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Abstract

The transformer architecture has led to revolutionary advancements in NLP. The at-
tention layer within the transformer admits a sequence of input tokens X and makes
them interact through pairwise similarities computed as softmax(XQK™XT),
where (K, Q) are the trainable key-query parameters. In this work, we estab-
lish a formal equivalence between the optimization geometry of self-attention and
a hard-margin SVM problem that separates optimal input tokens from non-optimal
tokens using linear constraints on the outer-products of token pairs. This formalism
allows us to characterize the implicit bias of 1-layer transformers optimized with
gradient descent: (1) Optimizing the attention layer, parameterized by (K, @), with
vanishing regularization, converges in direction to an SVM solution minimizing the
nuclear norm of the combined parameter W := KQT. Instead, directly parameteriz-
ing by W minimizes a Frobenius norm SVM objective. (2) Complementing this, for
W-parameterization, we prove the local/global directional convergence of gradient
descent under suitable geometric conditions, and propose a more general SVM
equivalence that predicts the implicit bias of attention with nonlinear heads/MLPs.

1 Introduction

Self-attention, the central component of the transformer architecture, has revolutionized NLP
[VSP*17]. This mechanism has proven highly effective in capturing long-range dependencies, which
is essential for applications arising in NLP [KT19, BMR"20, RSR*20], computer vision [FXM*21,
LLC*21, TCD*21, CSL*23], and reinforcement learning [JLL21, CLR"21, WWX*22]. Remarkable
success of the self-attention mechanism and transformers has paved the way for the development of
LLMs such as GPT4 [Ope23], Bard [Goo023], LLaMA [TLI*23], and ChatGPT [Ope22].

Q: Can we characterize the optimization landscape and implicit bias of transformers?

We address this question by rigorously connecting the optimization geometry of the attention layer
and a hard max-margin SVM problem, namely (Att-SVM), that separates and selects the optimal
tokens from each input sequence. This formalism follows [TLZO23], which sheds light on the
intricacies of self-attention. Throughout, given input sequences X, Z € R’*? with length T and
embedding dimension d, we study the core cross-attention and self-attention models:

Jeross(X, Z) 1= S(ZQK' X)XV, fse1£(X) := S(XQK'X)XV.
Here, K,Q € R%™m Y e R are the trainable key, query, value matrices respectively; S(-) denotes
the softmax nonlinearity. Note that self-attention is a special instance of the cross-attention by setting
Z — X. To expose our main results, suppose the first token of Z, denoted by z, is used for prediction.
Concretely, given a dataset (Y;, X;, z;)_, with labels Y; € {—1, 1} and inputs X; € R z. e R4, we
consider the empirical risk minimization with a loss £(-) : R — R, defined as follows:

L(K.,Q) = rll Z €Y f(Xiz)),  where f(X;,z) = h(X]S(X:KQ" ). (1
i=1
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Figure 1: GD convergence of attention weights. ~ Figure 2: Percentage of different convergence
Markers represent tokens; lines depict attention-  types when training W. Red and blue bars repre-
SVM directions mapped to z; arrows illustrate  sent the percentages of convergence to globally
GD paths converging towards these SVM direc-  and locally-optimal SVM solutions; teal are com-
tions. Green circles denote GD <> SVM pairings.  plements of the blue; green depict Assum. B(ii).

Here, h(x) = v" x is the linear prediction head and f(-) precisely represents a one-layer transformer.
The softmax operation, due to its nonlinear nature, poses a significant challenge when optimizing (1).
In this study, we focus on optimizing the attention weights (K, Q or W) and overcome such challenges
to establish a fundamental SVM equivalence. The paper’s main contributions are as follows:

o Implicit bias of the attention layer (Sec. 2). Optimizing the attention parameters W or (K, Q)
with vanishing regularization converges in direction towards a solution of (Att-SVM) or (Att-SVM,,)
with the Frobenius norm or the nuclear norm objective, respectively. To our knowledge, this is the first
result to formally distinguish the optimization dynamics of W vs (K, Q) parameterizations, revealing
the low-rank bias of the latter.

e Convergence of gradient descent (Sec. 3). We prove the local/global directional convergence
of gradient descent for optimizing the attention layer parameterized by W under suitable geometric
conditions. Beyond these, we propose a more general SVM equivalence with nonlinear head, which
predicts the implicit bias of attention trained by gradient descent.

1.1 Preliminaries

Optimization algorithms. Given a parameter R > 0, we define the regularized path solution as
(W-RP) and (KQ-RP). For GD, with appropriate > 0, we describe the optimization process as
(W-GD) and (KQ-GD). Here for (W-RP) and (W-GD), £(Q, K) is replaced with £L(W) with W := KQ™.

Given Q(0), K(0) € R™™ 5 > 0, for k > 0 do:

Kk+D| _[K®]  [VkLEK),Q®K) ]
Ok + 1) _[Q(k)] ”[VQUK(k),Q(k))]’ (KQ-GD)

Given W(0) € R™? 5 > 0, for k > 0 do: :
Wk+1) = Wk) - VLW (). (W-GD) !

Given R > 0, find d X d matrix: Given R > 0, find d X m matrices:

Wy = argmin LW).  (W-RP) ! (Kx.Qp)= argmin L(K.Q).  (KQRP)

W<k IKIZ+IQI%<2R

Definition 1 (Token Score and Optimality) Given a prediction head v € R?, the score of a token
x;; of input X; is defined as y;; = Y; - v x;,. The optimal token for each input X; is given by the index
opt; € arg maxer| yir for all i € [n].

By introducing token scores and identifying optimal tokens, we can better understand the importance
of individual tokens and their impact on the overall objective. Next, we present SVM problems.

e Hard-margin SVM for W-parameterization. Equipped with the set of optimal indices (opt,),
as per Definition 1, we introduce the following SVM formulation associated to W-parameterization:

wm = arg m“iln IWllr st (Xiopt, — xi)'Wz; >1 forallt # opt;, i € [n]. (Att-SVM)

Throughout, we assume the SVM problems are feasible. We also note that GD can provably converge
to an SVM solution over locally-optimal tokens, as detailed in Section 3.2.
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¢ SVM problem for (K, O)-parameterization. The objective function has an extra layer of noncon-
vexity as (K, Q) corresponds to a matrix factorization of W. Fortunately, our experiments reveal that
GD is indeed biased towards the global minima. This yields the following W-parameterized SVM
with nuclear norm objective:

W™ e argmin W, s.t. (Xjopt, — Xi)' Wz; > 1 forallz # opt;, i € [n]. (Att-SVM,)
rank(W)<m

Above, the nonconvex rank constraint arises from the fact that the rank of W = KQT is at most m.
Lemma 1, presented below, demonstrates that this guarantee holds whenever n < m.

Lemma 1 Any optimal solution of (Att-SVM) or (Att-SVM,,) is at most rank n. More precisely, the
row space of W or W lies within span({z;}7_,).

2 Understanding Implicit Bias of Self-Attention

We start by establishing the global convergence of regulrized paths.

Assumption A Over any bounded interval [a,b]: (i) £ : R — R is strictly decreasing; (ii) The
derivative €' is bounded as |t'(w)| < My, (iii) ¢’ is My-Lipschitz continuous.

Theorem 1 Suppose Assumption A holds, optimal indices (opt;)_| are unique. Let W™ be the
unique solution of (Att-SVM), and let W™ be the solution set of (Att-SVM..) with nuclear norm
achieving objective Cy. Then, Algorithms W-RP and KQ-RP, respectively, satisfy:

. . . . . W ‘mm
o W-parameterization has Frobenius norm bias: lim % = —”v%m” .
R— F
N e T i s [ KRQg WY _
o (K, Q)-parameterization has nuclear norm bias: I;lm dist|—F%*,—7]=0.
—00 .

Theorem 1 shows that the RP of the W and (K, Q)-parameterization converge to the max-margin
solutions of (Att-SVM) and (Att-SVM,,) with Frobenius and nuclear norm objectives, respectively.
This result is the first to distinguish the optimization dynamics of W and (K, Q) parameterizations,
revealing the low-rank bias of the latter. To study the RP theory predictivity of the implicit bias
exhibited by GD, we examine the GD paths in Figure 1, where n = d = 2, T = 3. The teal and
yellow markers correspond to tokens from X;, X5, and the stars indicate the optimal tokens. We
illustrate the iterations of the attention weight in the form of Wz; and KQ z;, i = 1, 2. The red/blue
solid lines delineate the directions of W™z, /W™"z,; the red/blue dashed lines show the directions
of Wiz /W'™z,; the arrows denote the corresponding directions of gradient evolution. Figure 1
provides a clear depiction of the incremental alignment of W(k) and K(k)Q(k)" with their respective
attention SVM solutions as k increases. This strongly supports the assertions of Theorem 1.

3 Convergence and Implicit Bias of Gradient Descent

3.1 Global convergence

In this section, we will establish conditions that guarantee the global convergence of GD.

Lemma 2 Under Assumption A, VL(W) is Ly-Lipschitz continuous , where Ly := ’11 >, aib;, and
a; = W IzAPNXAP, b = MolwIl 11Xl + 3M, for all i € [n].

Assumption B Optimal tokens’ indices (opt;)?_, are unique and one of the following conditions on
the tokens holds: For all t # opt; and i € [n], (i) the tokens’ scores, as defined in Def. 1, satisfy
Yit = Vir < Yiopt,. (ii) all tokens are support vectors, i.e., (Xiopr, — Xir) ' W™z; = 1;

Here, we provide conditions for achieving global convergence towards the max-margin direction
W™ based on token score constraints and over-parameterization. For the former, we provide precise
theoretical guarantees. For the latter, we provide strong empirical evidence.

(I) Global convergence under score constraints. Our next result establishes the global convergence
of GD to the max-margin direction W™ under Assumption B(i) that non-optimal tokens have
identical scores but lower than the score of the optimal token.

Theorem 2 Suppose Assumption A on the loss € and Assumption B(i) on the tokens’ score hold.
Then, Algorithm W-GD with n < 1/Ly and any starting point W(0) satisfies limy_,« AL L i

W@l — IwWmmz*
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Figure 3: Local convergence behaviour of GD when training W or (K, Q) with random data.

(IT) Global convergence via overparameterization. Considering that Assumption B(ii) is anticipated
to hold as the dimension d increases, the norm of the GD solution is bound to diverge to infinity. This
satisfies a prerequisite for converging towards the globally-optimal SVM direction W™". The trend
depicted in Figure 2, where the percentage of global convergence (red bars) approaches 100% and
Assumption B(ii) holds with higher probability (green bars) as d grows, reinforces this insight.

3.2 Local convergence

Definition 2 (Local Optimality) Fix token indices @ = (;))}_,. Solve (Att-SVM) with (opt,)?_,
replaced with a to obtain W™. Consider the set T; C [T] such that (x;q, — x;1)"Wi™z; = 1. If for all
i € [n] and t € T scores per Def. 1 obey yi,, > vi, W™ is called a locally-optimal direction.

To provide a basis for discussing local convergence of GD, we establish a cone centered around W;™:
For 1 € (0, 1) and R > 0, we define C,, g(W™) := {[Wl|r = R | (W/[Wl}p, WS /[WEm[) > 1 = pu).

Theorem 3 Suppose Assumption A holds, and let @ = («;)}_, be locally optimal tokens and W™
be a locally-optimal direction according to Def. 2. Then, Algorithm W-GD with n < 1/Lw and any

W(0) € Cr(WE™) satisfies 1imy e W)l = 00 and limy o, mrr— = ”v”VVé,'r"nf"‘F.

