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Abstract

The transformer architecture has led to revolutionary advancements in NLP. The at-1

tention layer within the transformer admits a sequence of input tokens X and makes2

them interact through pairwise similarities computed as softmax(XQK⊤X⊤),3

where (K,Q) are the trainable key-query parameters. In this work, we estab-4

lish a formal equivalence between the optimization geometry of self-attention and5

a hard-margin SVM problem that separates optimal input tokens from non-optimal6

tokens using linear constraints on the outer-products of token pairs. This formalism7

allows us to characterize the implicit bias of 1-layer transformers optimized with8

gradient descent: (1) Optimizing the attention layer, parameterized by (K,Q), with9

vanishing regularization, converges in direction to an SVM solution minimizing the10

nuclear norm of the combined parameter W := KQ⊤. Instead, directly parameteriz-11

ing by W minimizes a Frobenius norm SVM objective. (2) Complementing this, for12

W-parameterization, we prove the local/global directional convergence of gradient13

descent under suitable geometric conditions, and propose a more general SVM14

equivalence that predicts the implicit bias of attention with nonlinear heads/MLPs.15

1 Introduction16

Self-attention, the central component of the transformer architecture, has revolutionized NLP17

[VSP+17]. This mechanism has proven highly effective in capturing long-range dependencies, which18

is essential for applications arising in NLP [KT19, BMR+20, RSR+20], computer vision [FXM+21,19

LLC+21, TCD+21, CSL+23], and reinforcement learning [JLL21, CLR+21, WWX+22]. Remarkable20

success of the self-attention mechanism and transformers has paved the way for the development of21

LLMs such as GPT4 [Ope23], Bard [Goo23], LLaMA [TLI+23], and ChatGPT [Ope22].22

Q: Can we characterize the optimization landscape and implicit bias of transformers?23

We address this question by rigorously connecting the optimization geometry of the attention layer24

and a hard max-margin SVM problem, namely (Att-SVM), that separates and selects the optimal25

tokens from each input sequence. This formalism follows [TLZO23], which sheds light on the26

intricacies of self-attention. Throughout, given input sequences X, Z ∈ RT×d with length T and27

embedding dimension d, we study the core cross-attention and self-attention models:28

fcross(X, Z) := S(ZQK⊤X⊤)XV, fself(X) := S(XQK⊤X⊤)XV.
Here, K,Q ∈ Rd×m, V ∈ Rd×v are the trainable key, query, value matrices respectively; S(·) denotes29

the softmax nonlinearity. Note that self-attention is a special instance of the cross-attention by setting30

Z ← X. To expose our main results, suppose the first token of Z, denoted by z, is used for prediction.31

Concretely, given a dataset (Yi, Xi, zi)n
i=1 with labels Yi ∈ {−1, 1} and inputs Xi ∈ R

T×d, zi ∈ R
d, we32

consider the empirical risk minimization with a loss ℓ(·) : R→ R, defined as follows:33

L(K,Q) =
1
n

n∑
i=1

ℓ (Yi · f (Xi, zi)) , where f (Xi, zi) = h
(
X⊤i S

(
XiKQ⊤ zi

))
. (1)
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Figure 1: GD convergence of attention weights.
Markers represent tokens; lines depict attention-
SVM directions mapped to z; arrows illustrate
GD paths converging towards these SVM direc-
tions. Green circles denote GD↔ SVM pairings.
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Figure 2: Percentage of different convergence
types when training W. Red and blue bars repre-
sent the percentages of convergence to globally
and locally-optimal SVM solutions; teal are com-
plements of the blue; green depict Assum. B(ii).

Here, h(x) = v⊤x is the linear prediction head and f (·) precisely represents a one-layer transformer.34

The softmax operation, due to its nonlinear nature, poses a significant challenge when optimizing (1).35

In this study, we focus on optimizing the attention weights (K,Q or W) and overcome such challenges36

to establish a fundamental SVM equivalence. The paper’s main contributions are as follows:37

• Implicit bias of the attention layer (Sec. 2). Optimizing the attention parameters W or (K,Q)38

with vanishing regularization converges in direction towards a solution of (Att-SVM) or (Att-SVM⋆)39

with the Frobenius norm or the nuclear norm objective, respectively. To our knowledge, this is the first40

result to formally distinguish the optimization dynamics of W vs (K,Q) parameterizations, revealing41

the low-rank bias of the latter.42

• Convergence of gradient descent (Sec. 3). We prove the local/global directional convergence43

of gradient descent for optimizing the attention layer parameterized by W under suitable geometric44

conditions. Beyond these, we propose a more general SVM equivalence with nonlinear head, which45

predicts the implicit bias of attention trained by gradient descent.46

1.1 Preliminaries47

Optimization algorithms. Given a parameter R > 0, we define the regularized path solution as48

(W-RP) and (KQ-RP). For GD, with appropriate η > 0, we describe the optimization process as49

(W-GD) and (KQ-GD). Here for (W-RP) and (W-GD),L(Q, K) is replaced withL(W) with W := KQ⊤.50

Given W(0) ∈ Rd×d, η > 0, for k ≥ 0 do:

W(k+1) =W(k)−η∇L(W(k)). (W-GD)

Given Q(0), K(0) ∈ Rd×m, η > 0, for k ≥ 0 do:[
K(k + 1)
Q(k + 1)

]
=

[
K(k)
Q(k)

]
− η

[
∇KL (K(k),Q(k))
∇QL (K(k),Q(k))

]
. (KQ-GD)

51

Given R > 0, find d × d matrix:

W̄R = arg min
∥W∥F≤R

L(W). (W-RP)

Given R > 0, find d × m matrices:

(K̄R, Q̄R) = arg min
∥K∥2F+∥Q∥

2
F≤2R
L(K,Q). (KQ-RP)

52

Definition 1 (Token Score and Optimality) Given a prediction head v ∈ Rd, the score of a token53

xit of input Xi is defined as γit = Yi · v⊤xit. The optimal token for each input Xi is given by the index54

opti ∈ arg maxt∈[T ] γit for all i ∈ [n].55

By introducing token scores and identifying optimal tokens, we can better understand the importance56

of individual tokens and their impact on the overall objective. Next, we present SVM problems.57

• Hard-margin SVM for W-parameterization. Equipped with the set of optimal indices (opti)n
i=158

as per Definition 1, we introduce the following SVM formulation associated to W-parameterization:59

Wmm = arg min
W
∥W∥F s.t. (xiopti − xit)⊤W zi ≥ 1 for all t , opti, i ∈ [n]. (Att-SVM)

60

Throughout, we assume the SVM problems are feasible. We also note that GD can provably converge61

to an SVM solution over locally-optimal tokens, as detailed in Section 3.2.62
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• SVM problem for (K,Q)-parameterization. The objective function has an extra layer of noncon-63

vexity as (K,Q) corresponds to a matrix factorization of W. Fortunately, our experiments reveal that64

GD is indeed biased towards the global minima. This yields the following W-parameterized SVM65

with nuclear norm objective:66

Wmm
⋆ ∈ arg min

rank(W)≤m
∥W∥⋆ s.t. (xiopti − xit)⊤W zi ≥ 1 for all t , opti, i ∈ [n]. (Att-SVM⋆)

67

Above, the nonconvex rank constraint arises from the fact that the rank of W = KQ⊤ is at most m.68

Lemma 1, presented below, demonstrates that this guarantee holds whenever n ≤ m.69

Lemma 1 Any optimal solution of (Att-SVM) or (Att-SVM⋆) is at most rank n. More precisely, the70

row space of Wmm or Wmm
⋆ lies within span({zi}

n
i=1).71

2 Understanding Implicit Bias of Self-Attention72

We start by establishing the global convergence of regulrized paths.73

Assumption A Over any bounded interval [a, b]: (i) ℓ : R → R is strictly decreasing; (ii) The74

derivative ℓ′ is bounded as |ℓ′(u)| ≤ M1; (iii) ℓ′ is M0-Lipschitz continuous.75

Theorem 1 Suppose Assumption A holds, optimal indices (opti)n
i=1 are unique. Let Wmm be the76

unique solution of (Att-SVM), and letWmm
⋆ be the solution set of (Att-SVM⋆) with nuclear norm77

achieving objective C⋆. Then, Algorithms W-RP and KQ-RP, respectively, satisfy:78

• W-parameterization has Frobenius norm bias: lim
R→∞

W̄R
R =

Wmm

∥Wmm∥F
.79

• (K,Q)-parameterization has nuclear norm bias: lim
R→∞
dist

(
K̄RQ̄⊤R

R ,
Wmm
⋆

C⋆

)
= 0.80

Theorem 1 shows that the RP of the W and (K,Q)-parameterization converge to the max-margin81

solutions of (Att-SVM) and (Att-SVM⋆) with Frobenius and nuclear norm objectives, respectively.82

This result is the first to distinguish the optimization dynamics of W and (K,Q) parameterizations,83

revealing the low-rank bias of the latter. To study the RP theory predictivity of the implicit bias84

exhibited by GD, we examine the GD paths in Figure 1, where n = d = 2, T = 3. The teal and85

yellow markers correspond to tokens from X1, X2, and the stars indicate the optimal tokens. We86

illustrate the iterations of the attention weight in the form of W zi and KQ⊤ zi, i = 1, 2. The red/blue87

solid lines delineate the directions of Wmm z1/Wmm z2; the red/blue dashed lines show the directions88

of Wmm
⋆ z1/Wmm

⋆ z2; the arrows denote the corresponding directions of gradient evolution. Figure 189

provides a clear depiction of the incremental alignment of W(k) and K(k)Q(k)⊤ with their respective90

attention SVM solutions as k increases. This strongly supports the assertions of Theorem 1.91

3 Convergence and Implicit Bias of Gradient Descent92

3.1 Global convergence93

In this section, we will establish conditions that guarantee the global convergence of GD.94

Lemma 2 Under Assumption A, ∇L(W) is LW-Lipschitz continuous , where LW := 1
n
∑n

i=1 aibi, and95

ai = ∥v∥ ∥zi∥
2∥Xi∥

3, bi = M0∥v∥ ∥Xi∥ + 3M1 for all i ∈ [n].96

Assumption B Optimal tokens’ indices (opti)n
i=1 are unique and one of the following conditions on97

the tokens holds: For all t , opti and i ∈ [n], (i) the tokens’ scores, as defined in Def. 1, satisfy98

γit = γiτ < γiopti . (ii) all tokens are support vectors, i.e., (xiopti − xit)⊤Wmm zi = 1;99

Here, we provide conditions for achieving global convergence towards the max-margin direction100

Wmm based on token score constraints and over-parameterization. For the former, we provide precise101

theoretical guarantees. For the latter, we provide strong empirical evidence.102

(I) Global convergence under score constraints. Our next result establishes the global convergence103

of GD to the max-margin direction Wmm under Assumption B(i) that non-optimal tokens have104

identical scores but lower than the score of the optimal token.105

Theorem 2 Suppose Assumption A on the loss ℓ and Assumption B(i) on the tokens’ score hold.106

Then, Algorithm W-GD with η ≤ 1/LW and any starting point W(0) satisfies limk→∞
W(k)
∥W(k)∥F

= Wmm

∥Wmm∥F
.107

3



0 100 200 300 400 500 600
Iterations

0.2

0.4

0.6

0.8

1.0

So
ftm

ax
 p

ro
ba

bi
lit

y
            
            
W
(K,Q)

Iterations

So
ft

m
ax

pr
ob

ab
ili

ty

(a) Evolution of softmax prob.
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(b) Corr. coeff. of GD and Wmm
α
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⋆,α

Figure 3: Local convergence behaviour of GD when training W or (K,Q) with random data.

