shrink it. More details about the threshold are discussed in Section 4.4.

3.4 Total loss functions

Since the TR loss only pursues geometric consistency, this may cause the 2D estimates to be non-
semantic points instead of the correct joints. Therefore, we still need 2D supervision loss Lsup2d on
the labeled 2D data Dl. Same as in [25, 26], we utilize the pixel-wise MSE loss between the predicted
heatmap Ĥi,j and the ground-truth heatmap Hi,j :

Lsup2d =

M∑
i

J∑
j

||Hi,j − Ĥi,j ||2 (10)
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If the labeled images Dl and the target multiview images Du are from different domains, we can also
add a domain discriminator ψ trained with domain discrimination loss Ldd(Dl,Du) to reduce domain
discrepancy. Same as in [22, 27, 28], the domain discrimination loss is defined as cross-entropy loss
and set to be adversarial to Lsup2d and Lres:

Ldd = −
N∑
i=1

(zi log(ẑi) + (1− zi) log(1− ẑi)) (11)

where zi and ẑi are the ground-truth and predicted domain labels, respectively. The total loss function
is

L = Lres + αLsup2d + βLdd (12)

where α and β are tradeoff hyperparameters. The ablation studies in Section 4.4 show that our
proposed TR loss is the most critical component but the DD loss is dispensable.

4 Experiments

To evaluate the effectiveness of our proposed method, we conduct experiments on lab mouse pose
estimation and human pose estimation. It should be noted that we only use 2D labels (not 3D) to
train our model.

4.1 Implement details

We implement our model based on the mmpose library [29]. We apply the HRnet as the backbone,
build the heatmap head with a convolution layer with a 3x3 kernel size, and build the confidence head
with two convolution layers followed by three linear layers [512, 256, J] with a sigmoid activation
function. The domain discriminator is an average pooling layer followed by three linear layers [512,
256, J] with a sigmoid activation function. The models are trained on 1 NVIDIA 3090 GPU with the
Adam optimizer and an initial learning rate of 1e−5. The loss tradeoff parameters are set to 1, so all
losses have the same effect.

4.2 Human Pose Estimation

Datasets We conduct human pose estimation experiments on the Human3.6M dataset. The Hu-
man3.6M dataset [3] contains 3.6 million frames of single-person activity captured by 4 synchronized
cameras. Its ground-truth 3D joint position is obtained by a marker-based motion capture system
with 10 IR sensors. We assume that only 2D labels in the training dataset are available to train a
2D detector. Then, we train the total model with TR loss on the 1% multiview unlabeled data and
heatmap loss on the labeled training images. Therefore, our method does not require any additional
annotations.

Table 1: MPJPE results on the Human3.6M dataset fol-
lowing Protocol 1

Method Supervision Average
Baseline 2D 69.9

Cross-view fusion [13] 3D 31.2
Remelli et al. [17] 3D 30.2

Epipolar transformers [14] 2D 26.9
Kristijan et al. [10] 3D 29.1

MTFT-Transformer [30] 3D 27.5
TR loss (100%) 2D 25.8

TR loss (5%) 2D 28.7

Results Table 1 presents the MPJPE met-
rics of our method and the comparison
methods. All methods in Table 1 are
based on single-frame, multiview im-
ages of the Human3.6M dataset, exclud-
ing some methods using additional la-
beled training data [9, 31] and single-
view methods [32, 33]. Table 1 shows
that our method achieves 1.1mm MPJPE
than the existing best method. Moreover,
our method achieves 28.7 MPJPE with
only 5% training data to train the 2D de-
tector. The MPJPE of naive triangulation
is 69.9mm, indicating that the erroneous
2D estimates at certain views heavily af-
fect the final 3D estimates. Our method achieves significant improvements and even performs better
than 3D supervised methods [13, 17, 10, 30]. These results demonstrate that the TR loss is capable of
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reducing the negative effect of erroneous views and guiding the view rays converging to the ground
truth (as the schematic in Figure 1 (c) shows).