This theorem indicates that if GD is initiated within C, g(WZ"™), it will converge in the direction of
W /IW2™|| . Importantly, Theorem 3 does not make any assumptions on the tokens as opposed to
Theorem 2. In Figure 3 we consider setting where n = 6, T = §, and d = 10. In Fig. 3(a) we calculate
the softmax probabilities, which result in probability 1, indicating that attention weights succeed in
selecting one token per input. Following Def. 2 let @ = (@;)]_, be the token indices selected by GD
and denote Wi as the corresponding SVM solution of (Att- SVM ). Figs. 3(b) and 3(c) illustrate the
correlation coefﬁcwnts of attention weights with respect to W™ and W'3l. The results demonstrate
that W (KQT) ultimately reaches a 1 correlation with W™ (WEe), which validates Theorem 3.

3.3 Implicit bias under MLP nonlinearity

So far, we focus on the setting that A(-) is linear and attention selects a single token per sequence.
In this section, we analyze the scenarios where A(-) is nonlinear and nonconvex, and GD solution is
composed by multiple tokens. Suppose optimal solution outputs softmax probability of s*,i € [n].
Intuitively, W(k) should be decomposed into two components via

Wk) ~ Wi+ W)l - W ©)

where Wn is the finite component and W™ is the directional component with [[W™m|| = = 1. Define
the selected set O; C [T] to be the indices s7; # 0 and the masked set as O; = [T] -

Finite component (Wf"): The job of W is to assign nonzero softmax probabilities within each s
Then, W' should satisfy the linear constraints:

(xi — Xi7) Wiz, = log(s}/s%) forall t,7€0;, i€ln]. 3)

Directional component (W™™): While W/" creates the composition by allocating _the nonzero
softmax probabilities, it does not explain sparsity of attention map. This is the role of W™, and we
obtain the following convex generalized SVM formulation

VieO,1€0;: (xi—x7) "Wz > 1,
Vti,te Oi : (xi — xi‘r)TWZi =0,
and W™ = W™ /||W™™|| -, It is important to note that (4) offers a substantial generalization beyond

the scope of the previous sections. Remarkably, in Appendix B, we empirically demonstrate that this
general form indeed seems to predict the implicit bias of gradient descent with MLPs.

W™ = argmin Wil subj. to { Vi<i<n, (4)
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A Related work

A.1 TImplicit Regularization, Matrix Factorization, Sparsity

Extensive research has delved into gradient descent’s implicit bias in separable classification
tasks, often using logistic or exponentially-tailed losses for margin maximization [SHN*18,
GLSS18, NLG"19, JT21, KPOT21, MWG*20, JT20]. The findings have also been extended
to non-separable data using gradient-based techniques [JT18, JT19, JDST20]. Implicit bias
in regression problems and losses has been investigated, utilizing methods like mirror descent
[WGL*20, GLSS18, YKM20, VKR19, AW20a, AW20b, ALH21, SATA22]. Stochastic gradient
descent has also been a subject of interest regarding its implicit bias [LWM19, BGVV20, LR20,
HWLM20, LWA22, DML21, ZWB*21]. This extends to the implicit bias of adaptive and momentum-
based methods [QQ19, WMZ*21, WMCL21, JST21].

In linear classification, GD iterations on logistic loss and separable datasets converge to the hard
margin SVM solution [SHN*18, RZH03, ZY05]. The attention layer’s softmax nonlinearity behaves
similarly, potentially favoring margin-maximizing solutions. Yet, the layer operates on tokens
in input sequences, not for direct classification. Its bias leans toward an (Att-SVM), selecting
relevant tokens while suppressing others. However, formalizing this intuition presents significant
challenges: Firstly, our problem is nonconvex (even in terms of the W-parameterization), introducing
new challenges and complexities. Secondly, it requires the introduction of novel concepts such as
locally-optimal tokens, demanding a tailored analysis focused on the cones surrounding them. Our
findings on the implicit bias of (K, Q)-parameterization share conceptual similarities with [SRJI04],
which proposes and analyzes a max-margin matrix factorization problem. Similar problems have
also been studied more recently in the context of neural-collapse phenomena [PHD20] through
an analysis of the implicit bias and regularization path of the unconstrained features model with
cross-entropy loss [TKVB22]. However, a fundamental distinction from these works lies in the fact
that attention solves a different max-margin problem that separate tokens. Moreover, our results
on (K, Q)-parameterization are inherently connected to the rich literature on low-rank factorization
[GWB*17, ACHL19, TVS23, TBS*16, SS21], stimulating further research. [TL.ZO23] is the first
work to establish the connection between attention and SVM, which is closest to our work. Here,
we augment their framework, initially developed for a simpler attention model, to transformers by
providing the first guarantees for self/cross-attention layers, nonlinear prediction heads, and realistic
global convergence guarantees. While our Assumption (i) and local-convergence analysis align with
[TLZO23], our contributions in global convergence analysis, benefits of overparameterization, and
the generalized SVM-equivalence in Section B are unique to this work.

It is well-known that attention map (i.e. softmax outputs) act as a feature selection mechanism and
reveal the tokens that are relevant to classification. On the other hand, sparsity and lasso regression
(i.e. £; penalization) [Don06, Tib96, TG0O7, CDS01, CRT06] have been pivotal tools in the statistics
literature for feature selection. Softmax and lasso regression exhibit interesting parallels: The Softmax
output s = S(XWz) obeys |Is|l, = 1 by design. Softmax is also highly receptive to being sparse
because decreasing the temperature (i.e. scaling up the weights W) eventually leads to a one-hot vector
unless all logits are equal. We (also, [TLZ023]) have used these intuitions to formalize attention as a
token selection mechanism. This aspect is clearly visible in our primary SVM formulation (Att-SVM)
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which selects precisely one token from each input sequence (i.e. hard attention). Section B has also
demonstrated how (Gen-SVM) can explain more general sparsity patterns by precisely selecting
desired tokens and suppressing others. We hope that this SVM-based token-selection viewpoint will
motivate future work and deeper connections to the broader feature-selection and compressed sensing
literature.

A.2 Attention Mechanism and Transformers

Transformers, as highlighted by [VSP*17], revolutionized the domains of NLP and machine transla-
tion. Prior work on self-attention [CDL16, PTDU16, PXS18, LFES™17] laid the foundation for this
transformative paradigm. In contrast to conventional models like MLPs and CNN, self-attention mod-
els employ global interactions to capture feature representations, resulting in exceptional empirical
performance.

Despite their achievements, the mechanisms and learning processes of attention layers remain
enigmatic. Recent investigations [EGKZ22, SEO"22, ENM22, BV22, DCL21] have concentrated
on specific aspects such as sparse function representation, convex relaxations, and expressive power.
Expressivity discussions concerning hard-attention [Hah20] or attention-only architectures [DCL21]
are connected to our findings when /A(:) is linear. In fact, our work reveals how linear & results
in attention’s optimization dynamics to collapse on a single token whereas nonlinear /& provably
requires attention to select and compose multiple tokens. This supports the benefits of the MLP layer
for expressivity of transformers. There is also a growing body of research aimed at a theoretical
comprehension of in-context learning and the role played by the attention mechanism [ASA*22,
LIPO23, ACDS23, ZFB23, BCW*23, GRS™23]. [SEO"22] investigate self-attention with linear
activation instead of softmax, while [ENM?22] approximate softmax using a linear operation with
unit simplex constraints. Their primary goal is to derive convex reformulations for training problems
grounded in empirical risk minimization (ERM). In contrast, our methodologies, detailed in equations
(W-ERM) and (KQ-ERM), delve into the nonconvex domain.

[MRG"20, BALA*23] offer insights into the implicit bias of optimizing transformers. Specifically,
[MRG*20] provide empirical evidence that an increase in attention weights results in a sparser
softmax, which aligns with our theoretical framework. [BALA*23] study incremental learning and
furnish both theory and numerical evidence that increments of the softmax attention weights (KQ™)
are low-rank. Our theory aligns with this concept, as the SVM formulation of (K, Q) parameterization
inherently exhibits low-rank properties through the nuclear norm objective, rank-m constraint, and
implicit constraint induced by Lemma 1.

Several recent works [JSL.22, LWLC23, TWCD23, NLL*23, ORST23, NNH*23, FGBM23] aim to
delineate the optimization and generalization dynamics of transformers. However, their findings usu-
ally apply under strict statistical assumptions about the data, while our study offers a comprehensive
optimization-theoretic analysis of the attention model, establishing a formal linkage to max-margin
problems and SVM geometry. This allows our findings to encompass the problem geometry and apply
to diverse datasets. Overall, the max-margin equivalence provides a fundamental comprehension of
the optimization geometry of transformers, offering a framework for prospective research endeavors,
as outlined in the subsequent section.

B Understanding Multi-token Compositions: Toward A More General
Max-Margin and Directional Convergence Theory

So far, our theory has focused on the setting where the attention layer selects a single optimal token
within each sequence. As we have discussed, this is theoretically well-justified under linear head
assumption and certain nonlinear generalizations. On the other hand, for arbitrary nonconvex h(-)
or multilayer transformer architectures, it is expected that attention will select multiple tokens per
sequence. This motivates us to ask:

Q: What is the implicit bias and the form of W(k) when the GD solution is
composed by multiple tokens?

In this section, our goal is to derive and verify the generalized behavior of GD. Let 0; = XlTle
denote the token generated by the attention layer where le = S(X;Wz;) are the softmax probabilities.

12
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Suppose GD trajectory converges to achieve the risk £, = minw L(W). Suppose the eventual token
composition achieving £, is given by
of =X/s?,

where s* are the eventual softmax probability vectors that dictate the token composition. Since
attention maps are sparse in practice, we are interested in the scenario where s is sparse i.e. it
contains some zero entries. This can only be accomplished by letting ||W||z — co. However, unlike
the earlier sections, we wish to allow for arbitrary s;* rather than a one-hot vector which selects a
single token.

To proceed, we aim to understand the form of GD solution W(k) responsible for composing o via
the softmax map s as R — co. Intuitively, W (k) should be decomposed into two components via

W(k) ~ Wi + Wkl - W™, o)

where W is the finite component and W™™ is the directional component with |[W™|| = 1. Define
the selected set O; C [T'] to be the indices 57 # 0 and the masked (i.e. suppressed) set as O; = [T]-0O;
where softmax entries are zero. In the context of earlier sections, we could also call these the optimal
set and the non-optimal set, respectively.

e Finite component: The job of W/ is to assign nonzero softmax probabilities within each s*.

This is accomplished by ensuring that, W/ induces the probabilities of s* over O; by satisfying the
softmax equations
ex;Wﬁ"z; ( )Twﬁ
— (Xi—xir "Zi KX
Sowing, ¢ = Sip) Sir-

for t,7 € O;. Consequently, this W™ should satisfy the following linear constraints

(xXi: — X;2) Wiz, = log(sk/sk) forall t,7€0, i€ |n]. (©6)

e Directional component: While W'" creates the composition by allocating the nonzero softmax
probabilities, it does not explain sparsity of attention map. This is the role of ‘ZV”"", which is
responsible for selecting the selected tokens O; and suppressing the masked ones O; by assigning
zero softmax probability to them. To predict direction component, we build on the theory developed
in earlier sections. Concretely, there are two constraints W™ should satisfy

1. Equal similarity over selected tokens: For all 7,7 € O;, we have that (x;; — x;;)"Wz; = 0.
This way, softmax scores assigned by W/ are not disturbed by the directional component and
Wihn + RW™™ will still satisfy the softmax equations (6).