(II) Global convergence via overparameterization. Considering that Assumption B(ii) is anticipated108

to hold as the dimension d increases, the norm of the GD solution is bound to diverge to infinity. This109

satisfies a prerequisite for converging towards the globally-optimal SVM direction Wmm. The trend110

depicted in Figure 2, where the percentage of global convergence (red bars) approaches 100% and111

Assumption B(ii) holds with higher probability (green bars) as d grows, reinforces this insight.112

3.2 Local convergence113

Definition 2 (Local Optimality) Fix token indices α = (αi)n
i=1. Solve (Att-SVM) with (opti)n

i=1114

replaced with α to obtain Wmm
α . Consider the set Ti ⊂ [T ] such that (xiαi − xit)⊤Wmm

α zi = 1. If for all115

i ∈ [n] and t ∈ Ti scores per Def. 1 obey γiαi > γit, Wmm
α is called a locally-optimal direction.116

To provide a basis for discussing local convergence of GD, we establish a cone centered around Wmm
α :117

For µ ∈ (0, 1) and R > 0, we define Cµ,R(Wmm
α ) :=

{
∥W∥F ≥ R

∣∣∣ 〈
W/∥W∥F ,Wmm

α /∥Wmm
α ∥F

〉
≥ 1 − µ

}
.118

Theorem 3 Suppose Assumption A holds, and let α = (αi)n
i=1 be locally optimal tokens and Wmm

α119

be a locally-optimal direction according to Def. 2. Then, Algorithm W-GD with η ≤ 1/LW and any120

W(0) ∈ Cµ,R(Wmm
α ) satisfies limk→∞ ∥W(k)∥F = ∞ and limk→∞

W(k)
∥W(k)∥F

=
Wmm
α

∥Wmm
α ∥F

.121

This theorem indicates that if GD is initiated within Cµ,R(Wmm
α ), it will converge in the direction of122

Wmm
α /∥Wmm

α ∥F . Importantly, Theorem 3 does not make any assumptions on the tokens as opposed to123

Theorem 2. In Figure 3 we consider setting where n = 6, T = 8, and d = 10. In Fig. 3(a) we calculate124

the softmax probabilities, which result in probability 1, indicating that attention weights succeed in125

selecting one token per input. Following Def. 2 let α = (αi)n
i=1 be the token indices selected by GD126

and denote Wmm
⋆,α as the corresponding SVM solution of (Att-SVM⋆). Figs. 3(b) and 3(c) illustrate the127

correlation coefficients of attention weights with respect to Wmm
α and Wmm

⋆,α . The results demonstrate128

that W (KQ⊤) ultimately reaches a 1 correlation with Wmm
α (Wmm

⋆,α ), which validates Theorem 3.129

3.3 Implicit bias under MLP nonlinearity130

So far, we focus on the setting that h(·) is linear and attention selects a single token per sequence.131

In this section, we analyze the scenarios where h(·) is nonlinear and nonconvex, and GD solution is132

composed by multiple tokens. Suppose optimal solution outputs softmax probability of s⋆i , i ∈ [n].133

Intuitively, W(k) should be decomposed into two components via134

W(k) ≈Wfin + ∥W(k)∥F · W̄mm. (2)

where Wfin is the finite component and W̄mm is the directional component with ∥W̄mm∥F = 1. Define135

the selected set Oi ⊆ [T ] to be the indices s⋆it , 0 and the masked set as Ōi = [T ] − Oi.136

Finite component (Wfin): The job of Wfin is to assign nonzero softmax probabilities within each s⋆i .137

Then, Wfin should satisfy the linear constraints:138

(xit − xiτ)⊤Wfin zi = log(s⋆it/s
⋆
iτ) for all t, τ ∈ Oi, i ∈ [n]. (3)

Directional component (W̄mm): While Wfin creates the composition by allocating the nonzero139

softmax probabilities, it does not explain sparsity of attention map. This is the role of W̄mm, and we140

obtain the following convex generalized SVM formulation141

Wmm = arg min
W
∥W∥F subj. to

{
∀ t ∈ Oi, τ ∈ Ōi : (xit − xiτ)⊤W zi ≥ 1,
∀ t, τ ∈ Oi : (xit − xiτ)⊤W zi = 0,

∀1 ≤ i ≤ n, (4)

and W̄mm =Wmm/∥Wmm∥F . It is important to note that (4) offers a substantial generalization beyond142

the scope of the previous sections. Remarkably, in Appendix B, we empirically demonstrate that this143

general form indeed seems to predict the implicit bias of gradient descent with MLPs.144
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A Related work427

A.1 Implicit Regularization, Matrix Factorization, Sparsity428

Extensive research has delved into gradient descent’s implicit bias in separable classification429

tasks, often using logistic or exponentially-tailed losses for margin maximization [SHN+18,430

GLSS18, NLG+19, JT21, KPOT21, MWG+20, JT20]. The findings have also been extended431

to non-separable data using gradient-based techniques [JT18, JT19, JDST20]. Implicit bias432

in regression problems and losses has been investigated, utilizing methods like mirror descent433

[WGL+20, GLSS18, YKM20, VKR19, AW20a, AW20b, ALH21, SATA22]. Stochastic gradient434

descent has also been a subject of interest regarding its implicit bias [LWM19, BGVV20, LR20,435

HWLM20, LWA22, DML21, ZWB+21]. This extends to the implicit bias of adaptive and momentum-436

based methods [QQ19, WMZ+21, WMCL21, JST21].437

In linear classification, GD iterations on logistic loss and separable datasets converge to the hard438

margin SVM solution [SHN+18, RZH03, ZY05]. The attention layer’s softmax nonlinearity behaves439

similarly, potentially favoring margin-maximizing solutions. Yet, the layer operates on tokens440

in input sequences, not for direct classification. Its bias leans toward an (Att-SVM), selecting441

relevant tokens while suppressing others. However, formalizing this intuition presents significant442

challenges: Firstly, our problem is nonconvex (even in terms of the W-parameterization), introducing443

new challenges and complexities. Secondly, it requires the introduction of novel concepts such as444

locally-optimal tokens, demanding a tailored analysis focused on the cones surrounding them. Our445

findings on the implicit bias of (K,Q)-parameterization share conceptual similarities with [SRJ04],446

which proposes and analyzes a max-margin matrix factorization problem. Similar problems have447

also been studied more recently in the context of neural-collapse phenomena [PHD20] through448

an analysis of the implicit bias and regularization path of the unconstrained features model with449

cross-entropy loss [TKVB22]. However, a fundamental distinction from these works lies in the fact450

that attention solves a different max-margin problem that separate tokens. Moreover, our results451

on (K,Q)-parameterization are inherently connected to the rich literature on low-rank factorization452

[GWB+17, ACHL19, TVS23, TBS+16, SS21], stimulating further research. [TLZO23] is the first453

work to establish the connection between attention and SVM, which is closest to our work. Here,454

we augment their framework, initially developed for a simpler attention model, to transformers by455

providing the first guarantees for self/cross-attention layers, nonlinear prediction heads, and realistic456

global convergence guarantees. While our Assumption (i) and local-convergence analysis align with457

[TLZO23], our contributions in global convergence analysis, benefits of overparameterization, and458

the generalized SVM-equivalence in Section B are unique to this work.459

It is well-known that attention map (i.e. softmax outputs) act as a feature selection mechanism and460

reveal the tokens that are relevant to classification. On the other hand, sparsity and lasso regression461

(i.e. ℓ1 penalization) [Don06, Tib96, TG07, CDS01, CRT06] have been pivotal tools in the statistics462

literature for feature selection. Softmax and lasso regression exhibit interesting parallels: The Softmax463

output s = S(XW z) obeys ∥s∥ℓ1 = 1 by design. Softmax is also highly receptive to being sparse464

because decreasing the temperature (i.e. scaling up the weights W) eventually leads to a one-hot vector465

unless all logits are equal. We (also, [TLZO23]) have used these intuitions to formalize attention as a466

token selection mechanism. This aspect is clearly visible in our primary SVM formulation (Att-SVM)467

11



which selects precisely one token from each input sequence (i.e. hard attention). Section B has also468

demonstrated how (Gen-SVM) can explain more general sparsity patterns by precisely selecting469

desired tokens and suppressing others. We hope that this SVM-based token-selection viewpoint will470

motivate future work and deeper connections to the broader feature-selection and compressed sensing471

literature.472

A.2 Attention Mechanism and Transformers473

Transformers, as highlighted by [VSP+17], revolutionized the domains of NLP and machine transla-474

tion. Prior work on self-attention [CDL16, PTDU16, PXS18, LFS+17] laid the foundation for this475

transformative paradigm. In contrast to conventional models like MLPs and CNNs, self-attention mod-476

els employ global interactions to capture feature representations, resulting in exceptional empirical477

performance.478

Despite their achievements, the mechanisms and learning processes of attention layers remain479

enigmatic. Recent investigations [EGKZ22, SEO+22, ENM22, BV22, DCL21] have concentrated480

on specific aspects such as sparse function representation, convex relaxations, and expressive power.481

Expressivity discussions concerning hard-attention [Hah20] or attention-only architectures [DCL21]482

are connected to our findings when h(·) is linear. In fact, our work reveals how linear h results483

in attention’s optimization dynamics to collapse on a single token whereas nonlinear h provably484

requires attention to select and compose multiple tokens. This supports the benefits of the MLP layer485

for expressivity of transformers. There is also a growing body of research aimed at a theoretical486

comprehension of in-context learning and the role played by the attention mechanism [ASA+22,487

LIPO23, ACDS23, ZFB23, BCW+23, GRS+23]. [SEO+22] investigate self-attention with linear488

activation instead of softmax, while [ENM22] approximate softmax using a linear operation with489

unit simplex constraints. Their primary goal is to derive convex reformulations for training problems490

grounded in empirical risk minimization (ERM). In contrast, our methodologies, detailed in equations491