4.3 Laboratory mouse pose estimation

Datasets Laboratory mouse pose estimation is a key task in neuroscience. However, there is still no
high-quality large-scale multiview dataset, demonstrating the need for a data-efficient approach. We
conduct experiments on three datasets to evaluate our method: CalMS21, Dannce, and THmouse
(THM, a dataset we collected). CalMS21 [34] is a large-scale 2D mouse dataset containing 30,000
frames of two interacting mice captured by two cameras from top-view and front-view. Nine joints
(top-view) and thirteen joints (front) of each mouse are annotated in each frame. Dannce dataset
[35] consists of 1032 labeled frames recorded by six cameras around a single mouse. Our THmouse
dataset has 1200 frames from 6 synchronized cameras (1 top-view and 5 around-views). We annotate
the 2D ground truth and triangulate the 3D ground truth based on 2D labels. We conduct six pose
estimation tasks: CalMS21-Dannce, CalMS21-THmouse, Dannce-THmouse, THmouse-Dannce,
Dannce, and THmouse. In intra-dataset experiments, we split the training/test set by 60%/40% and
train models on the training set. In cross-dataset experiments, we also split the target dataset into
training data and test data by 60%/40%. Then we use the 2D ground truth on the source dataset to
compute heatmap loss and use the target training data to compute the TR loss. We select the shared
joint across datasets to evaluate methods and use MPJPE as the evaluation metric. Details about the
joint definition can be found in Appendix A.4.

Results Table 2 shows the MPJPE results on mouse pose estimation. The baseline directly triangulates
the 3D estimates via SVD based on the 2D detection results of pretrained HRnet. RANSAC is
implemented based on the Anipose toolkit [36]. Both methods above are based on the results of a
pretrained 2D detector without other fine-tuning, so the performance is relatively poor. DeeplabCut
[15] is the most popular animal pose estimation method. GeneralTriang [10] is a stochastic framework
for generalizable pose estimation, but it relies on the predicted 2D results, so it can not update the
2D detector in an end-to-end fashion. The Sup3d∗ model [9] is finetuned with MSE loss between
the 3D estimate and 3D ground truth. TR model even achieves better results on some tasks than
Sup3d∗ even without using the 3D ground truth. TR+DD model adds the domain discrimination loss
to reduce domain discrepancy in cross-dataset tasks, slightly improving performance. Training the
model with both TR loss and 3D supervision loss (TR+Sup3d∗) can lead every view ray to focus on
the 3D ground truth, so it achieves the best MPJPE results for all tasks.

Table 2: MPJPE results on mouse pose estimation. * means the method used 3D ground truth during
training. The unit is mm.

Dannce THM Dannce-THM THM-Dannce Calms2-Dannce Calms2-THM
Baseline 3.25 5.67 10.02 9.48 20.65 22.50

RANSAC[36] 2.65 4.96 9.66 8.01 18.39 17.50
DeeplabCut[15] 4.20 4.40 11.52 11.43 21.43 17.78

GeneralTriang[10] 2.56 4.65 8.56 8.06 18.55 16.50
Sup3d∗[9] 2.34 3.45 7.33 7.15 15.50 14.46

TR 2.22 3.49 5.87 7.15 15.16 15.11
TR+DD - - 5.78 5.83 14.84 15.07

TR+Sup3d∗ 2.00 3.37 5.76 5.57 14.84 14.38

To demonstrate the "plug-and-play" ability of TR loss, we implement the experiments on four tasks
by plugging the triangulation head and the confidence head into different 2D detectors (including
PVT[37], SCNet[38], and MobileNet[39]). As shown in Table 3, all 2D detectors get lower MPJPE
errors with TR loss. Especially for the cross-domain tasks (Dannce-THM and THM-Dannce), TR
loss reduces the MPJPE by an average of 3.85mm (36%).

We also present the MPJPE results of each joint on the Dannce dataset in Appendix A.5. The results
show that the nose and ears have lower errors than those of other points, while limb positions are
difficult to estimate because of the self-occlusion, and body joint error is relatively large due to the
lack of texture features.
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Table 3: MPJPE results of different 2D detectors with and without TR

PVT SCNet MobileNet
w/o TR w/ TR error w/o TR w/ TR error w/o TR w/ TR error

Dannce 3.12 2.74 -0.38 3.27 2.48 -0.79 3.26 2.81 -0.45
THM 4.57 3.81 -0.76 4.47 3.49 -0.98 4.94 4.04 -0.90

Dannce-THM 12.87 7.96 -4.91 11.08 6.44 -4.64 11.15 5.57 -5.58
THM-Dannce 11.09 7.74 -3.35 8.49 5.48 -3.01 9.47 7.85 -1.62

4.4 Further analysis

Data efficiency analysis We compare the MEJPE of models trained with different data sizes and
present the results in Figure 3 (a) - (b). Naive triangulation means triangulating directly based on
the 2D estimates of the backbone. Supervised triangulation means training the total model with the
ground-truth 3D labels. Our model is trained with TR loss. Figure 3 (a) shows that the MPJPE of all
models decreases as the training data size increases. Our model performs better than other models in
most cases especially when the training data size is small (5%-10%). The cross-subject results in
Figure 3 (b) show that our self-supervised method can significantly improve the generalization ability
of different individuals, but supervised triangulation fails.