2. Max-margin against masked tokens: For all t € O;, T € O;, enforce the margin constraint
(xi — xiz)"Wz; > 1 subject to minimum norm |W||g.

Combining these, we obtain the following convex generalized SVM formulation

VtieO,1€0;: (xi—x7) Wz > 1,

Vi<i<n.
Vt,7€0;: (xi — xi7)TWz; =0, st=n

W™ = arg n%‘i,n||W||p subj. to {
(Gen-SVM)

and set the normalized direction in (5) to W™™ = W™ /| W™ ..

It is important to note that (Gen-SVM) offers a substantial generalization beyond the scope of the
previous sections, where the focus was on selecting a single token from each sequence, as described
in the main formulation (Att-SVM). This broader solution class introduces a more flexible approach
to the problem.

We present experiments showcasing the predictive power of the (Gen-SVM) equivalence in nonlinear
scenarios. We conducted these experiments on random instances using an MLP denoted as A(-),
which takes the form of 1"ReLU(x). We begin by detailing the preprocessing step and our setup. For
the attention SVM equivalence analytical prediction, clear definitions of the selected and masked sets
are crucial. These sets include token indices with nonzero and zero softmax outputs, respectively.
However, practically, reaching a precisely zero output is not feasible. Hence, we define the selected
set as tokens with softmax outputs exceeding 1073, and the masked set as tokens with softmax outputs
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Figure 4: Behavior of GD with nonlinear nonconvex prediction head and multi-token compositions.
Upper: The correlation between GD solution and three distinct baselines: (- --) W™" obtained from
(Gen-SVM); (—) W5"™ed obtained by calculating Win and determining the best linear combination
Wi+ 4 W™ that maximizes correlation with the GD solution; and (- -) Wt°ke? obtained by solving
(Att-SVM) and selecting the highest probability token from the GD solution. Lower: Scatterplot
of the largest softmax probability over masked tokens (per our s;; < 1076 criteria) vs correlation
coefficient.

below 107°. We also excluded instances with softmax outputs falling between 107% and 1073 to
distinctly separate the concepts of selected and masked sets, thereby enhancing the predictive accuracy
of the attention SVM equivalence. In addition to the filtering process, we focus on scenarios where
the label ¥ = —1 exists to enforce non-convexity of prediction head Y; - A(-). It is worth mentioning
that when all labels are 1, due to the convexity of Y; - h(-), GD tends to select one token per input,
and Equations (Gen-SVM) and (Att-SVM) yield the same solutions. The results are displayed in
Figure 4, where n = 3, T = 4, and d varies within 4,6, 8, 10. We conduct 500 random trials for
different choices of d, each involving x;, z;, and v randomly sampled from the unit sphere. We apply
normalized GD with a step size 7 = 0.1 and run 2000 iterations for each trial.

o Figure 4 (upper) illustrates the correlation evolution between the GD solution and three distinctive
baselines: (---) W™ obtained from (Gen-SVM); (—) WS4 obtained by calculating W' and
determining the best linear combination W+ W™ that maximizes correlation with the GD solution;
and (- -) Witoken gbtained by solving (Att-SVM) and selecting the highest probability token from the
GD solution. For clearer visualization, the logarithmic scale of correlation misalignment is presented
in Figure 4. In essence, our findings show that Wt°ken yields unsatisfactory outcomes, whereas
W™ attains a significant correlation coefficient in alignment with our expectations. Ultimately,
our comprehensive SVM-equivalence W5™ed further enhances correlation, lending support to our
analytical formulas. It’s noteworthy that SVM-equivalence displays higher predictability in a larger d
regime (with an average correlation exceeding 0.99). This phenomenon might be attributed to more
frequent directional convergence in higher dimensions, with overparameterization contributing to a
smoother loss landscape, thereby expediting optimization.

e Figure 4 (lower) offers a scatterplot overview of the 500 random problem instances that were
solved. The x-axis represents the largest softmax probability over the masked set, denoted as max; - s;;
where 7 € O;. Meanwhile, the y-axis indicates the predictivity of the SVM-equivalence, quantified as
1 — corr_coef(W, WS"™ed) From this analysis, two significant observations arise. Primarily, there
exists an inverse correlation between softmax probability and SVM-predictivity. This correlation
is intuitive, as higher softmax probabilities signify a stronger divergence from our desired masked
set state (ideally set to 0). Secondly, as dimensionality (d) increases, softmax probabilities over the
masked set tend to converge towards the range of 10~1> (effectively zero). Simultaneously, attention
SVM-predictivity improves, creating a noteworthy correlation.
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Figure 5: Behavior of GD when selecting multiple tokens. (a) The number of selected tokens
increases with A. (b) Predictivity of attention SVM solutions for varying A; Dotted curves depict
the correlation corresponding to W™ calculated via (Gen-SVM) and solid curves represent the
correlation to WS™ed_ which incorporates the Win correction. (c) Similar to (b), but evaluating
correlations over different numbers of selected tokens.

B.1 When does attention select multiple tokens?

In this section, we provide a concrete example where the optimal solution indeed requires combining
multiple tokens in a nontrivial fashion. Here, by nontrivial we mean that, we select more than 1
tokens from an input sequence but we don’t select all of its tokens. Recall that, for linear prediction
head, attention will ideally select the single token with largest score for almost all datasets. Perhaps
not surprisingly, this behavior will not persist for nonlinear prediction heads. For instance in Figure 4,
the GD output W aligned better in direction with W™ than W'token  Specifically, here we prove that
if we make the function hy(x) := Y - h(x) concave, then optimal softmax map can select multiple
tokens in a controllable fashion. iy(x) can be viewed as generalization of the linear score function
Y -vTx. In the example below, we induce concavity by incorporating a small —1||x||> term within a
linear prediction head and setting h(x) = vTx — A||x||> with ¥ = 1.

Lemma 3 Given v € RY, recall the score vector y = Xv. Without losing generality, assume y is
: : gap T-1 : : gap _ _

non-increasing. Define the vector of score gaps y** € R' =" with entries y; " = y; — ¥:+1. Suppose
all tokens within the input sequence are orthonormal and for some T > 2, we have that

T2 > ¥ (N
Set h(x) = vTx — Al|x|> where Ty5*/2 > A > y‘fap, 0(x) = —x, and Y = 1. Let Ar denote the
T -dimensional simplex. Define the unconstrained softmax optimization associated to the objective h
where we make s := S(XWz) a free variable, namely,

min £(h(Xs)) = min A X" s|> = v X" s. ®)
seAr SEAT
Then, the optimal solution s* contains at least 2 and at most T nonzero entries.

Figure 5 presents experimental findings concerning Lemma 3 across random problem instances. For
this experiment, we set n = 1, T = 10, and d = 10. The results are averaged over 100 random
trials, with each trial involving the generation of randomly orthonormal vectors x, and the random
sampling of vector v from the unit sphere. Similar to the processing step in Figure 4, and following
Figure 4 (lower) which illustrates that smaller softmax outputs over masked sets correspond to higher
correlation coefficients, we define the selected and masked token sets. Specifically, tokens with
softmax outputs > 1073 are considered selected, while tokens with softmax outputs < 1073 are
masked. Instances with softmax outputs between 10~8 and 1073 are filtered out.

Figure 5(a) shows that the number of selected tokens grows alongside A, a prediction consistent with
Lemma 3. When A = 0, the head h(x) = v" x is linear, resulting in the selection of only one token
per input. Conversely, as A exceeds a certain threshold (e.g., 4 > 2.0 based on our criteria), the
optimization consistently selects all tokens. Figure 5(b) and 5(c) delve into the predictivity of attention
SVM solutions for varying A4 and different numbers of selected tokens. The dotted curves in both
figures represent 1 — corr_coef(W, W™™), while solid curves indicate 1 — corr_coef(W, WSV"ed),
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where W denotes the GD solution. Overall, the SVM-equivalence demonstrates a strong correlation
with the GD solution (consistently above 0.95). However, selecting more tokens (aligned with larger
A values) leads to reduced predictivity.

To sum up, we have showcased the predictive capacity of the generalized SVM equivalence regarding
the inductive bias of 1-layer transformers with nonlinear heads. Nevertheless, it’s important to
acknowledge that this section represents an initial approach to a complex problem, with certain
caveats requiring further investigation (e.g., the use of filtering in Figures 4 and 5, and the presence of
imperfect correlations). We aspire to conduct a more comprehensive investigation, both theoretically
and empirically, in forthcoming work.

B.2 Proof of Lemma 3

Suppose 7 described by (7) exists and set A accordingly. Let S c [T] denote the top 7 indices of
y with largest scores. Denote X' € R™ to be the sequence corresponding to S and X?> € R7-7xd
to be the sequence corresponding to [7] — S. Similarly, denote the subvectors y1, s € R™ and
¥2,5@ € RT~" and define the probability over S as S| = Y;.s s;. The orthogonality and unit norm
assumption on the tokens imply

T
12 IXTsIP = ) 57> ST/t + (1 =812 /(T =),
=1
l/;\lﬁo note that v Xs = y7 sV + y7s?. With these, we can write the objective L(s) := £(h(Xs)) as
ollows

.E(s)—/lZs — TV —ys@.

Note that, for fixed y and over all permutations of entries of s, s is maximized when s and y are
aligned namely, when the entries of s are sorted according to the entries of y. Otherwise, we could
swap two unsorted entries of s (i.e. with unaligned y entries) to a sorted position to obtain a strictly
better optimal (where we also used the fact that s has nonnegative entries). Thus, we can assume the
entries of s* are sorted according to y. Specifically, the largest T entries of s* lie on the set S.

e We first show that s := s* cannot have more than 7 entries. To prove this, we compare s against
the baseline § where 5! = s/S| and §2 = 0 so that § is 7-sparse. In this scenario, § yields the

objective
1
L) = = & Z 2 _ 5 —yTs )
1 jeS

We claim that £(5) < L(s). To see this, we first observe that TsD/S) > 7, Ts@/( =81 + 2%,
This implies

(1/81 = Dy sV —y7s? > (1 -8y

Recalling };cs si2 < S%/‘r, we can now utilize the following chain of implications

L(5) < L(s)
2
=5 Ts® < /IZ st —ylsV —y7s@
1 ieS
<:/l(1/S2—1)Zs <(1/81 = yyTs® = yIs®
€S
=A1ST-D) ) sE < (-8
i€S

= A1 =-8H/T < (1-8)ys?
= A+ S/t < yEP
= 21/T < y5*

= 1< 1y5P)2.

16



650
651
652

653
654

655

656

657

658

659
660
661
662
663

664

665
666
667
668

669
670
671
672
673
674
675

676

677
678

680

681

682

e We next prove that there are at least two nonzeros in the optimal solution. Denote the largest
and second largest entry of y by ¥ and ¥, respectively. For s°*¢ € Ay containing a single nonzero
(i.e. one-hot vector), the best achievable risk is given by

L) = -7,

On the other hand consider the 2-sparse reference solution s
the top two entries. This achieves

ref which assigns equal likelihood over

L(sref) — /_l _,yTsref < il _ ity

2 2 2
The latter is superior as soon as
A +y
LNV gy = >y
2 2
Thus, we conclude with the statement by selecting 7y£%/2 > 4 > 4. [

C Auxiliary Lemmas

C.1 Proof of Lemma 1

Suppose the claim is wrong and row space of W does not lie within S = span({z;}7_,). Let
W = [Isg(WI™) denote the matrix obtained by projecting the rows of W™ on S. Observe that W
satisfies all SVM constraints since Wz; = W'™z; for all i € [n]. For Frobenius norm, using W;"™ # W,
we obtain a contradiction via [W™™|2 = |[W||% + [W™ — W|2. > ||[W|[%. For nuclear norm, we can

write W = UXVT with ¥ € R™" where r is dimension of S and column_span(V) = S.
To proceed, we split the problem into two scenarios.