(W-ERM) and (KQ-ERM), delve into the nonconvex domain.492

[MRG+20, BALA+23] offer insights into the implicit bias of optimizing transformers. Specifically,493

[MRG+20] provide empirical evidence that an increase in attention weights results in a sparser494

softmax, which aligns with our theoretical framework. [BALA+23] study incremental learning and495

furnish both theory and numerical evidence that increments of the softmax attention weights (KQ⊤)496

are low-rank. Our theory aligns with this concept, as the SVM formulation of (K,Q) parameterization497

inherently exhibits low-rank properties through the nuclear norm objective, rank-m constraint, and498

implicit constraint induced by Lemma 1.499

Several recent works [JSL22, LWLC23, TWCD23, NLL+23, ORST23, NNH+23, FGBM23] aim to500

delineate the optimization and generalization dynamics of transformers. However, their findings usu-501

ally apply under strict statistical assumptions about the data, while our study offers a comprehensive502

optimization-theoretic analysis of the attention model, establishing a formal linkage to max-margin503

problems and SVM geometry. This allows our findings to encompass the problem geometry and apply504

to diverse datasets. Overall, the max-margin equivalence provides a fundamental comprehension of505

the optimization geometry of transformers, offering a framework for prospective research endeavors,506

as outlined in the subsequent section.507

B Understanding Multi-token Compositions: Toward A More General508

Max-Margin and Directional Convergence Theory509

So far, our theory has focused on the setting where the attention layer selects a single optimal token510

within each sequence. As we have discussed, this is theoretically well-justified under linear head511

assumption and certain nonlinear generalizations. On the other hand, for arbitrary nonconvex h(·)512

or multilayer transformer architectures, it is expected that attention will select multiple tokens per513

sequence. This motivates us to ask:514

Q: What is the implicit bias and the form of W(k) when the GD solution is515

composed by multiple tokens?516

In this section, our goal is to derive and verify the generalized behavior of GD. Let oi = X⊤i sW
i517

denote the token generated by the attention layer where sW
i = S(XiW zi) are the softmax probabilities.518
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Suppose GD trajectory converges to achieve the risk L⋆ = minW L(W). Suppose the eventual token519

composition achieving L⋆ is given by520

o⋆i = X⊤i s⋆i ,
where s⋆i are the eventual softmax probability vectors that dictate the token composition. Since521

attention maps are sparse in practice, we are interested in the scenario where s⋆i is sparse i.e. it522

contains some zero entries. This can only be accomplished by letting ∥W∥F → ∞. However, unlike523

the earlier sections, we wish to allow for arbitrary s⋆i rather than a one-hot vector which selects a524

single token.525

To proceed, we aim to understand the form of GD solution W(k) responsible for composing o⋆i via526

the softmax map s⋆i as R→ ∞. Intuitively, W(k) should be decomposed into two components via527

W(k) ≈Wfin + ∥W(k)∥F · W̄mm. (5)

where Wfin is the finite component and W̄mm is the directional component with ∥W̄mm∥F = 1. Define528

the selected set Oi ⊆ [T ] to be the indices s⋆it , 0 and the masked (i.e. suppressed) set as Ōi = [T ]−Oi529

where softmax entries are zero. In the context of earlier sections, we could also call these the optimal530

set and the non-optimal set, respectively.531

• Finite component: The job of Wfin is to assign nonzero softmax probabilities within each s⋆i .532

This is accomplished by ensuring that, Wfin induces the probabilities of s⋆i over Oi by satisfying the533

softmax equations534

ex⊤it W
fin zi

ex⊤iτWfin zi
= e(xit−xiτ)⊤Wfin zi = s⋆it/s

⋆
iτ.

for t, τ ∈ Oi. Consequently, this Wfin should satisfy the following linear constraints535

(xit − xiτ)⊤Wfin zi = log(s⋆it/s
⋆
iτ) for all t, τ ∈ Oi, i ∈ [n]. (6)

• Directional component: While Wfin creates the composition by allocating the nonzero softmax536

probabilities, it does not explain sparsity of attention map. This is the role of W̄mm, which is537

responsible for selecting the selected tokens Oi and suppressing the masked ones Ōi by assigning538

zero softmax probability to them. To predict direction component, we build on the theory developed539

in earlier sections. Concretely, there are two constraints W̄mm should satisfy540

1. Equal similarity over selected tokens: For all t, τ ∈ Oi, we have that (xit − xiτ)⊤W zi = 0.541

This way, softmax scores assigned by Wfin are not disturbed by the directional component and542

Wfin + RW̄mm will still satisfy the softmax equations (6).543

2. Max-margin against masked tokens: For all t ∈ Oi, τ ∈ Ōi, enforce the margin constraint544

(xit − xiτ)⊤W zi ≥ 1 subject to minimum norm ∥W∥F .545

Combining these, we obtain the following convex generalized SVM formulation546

Wmm = arg min
W
∥W∥F subj. to

{
∀ t ∈ Oi, τ ∈ Ōi : (xit − xiτ)⊤W zi ≥ 1,
∀ t, τ ∈ Oi : (xit − xiτ)⊤W zi = 0,

∀1 ≤ i ≤ n.

(Gen-SVM)
547

and set the normalized direction in (5) to W̄mm =Wmm/∥Wmm∥F .548

It is important to note that (Gen-SVM) offers a substantial generalization beyond the scope of the549

previous sections, where the focus was on selecting a single token from each sequence, as described550

in the main formulation (Att-SVM). This broader solution class introduces a more flexible approach551

to the problem.552

We present experiments showcasing the predictive power of the (Gen-SVM) equivalence in nonlinear553

scenarios. We conducted these experiments on random instances using an MLP denoted as h(·),554

which takes the form of 1⊤ReLU(x). We begin by detailing the preprocessing step and our setup. For555

the attention SVM equivalence analytical prediction, clear definitions of the selected and masked sets556

are crucial. These sets include token indices with nonzero and zero softmax outputs, respectively.557

However, practically, reaching a precisely zero output is not feasible. Hence, we define the selected558

set as tokens with softmax outputs exceeding 10−3, and the masked set as tokens with softmax outputs559
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Figure 4: Behavior of GD with nonlinear nonconvex prediction head and multi-token compositions.
Upper: The correlation between GD solution and three distinct baselines: (· · · ) Wmm obtained from
(Gen-SVM); (—) WSVMeq obtained by calculating Wfin and determining the best linear combination
Wfin + γW̄mm that maximizes correlation with the GD solution; and (- -) W1token obtained by solving
(Att-SVM) and selecting the highest probability token from the GD solution. Lower: Scatterplot
of the largest softmax probability over masked tokens (per our siτ ≤ 10−6 criteria) vs correlation
coefficient.

below 10−6. We also excluded instances with softmax outputs falling between 10−6 and 10−3 to560

distinctly separate the concepts of selected and masked sets, thereby enhancing the predictive accuracy561

of the attention SVM equivalence. In addition to the filtering process, we focus on scenarios where562

the label Y = −1 exists to enforce non-convexity of prediction head Yi · h(·). It is worth mentioning563

that when all labels are 1, due to the convexity of Yi · h(·), GD tends to select one token per input,564

and Equations (Gen-SVM) and (Att-SVM) yield the same solutions. The results are displayed in565

Figure 4, where n = 3, T = 4, and d varies within 4, 6, 8, 10. We conduct 500 random trials for566

different choices of d, each involving xit, zi, and v randomly sampled from the unit sphere. We apply567

normalized GD with a step size η = 0.1 and run 2000 iterations for each trial.568

• Figure 4 (upper) illustrates the correlation evolution between the GD solution and three distinctive569

baselines: (· · · ) Wmm obtained from (Gen-SVM); (—) WSVMeq obtained by calculating Wfin and570

determining the best linear combination Wfin+γW̄mm that maximizes correlation with the GD solution;571

and (- -) W1token obtained by solving (Att-SVM) and selecting the highest probability token from the572

GD solution. For clearer visualization, the logarithmic scale of correlation misalignment is presented573

in Figure 4. In essence, our findings show that W1token yields unsatisfactory outcomes, whereas574

Wmm attains a significant correlation coefficient in alignment with our expectations. Ultimately,575

our comprehensive SVM-equivalence WSVMeq further enhances correlation, lending support to our576

analytical formulas. It’s noteworthy that SVM-equivalence displays higher predictability in a larger d577

regime (with an average correlation exceeding 0.99). This phenomenon might be attributed to more578

frequent directional convergence in higher dimensions, with overparameterization contributing to a579

smoother loss landscape, thereby expediting optimization.580

• Figure 4 (lower) offers a scatterplot overview of the 500 random problem instances that were581

solved. The x-axis represents the largest softmax probability over the masked set, denoted as maxi,τ siτ582

where τ ∈ Ōi. Meanwhile, the y-axis indicates the predictivity of the SVM-equivalence, quantified as583

1 − corr_coef(W,WSVMeq). From this analysis, two significant observations arise. Primarily, there584

exists an inverse correlation between softmax probability and SVM-predictivity. This correlation585

is intuitive, as higher softmax probabilities signify a stronger divergence from our desired masked586

set state (ideally set to 0). Secondly, as dimensionality (d) increases, softmax probabilities over the587

masked set tend to converge towards the range of 10−15 (effectively zero). Simultaneously, attention588

SVM-predictivity improves, creating a noteworthy correlation.589
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Figure 5: Behavior of GD when selecting multiple tokens. (a) The number of selected tokens
increases with λ. (b) Predictivity of attention SVM solutions for varying λ; Dotted curves depict
the correlation corresponding to Wmm calculated via (Gen-SVM) and solid curves represent the
correlation to WSVMeq, which incorporates the Wfin correction. (c) Similar to (b), but evaluating
correlations over different numbers of selected tokens.