Sensitivity testing on the score threshold To avoid the trivial solution, we set a threshold range to the
confidence score. Figure 3 (c) shows the MPJPE results curves with different threshold ranges. We
set the threshold range to be symmetric about 0.5 as shown on the x-axis, where "No" means model
without score head and (0.0, 1.0) means model without threshold. Models without a score head get
degraded performance since they can not adjust the weight of each view in the triangulation process,
while models without a score threshold get significantly large errors since TR loss to assign most
views with a weight close to 0, in this way, these views have no contributions to triangulation. Except
for these two extreme settings, our method obtains similar results because TR loss and confidence
can be adaptively balanced during the training process.

Ablation studies Figure 3 (d) - (e) present the ablation experiment results. The baseline model and
3D supervised model share the same model structure as the "TR+confidence" model having the
confidence head, while the "TR" model does not have the confidence head. The results show that TR
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Figure 3: (a) - (b) Data efficiency analysis on Human3.6M dataset. (c) Sensitivity testing on the score
threshold. (d) - (e) Ablation studies. The results show that TR loss is the most critical component and
DD loss is optional. (f) Results on different numbers of cameras.
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loss is the most critical component, yielding a 77.56% improvement on Subject 1-Subject 11 and a
46.41% improvement on the CalMS21-THM experiment compared to the baseline. The confidence
head also provides a slight improvement due to its learnable weights selecting high-confidence views.
The DD loss contributes the least to the performance.

Results on different numbers of cameras Figure 3 (f) shows the results on different numbers of
cameras on the Dannce dataset. The error increases slightly as the number of cameras decreases
from 6 to 3, and increases sharply when the number of cameras decreases to 2. However, the TR loss
achieves consistent improvement for all camera numbers.

Running time analysis In the training process, our method is the same as typical deep learning
models that compute the loss functions (including TR loss) only once per batch to update the weights.
The TR loss does not require additional iterative optimization within a batch. Therefore, TR loss does
not excessively increase the training time. During testing, our method also does not require iterative
optimization. The experiments show that the average per-batch running time of the same model with
and without TR loss on the Dannce dataset is 0.39s and 0.46s, respectively.

4.5 Qualitative results

Figure 4 shows qualitative examples of the Human3.6M dataset. The first four columns present the
2D estimates in different views generated by the 2D backbone, while the last column shows the 3D
estimates of different methods. The 2D detector is pretrained in the same way as the "Subject 1 -
Subject 11" experiment. As shown, the 2D backbone can not provide steady 2D estimates because of
the domain discrepancy and limited training data. The naive triangulation and supervised method are
incapable of correcting these errors (such as the right arm and right hip in view 2). However, our
method corrects the failed 2D estimates in each view via global geometry consistency self-supervision,
providing accurate 3D results.

Figure 4: Qualitative results on Human3.6M dataset. Our method provides geometrically consistent
2D estimates in each view and an accurate 3D estimate.

The examples of mouse pose estimation in Figure 5 also show that our method obtains better 3D
estimates. Due to space limitations, we only show three views and the 3D results here. All models
in Figure 5 are pretrained on the THM training set. As shown in column 3 of Subfigure (a), only
our method provides geometrically plausible 2D estimates for limbs and body. Moreover, only our
method distinguishes the left paw and right paw in Subfigure (b). More qualitative results and failure
examples can be found in Appendix A.6.
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(a) THM dataset example (b) Dannce dataset example

Figure 5: Qualitative results of mouse pose estimation. Our method obtains accurate results for the
hard joint (body) and unseen joints (paws) in View 3.

5 Conclusion

In this paper, we present TR loss for multiview 3D human/animal pose estimation, which aims to
minimize the sum of distances between 3D estimation and view rays. Its advantages contain (1) Self-
supervised. It achieves global geometric consistency without 3D supervision and any reprojection
processes. (2) Simple. It only minimizes the smallest singular value of the triangulation matrix
and can be easily applied to various 2D backbones; (3) Effective and data efficient. It achieves
state-of-the-art MPJPE performance for single-frame 3D pose estimation on the Human3.6M dataset
and obtains competitive results with only 5% training data. Future work includes combining TR loss
with end-to-end learnable association methods to generalize to multi-object pose estimation, or using
TR loss to jointly optimize the camera poses and object poses for moving cameras.
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