Scenario 1: Let U,, V. be orthogonal complements of U, V — viewing matrices with orthonormal
columns as subspaces. Suppose UTW™™V = 0. Then, singular value inequalities (which were
also used in earlier works on nuclear norm analysis [RXH11, OH10, OMFHI11]) guarantee that
WSl 2 I[UTWIV] + [UTWITV L > [[W].

Scenario 2: Now suppose U] W™V, = 0. Since W™V, # 0, this implies UT W™V, # 0. Let
W’ = UUTW™ which is a rank-r matrix. Since W’ is a subspace projection, we have ||W'||, <
([wmm||,.. Next, observe that |W||, = trace(UTWV) = trace(U"W’V). On the other hand,
trace(UTW'V) < ||W’'||x because the equality in von Neumann’s trace inequality happens if and
only if the two matrices we are inner-producting, namely (W’,UV™), share a joint set of singular
vectors [Car21]. However, this is not true as the row space of W™ does not lie within S. Thus, we
obtain ||W||, < [[W/|lx < |[W™™||, concluding the proof via contradiction. ]

C.2 Proof of Lemma 2

Lemma 4 (Lemma 2 restated) Under Assumption A, VL(W), Vg L(K, Q), and Vo.L(K, Q) are Ly,
Lk, Lg-Lipschitz continuous, respectively, where a; = ||v|| lzAPIXGR, b = Molvll 1 Xl + 3M, for all
i € [n],

1 n
Ly := - Zaibi, Lk :=QllLw, and Lg :=|KlLw. )
=
Proof. Let
vi=Yi- Xy, hi=XWz. (10)
From Assumption A, ¢ : R — R is differentiable. Hence, the gradient evaluated at W is given by
1 n
VLW) =~ > ¢ (y]S(h)) - XS (hiyyiz] (1)
=
where
S’(h) = diag (S(h)) — S(h)S(h)™ e R, (12)
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Note that

IS"(I < [IS"(W)lIF < 1. (13)
Hence, for any W, W e R™ | e [n], we have
[Si) = S(h)|| < ||B; = Bi|| < UKl 1zill [|W = W]],... (14a)
where h; = X;Wz,.
Similarly,

S'(hy) = S'(hy)| - < ||S(h) = S| + ||[SR)SR)T = SR)SR)T ||,
< 31Xl Nzl ||W - W], (14b)
Next, for any W, W € R™?, we get
. 1 <
1vLW) = VLW, <~

i=1

¢ (y7 () - 2y S' (W)X = € (y] SChD) - 207 S )X,

< %Zl leiyTs X, |0 (rTSG) - € (] SCh)

ln
+;;

1 < , .
<~ Z; Mo Iyl Nzill X1 |[SCh) = ()|

€ (rFs)| |z s ) Xi - 2] S o X,

1 n
+ - M i i X,'
n;:] il lzad X |

' (hi) - §'(hy)|| (15)

where the second inequality follows from the fact that |ab — cd| < |d|la — c| + |a||b — d| and the third
inequality uses Assumption A and (13).

Substituting (14a) and (14b) into (15), we get

. 1 < .
IvLW) = VLW, < = D (Mo Iy Pz PIXAP + 3Mullyill zilP 1X1P) 1IW — Wil
i=1
1 < .
<= > (Mo IMPIZAPIX + 3Myll 1z 1) W = W1l
n i=1

< Ly IIW - Wi,
where Ly is defined in (9).
Let g; = X;KQ" z;. We have
VkL(K,Q) = Z £ (v7s(gn) - 2077 S' (€ X:Q. (16a)
VoL(K.Q) = Z ¢ (rTs(en) XT8' (g)yiz K. (16b)

By the similar argument as in (15), for any Q and Q € R™", we have

||
i=1
< LwlK| IQ - QlIr. (17)
Similarly, for any K, K € R we get
[Vk LK, Q) - VLK, Q)| < Lwll@Il K - K.

[VoL(K,Q) - Vo L(K.Q)|, <

O (y7 () - 2y S' (W)X, = € (y] SCho) - 2] ') X,
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C.3 Useful Lemmas

Lemma 5 (Optimal Tokens Minimize Training Loss) Suppose Assumption A (i)-(ii) hold, and not

all tokens are optimal per Definition 1. Then, training risk obeys L(W) > L, = % 2t LW iopt,)-

Additionally, suppose there are optimal indices (opt;);_, for which (Att-SVM) is feasible, i.e. there
exists a W separating optimal tokens. This W choice obeys limg_,o, L(R - W) = L.

The result presented in Lemma 5 originates from the observation that the output tokens of the attention
layer constitute a convex combination of the input tokens. Consequently, when subjected to a strictly
decreasing loss function, attention optimization inherently leans towards the selection of a singular
token, specifically, the optimal token (opt;).,.

Proof. The token at the output of the attention layer is given by a; = XiTS(X :Wz). Here, a; can be
written as @; = (77 CirXir Where ¢;; > 0 and 7y cir = 1. Note that, for any finite W, ¢, as softmax
probabilities are strictly positive. To proceed, using the linearity of i(x) = v x and strictly-decreasing
nature of the loss ¢, we find that

1 n 1 n 1 n
Lw) =~ Zl] (Y; - ha) = Z:‘ (i ) eahlxi) 2 ~ 21 (Y hXiopt,)) = Las

t€[T]
which implies that L(W) > L, for any W.
On the other hand, since not all tokens are optimal, there exists a token index (i,¢) for which

Y; - h(x;i) < Y- h(xopt,). Since all softmax entries obey c;; > O for finite W, this implies the strict
inequality €(Y; - h(a;)) > €(Y; - h(Xiopt,)). This leads to the desired conclusion L(W) > L,.

Secondly, suppose (Att-SVM) is feasible i.e. there exists a W separating some optimal indices
(opt;)?, from the other tokens. Note that, this does not exclude the existence of other optimal
indices. This implies that, letting limg_,., S(X;(R - W)z;) saturates the softmax and will be equal to the
indicator function at opt; for all inputs i € [n]. Thus, ¢; — O for ¢ # opt; and ¢;; — 1 for ¢ = opt;.
Using M,-Lipschitzness of £, we can write

€Y+ h(Xiope)) = £(Y; - h(@)| < M [h(@) = h(Xiopt,)| -
Since h is linear, it is ||v||-Lipschitz implying

|€CY; - h(Xiopt,)) — €(Y; - h(@y))| < MyIWIl - lla; = Xiopt, Il

Since a; — Xjopt, as R — oo, we conclude with the advertised result. [ ] |

Lemma 6 Forany X e R™ W,V e R™ and z,v € R?, leta = XVz, s = S(XWz), and y = Xv.
Set

I'= sup ly,— v, and A = supllall.
t,7€[T] 1€[T]

We have that

T
a'diag(s)y —a'ss"y — Z(al —a)s(y1 —yo)| < 2TA(l - §1)%

1>2

Proof. The proof is similar to [TLZO23, Lemma 4], but for the sake of completeness, we provide it
here. Sety = Zthl v:8;. We have

T
Y1-7= ) (1-y)s, and byy -7 <T(1 - s)).

>2

Then,

T T T
a'diag(s)y —a'ss'y = Z ays; — Z a:s; Z VSt
=1 =1 -

T
= a5 =9 - ), asi7 - 7). (18)

1>2
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Since

T T
Dlasy-y)- ) asiyr - y)| <AL - 51)?,
22 122
we obtain'
T
a"diag(s)y —a"ssTy = ais1(y1 = 7) = ) asi(y1 —7) £ AT - 5,)°
22
T T
=ais1 ) (1 =708 — ) sy —y) £ AT(1 = 5,)?
2 122

T
= > (@51 - a)si(y1 — y) £ AT(1 - 512

>2

T
= D@ = a)s(y1 —y.) £ 24T(1 = 512,

1>2

Here, + on the right handside uses the fact that

T T
D (@isi —aDsiyr —y)| < (1= sDAT D s, = (1 - 51?AT.

>2 >2

D Global Regularization Path

D.1 Proof of Theorem 1

Throughout ¢ denotes either Frobenius norm or nuclear norm. We will prove that W(R) asymptotically
aligns with the set of globally-optimal directions and also [|[W(R)||, — 0. R,, € R denote the
manifold of rank <m matrices.

Step 1: Let us first prove that W(R) achieves the optimal risk as R — oo — rather than problem
having finite optima. Define E, = 1/||W™"||, and norm-normalized W™ = E,W™". Note that W™"
separates tokens opt from rest of the tokens for each i € [n]. Thus, we have that

: % : 7 mm 1 C 0
lim LIW(R)) < lim LR - W™) = L, = - ; ). (19)

On the other hand, for any W € R,,, define the softmax probabilities s = S(X;Wz;) and attention
features x! = Y7 s\”x,. Decompose x¥ as x!¥ = 0 Xiopt, + X isopt, S Xir. Set yiF = ¥t —y; =

Y; - v (Xiopt, — Xir) > 0, and define

B := max max [IVl| - [li — xill > ¥} (20)
i€[n] t,re[T]
Define copt = MiNje(uyrzopt, V5 > 0 and ¥} =Y;-vTx!¥. We obtain the following score inequalities
PV <Y = cope(l - st) < ¥, 1)
Y =y < Il e = < Il > sl - X< BOL = st
t#opt;

We will use the in - y?pt term in (21) to evaluate W against the reference loss £, of (19). Using the
strictly-decreasing nature of £, we conclude with the fact that for all (finite) W € R,,,

_l n w _1 n opt
L(W)—n;K(y,»bL*—n;é’(y,- ),

1For simplicity, we use + on the right hand side to denote the upper and lower bounds.
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which implies ||W(R)||, — oo together with (19).

Step 2: To proceed, we show that W(R) converges in direction to ‘W™ which denotes the set of
SVM minima. Suppose this is not the case and convergence fails. We will obtain a contradiction by
showing that W™ = R - W™ achieves a strictly superior loss compared to W(R). Let us introduce

the normalized parameters Wy(R) = %’? and W’ = %. Note that Wo(R) is obtained by scaling
down W’ since [[W(R)||, < R and W’ obeys ||[W’||, = |[W™||,. Since Wy(R) fails to converge to W™,
for some ¢ > 0, there exists arbitrarily large R > 0 such that dist (WO(R), Wmm) > 0. This translates
to the suboptimality in terms of the margin constraints as follows: First, since nuclear norm dominates
Frobenius, distance with respect to the ¢-norm obeys dist, (WO(R), ’W”’“’) > 0. Secondly, using

triangle inequality,
this implies that either |[Wo(R)||, < [[W™||, —6/2 or dist, (W', W™) > §/2.