B.1 When does attention select multiple tokens?590

In this section, we provide a concrete example where the optimal solution indeed requires combining591

multiple tokens in a nontrivial fashion. Here, by nontrivial we mean that, we select more than 1592

tokens from an input sequence but we don’t select all of its tokens. Recall that, for linear prediction593

head, attention will ideally select the single token with largest score for almost all datasets. Perhaps594

not surprisingly, this behavior will not persist for nonlinear prediction heads. For instance in Figure 4,595

the GD output W aligned better in direction with Wmm than W1token. Specifically, here we prove that596

if we make the function hY (x) := Y · h(x) concave, then optimal softmax map can select multiple597

tokens in a controllable fashion. hY (x) can be viewed as generalization of the linear score function598

Y · v⊤x. In the example below, we induce concavity by incorporating a small −λ∥x∥2 term within a599

linear prediction head and setting h(x) = v⊤x − λ∥x∥2 with Y = 1.600

Lemma 3 Given v ∈ Rd, recall the score vector γ = Xv. Without losing generality, assume γ is601

non-increasing. Define the vector of score gaps γgap ∈ RT−1 with entries γgap
t = γt − γt+1. Suppose602

all tokens within the input sequence are orthonormal and for some τ ≥ 2, we have that603

τγgap
τ /2 > γ

gap
1 . (7)

Set h(x) = v⊤x − λ∥x∥2 where τγgap
τ /2 > λ > γ

gap
1 , ℓ(x) = −x, and Y = 1. Let ∆T denote the604

T-dimensional simplex. Define the unconstrained softmax optimization associated to the objective h605

where we make s := S(XW z) a free variable, namely,606

min
s∈∆T
ℓ(h(Xs)) = min

s∈∆T
λ∥X⊤s∥2 − v⊤X⊤s. (8)

Then, the optimal solution s⋆ contains at least 2 and at most τ nonzero entries.607

Figure 5 presents experimental findings concerning Lemma 3 across random problem instances. For608

this experiment, we set n = 1, T = 10, and d = 10. The results are averaged over 100 random609

trials, with each trial involving the generation of randomly orthonormal vectors x1t and the random610

sampling of vector v from the unit sphere. Similar to the processing step in Figure 4, and following611

Figure 4 (lower) which illustrates that smaller softmax outputs over masked sets correspond to higher612

correlation coefficients, we define the selected and masked token sets. Specifically, tokens with613

softmax outputs > 10−3 are considered selected, while tokens with softmax outputs < 10−8 are614

masked. Instances with softmax outputs between 10−8 and 10−3 are filtered out.615

Figure 5(a) shows that the number of selected tokens grows alongside λ, a prediction consistent with616

Lemma 3. When λ = 0, the head h(x) = v⊤x is linear, resulting in the selection of only one token617

per input. Conversely, as λ exceeds a certain threshold (e.g., λ > 2.0 based on our criteria), the618

optimization consistently selects all tokens. Figure 5(b) and 5(c) delve into the predictivity of attention619

SVM solutions for varying λ and different numbers of selected tokens. The dotted curves in both620

figures represent 1 − corr_coef(W,Wmm), while solid curves indicate 1 − corr_coef(W,WSVMeq),621
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where W denotes the GD solution. Overall, the SVM-equivalence demonstrates a strong correlation622

with the GD solution (consistently above 0.95). However, selecting more tokens (aligned with larger623

λ values) leads to reduced predictivity.624

To sum up, we have showcased the predictive capacity of the generalized SVM equivalence regarding625

the inductive bias of 1-layer transformers with nonlinear heads. Nevertheless, it’s important to626

acknowledge that this section represents an initial approach to a complex problem, with certain627

caveats requiring further investigation (e.g., the use of filtering in Figures 4 and 5, and the presence of628

imperfect correlations). We aspire to conduct a more comprehensive investigation, both theoretically629

and empirically, in forthcoming work.630

B.2 Proof of Lemma 3631

Suppose τ described by (7) exists and set λ accordingly. Let S ⊂ [T ] denote the top τ indices of632

γ with largest scores. Denote X1 ∈ Rτ×d to be the sequence corresponding to S and X2 ∈ R(T−τ)×d633

to be the sequence corresponding to [T ] − S. Similarly, denote the subvectors γ1, s(1) ∈ Rτ and634

γ2, s(2) ∈ RT−τ and define the probability over S as S 1 =
∑

i∈S si. The orthogonality and unit norm635

assumption on the tokens imply636

1 ≥ ∥X⊤s∥2 =
T∑

i=1

s2
i ≥ S 2

1/τ + (1 − S 1)2/(T − τ).

Also note that v⊤Xs = γ⊤1 s(1) + γ⊤2 s(2). With these, we can write the objective L(s) := ℓ(h(Xs)) as637

follows638

L(s) = λ
T∑

i=1

s2
i − γ

⊤
1 s(1) − γ⊤2 s(2).

Note that, for fixed γ and over all permutations of entries of s, γ⊤s is maximized when s and γ are639

aligned namely, when the entries of s are sorted according to the entries of γ. Otherwise, we could640

swap two unsorted entries of s (i.e. with unaligned γ entries) to a sorted position to obtain a strictly641

better optimal (where we also used the fact that s has nonnegative entries). Thus, we can assume the642

entries of s⋆ are sorted according to γ. Specifically, the largest τ entries of s⋆ lie on the set S.643

•We first show that s := s⋆ cannot have more than τ entries. To prove this, we compare s against644

the baseline s̄ where s̄1 = s(1)/S 1 and s̄2 = 0 so that s̄ is τ-sparse. In this scenario, s̄ yields the645

objective646

L(s̄) =
λ

S 2
1

∑
i∈S

s2
i −

1
S 1
γ⊤1 s(1).

We claim that L(s̄) < L(s). To see this, we first observe that γ⊤1 s(1)/S 1 ≥ γ
⊤
2 s(2)/(1 − S 1) + γgap

τ .647

This implies648

(1/S 1 − 1)γ⊤1 s(1) − γ⊤2 s(2) ≥ (1 − S 1)γgap
τ .

Recalling
∑

i∈S s2
i ≤ S 2

1/τ, we can now utilize the following chain of implications649

L(s̄) < L(s)

⇐⇒
λ

S 2
1

∑
i∈S

s2
i −

1
S 1
γ⊤1 s(1) < λ

T∑
i=1

s2
i − γ

⊤
1 s(1) − γ⊤2 s(2)

⇐= λ(1/S 2
1 − 1)

∑
i∈S

s2
i < (1/S 1 − 1)γ⊤1 s(1) − γ⊤2 s(2)

⇐= λ(1/S 2
1 − 1)

∑
i∈S

s2
i < (1 − S 1)γgap

τ

⇐= λ(1 − S 2
1)/τ < (1 − S 1)γgap

τ

⇐= λ(1 + S 1)/τ < γgap
τ

⇐= 2λ/τ < γgap
τ

⇐= λ < τγgap
τ /2.
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•We next prove that there are at least two nonzeros in the optimal solution. Denote the largest650

and second largest entry of γ by γ̄1 and γ̄2 respectively. For sone ∈ ∆T containing a single nonzero651

(i.e. one-hot vector), the best achievable risk is given by652

L(sone) = λ − γ̄1.

On the other hand consider the 2-sparse reference solution sref which assigns equal likelihood over653

the top two entries. This achieves654

L(sref) =
λ

2
− γ⊤sref ≤

λ

2
−
γ̄1 + γ̄2

2
.

The latter is superior as soon as655

λ

2
−
γ̄1 + γ̄2

2
< λ − γ̄1 ⇐⇒ λ > γgap

1 .

Thus, we conclude with the statement by selecting τγgap
τ /2 > λ > γ

gap
1 . ■656

C Auxiliary Lemmas657

C.1 Proof of Lemma 1658

Suppose the claim is wrong and row space of Wmm
⋄ does not lie within S = span({zi}

n
i=1). Let659

W = ΠS(Wmm
⋄ ) denote the matrix obtained by projecting the rows of Wmm

⋄ on S. Observe that W660

satisfies all SVM constraints since W zi =Wmm
⋄ zi for all i ∈ [n]. For Frobenius norm, using Wmm

⋄ ,W,661

we obtain a contradiction via ∥Wmm
⋄ ∥

2
F = ∥W∥

2
F + ∥W

mm
⋄ −W∥2F > ∥W∥

2
F . For nuclear norm, we can662

write W = UΣV⊤ with Σ ∈ Rr×r where r is dimension of S and column_span(V) = S.663

To proceed, we split the problem into two scenarios.664

Scenario 1: Let U⊥,V⊥ be orthogonal complements of U,V – viewing matrices with orthonormal665

columns as subspaces. Suppose U⊤⊥Wmm
⋄ V⊥ , 0. Then, singular value inequalities (which were666

also used in earlier works on nuclear norm analysis [RXH11, OH10, OMFH11]) guarantee that667

∥Wmm
⋄ ∥⋆ ≥ ∥U⊤Wmm

⋄ V∥⋆ + ∥U⊤⊥Wmm
⋄ V⊥∥⋆ > ∥W∥⋆.668

Scenario 2: Now suppose U⊤⊥Wmm
⋄ V⊥ = 0. Since Wmm

⋄ V⊥ , 0, this implies U⊤Wmm
⋄ V⊥ , 0. Let669

W′ = UU⊤Wmm
⋄ which is a rank-r matrix. Since W′ is a subspace projection, we have ∥W′∥⋆ ≤670

∥Wmm
⋄ ∥⋆. Next, observe that ∥W∥⋆ = trace(U⊤WV) = trace(U⊤W′V). On the other hand,671

trace(U⊤W′V) < ∥W′∥⋆ because the equality in von Neumann’s trace inequality happens if and672

only if the two matrices we are inner-producting, namely (W′,UV⊤), share a joint set of singular673

vectors [Car21]. However, this is not true as the row space of Wmm
⋄ does not lie within S. Thus, we674

obtain ∥W∥⋆ < ∥W′∥⋆ ≤ ∥Wmm
⋄ ∥⋆ concluding the proof via contradiction. ■675

C.2 Proof of Lemma 2676

Lemma 4 (Lemma 2 restated) Under Assumption A, ∇L(W), ∇KL(K,Q), and ∇QL(K,Q) are LW ,677

LK , LQ–Lipschitz continuous, respectively, where ai = ∥v∥ ∥zi∥
2∥Xi∥

3, bi = M0∥v∥ ∥Xi∥ + 3M1 for all678

i ∈ [n],679

LW :=
1
n

n∑
i=1

aibi, LK := ∥Q∥LW , and LQ := ∥K∥LW . (9)

Proof. Let680

γi = Yi · Xiv, hi = XiW zi. (10)
From Assumption A, ℓ : R→ R is differentiable. Hence, the gradient evaluated at W is given by681

∇L(W) =
1
n

n∑
i=1

ℓ′
(
γ⊤i S(hi)

)
· X⊤i S

′(hi)γi z⊤i , (11)

where682

S′(h) = diag (S(h)) − S(h)S(h)⊤ ∈ RT×T . (12)
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Note that683

∥S′(h)∥ ≤ ∥S′(h)∥F ≤ 1. (13)
Hence, for any W, Ẇ ∈ Rd×d, i ∈ [n], we have684 ∥∥∥S(hi) − S(ḣi)

∥∥∥ ≤ ∥∥∥hi − ḣi

∥∥∥ ≤ ∥Xi∥ ∥zi∥
∥∥∥W − Ẇ

∥∥∥
F , (14a)

where ḣi = XiẆ zi.685

Similarly,686 ∥∥∥S′(hi) − S′(ḣi)
∥∥∥

F ≤
∥∥∥S(hi) − S(ḣi)