In either scenario, Wy (R) strictly violates one of the margin constraints of (Att-SVM) (¢ = F) or
(Att-SVM,) (¢ = »): If [[WoR)|l, < |[W™||, — §/2, then, since the optimal SVM objective is
|[Wmm||. there exists a constraint i, # opt, for which <(xf.’pt - xi)z], V_Vo(R)> <1- 2||W+f""'Ho' If
dist, (W, W) > §/2, then, W’ has the same SVM objective but it is strictly bounded away from
the solution set. Thus, for some € := €(5) > 0, W’ and its scaled down version Wy(R) strictly violate
an SVM constraint achieving margin < 1 — e. Without losing generality, suppose Wy(R) violates the
first constraint i = 1. Thus, for a properly updated 6 > O (that is function of the initial § > 0) and for
i = 1 and some support index 7 € 77,

(P = x1)z], Wo(R) < 1-6. (22)

Now, we will argue that this leads to a contradiction by proving £(W1’§m) < L(W(R)) for sufficiently
large R.

To obtain the result, we establish a refined softmax probability control as in Step 1 by studying
distance to £,. Following (21), denote the score function at W(R) via yf = ylW(R). Similarly,
let sf = S(af) with af = X;W(R)z;. Set the corresponding notation for the reference parameter
W as y*, s*,a*. Recall that R > IW(R)||, and Z, := 1/]|W™||,. We note the following softmax
inequalities

1 —RE .
l?;pt,- = 11 To ks >1-Te ™ forall ieln], (23)

R 1 1
Siopt, < — — < =
Pt = | 4 o~U-OIWRILE, ~ | + ¢~(1-0RE,

s

for i=1.

The former inequality is thanks to W™ achieving >1 margins on all tokens [7'] — opt; and the latter
arises from the §-margin violation of W(R) ati = 1 i.e. Eq. (22). Since ¢ is strictly decreasing with
Lipschitz derivative and the scores are upper/lower bounded by an absolute constant (as tokens are
bounded and fixed), we have that ¢y, > —é”(yiw) > cgn for some constants cyp > can > 0. Thus,
following Eq. (20), the score decomposition (21), and (23) we can write

Cdn

_ 1., w 3
LIWR) - Ly > ;[f(ﬂ”’”) — O] 2 RO - 77 ®) (24)

Cdn R
700}311(1 - slopt, )-

[\

S CanCopt 1
T on 1+ e(-ORE"

Conversely, we upper bound the difference between L(Wl’e”m) and £, as follows. Define the worst-
case loss difference for W(R) as j = arg maxXie[n [f(yl’f) - f()/f.’pt)]. Using (21)&(23), we write
LWR™) = L < max[ly]) = (PO < cwp - 777 = 7))
ey (11— s}*optj)B

< cyp - Te™=B.
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Combining the last inequality and (24), we conclude that L(Wg‘m) < L(W(R)) whenever

Cdn * Copt 1 eR=e CupTl’lB
— —
n 1+ e1-ORE. 1 + (1-ORE,

cupT - eREp < .
CdnCopt

The left hand-side inequality holds for all sufficiently large R: Specifically, as soon as R obeys
R > (% log( 2::”;"?). This completes the proof of the theorem by contradiction since we obtained

LOWR) > LOVI™).

E Convergence of Gradient Descent

Optimization problem definition. Recap the problem, where we use a linear head i(x) = v" x for
most of our theoretical exposition. Given dataset (Y;, X;, Zi)i > WE minimize the empirical risk of an
1-layer transformer using combined weights W € R¥* or individual weights K, Q € R®" for a fixed
head and decreasing loss function:

LW) = % Z (Y- v XTS(XiWz)), (W-ERM)
i=1
LK,Q) = % Z (Y- v XTS(X:KQ z:)). (KQ-ERM)

i=1

We can recover the self-attention model by setting z; to be the first token of X, i.e., z; « x;;.

E.1 Divergence of norm of the iterates W(k)

The next lemma establishes the descent property of gradient descent for £(W) under Assumption A.

Lemma 7 (Descent Lemma) Under Assumption A, if n < 1/Lw, then for any initialization W(0),
Algorithm W-GD satisfies:

LWk +1)) - LIW(K)) < —gIIVL(W(k))II%, (25)
for all k > 0. Additionally, it holds that ;> |IVL (W(k))||l2F < 00, and limy_,e ||[VL(W (k))||% =0.
Proof. The proof is similar to [TLZO23, Lemma 5]. ]

The lemma below reveals that the correlation between the training loss’s gradient at any arbi-
trary matrix W and the attention SVM solution W™ is negative. Consequently, for any finite W,
(VL(W), W™ cannot be equal to zero.

Lemma 8 Let W™ be the SVM solution of (Att-SVM). Suppose Assumptions A and B hold. Then,
for all W € R™4_ the training loss (W-ERM) obeys (VL(W), W™ < —c < 0, for some constant
¢ > 0 (see (34)) depending on the data, the head v, and a loss derivative bound.

Proof. Let
hi= XW™z, yi=Y;-Xp, and h; = X;,Wz;. (26)

Let us recall the gradient evaluated at W which is given by

VLW) = % D0 (yTsthy) - XTS (hoyyia] 27)
i=1
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which implies that

(VLW), W) = % D€ (yIsthy) - (X7S (hyyizl, W)
i=1

1 n
- Z ! - trace ((Wmm)TXiTS/(hi)‘)’iZiT)
n <=
(28)

1 v -
=6 ]S (hyyy;
n i=1

1< - -

- Z G - (h?diag(si)y, - hiTSiSiTVi)-

)

Here, let £ := {'(y[ S(h;)), s; = S(h;) and the third equality uses trace (ba™) = a'b

In order to move forward, we will establish the following result, with a focus on the equal score
condition (Assumption (i)): Let y = ;> be a constant, and let y; and k; represent the largest indices
of vectors y and h respectively. For any vector s that satisfies 3,75, = 1 and s, > 0, we aim to

prove that A" diag(s)y — h"ss"y > 0. To demonstrate this, we proceed by writing the following:

T T T
h™diag(s)yy —h'ss"y = Z hey:s, — Z hys, Z V1St
t=1 t=1 t=1

T
= [’_117151 +VZ ’_ltst]_ yis1+y( —Sl) ( 18] +thsz]

>2 >2
T
_ _ (29)
=l =i =s) =1 =Ysi ) hus,
>2
ST hs
= (1 =9 = s)s) [hl e
22 St
21—y =ssi(h - max h)).
To proceed, define ' B
Yeap = Yiopt, — max y; and Pigap = hiopt, - max hi.
With these, we obtain
h] diag(s;)yi — bl sisT¥i > Viphaap(1 = Siopt,)Siopr, - (30)
Note that
]jl;ap = tgl})n (Xiopt, — —x;) Wz > 1,
ygdp - I‘I¢ni)n Yiopt; — Vit > O,
siopt,-(l - siopt,) > 0.
Hence,

i€[n] r#opt; 1+

co := min {( min (Xiopt, — xn)TW"”"Z) (mln Yiopt; — m) *Siopt, (1 = siopt,»)} >0.  (31)

It follows from (30) and (31) that
min (R diag(s;)y; = ] sis] i} = co > 0. (32)

1S

Further, by our assumption ¢, < 0. Since by Assumption A, ¢’ is continuous and the domain is
bounded, the maximum is attained and negative, and thus

—c1 = max ¢’ (x), for some ¢ > 0. (33)
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Hence, using (32) and (33) in (28), we obtain
(VLW), W™ < —c <0, where c¢=c;-cp. (34)

In the scenario that Assumption B(ii) holds (all tokens are support), h, = x;W’"mzi is constant for all
t > 2. Hence, following similar steps as in (29) completes the proof. [ ]

Theorem 4 Suppose Assumption A on the loss function € and Assumption B on the tokens hold.

Then,
s There is no W € R satisfying V.L(W) = 0.
e Algorithm W-GD with the step size n < 1/Lw and any starting point W(0) satisfies
limy o0 [[W(K)||p = oo.
Proof. It follows from Lemma 7 that under Assumption A, < 1/Ly, and for any initialization W(0),

the gradient descent sequence W(k + 1) = W(k) — nV.L(W(k)) satisfies limy_,o, [[VL (W (k))llfv =0.

Further, it follows from Lemma 8 that (V.L(W), W™) < 0 for all W € R**?. Hence, for any finite W,
(VLW), Wm™) cannot be equal to zero. Therefore, there are no finite critical points W, for which
VL(W) = 0 which contradicts Lemma 7. This implies that ||W (k)|| — co. |

E.2 Global Convergence of Gradient Descent

The following lemma illustrates that when non-optimal tokens within an input share the same scores,
the negative gradient of the loss function at W becomes more correlated with the max-margin solution
(W™ than with W itself.

Lemma 9 Let W™ be the SVM solution of (Att-SVM). Suppose Assummption (i) on the tokens’
score hold and {(-) is strictly decreasing and differentiable. For any choice of m > 0, there exists
R := R, such that, for any W with ||W||r > R, we have

Wmm

w
v P —— 1 \Y — ).
< LW), ||W||F>2( +n)< LW), ”Wmm”F>

Proof. Let W = |[W™||;W/|Wlr, M = sup,, |lxiz][l. © = 1/|[W™||g, 5; = S(X;Wz)), h; = X;Wz,,
h; = X,;Wmnz, and ¥i = Yi>2. Without losing generality assume «; = opt; = 1 for all i € [n].
Repeating the proof of Lemma 8 yields

mm 1 C ’ 7 ZIT>2 ilitsit
(VL) W™y = = 3" 6 (yis = y)(1 = si)si [ = Z2——|,
ni Diiza Sit
_ 1 n ) ZT hi S;
(VLW), W) ==& (v — 7)1 = si)sin [h,-l - i—] :
na= thz Sit

Focusing on a single example i € [n] with s, h, h vectors (dropping subscript i), given x, for
sufficiently large R, we wish to show that

[hl _ ZZTZz hs,

h
T
thz St

<1 +m-

i
_ DI h,s,] (35)

- |-
thz St

We consider two scenarios.
Scenario 1: ||[W — W™||z < € := /(2M). In this scenario, for any token, we find that
by — k)| = |x[ (W = W™"™)z| < MW = W"||r < Me.

Consequently, we obtain

T 1, T T
A Zrzz hys, 2{22 h;s; 2,22 h;s;
hh-——2>h-—F—-2Me=h - —— -«
thz St 2122 St ZtZZ St
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- T 1,
Also noticing k; — % > 1 (thanks to W™ satisfying > 1 margin), this implies (35).

122 01
Scenario 2: ||[W — W™ > ¢ := n/(2M). In this scenario, for some § = §(¢) and 7 > 2, we have
that

hy—h,<1-26.

Recall that s = S(Rh) where R = ||W||/ W™ . To proceed, split the tokens into two groups: Let
N be the group of tokens obeying (x; — x;)" Wz > 1 — §fort € N and [T] — N be the rest. Observe
that )

2iteN St < DireN St < Tﬁ _ Te_Ré.

ZITZZ S St - €26R
Set M = M/® and note that ||k, < |[W™||r - |lx,z7|| < M. Using (x; — x,)TWz < 1 — § over
t € [T] — N and plugging in the above bound, we obtain
Siea(hi = h)s; _ 2erri-n(hi = hy)s; N Sien(hy — hy)s,
Sien St Sien St PIPEY

<(1-6)+2MTe™,

- T p _ =
Using the fact that h; - % > 1, the above implies (35) with 7’ = 2MTe™® — 5. To proceed,

122 St
choose i
MT
R, =6"'0"log(—) toensure 7’ <. (36)
b

E.2.1 Proof of Theorem 2.