∥∥∥ + ∥∥∥S(hi)S(hi)⊤ − S(ḣi)S(ḣi)⊤
∥∥∥

F

≤ 3∥Xi∥ ∥zi∥
∥∥∥W − Ẇ

∥∥∥
F . (14b)

Next, for any W, Ẇ ∈ Rd×d, we get687 ∥∥∥∇L(W) − ∇L(Ẇ)
∥∥∥

F ≤
1
n

n∑
i=1

∥∥∥∥ℓ′ (γ⊤i S(hi)
)
· ziγ

⊤
i S
′(hi)Xi − ℓ

′
(
γ⊤i S(ḣi)

)
· ziγ

⊤
i S
′(ḣi)Xi

∥∥∥∥
F

≤
1
n

n∑
i=1

∥∥∥ziγ
⊤
i S
′(ḣi)Xi

∥∥∥
F

∣∣∣∣ℓ′ (γ⊤i S(hi)
)
− ℓ′

(
γ⊤i S(ḣi)

)∣∣∣∣
+

1
n

n∑
i=1

∣∣∣∣ℓ′ (γ⊤i S(hi)
)∣∣∣∣ ∥∥∥ziγ

⊤
i S
′(hi)Xi − ziγ

⊤
i S
′(ḣi)Xi

∥∥∥
F

≤
1
n

n∑
i=1

M0 ∥γi∥
2 ∥zi∥ ∥Xi∥

∥∥∥S(hi) − S(ḣi)
∥∥∥

+
1
n

n∑
i=1

M1 ∥γi∥ ∥zi∥ ∥Xi∥
∥∥∥S′(hi) − S′(ḣi)

∥∥∥
F , (15)

where the second inequality follows from the fact that |ab − cd| ≤ |d||a − c| + |a||b − d| and the third688

inequality uses Assumption A and (13).689

Substituting (14a) and (14b) into (15), we get690 ∥∥∥∇L(W) − ∇L(Ẇ)
∥∥∥

F ≤
1
n

n∑
i=1

(
M0 ∥γi∥

2∥zi∥
2∥Xi∥

2 + 3M1∥γi∥ ∥zi∥
2 ∥Xi∥

2
)
∥W − Ẇ∥F

≤
1
n

n∑
i=1

(
M0 ∥v∥2∥zi∥

2∥Xi∥
4 + 3M1∥v∥ ∥zi∥

2 ∥Xi∥
3
)
∥W − Ẇ∥F

≤ LW ∥W − Ẇ∥F ,
where LW is defined in (9).691

Let gi = XiKQ⊤ zi. We have692

∇KL(K,Q) =
1
n

n∑
i=1

ℓ′
(
γ⊤i S(gi)

)
· ziγ

⊤
i S
′(gi)XiQ, (16a)

∇QL(K,Q) =
1
n

n∑
i=1

ℓ′
(
γ⊤i S(gi)

)
· X⊤i S

′(gi)γi z⊤i K. (16b)

By the similar argument as in (15), for any Q and Q̇ ∈ Rd×m, we have693 ∥∥∥∇QL(K,Q) − ∇QL(K, Q̇)
∥∥∥

F ≤
∥K∥

n

n∑
i=1

∥∥∥∥ℓ′ (γ⊤i S(hi)
)
· ziγ

⊤
i S
′(hi)Xi − ℓ

′
(
γ⊤i S(ḣi)

)
· ziγ

⊤
i S
′(ḣi)Xi

∥∥∥∥
F

≤ LW∥K∥ ∥Q − Q̇∥F . (17)

Similarly, for any K, K̇ ∈ Rd×m, we get∥∥∥∇KL(K,Q) − ∇KL(K̇,Q)
∥∥∥

F ≤ LW∥Q∥ ∥K − K̇∥F .
694
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C.3 Useful Lemmas695

Lemma 5 (Optimal Tokens Minimize Training Loss) Suppose Assumption A (i)-(ii) hold, and not696

all tokens are optimal per Definition 1. Then, training risk obeys L(W) > L⋆ := 1
n
∑n

i=1 ℓ(γiopti ).697

Additionally, suppose there are optimal indices (opti)n
i=1 for which (Att-SVM) is feasible, i.e. there698

exists a W separating optimal tokens. This W choice obeys limR→∞L(R ·W) = L⋆.699

The result presented in Lemma 5 originates from the observation that the output tokens of the attention700

layer constitute a convex combination of the input tokens. Consequently, when subjected to a strictly701

decreasing loss function, attention optimization inherently leans towards the selection of a singular702

token, specifically, the optimal token (opti)n
i=1.703

Proof. The token at the output of the attention layer is given by ai = X⊤i S(XiW zi). Here, ai can be704

written as ai =
∑

t∈[T ] cit xit where cit ≥ 0 and
∑

t∈[T ] cit = 1. Note that, for any finite W, cit as softmax705

probabilities are strictly positive. To proceed, using the linearity of h(x) = v⊤x and strictly-decreasing706

nature of the loss ℓ, we find that707

L(W) =
1
n

n∑
i=1

ℓ(Yi · h(ai)) =
1
n

n∑
i=1

ℓ(Yi ·
∑
t∈[T ]

cith(xit)) ≥
1
n

n∑
i=1

ℓ(Yi · h(xiopti )) = L⋆,

which implies that L(W) ≥ L⋆ for any W.708

On the other hand, since not all tokens are optimal, there exists a token index (i, t) for which709

Yi · h(xit) < Yi · h(xiopti ). Since all softmax entries obey cit > 0 for finite W, this implies the strict710

inequality ℓ(Yi · h(ai)) > ℓ(Yi · h(xiopti )). This leads to the desired conclusion L(W) > L⋆.711

Secondly, suppose (Att-SVM) is feasible i.e. there exists a W separating some optimal indices712

(opti)n
i=1 from the other tokens. Note that, this does not exclude the existence of other optimal713

indices. This implies that, letting limR→∞ S(Xi(R ·W)zi) saturates the softmax and will be equal to the714

indicator function at opti for all inputs i ∈ [n]. Thus, cit → 0 for t , opti and cit → 1 for t = opti.715

Using M1-Lipschitzness of ℓ, we can write716 ∣∣∣ℓ(Yi · h(xiopti )) − ℓ(Yi · h(ai))
∣∣∣ ≤ M1

∣∣∣h(ai) − h(xiopti )
∣∣∣ .

Since h is linear, it is ∥v∥-Lipschitz implying717 ∣∣∣ℓ(Yi · h(xiopti )) − ℓ(Yi · h(ai))
∣∣∣ ≤ M1∥v∥ · ∥ai − xiopti∥.

Since ai → xiopti as R→ ∞, we conclude with the advertised result. ■718

Lemma 6 For any X ∈ RT×d, W,V ∈ Rd×d and z, v ∈ Rd, let a = XVz, s = S(XW z), and γ = Xv.719

Set720

Γ = sup
t,τ∈[T ]

|γt − γτ| and A = sup
t∈[T ]
∥at∥.

We have that721 ∣∣∣∣∣∣∣a⊤diag(s)γ − a⊤ss⊤γ −
T∑

t≥2

(a1 − at)st(γ1 − γt)

∣∣∣∣∣∣∣ ≤ 2ΓA(1 − s1)2.

Proof. The proof is similar to [TLZO23, Lemma 4], but for the sake of completeness, we provide it722

here. Set γ̄ =
∑T

t=1 γt st. We have723

γ1 − γ̄ =

T∑
t≥2

(γ1 − γt)st, and |γ1 − γ̄| ≤ Γ(1 − s1).

Then,724

a⊤diag(s)γ − a⊤ss⊤γ =
T∑

t=1

atγt st −

T∑
t=1

at st

T∑
t=1

γt st

= a1s1(γ1 − γ̄) −
T∑

t≥2

at st(γ̄ − γt). (18)
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Since ∣∣∣∣∣∣∣
T∑

t≥2

at st(γ̄ − γt) −
T∑

t≥2

at st(γ1 − γt)

∣∣∣∣∣∣∣ ≤ AΓ(1 − s1)2,

we obtain1725

a⊤diag(s)γ − a⊤ss⊤γ = a1s1(γ1 − γ̄) −
T∑

t≥2

at st(γ1 − γt) ± AΓ(1 − s1)2

= a1s1

T∑
t≥2

(γ1 − γt)st −

T∑
t≥2

at st(γ1 − γt) ± AΓ(1 − s1)2

=

T∑
t≥2

(a1s1 − at)st(γ1 − γt) ± AΓ(1 − s1)2

=

T∑
t≥2

(a1 − at)st(γ1 − γt) ± 2AΓ(1 − s1)2.

Here, ± on the right handside uses the fact that726 ∣∣∣∣∣∣∣
T∑

t≥2

(a1s1 − a1)st(γ1 − γt)

∣∣∣∣∣∣∣ ≤ (1 − s1)AΓ
T∑

t≥2

st = (1 − s1)2AΓ.

727

D Global Regularization Path728

D.1 Proof of Theorem 1729

Throughout ⋄ denotes either Frobenius norm or nuclear norm. We will prove that W̄(R) asymptotically730

aligns with the set of globally-optimal directions and also ∥W̄(R)∥⋄ → ∞. Rm ⊆ R
d×d denote the731

manifold of rank ≤m matrices.732

Step 1: Let us first prove that W̄(R) achieves the optimal risk as R → ∞ – rather than problem733

having finite optima. Define Ξ⋄ = 1/∥Wmm∥⋄ and norm-normalized W̄mm = Ξ⋄Wmm. Note that Wmm734

separates tokens opt from rest of the tokens for each i ∈ [n]. Thus, we have that735

lim
R→∞
L(W̄(R)) ≤ lim

R→∞
L(R · W̄mm) := L⋆ =

1
n

n∑
i=1

ℓ(γopti ). (19)

On the other hand, for any W ∈ Rm, define the softmax probabilities s(i) = S(XiW zi) and attention736

features xW
i =

∑T
t=1 s(i)

t xt. Decompose xW
i as xW

i = s(i)
opti

xiopti +
∑

t,opti
s(i)

t xit. Set γgap
it = γ

opt
i − γit =737

Yi · v⊤(xiopti − xit) > 0, and define738

B := max
i∈[n]

max
t,τ∈[T ]

∥v∥ · ∥xit − xiτ∥ ≥ γ
gap
it . (20)

Define copt = mini∈[n],t,opti γ
gap
it > 0 and γW

i = Yi · v⊤xW
i . We obtain the following score inequalities739

γW
i ≤ γ

opt
i − copt(1 − s(i)

opti
) < γopti , (21)

|γW
i − γ

opt
i | ≤ ∥v∥ · ∥x

W
i − xαi ∥ ≤ ∥v∥

∑
t,opti

s(i)
t ∥xit − xαi ∥ ≤ B(1 − s(i)

opti
).

We will use the γW
i − γ

opt
i term in (21) to evaluate W against the reference loss L⋆ of (19). Using the740

strictly-decreasing nature of ℓ, we conclude with the fact that for all (finite) W ∈ Rm,741

L(W) =
1
n

n∑
i=1

ℓ(γW
i ) > L⋆ =

1
n

n∑
i=1

ℓ(γopti ),

1For simplicity, we use ± on the right hand side to denote the upper and lower bounds.
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which implies ∥W̄(R)∥⋄ → ∞ together with (19).742

Step 2: To proceed, we show that W̄(R) converges in direction toWmm, which denotes the set of743

SVM minima. Suppose this is not the case and convergence fails. We will obtain a contradiction by744

showing that W̄mm
R = R · W̄mm achieves a strictly superior loss compared to W̄(R). Let us introduce745

the normalized parameters W̄0(R) = W̄(R)
RΞ⋄

and W′ =
W̄(R)

∥W̄(R)∥⋄Ξ⋄
. Note that W̄0(R) is obtained by scaling746

down W′ since ∥W̄(R)∥⋄ ≤ R and W′ obeys ∥W′∥⋄ = ∥Wmm∥⋄. Since W̄0(R) fails to converge toWmm,747

for some δ > 0, there exists arbitrarily large R > 0 such that dist
(
W̄0(R),Wmm

)
≥ δ. This translates748

to the suboptimality in terms of the margin constraints as follows: First, since nuclear norm dominates749

Frobenius, distance with respect to the ⋄-norm obeys dist⋄
(
W̄0(R),Wmm

)
≥ δ. Secondly, using750

triangle inequality,751

this implies that either ∥W̄0(R)∥⋄ ≤ ∥Wmm∥⋄ − δ/2 or dist⋄
(
W′,Wmm)

≥ δ/2.

In either scenario, W̄0(R) strictly violates one of the margin constraints of (Att-SVM) (⋄ = F) or752

(Att-SVM⋆) (⋄ = ⋆): If ∥W̄0(R)∥⋄ ≤ ∥Wmm∥⋄ − δ/2, then, since the optimal SVM objective is753

∥Wmm∥⋄, there exists a constraint i, t , opti for which
〈
(xopti − xit)z⊤i , W̄0(R)

〉
≤ 1 − δ

2∥Wmm∥⋄
. If754

dist⋄ (W′,Wmm) ≥ δ/2, then, W′ has the same SVM objective but it is strictly bounded away from755

the solution set. Thus, for some ϵ := ϵ(δ) > 0, W′ and its scaled down version W̄0(R) strictly violate756

an SVM constraint achieving margin ≤ 1 − ϵ. Without losing generality, suppose W̄0(R) violates the757

first constraint i = 1. Thus, for a properly updated δ > 0 (that is function of the initial δ > 0) and for758

i = 1 and some support index τ ∈ T1,759 〈
(xopt1 − x1t)z⊤1 , W̄0(R)

〉
≤ 1 − δ. (22)

Now, we will argue that this leads to a contradiction by proving L(W̄mm
R ) < L(W̄(R)) for sufficiently760

large R.761

To obtain the result, we establish a refined softmax probability control as in Step 1 by studying762

distance to L⋆. Following (21), denote the score function at W̄(R) via γR
i := γW̄(R)

i . Similarly,763

let sR
i = S(aR

i ) with aR
i = XiW̄(R)zi. Set the corresponding notation for the reference parameter764

W̄mm
R as γ⋆i , s

⋆
i , a

⋆
i . Recall that R ≥ ∥W̄(R)∥⋄ and Ξ⋄ := 1/∥Wmm∥⋄. We note the following softmax765

inequalities766

s⋆iopti
≥

1
1 + Te−RΞ⋄

≥ 1 − Te−RΞ⋄ for all i ∈ [n], (23)

sR
iopti
≤

1
1 + e−(1−δ)∥W̄(R)∥⋄Ξ⋄

≤
1

1 + e−(1−δ)RΞ⋄
for i = 1.

The former inequality is thanks to Wmm achieving ≥1 margins on all tokens [T ] − opti and the latter767

arises from the δ-margin violation of W̄(R) at i = 1 i.e. Eq. (22). Since ℓ is strictly decreasing with768

Lipschitz derivative and the scores are upper/lower bounded by an absolute constant (as tokens are769

bounded and fixed), we have that cup ≥ −ℓ′(γW
i ) ≥ cdn for some constants cup > cdn > 0. Thus,770

following Eq. (20), the score decomposition (21), and (23) we can write771

L(W̄(R)) − L⋆ ≥
1
n

[ℓ(γW̄(R)
1 ) − ℓ(γopt1 )] ≥

cdn
n

(γopt1 − γW̄(R)
1 ) (24)

≥
cdn
n

copt(1 − sR
1opt1

).

≥
cdncopt

n
1

1 + e(1−δ)RΞ⋄
.

Conversely, we upper bound the difference between L(W̄mm
R ) and L⋆ as follows. Define the worst-772

case loss difference for W̄(R) as j = arg maxi∈[n][ℓ(γ⋆i ) − ℓ(γopti )]. Using (21)&(23), we write773

L(W̄mm
R ) − L⋆ ≤ max

i∈[n]
[ℓ(γ⋆i ) − ℓ(γopti )] ≤ cup · (γ

opt
j − γ⋆j )

≤ cup · (1 − s⋆jopt j
)B

≤ cup · Te−RΞ⋄B.
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Combining the last inequality and (24), we conclude that L(W̄mm
R ) < L(W̄(R)) whenever774

cupT · e−RΞ⋄B <
cdn · copt

n
1

1 + e(1−δ)RΞ⋄
⇐⇒

eRΞ⋄

1 + e(1−δ)RΞ⋄
>

cupTnB
cdncopt

.

The left hand-side inequality holds for all sufficiently large R: Specifically, as soon as R obeys775

R > 1
δΞ⋄

log( 2cupTnB
cdncopt

). This completes the proof of the theorem by contradiction since we obtained776

L(W̄(R)) > L(W̄mm
R ).777

E Convergence of Gradient Descent778

Optimization problem definition. Recap the problem, where we use a linear head h(x) = v⊤x for779

most of our theoretical exposition. Given dataset (Yi, Xi, zi)n
i=1, we minimize the empirical risk of an780

1-layer transformer using combined weights W ∈ Rd×d or individual weights K,Q ∈ Rd×m for a fixed781

head and decreasing loss function:782

L(W) =
1
n

n∑
i=1

ℓ
(
Yi · v⊤X⊤i S(XiW zi)

)
, (W-ERM)

L(K,Q) =
1
n

n∑
i=1

ℓ
(
Yi · v⊤X⊤i S(XiKQ⊤ zi)

)
. (KQ-ERM)

We can recover the self-attention model by setting zi to be the first token of Xi, i.e., zi ← xi1.783

E.1 Divergence of norm of the iterates W(k)784

The next lemma establishes the descent property of gradient descent for L(W) under Assumption A.785

Lemma 7 (Descent Lemma) Under Assumption A, if η ≤ 1/LW , then for any initialization W(0),786

Algorithm W-GD satisfies:787

L(W(k + 1)) − L(W(k)) ≤ −
η

2
∥∇L(W(k))∥2F , (25)

for all k ≥ 0. Additionally, it holds that
∑∞

k=0 ∥∇L (W(k))∥2F < ∞, and limk→∞ ∥∇L (W (k))∥2F = 0.788

Proof. The proof is similar to [TLZO23, Lemma 5].789

The lemma below reveals that the correlation between the training loss’s gradient at any arbi-790

trary matrix W and the attention SVM solution Wmm is negative. Consequently, for any finite W,791

⟨∇L(W),Wmm⟩ cannot be equal to zero.792

Lemma 8 Let Wmm be the SVM solution of (Att-SVM). Suppose Assumptions A and B hold. Then,793

for all W ∈ Rd×d, the training loss (W-ERM) obeys ⟨∇L(W),Wmm⟩ ≤ −c < 0, for some constant794

c > 0 (see (34)) depending on the data, the head v, and a loss derivative bound.795

Proof. Let796

h̄i = XiWmm zi, γi = Yi · Xiv, and hi = XiW zi. (26)

Let us recall the gradient evaluated at W which is given by797

∇L(W) =
1
n

n∑
i=1

ℓ′
(
γ⊤i S(hi)

)
· X⊤i S

′(hi)γi z⊤i , (27)
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which implies that798

〈
∇L(W),Wmm〉

=
1
n

n∑
i=1

ℓ′
(
γ⊤i S(hi)

)
·
〈
X⊤i S

′(hi)γi z⊤i ,W
mm

〉
=

1
n

n∑
i=1

ℓ′i · trace
(
(Wmm)⊤X⊤i S

′(hi)γi z⊤i
)

=
1
n

n∑
i=1

ℓ′i · h̄
⊤
i S
′(hi)γi

=
1
n

n∑
i=1

ℓ′i ·
(
h̄⊤i diag(si)γi − h̄⊤i sis⊤i γi

)
.

(28)

Here, let ℓ′i := ℓ′(γ⊤i S(hi)), si = S(hi) and the third equality uses trace
(
ba⊤

)
= a⊤b.799

In order to move forward, we will establish the following result, with a focus on the equal score800

condition (Assumption (i)): Let γ = γt≥2 be a constant, and let γ1 and h̄1 represent the largest indices801

of vectors γ and h̄ respectively. For any vector s that satisfies
∑

t∈[T ] st = 1 and st > 0, we aim to802

prove that h̄⊤diag(s)γ − h̄⊤ss⊤γ > 0. To demonstrate this, we proceed by writing the following:803

h̄⊤diag(s)γ − h̄⊤ss⊤γ =
T∑

t=1

h̄tγt st −

T∑
t=1

h̄t st

T∑
t=1

γt st

=

h̄1γ1s1 + γ

T∑
t≥2

h̄t st

 − (
γ1s1 + γ(1 − s1)

) h̄1s1 +

T∑
t≥2

h̄t st


= h̄1(γ1 − γ)s1(1 − s1) − (γ1 − γ)s1

T∑
t≥2

h̄t st

= (γ1 − γ)(1 − s1)s1

h̄1 −

∑T
t≥2 h̄t st∑T

t≥2 st


≥ (γ1 − γ)(1 − s1)s1(h̄1 −max

t≥2
h̄t).

(29)

To proceed, define804

γi
gap = γiopti − max

t,opti

γit and h̄i
gap = h̄iopti − max

t,opti

h̄it.