The proof is similar to [TLZ0O23, Theorem 2]. Given any € € (0, 1), let 7 = €/(1 — €). It follows from
Theorem 4 that limy—, ||W(k)||r = co. Hence, we can choose k. such that for any k > k., it holds that
[[W(k)||F > Re V 1/2 for some parameter R.. Now for any k > k., it follows from Lemma 9 that

wmm W(k) >
-VLW(k), ——— ) > (1 — e){ —VLW(k)), .
< W ||Wmm||F> ( )< WO Twaons
Multiplying both sides by the stepsize 1 and using the gradient descent update, we get
mm W(k)
Wk +1) - W(k), —> >(1-¢) <W(k +1) - W(k), —>
< IWmm| Wl

_ -9 2 _ ) -
= SO (IWk + DIZ ~ IWRIE ~ Wk + 1) - W)

> (-5t (WK + DI = IWGOIIE) = Wk + 1) - W(k)”z)
B 2wl F F F

> (1= &) (IWk + Dllr = IWERIF — IWk + 1) = W7
> (1= o)(IWk + Dllr = IWR)llr = 27 (LWK)) = LWk + 1)) ).
(37)

Here, the second inequality is obtained from |W(k)||r > 1/2; the third inequality follows since for
any a, b > 0, we have (a*> — b*)/(2b) — (a — b) > 0; and the last inequality uses Lemma 7.

Summing the above inequality over k > k. gives
< wh W >21_6+ Clem
IW@IF - [IWmm e W)l

for some finite constant C(e, i7) defined as

mm

w
Clen) := <W(ke), W> — (I = oW (kollF = 2n(1 — e)(LW(ke)) = L), (38)
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where L, < L(W (k)) forall k > 0.
Since [|W (k)|| — oo, we get

o W(k) Wmm >
lim inf , >1-e 39
ke <||W(k)||F wmm||p
Given that € is arbitrary, we can consider the limit as € approaches zero. Thus, W(k)/||W(k)|lr —
W[ W g L

E.3 Local Convergence of Gradient Descent

To provide a basis for discussing local convergence of GD, we establish a cone centered around W;™
using the following construction. For parameters p € (0, 1) and R > 0, we define C, zg(W;"™) as the
set of matrices W € R¥? such that ||W||s > R and the correlation coefficient between W and Wi is
at least 1 — u:

W Wmm
S, (Wrmy .= {W e R . < ,L>z1— } 40a
WWa™) { Wir TWair a (402)
Cur(WI™) = S,(WI™ 0 {W e R+ ||W]ip > R} (40b)

Lemma 10 Suppose Assumption A on the loss function € holds, and let @ = (a;)!_, be locally optimal
tokens according to Definition 2. Let W™ = W' denote the SVM solution obtained via (Att-SVM)
by applying the Frobenius norm and replacing (opt;)!_, with @ = (@;)_,. To provide a basis for
discussing the local convergence of gradient descent, we establish a cone centered around W™ using
the following construction. There exists a scalar u = (@) > 0 such that for sufficiently large R,,:

L1. There is no stationary point within C,, g (W™).

L2. ForallV € S,(W"™)with ||V||r = [|[W™"||r and W € Cur, (W™, there exist dataset dependent
constants C,c > 0 such that

1 1 1 n
c - Zl (1=5i0) 2 ~(VLW).V) 2 ¢~ ; (1= 5i0,) > 0, (41a)
1
VLW < AC- = " (1= 5ia,). (41b)
n i=1

“C A
Here, Siq; = (S(XiW2i))a;, A = maXiepny s rerry 1(Xi — Xio)ll 1zill, and © = 1/|[W™||p.

\ %4 VLW) c 0O
“\vie ivzomii- 7 >0 41
<||V||F ||VL<W>||F>> g (410)

Proof. LetR = Rﬂ, (T7);_, be the set of all support indices per Definition 2. Let T =[T]1-T; - {a;}
be the non-support indices. Let

0 = 1/[W™|g,
1
6= -min min_(x; — x;;)" W™z,
2 ieln] 1T reT;
iz 7 42)
max ———
i€[n],te[T] (€]
min(0.5, 6) )2

A=

A

Since W™ is the max-margin model ensuring (x;o, — X;;)" W™"z; > 1, the following inequalities hold
forall W € S,(W™), ||Wllr = [W™||lp and alli € [n],t € T;,T €T3

(X — X;z) Wz; 26> 0,

(xioz,» - xi-r)TWzi > 1+ (57 (43)

1
HS,U(5)=§(

1
> (Xig, — Xi) Wz; > 5

N W
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Here, we used [[W — W™™|2/[W™™|%. < 2, which implies [W — W™™||z < /2u/@.

To proceed, we write the gradient correlation following (11) and (29)
1 ¢ .
(VLW),V)=— Z 6 - h/'S (hyyyi, (44)
i

where we denoted £, = €'(Y; - v" X S(hy)), b = X;Vz;, hi = XWz;, s; = S(h)).
Using (43), for all t € 77,7 € T, for all W € C, g(W™™), we have that

hi, — hi; > RO,

hio, — hir > RO(1 + 6),

hio, — hy > RO/2.

Consequently, we can bound the softmax probabilities s; = S(h;) over non-support indices as follows:
For alli € [n] and any ¢; € 7

Sii= ) sie < Te s, < Te RO, (452)
T€T;

Qi = ) sic < Te ™, < Te s, (45b)
€T

Recall scores y;; = Y; - v'x;,. Define the score gaps over support indices:
Vil = Yie, — maxy; and ¥ = Yia, — min ;.
It follows from (42) that

lxiz]|F
LT > max |kl

A=
ie[n],te[T] Q] ie[n],1€[T]

Define the @-dependent global scalar I' = sup;(,,; ; werry [Vie = Vil

Let us focus on a fixed datapoint i € [n], assume (without losing generality) a; = 1, and drop
subscripts i. Directly applying Lemma 6, we obtain

T
| diag(s)yy — h"ssTy — Z(hl — h)si(y1 — ¥0)| < 2TA(1 - 51)°.

>2

To proceed, let us decouple the non-support indices within Zszz(hl — h)s,(y1 —y,) via

| >t = hosi(yr - y0)| < 20TA.

T
Aggregating these, we found
| diag(s)y — hTssTy — Z(h] — h)si(y1 - y)| < 2TA((1 - 51> + Q). (46)
teT

To proceed, let us upper/lower bound the gradient correlation. We use two bounds depending on
V € S, (W™™) (Case 1) or general V € R™? (Case 2).

e Case 1: V € S,(W™™). Since 1.5 > h; — h, > 0.5 following (43), we find
158750 > 3" (hy = ho)siyr - 7) 2 0.5 - y=*,
teT
where recall the definition of S (having dropped subscripts) in (45a).

e Case 2: V € R and ||V|[z = |[W™||. Define A = maXepu,rerr) [1Xir — Xicl| Izill. For any
IVIlF = [[W™™||, we use the fact that

By = hill < (i = xi0)z Nl - IVIIF <

D 2
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Note that by definition é > 1. To proceed, we can upper bound
A
=S 2 Y = h)si(y1 ). (47)
teT”

@

Next we claim that for both cases, S dominates ((1 — s1)* + Q) for large R. Specifically, we wish for
S - y&P

> 4lAmax((1 — 51>, Q) = S > 16% max((1 — 51)%, Q). (48)

Now choose R > 6! log(T)/® to ensure Q < S since Q < Te RS from (45a). Consequently
(1-51)> =(Q+S)* <45? <4STeFO2,

Combining these, what we wish is ensured by guaranteeing
T'A
S > 16— max(4$ Te ROIZ TeROg), (49)
,-y &l

This in turn is ensured for all inputs i € [n] by choosing
max(2,571) (64TFA )
@ b

R>

wp (50)
min

gap _

e Case 1: V € S,(W™™). With the above choice of R, we guaranteed

Sy (1= sy

4 - 8

where y MiDje[y yfap is the global scalar which is the worst case score gap over all inputs.

2(1 —s1) - y8P > 28§ -y > h' diag(s)y —h"ss"y >

via (48) and (46).

Since this holds over all inputs, going back to the gradient correlation (44) and averaging above
over all inputs i € [n] and plugging back the indices i, we obtain the advertised bound by setting
qi = 1 — sio, (Where we set @; = 1 above without losing generality)

2 1
- D=l VT = = (VLW), V) > = ATt (51)
i€[n] i€[n]
Let —fl’nm / max be the min/max values negative loss derivative admits over the ball [-A, A] and note

that max;ep; ¥ > 0 and minep,; y¥" > 0 are dataset dependent constants. Then, we declare the
constants C = —=2€}. - MaX;e(y ¥+ > 0,¢ = =(1/8)¢ . - min;epy ¥5* > 0 to obtain the bound (41a).

e Case 2: V € R and ||V|r = |[W™"||z. Next, we show (41b) and (41c). For any V € R
satisfying [|V||g = [[W™"||r, using (47) and the choice of R in (50) similarly guarantees

2A
6(1 —5)y** > h'diag(s)y — h'ss"y,
for fixed input. Going back to the gradient correlation (44) and averaging above over all inputs i € [n],
with the same definition of C > 0, we obtain
AC
o 2u9Z2 (VL. V). (52)
ieln]

To proceed, since (52) holds for any V € R¥“, we observe that when setting V = ”gvz(ﬂv";/\)\ﬂﬁ- -VLW),
this implies that

AC
(VLW), V) = VL) - W™ < on Z qi-
i€[n]
Simplifying ® = 1/||W™"||r on both sides gives (41b).
Combining the above inequality with (51), we obtain that for all V, W € S,(W™")
B < |4 VLW) > S ®
IVIE" IVLW)IIr[ — CA’
which gives (41c).
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Lemma 11 Suppose Assumption A on the loss function € holds, and let & = (;)_, be locally optimal
tokens according to Definition 2. Let W™ = W™ denote the SVM solution obtained via (Att-SVM)
by replacing (opt;)!_| with @ = (a;);_,. Let u = (@) > 0 and R,, be defined as in Lemma 10. For any

choice of © > 0, there exists Ry > R, such that, for any W € C,, g (W™™), we have

<VL(W), W > >(1+m <V.£(W), W >

Wl W]

Proof. LetR = R;, W = |[W™||zW/||W|r, h; = X;Wz;, and h; = X;W™"z,. To establish the result,
we will prove that, for sufficiently large R, for any W € C, (W™") and for any i € [n],

(hi, S’ XWzyi) < (1+7) (hi, 8" (XiWz)ys) (53)

Once (53) holds for all i, the same conclusion will hold for the gradient correlations via (44). Moving
forward, we shall again focus on a single point i € [n] and drop all subscripts i. Also, assume
a = a; = 1 without losing generality (same as above).

Following (46), for all W € S,(W™™) with [|W||r = [[W™"||r and h=XWzands = S(il), we have
found

|7 diag(syy — 7ssTy = > (i = h)si(y1 - y)| < 2PA((1 = 1) + Q) (54)
teT”

where 7 is the set of support indices. Plugging in &, & in the bound above and assuming 7 < 1
(w.Lo.g.), (53) is implied by the following stronger inequality

OLA(1 =1 + Q)+ D (b = hsiy1 —y) < (1 +m) > (bt = h)si(y1 = y)

teT teT

=1 +m) ) sy = 7).

teT”

First, we claim that 0.57 Y,c7 s,(y1 — /) = 6FA((1 — 51)> + Q). The proof of this claim directly
follows the earlier argument, namely, following (48), (50) and (49) which leads to the choice

max(2,67 ") Cy-TTA
R > 1 s 55
= @ Og ( ﬂygap ( )

min

for some constant Cy > 0. Using (50), we choose Cp > 64r to guarantee R = R, > Rﬂ.

Following this control over the perturbation term 6I'A((1 — 5,)? + Q), to conclude with the result,
what remains is proving the comparison

D = sy —y) < (1+05m) Y silr = 7). (56)

teT” teT

To proceed, we split the problem into two scenarios.

Scenario 1: |[W — W™||; < € = Tip for some € > 0. In this scenario, for any token, we find that
|h, — h,| < A®€ = /4.

Consequently, we obtain o
hy—h, <h;—h,+2A0e =1+ 0.57.

Similarly, & — h; > 1 — 0.57 > 0.5. Since all terms h, — h;,s;,¥; — y; in (56) are nonnegative and
(hy — h)s:(y1 —y:) < (1 +0.57)s,(y1 — :), the above implies the desired result (56).

Scenario 2: [|W — W™z > € = Tie- Since W is not (locally) max-margin, in this scenario, for
some v = v(€) > O and 7 € 7, we have that &y — h. < 1 —2v. Here 7 = arg maxX ey x;Wz denotes the
nearest point to /; (along the W direction). Note that a non-support index 7 € 7~ cannot be closest
because W € C,, and (43) holds. Recall that s = S(Rh) where R = ||W||z® > R®. To proceed, split
the tokens into two groups: Let A be the group of tokens obeying (x; —x, )Wz <1l -vand 7 - N
be the rest of the support indices. Observe that

Zte‘T—N St < Zze']‘—N St <T eVR_ — Te—Rv_
Qe St D=t St >R
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Thus, using |k — ;| < 2A and recalling the definition of y¥?, observe that

2TATe™®
Z (hy = h)si(y1 = v:) < e Z ${(y1 =71

teT-N teT

Plugging this into (56), we obtain
Dl = h)siyi—y) = D (= h)siyi—y)+ Y. (= h)s(yr =)

teT” teN teT-N

<Y A=vsyi—y)+ y. 2ATTeR

teN teT-N

2TATe R
< (1 -v+ y—)zst(m =70

gap
teT”

2TATe ™R
< (1 + 7—) Z $:(y1 = 0.

gap
teT”

Consequently, the prOOf bOilS dOWIl to ensuring the pel’turbation term g it < 0.57T. Recalling
Y
gap

R > RO, this is guaranteed for all inputs i € [n] by recalling % = minje;, y¥* and choosing
1 4AT
R > @ IOg W .

where v = v(775) depends only on 7 and global problem variables.

Combining this with the prior R lower bound of (55) (by taking maximum), we conclude with the
statement. ]

E.3.1 Proof of Theorem 3

Theorem 5 (Theorem 3 restated) Suppose Assumption A on the loss € holds, and let @ = (a;)?_, be
locally optimal tokens according to Definition 2. Let WJ'™ denote the SVM solution obtained via
(Att-SVM) by replacing (opt;);_, with @ = (a;)!_,. Then,

* There exist parameters u = p(a) € (0,1) and R > 0 such that C, g(W5"™) does not contain
any stationary points.

* Algorithm W-GD with 1 < 1/Lw and any W(0) € C,zg(WZ™) satisfies limy_e [[W(K)||F = oo
Wk _ W™
WmIF — IWg™llr*

and limy_,

The proof of this theorem follows the proof of [TLZO23, Theorem 3]. Let us denote the initialization
lower bound as R2 := R, where R is given in the Theorem 3’s statement. Consider an arbitrary value
of € € (0,u/2) and let 1/(1 + ) = 1 — e. We additionally denote R, < R,V 1/2 where R, was defined
in Lemma 11. At initialization W(0), we set € = u/2 to obtain RB = R,», and provide the proof in
four steps:

Step 1: There are no stationary points within Cour0 (W™, We begin by proving that there are
no stationary points within C 1R (wmm), Let (77);_, denote the sets of support indices as defined in

Definition 2. We define 7; = [T] — 77 — {@;} as the tokens that are non-support indices. Additionally,
let u be defined as in (42). Then, since R", > R, per Lemma 11, we can apply Lemma 10 to find

that: For all V, W € S,(W™) with [|W||r # 0 and [|[W||r > Rg, we have that — (V, V.L(W)) is strictly
positive.

Step 2: It follows from Lemma 11 that, there exists R, > R# Vv 1/2 such that all W € C, g (W™™)
satisfy

mm

W]

<—V£(W), > >(1-¢ <—V£(W), W > (57)

IWllF
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977 The argument below applies to a general € € (0, t/2). However, at initialization W(0), we set € = u/2
978 and, recalling above, initialization lower bound was defined as Rg := R,>. To proceed, for any
979 € € (0,u/2), we will show that after gradient descent enters the conic set C, g (W™") for the first
980 time, it will never leave the set. Let #. be the first time gradient descent enters C, gz (W™"). In Step 4,
981 we will prove that such ¢, is guaranteed to exist. Additionally, for € « u/2, note that t. = O i.e. the
982 point of initialization.

9s3  Step 3: Updates remain inside the cone C, z (W™"). By leveraging the results from Step 1 and
984 Step 2, we demonstrate that the gradient iterates, with an appropriate constant step size, starting from
985 W(k.) € Cyr (W™, remain within this cone.

986 We proceed by induction. Suppose that the claim holds up to iteration k > k.. This implies that
987 W(k) € C, .z (W™"). Hence, recalling cone definition, there exists scalar u = p(a@) € (0, 1) and R such
98s that ||[W(k)||[r > R, and

< W(k) wmm >
, > 1—-pu
W@ IWmm||p

989 Forall k> 1, let

Wmm
pk) := <V£(W(k)), > : (58)

W]

— €

990 Note that p(k) > 0 due to Step 1. This together with the gradient descent update rule gives

Wk+1) wmn W(k) n Wwmm
s = — VLWk)), ——
<||W<k)||F ||Wmm||F> <||W(k)||F waolr 2V ||Wmm||F>
T] Wlnm
>1—-—pu- VLW(k)), —— 59
zl-u ||W(k)||F< LIW@E) ||Wmm||F> %)
no((1 - €)
|y )
=TT W@l

991 Note that from Lemma 10, we have (VL(W(k)), W(k)) < O which implies that |W(k + 1)||p >
992 ||W(k)||F. This together with R, definition and ||W(k)||r > 1/2 implies that

1 2 2
W+ Dl < S (WG + DIE + W)

2AWKIE - 27 (VLW ), W) + 12 IV LW R}

U
Wl

T 2AW®Ir (

< Wl — (VLW (K)), W) + 1P IV LW R)IIE,

993 which gives

(IW(k + DllF c1__"
Wl (W)
N
h (I = olWK)lr
notk)  PlIVLW K|

! =: Ci(pk),n).
= T iwaon: T Wl 1Go(k), m)

2
<V£(W(k)), W) >+nz||V£(W(k))||

Wl W@l
wmn > . L IVLW k)P

(59b)
W] Wl

<V-£(W(k)),

994 Here, the second inequality follows from (57) and (58).
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Now, it follows from (59a) and (59b) that

< Wk+1) wmm >> (1_#+ np(k)(l—e))
Wk + DI (W[~ Ci(pk), m) Wl

((1 — (1 = Cy(pk),m) +

. (1 e))
= —I_l _—

1
T et W

. o) IV LOVGENIE.  pk)(1 €
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(60)

where the last inequality uses our choice of stepsize 7 < 1/Ly in Theorem 3’s statement. Specifically,
we need 7 to be small to ensure the last inequality. We will guarantee this by choosing a proper R, in
Lemma 11. Specifically, Lemma 11 leaves the choice of Cy in R, lower bound of (55) open (it can
always be chosen larger). Here, by choosing Cy > 1/Lw will ensure < 1/Ly works well.
< H < 9_ _1 Al
T 2(0-w( -5 CAACT

H—€ 1 c O 1 RO T3] p(k)

-y 1-¢ C A ACT Tl p VLRI

n

(61)

Here, the first inequality uses our choice of € € (0,u/2) (see Step 2), and the last inequality is
obtained from Lemma 10 since

p) 1 < VLWk) W >> I c©
INLOVE)r 1= e \IV LW Wil = T=¢ ¢ &
1 1 1

2 = 2 —
IVLWEDNF ~ AC- L1370, (1-51,)  ACTeRi®2
for some data dependent constrants ¢ and C, A = maX;epu . re(r) [1(xir — Xio)ll [1zill, and © = 1/||[W™™|| .,

Next, we will demonstrate that the choice of 7 in (61) does indeed meet our step size condition as
stated in the theorem, i.e., 7 < 1/Ly. Recall that 1/(1 + ) = 1 — €, which implies that 7 = €/(1 — €).
Combining this with (55), we obtain:

2,67! CoTTA
> max( R ) lo ( 0 = ), where Cp > 64r. (62)
2,671 1 -e)CyTTA
o R» MA@ OT) ) [AZOCTTA) e o> 64— 63)
0 = ii l1-¢€
On the other hand, at the initialization, we have € = u/2 which implies that
2,671 2 —u)CoyTTA
RB > max( ) log(( ,U)gzg ) where Cj > 64%. (64)
© /lymin 2(1 2

In the following, we will determine a lower bound on Cy such that our step size condition in
Theorem 3’s statement, i.e., 7 < 1/Ly, is satisfied. Note that for the choice of  in (61) to meet the
condition n < 1/Ly, the following condition must hold:

1 H 1 ®ep 0 2 12-p
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where C, = (1 —,u)%?.

This together with (64) implies that
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Therefore, with this lower bound on Cy, the step size bound in (61) is sufficiently large to ensure that
n < 1/Lw guarantees (60).

Hence, it follows from (60) that W(k + 1) € Cy g (W™).

Step 4: The correlation of W(k) and W™" increases over k. The remainder is similar to the proof
of Theorem 2. From Step 3, we have that all iterates remain within the initial conic seti.e. W(k) €
C”,RS(W"”") for all k > 0. Note that it follows from Lemma 10 that (V.L(W), W™ /||W™7|| -} < 0,
for any finite W € C, JRY (W™ Hence, there are no finite critical points W € Cr (W™, for which
VL(W) = 0. Now, based on Lemma 7, which guarantees that VL(W(k)) — O, this implies that
[|W (#)||p — oo. Consequently, for any choice of € € (0, u/2) there is an iteration k. such that, for all
k > ke, W(k) € C, g (W™™). Once within C,, g (W™"), following similar steps in (37) and (38), for
any k > ke,

< Wi W >z SCL) W(k) € Cur (W™,

, l1—€e+ s
(W (W W&
for some finite constant C(e, i7) (that depends only on 7, €, ||W(ke)||F).

Consequently, as k — oo

L W(k) wmm >
lim inf , >1—g¢, W(k) € Cyr. (W™M).
koo <I|W(k)||F [Wmm|| g .
Since € € (0, u/2) is arbitrary, we get W(k)/||W(k)||p — W™ /||W™™| . [ |

F Supporting Experiments

In this section, we introduce implementation details and additional experiments. We create a 1-layer
self-attention using PyTorch, training it with the SGD optimizer and a learning rate of = 0.1. We
apply normalized gradient descent to ensure divergence of attention weights. The attention weight W
is then updated through

VLW(K))
IVLWEDIF
In the setting of (K, Q)-parameterization, we noted that with extended training iterations, the norm
of the combined parameter KQT consistently rises, despite the gradient being treated as zero due to
computational limitations. To tackle this issue, we introduce a minor regularization penalty to the
loss function, ensuring that the norms of K and Q remain within reasonable bounds. This adjustment
involves

Wk +1)= Wk) -7

L(K.Q) = LK, Q) + A(KI}- + 111}
Here, we set A to be the the smallest representable number, e.g. computed as 1 + 4 = 1 in Python,
which is around 2.22 x 107!°. Therefore, K, Q parameters are updated as follows.