With these, we obtain805

h̄⊤i diag(si)γi − h̄⊤i sis⊤i γi ≥ γ
i
gaph̄i

gap(1 − siopti )siopti . (30)

Note that806

h̄i
gap = min

t,opti
(xiopti − xit)⊤Wmm zi ≥ 1,

γi
gap = min

t,opti
γiopti − γit > 0,

siopti (1 − siopti ) > 0.

Hence,807

c0 := min
i∈[n]

{(
min

t,opti
(xiopti − xit)⊤Wmm zi

)
·

(
min

t,opti
γiopti − γit

)
· siopti (1 − siopti )

}
> 0. (31)

It follows from (30) and (31) that808

min
i∈[n]

{
h̄⊤i diag(si)γi − h̄⊤i sis⊤i γi

}
≥ c0 > 0. (32)

Further, by our assumption ℓ′i < 0. Since by Assumption A, ℓ′ is continuous and the domain is809

bounded, the maximum is attained and negative, and thus810

−c1 = max
x
ℓ′(x), for some c1 > 0. (33)
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Hence, using (32) and (33) in (28), we obtain811 〈
∇L(W),Wmm〉

≤ −c < 0, where c = c1 · c0. (34)

In the scenario that Assumption B(ii) holds (all tokens are support), h̄t = x⊤it W
mm zi is constant for all812

t ≥ 2. Hence, following similar steps as in (29) completes the proof.813

Theorem 4 Suppose Assumption A on the loss function ℓ and Assumption B on the tokens hold.814

Then,815

• There is no W ∈ Rd×d satisfying ∇L(W) = 0.816

• Algorithm W-GD with the step size η ≤ 1/LW and any starting point W(0) satisfies817

limk→∞ ∥W(k)∥F = ∞.818

Proof. It follows from Lemma 7 that under Assumption A, η ≤ 1/LW , and for any initialization W(0),819

the gradient descent sequence W(k + 1) =W(k) − η∇L(W(k)) satisfies limk→∞ ∥∇L (W (k))∥2F = 0.820

Further, it follows from Lemma 8 that ⟨∇L(W),Wmm⟩ < 0 for all W ∈ Rd×d. Hence, for any finite W,821

⟨∇L(W),Wmm⟩ cannot be equal to zero. Therefore, there are no finite critical points W, for which822

∇L(W) = 0 which contradicts Lemma 7. This implies that ∥W (k)∥ → ∞.823

E.2 Global Convergence of Gradient Descent824

The following lemma illustrates that when non-optimal tokens within an input share the same scores,825

the negative gradient of the loss function at W becomes more correlated with the max-margin solution826

(Wmm) than with W itself.827

Lemma 9 Let Wmm be the SVM solution of (Att-SVM). Suppose Assummption (i) on the tokens’828

score hold and ℓ(·) is strictly decreasing and differentiable. For any choice of π > 0, there exists829

R := Rπ such that, for any W with ∥W∥F ≥ R, we have830 〈
∇L(W),

W
∥W∥F

〉
≥ (1 + π)

〈
∇L(W),

Wmm

∥Wmm∥F

〉
.

Proof. Let W̄ = ∥Wmm∥FW/∥W∥F , M = supi,t ∥xit z⊤i ∥, Θ = 1/∥Wmm∥F , si = S(XiW zi), hi = XiW̄ zi,831

h̄i = XiWmm zi, and γi = γi,t≥2. Without losing generality assume αi = opti = 1 for all i ∈ [n].832

Repeating the proof of Lemma 8 yields833 〈
∇L(W),Wmm〉

=
1
n

n∑
i=1

ℓ′i · (γi1 − γi)(1 − si1)si1

h̄i1 −

∑T
t≥2 h̄it sit∑T

t≥2 sit

 ,
〈
∇L(W), W̄

〉
=

1
n

n∑
i=1

ℓ′i · (γi1 − γi)(1 − si1)si1

hi1 −

∑T
t≥2 hit sit∑T

t≥2 sit

 .
Focusing on a single example i ∈ [n] with s, h, h̄ vectors (dropping subscript i), given π, for834

sufficiently large R, we wish to show that835 h1 −

∑T
t≥2 ht st∑T

t≥2 st

 ≤ (1 + π) ·
h̄1 −

∑T
t≥2 h̄t st∑T

t≥2 st

 . (35)

We consider two scenarios.836

Scenario 1: ∥W̄ −Wmm∥F ≤ ϵ := π/(2M). In this scenario, for any token, we find that837

|ht − h̄t | = |x⊤t (W̄ −Wmm)zt | ≤ M∥W̄ −Wmm∥F ≤ Mϵ.

Consequently, we obtain838

h̄1 −

∑T
t≥2 h̄t st∑T

t≥2 st
≥ h1 −

∑T
t≥2 ht st∑T

t≥2 st
− 2Mϵ = h1 −

∑T
t≥2 ht st∑T

t≥2 st
− π.
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Also noticing h̄1 −
∑T

t≥2 h̄t st∑T
t≥2 st

≥ 1 (thanks to Wmm satisfying ≥ 1 margin), this implies (35).839

Scenario 2: ∥W̄ −Wmm∥F ≥ ϵ := π/(2M). In this scenario, for some δ = δ(ϵ) and τ ≥ 2, we have840

that841

h1 − hτ ≤ 1 − 2δ.

Recall that s = S(R̄h) where R̄ = ∥W∥F/∥Wmm∥F . To proceed, split the tokens into two groups: Let842

N be the group of tokens obeying (x1 − xt)⊤W̄ z ≥ 1 − δ for t ∈ N and [T ] − N be the rest. Observe843

that844 ∑
t∈N st∑T
t≥2 st

≤

∑
t∈N st

sτ
≤ T

eδR̄

e2δR̄
= Te−R̄δ.

Set M̄ = M/Θ and note that ∥ht∥ ≤ ∥Wmm∥F · ∥xt z⊤∥ ≤ M̄. Using (x1 − xt)⊤W̄ z < 1 − δ over845

t ∈ [T ] − N and plugging in the above bound, we obtain846 ∑T
t≥2(h1 − ht)st∑T

t≥2 st
=

∑
t∈[T ]−N (h1 − ht)st∑T

t≥2 st
+

∑
t∈N (h1 − ht)st∑T

t≥2 st

≤ (1 − δ) + 2M̄Te−R̄δ.

Using the fact that h̄1 −
∑T

t≥2 h̄t st∑T
t≥2 st

≥ 1, the above implies (35) with π′ = 2M̄Te−R̄δ − δ. To proceed,847

choose848

Rπ = δ−1Θ−1 log(
2M̄T
π

) to ensure π′ ≤ π. (36)

849

E.2.1 Proof of Theorem 2.850

The proof is similar to [TLZO23, Theorem 2]. Given any ϵ ∈ (0, 1), let π = ϵ/(1 − ϵ). It follows from851

Theorem 4 that limk→∞ ∥W(k)∥F = ∞. Hence, we can choose kϵ such that for any k ≥ kϵ , it holds that852

∥W(k)∥F > Rϵ ∨ 1/2 for some parameter Rϵ . Now for any k ≥ kϵ , it follows from Lemma 9 that853 〈
−∇L(W(k)),

Wmm

∥Wmm∥F

〉
≥ (1 − ϵ)

〈
−∇L(W(k)),

W(k)
∥W(k)∥F

〉
.

Multiplying both sides by the stepsize η and using the gradient descent update, we get854 〈
W(k + 1) −W(k),

Wmm

∥Wmm∥F

〉
≥ (1 − ϵ)

〈
W(k + 1) −W(k),

W(k)
∥W(k)∥F

〉
=

(1 − ϵ)
2∥W(k)∥F

(
∥W(k + 1)∥2F − ∥W(k)∥2F − ∥W(k + 1) −W(k)∥2F

)
≥ (1 − ϵ)

(
1

2∥W(k)∥F

(
∥W(k + 1)∥2F − ∥W(k)∥2F

)
− ∥W(k + 1) −W(k)∥2F

)
≥ (1 − ϵ)

(
∥W(k + 1)∥F − ∥W(k)∥F − ∥W(k + 1) −W(k)∥2F

)
≥ (1 − ϵ)

(
∥W(k + 1)∥F − ∥W(k)∥F − 2η (L(W(k)) − L(W(k + 1)))

)
.

(37)

Here, the second inequality is obtained from ∥W(k)∥F ≥ 1/2; the third inequality follows since for855

any a, b > 0, we have (a2 − b2)/(2b) − (a − b) ≥ 0; and the last inequality uses Lemma 7.856

Summing the above inequality over k ≥ kϵ gives857 〈
W(k)
∥W(k)∥F

,
Wmm

∥Wmm∥F

〉
≥ 1 − ϵ +

C(ϵ, η)
∥W(k)∥F

,

for some finite constant C(ϵ, η) defined as858

C(ϵ, η) :=
〈
W(kϵ),

Wmm

∥Wmm∥F

〉
− (1 − ϵ)∥W(kϵ)∥F − 2η(1 − ϵ)(L(W(kϵ)) − L⋆), (38)
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where L⋆ ≤ L (W (k)) for all k ≥ 0.859

Since ∥W (k)∥ → ∞, we get860

lim inf
k→∞

〈
W(k)
∥W(k)∥F

,
Wmm

∥Wmm∥F

〉
≥ 1 − ϵ. (39)

Given that ϵ is arbitrary, we can consider the limit as ϵ approaches zero. Thus, W(k)/∥W(k)∥F →861

Wmm/∥Wmm∥F . ■862

E.3 Local Convergence of Gradient Descent863

To provide a basis for discussing local convergence of GD, we establish a cone centered around Wmm
α864

using the following construction. For parameters µ ∈ (0, 1) and R > 0, we define Cµ,R(Wmm
α ) as the865

set of matrices W ∈ Rd×d such that ∥W∥F ≥ R and the correlation coefficient between W and Wmm
α is866

at least 1 − µ:867

Sµ(Wmm
α ) :=

{
W ∈ Rd×d :

〈
W
∥W∥F

,
Wmm
α

∥Wmm
α ∥F

〉
≥ 1 − µ

}
, (40a)

Cµ,R(Wmm
α ) := Sµ(Wmm

α ) ∩
{
W ∈ Rd×d : ∥W∥F ≥ R

}
. (40b)

Lemma 10 Suppose Assumption A on the loss function ℓ holds, and let α = (αi)n
i=1 be locally optimal868

tokens according to Definition 2. Let Wmm =Wmm
α denote the SVM solution obtained via (Att-SVM)869

by applying the Frobenius norm and replacing (opti)n
i=1 with α = (αi)n

i=1. To provide a basis for870

discussing the local convergence of gradient descent, we establish a cone centered around Wmm using871

the following construction. There exists a scalar µ = µ(α) > 0 such that for sufficiently large R̄µ:872

L1. There is no stationary point within Cµ,R̄µ (W
mm).873

L2. For all V ∈ Sµ(Wmm) with ∥V∥F = ∥Wmm∥F and W ∈ Cµ,R̄µ (W
mm), there exist dataset dependent874

constants C, c > 0 such that875

C ·
1
n

n∑
i=1

(
1 − siαi

)
≥ −

〈
∇L(W),V

〉
≥ c ·

1
n

n∑
i=1

(
1 − siαi

)
> 0, (41a)

∥∇L(W)∥F ≤ ĀC ·
1
n

n∑
i=1

(
1 − siαi

)
, (41b)

−

〈
V
∥V∥F

,
∇L(W)
∥∇L(W)∥F

〉
≥

c
C
·
Θ

Ā
> 0. (41c)

Here, siαi = (S(XiW zi))αi , Ā = maxi∈[n],t,τ∈[T ] ∥(xit − xiτ)∥ ∥zi∥, and Θ = 1/∥Wmm∥F .876

Proof. Let R = R̄µ, (Ti)n
i=1 be the set of all support indices per Definition 2. Let T̄i = [T ] − Ti − {αi}877

be the non-support indices. Let878

Θ = 1/∥Wmm∥F ,

δ =
1
2

min
i∈[n]

min
t∈Ti,τ∈T̄i

(xit − xiτ)⊤Wmm zi,

A = max
i∈[n],t∈[T ]

∥xit z⊤i ∥F
Θ

,

µ ≤ µ(δ) =
1
8

(
min(0.5, δ)

A

)2

.