VLi(K(k), Q(k)) VLo(K(k), Q(K))
IV Li(K(K), QU IV Lo(K(k), QU))Ir

e As observed in previous work [TLZO23], and due to the exponential expression of softmax
nonlinearity and computation limitation, PyTorch has no guarantee to select optimal tokens when
the score gap is too small. Therefore in Figures 2, 9 and 10, we generate random tokens making sure
that minjefn rzopt; Yiopt, — ¥ir = ¥ and we choose y = 0.1 in our experiments.

Kk +1)=Kk) -n

Ok +1) = Q) —n

Rank sensitivity of (K, Q)-parameterization (Figures 6&7). In Lemma 1, we have theoretically
established that the rank of the SVM solution, denoted as W™ in (Att-SVM) or W™ in (Att-SVM,),
is at most rank max(n, d). To further verify it, Figure 6 illustrates rank range of W™ and W™,
solved using optimal tokens (opt;)?_, and setting m = d (the rank constraint is eliminated). Each
result is averaged over 100 trials, and for each trial, x;, z;, and linear head v are randomly sampled
from the unit sphere. In Fig. 6(a), we fix T = 5 and vary n across {5, 10, 15}. Conversely, in Fig. 6(b),
we keep n = 5 constant and alter T across {5, 10, 15}. Both figures confirm rank of W™ and W™
are bounded by max(n, d), validating Lemma 1.

Now, moving to Figure 7, we delve into GD performance across various dimensions of K, Q € Rdxm
while keeping d = 20 fixed and varying m from 1 to 10. In the upper subfigure, we maintain a constant
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Figure 6: Rank range of solutions for (Att-SVM) and (Att-SVM,, ), denoted as W™ and W™, solved
using optimal tokens (opt;);_, and setting m = d (the rank constraint is eliminated). Both figures
confirm ranks of W™ and W' are bounded by max(n, d), validating Lemma 1.
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Figure 7: Convergence behavior of
GD when training (K,Q) € R>™
with varying m. The misalignment,
1 —corr_coef(W]'), KQ), is stud-
ied, where W'( is from (Att-SVM,,)
with opt replaced by @ and m = d.
Subfigures with fixed n = 5 (upper)
and T = 5 (lower) show that as m ap-
proaches or exceeds n, KQT aligns
more with WJ'J.

(a) Evolution of correlation (b) I' vs correlation coefficient
Figure 8: Behavior of GD with nonlinear nonconvex pre-
diction head and multi-token compositions. (a): Blue,
green, red and teal curves represent the evolution of 1 —
corr_coef(W, WS"™ea) for d = 4,6,8 and 10 respectively,
which have been displayed in Figure 4(upper). (b): Over
the 500 random instances as discussed in Figure 4, we filter
different instances by constructing masked set with tokens
whose softmax output < I' and vary T from 107'° to 107°.
The corresponding results of 1 — corr_coef(W, WS"™eq) are
displayed in blue, green, red and teal curves.

n = 5 and vary T within {5, 10, 15}, while in the lower subfigure, T is fixed at 5 and n changes
within {5, 10, 15}. Results are depicted using blue, green, and red dashed curves, with both y-axes
representing 1 — corr_coef(W, W'eh, where W represents the GD solution and W'g is obtained
from (Att-SVM,, ) by employing token indices « selected via GD and setting the rank limit to m = d.
Observing both subfigures, we note that a larger n necessitates a larger m for attention weights KQ
to accurately converge to the SVM solution (Figure 7(lower)). Meanwhile, performances remain
consistent across varying T values (Figure 7(upper)). This observation further validates Lemma 1.
Furthermore, the results demonstrate that W converges directionally towards W7 as long as m 2 n.

Global Convergence via overparameterization (Figures 9&10). The trend depicted in Figure
9, where the percentage of global convergence (red bars) approaches 100% and Assumption B(ii)
holds with higher probability (green bars) as d grows, reinforces this insight. Specifically, Fig. 9(a) is
same as Figure 2, and Fig. 9(b) displays the same evaluation over (K, Q)-parameterization setting. In
both experiments, and for each chosen d value, a total of 500 random instances are conducted under
the conditions of n = T = 5. The outcomes are reported in terms of the percentages of Not Local,
Local, and Global convergence, represented by the teal, blue, and red bars, respectively. We validate
Assumption B(ii) as follows: Given a problem instance, we compute the average margin over all
non-optimal tokens of all inputs and declare that problem satisfies Assumption B(ii), if the average
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Figure 9: Percentage of different convergence types of GD when training cross-attention weights (a):
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Global, Local (including Global), and Not Local convergence, respectively. The green bar corresponds
to Assumption B(ii) where all tokens act as support vectors. Larger overparameterization (d) relates
to a higher percentage of globally-optimal SVM convergence.
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Figure 10: Global convergence behavior of GD when training cross-attention weights W (solid)
or (K, Q) (dashed) with random data. The blue, green, and red curves represent the probabilities
of global convergence for (a): fixing T = 5 and varying n € {5, 10,20} and (b): fixing n = 5 and
varying T € {5, 10, 20}. Results demonstrate that for both attention models, as d increases (due to
over-parameterization), attention weights tend to select optimal tokens (opt;)?.,.

margin is below 1.1 (where 1 is the minimum). Here, recall that margin of a non-optimal token is
defined as (Xjopt, — Xi) T W™™z; O (Xjopt, — Xir) T W™z, for ¢t # opt,.

Furthermore, the observations in Figure 10 regarding the percentages of achieving global convergence
reaching 100 with larger d reaffirm that overparameterization leads the attention weights to converge
directionally towards the optimal max-margin direction outlined by (Att-SVM) and (Att-SVM,).

Behavior of GD with nonlinear nonconvex prediction head and multi-token compositions
(Figure 8). To better investigate how correlation changes with data dimension d, we collect the
solid curves in Figure 4(upper) and construct as Figure 8(a). Moreover, Figure 8(b) displays the
average correlation of instances (refer to scatters in Figure 4 (lower)), considering masked tokens
with softmax probability < I'. Both findings highlight that higher d enhances alignment. For d > 8 or
[ < 107°, the GD solution W achieves a correlation of > 0.99 with the SVM-equivalence WsVitea,
defined in Section B.

Investigation of Lemma 3 over different 7 selections (Figure 11). Consider the setting of Sec-
tion B.1 and Lemma 3. Figure 5 explores the influence of A on the count of tokens selected by
GD-derived attention weights. As A increases, the likelihood of selecting more tokens also increases.
Shifting focus to Figure 11, we examine the effect of 7. For each outcome, we generate random
A values, retaining pairs (4, X) satisfying 7 constraints, with averages derived from 100 successful
trials. The results indicate a positive correlation among 7, 4, and the number of selected tokens.

35



1087
1088
1089

1090

1091
1092
1093
1094

1095
1096
1097

1098
1099
1100
1101
1102

1103
1104
1105
1106
1107
1108
1109
1110
1111

1112
1113
1114
1115

1116
1117
1118
1119
1120

1121
1122
1123
1124
1125

1.2

~
o
®
A A A A
LU 1}

o N w

1.0
~ 08
0.6

0.4

# of selected tokens
Probabilities

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 ' 2 3 4 5 6 7 8 9
T T # of selected tokens

(a) T vs A parameters (b) 7 vs # of selected tokens  (c) Distribution of # selected tokens

Figure 11: Behavior of GD when selecting multiple tokens.

Moreover, Figure 11(c) provides a precise distribution of selected token counts across various 7
values (specifically 7 € {3,5,7,9}). The findings confirm that the number of selected tokens remains
within the limit of 7, thus validating the assertion made in Lemma 3.

G Discussion, Future Directions, and Open Problems

Our optimization-theoretic characterization of the self-attention model provides a comprehensive
understanding of its underlying principles. The developed framework, along with the research
presented in [TLZO23], introduces new avenues for studying transformers and language models. The
key findings include:

v The optimization geometry of self-attention exhibits a fascinating connection to hard-margin SVM
problems. By leveraging linear constraints formed through outer products of token pairs, optimal
input tokens can be effectively separated from non-optimal ones.

v/ When gradient descent is employed without early-stopping, implicit regularization and conver-
gence of self-attention naturally occur. This convergence leads to the maximum margin solution
when minimizing specific requirements using logistic loss, exp-loss, or other smooth decreasing loss
functions. Moreover, this implicit bias is unaffected by the step size, as long as it is sufficiently small
for convergence, and remains independent of the initialization process.

The fact that gradient descent leads to a maximum margin solution may not be surprising to those
who are familiar with the relationship between regularization path and gradient descent in linear and
nonlinear neural networks [SHN*18, GLSS18, NLG"19, JT21, MWG™*20, JT20]. However, there is
a lack of prior research or discussion regarding this connection to the attention mechanism. Moreover,
there has been no rigorous analysis or investigation into the exactness and independence of this bias
with respect to the initialization and step size. Thus, we believe our findings and insights deepen
our understanding of transformers and language models, paving the way for further research in this
domain. Below, we discuss some notable directions and highlight open problems that are not resolved
by the existing theory.

* Convergence Rates: The current paper establishes asymptotic convergence of gradient
descent; nonetheless, there is room for further exploration to characterize non-asymptotic
convergence rates. Indeed, such an exploration can also provide valuable insights into the
choice of learning rate, initialization, and the optimization method.

* Gradient descent on (K, Q) parameterization: We find it remarkable that regularization
path analysis was able to predict the implicit bias of gradient descent. Complete analysis
of gradient descent is inherently connected to the fundamental question of low-rank factor-
ization [GWB™ 17, LMZ18]. We believe formalizing the implicit bias of gradient descent
under margin constraints presents an exciting open research direction for further research.

* Generalization analysis: An important direction is the generalization guarantees for
gradient-based algorithms. The established connection to hard-margin SVM can facilitate
this because the SVM problem is amenable to statistical analysis. This would be akin to
how kernel/NTK analysis for deep nets enabled a rich literature on generalization analysis
for traditional deep learning.
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1126 * Realistic architectures: Naturally, we wish to explore whether max-margin equivalence

1127 can be extended to more realistic settings: Can the theory be expanded to handle multi-head
1128 attention, multi-layer architectures, and MLP nonlinearities? We believe the results in
1129 Section B take an important step towards this direction by including analytical formulae for
1130 the implicit bias of the attention layer under nonlinear prediction heads.

1131 * Jointly optimizing attention and prediction head: It would be interesting to study the
1132 joint optimization dynamics of attention weights and prediction head A(-). This problem can
1133 be viewed as a novel low-rank factorization type problem where h(-) and W are factors of
1134 the optimization problem, only, here, W passes through the softmax nonlinearity. To this
1135 aim, [TLZO23] provides a preliminary geometric characterization of the implicit bias for a
1136 simpler attention model using regularization path analysis. Such findings can potentially be
1137 generalized to the analysis of gradient methods and full transformer block.
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