(42)

Since Wmm is the max-margin model ensuring (xiαi − xit)⊤Wmm zi ≥ 1, the following inequalities hold879

for all W ∈ Sµ(Wmm), ∥W∥F = ∥Wmm∥F and all i ∈ [n], t ∈ Ti, τ ∈ T̄i:880

(xit − xiτ)⊤W zi ≥ δ > 0,

(xiαi − xiτ)⊤W zi ≥ 1 + δ,
3
2
≥ (xiαi − xit)⊤W zi ≥

1
2
.

(43)
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Here, we used ∥W −Wmm∥2F/∥W
mm∥2F ≤ 2µ which implies ∥W −Wmm∥F ≤

√
2µ/Θ.881

To proceed, we write the gradient correlation following (11) and (29)882

⟨∇L(W),V⟩ =
1
n

n∑
i=1

ℓ′i · h
⊤
i S
′(h̃i)γi, (44)

where we denoted ℓ′i = ℓ
′(Yi · v⊤X⊤i S(h̃i)), hi = XiVzi, h̃i = XiW zi, si = S(h̃i).883

Using (43), for all t ∈ Ti, τ ∈ T̄i, for all W ∈ Cµ,R(Wmm), we have that884

h̃it − h̃iτ ≥ RΘδ,

h̃iαi − h̃iτ ≥ RΘ(1 + δ),

h̃iαi − h̃it ≥ RΘ/2.

Consequently, we can bound the softmax probabilities si = S(h̃i) over non-support indices as follows:885

For all i ∈ [n] and any ti ∈ Ti886

S i :=
∑
τ∈Ti

siτ ≤ Te−RΘ/2siαi ≤ Te−RΘ/2, (45a)

Qi :=
∑
τ∈T̄i

siτ ≤ Te−RΘδsiti ≤ Te−RΘδS i. (45b)

Recall scores γit = Yi · v⊤xit. Define the score gaps over support indices:887

γ
gap
i = γiαi −max

t∈Ti

γit and γ̄gap
i = γiαi −min

t∈Ti

γit.

It follows from (42) that888

A = max
i∈[n],t∈[T ]

∥xit z⊤i ∥F
Θ

≥ max
i∈[n],t∈[T ]

∥hit∥.

Define the α-dependent global scalar Γ = supi∈[n],t,τ∈[T ] |γit − γiτ|.889

Let us focus on a fixed datapoint i ∈ [n], assume (without losing generality) αi = 1, and drop890

subscripts i. Directly applying Lemma 6, we obtain891 ∣∣∣h⊤diag(s)γ − h⊤ss⊤γ −
T∑

t≥2

(h1 − ht)st(γ1 − γt)
∣∣∣ ≤ 2ΓA(1 − s1)2.

To proceed, let us decouple the non-support indices within
∑T

t≥2(h1 − ht)st(γ1 − γt) via892 ∣∣∣∑
t∈T̄

(h1 − ht)st(γ1 − γt)
∣∣∣ ≤ 2QΓA.

Aggregating these, we found893 ∣∣∣h⊤diag(s)γ − h⊤ss⊤γ −
∑
t∈T

(h1 − ht)st(γ1 − γt)
∣∣∣ ≤ 2ΓA((1 − s1)2 + Q). (46)

To proceed, let us upper/lower bound the gradient correlation. We use two bounds depending on894

V ∈ Sµ(Wmm) (Case 1) or general V ∈ Rd×d (Case 2).895

• Case 1: V ∈ Sµ(Wmm). Since 1.5 ≥ h1 − ht ≥ 0.5 following (43), we find896

1.5 · S · γ̄gap ≥
∑
t∈T

(h1 − ht)st(γ1 − γt) ≥ 0.5 · S · γgap,

where recall the definition of S (having dropped subscripts) in (45a).897

• Case 2: V ∈ Rd×d and ∥V∥F = ∥Wmm∥F . Define Ā = maxi∈[n],t,τ∈[T ] ∥xit − xiτ∥ ∥zi∥. For any
∥V∥F = ∥Wmm∥, we use the fact that

∥h1 − ht∥ ≤ ∥(xit − xiτ)z⊤i ∥F · ∥V∥F ≤
Ā
Θ
.
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Note that by definition Ā
Θ
≥ 1. To proceed, we can upper bound898

Ā
Θ
· S · γ̄gap ≥

∑
t∈T

(h1 − ht)st(γ1 − γt). (47)

Next we claim that for both cases, S dominates ((1 − s1)2 + Q) for large R. Specifically, we wish for899

S · γgap

4
≥ 4ΓA max((1 − s1)2,Q) ⇐⇒ S ≥ 16

ΓA
γgap max((1 − s1)2,Q). (48)

Now choose R ≥ δ−1 log(T )/Θ to ensure Q ≤ S since Q ≤ Te−RΘδS from (45a). Consequently900

(1 − s1)2 = (Q + S )2 ≤ 4S 2 ≤ 4S Te−RΘ/2.

Combining these, what we wish is ensured by guaranteeing901

S ≥ 16
ΓA
γgap max(4S Te−RΘ/2,Te−RΘδS ). (49)

This in turn is ensured for all inputs i ∈ [n] by choosing902

R ≥
max(2, δ−1)
Θ

log
64TΓA
γ

gap
min

 , (50)

where γgap
min = mini∈[n] γ

gap
i is the global scalar which is the worst case score gap over all inputs.903

• Case 1: V ∈ Sµ(Wmm). With the above choice of R, we guaranteed904

2(1 − s1) · γ̄gap ≥ 2 · S · γ̄gap ≥ h⊤diag(s)γ − h⊤ss⊤γ ≥
S · γgap

4
≥

(1 − s1)γgap

8
.

via (48) and (46).905

Since this holds over all inputs, going back to the gradient correlation (44) and averaging above906

over all inputs i ∈ [n] and plugging back the indices i, we obtain the advertised bound by setting907

qi = 1 − siαi (where we set αi = 1 above without losing generality)908

2
n

∑
i∈[n]

−ℓ′i · qi · γ̄
gap
i ≥ − ⟨∇L(W),V⟩ ≥

1
8n

∑
i∈[n]

−ℓ′i · qi · γ
gap
i . (51)

Let −ℓ′min /max be the min/max values negative loss derivative admits over the ball [−A, A] and note909

that maxi∈[n] γ̄
gap
i > 0 and mini∈[n] γ

gap
i > 0 are dataset dependent constants. Then, we declare the910

constants C = −2ℓ′max ·maxi∈[n] γ̄
gap
i > 0, c = −(1/8)ℓ′min ·mini∈[n] γ

gap
i > 0 to obtain the bound (41a).911

• Case 2: V ∈ Rd×d and ∥V∥F = ∥Wmm∥F . Next, we show (41b) and (41c). For any V ∈ Rd×d

satisfying ∥V∥F = ∥Wmm∥F , using (47) and the choice of R in (50) similarly guarantees
2Ā
Θ

(1 − s1)γ̄gap ≥ h⊤diag(s)γ − h⊤ss⊤γ,

for fixed input. Going back to the gradient correlation (44) and averaging above over all inputs i ∈ [n],912

with the same definition of C > 0, we obtain913

ĀC
Θn

∑
i∈[n]

qi ≥ − ⟨∇L(W),V⟩ . (52)

To proceed, since (52) holds for any V ∈ Rd×d, we observe that when setting V = ∥Wmm∥F
∥∇L(W)∥F

· ∇L(W),914

this implies that915

⟨∇L(W),V⟩ = ∥∇L(W)∥F · ∥Wmm∥F ≤
ĀC
Θn

∑
i∈[n]

qi.

Simplifying Θ = 1/∥Wmm∥F on both sides gives (41b).916

Combining the above inequality with (51), we obtain that for all V,W ∈ Sµ(Wmm)917

−

〈
V
∥V∥F

,
∇L(W)
∥∇L(W)∥F

〉
≥

cΘ
CĀ
,

which gives (41c).918

919
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Lemma 11 Suppose Assumption A on the loss function ℓ holds, and let α = (αi)n
i=1 be locally optimal920

tokens according to Definition 2. Let Wmm =Wmm
α denote the SVM solution obtained via (Att-SVM)921

by replacing (opti)n
i=1 with α = (αi)n

i=1. Let µ = µ(α) > 0 and R̄µ be defined as in Lemma 10. For any922

choice of π > 0, there exists Rπ ≥ R̄µ such that, for any W ∈ Cµ,Rπ (Wmm), we have923 〈
∇L(W),

W
∥W∥F

〉
≥ (1 + π)

〈
∇L(W),

Wmm

∥Wmm∥F

〉
.

Proof. Let R = Rπ, W̄ = ∥Wmm∥FW/∥W∥F , hi = XiW̄ zi, and h̄i = XiWmm zi. To establish the result,924

we will prove that, for sufficiently large R, for any W ∈ Cµ,R(Wmm) and for any i ∈ [n],925 〈
hi,S

′(XiW zi)γi
〉
≤ (1 + π)

〈
h̄i,S

′(XiW zi)γi

〉
. (53)

Once (53) holds for all i, the same conclusion will hold for the gradient correlations via (44). Moving926

forward, we shall again focus on a single point i ∈ [n] and drop all subscripts i. Also, assume927

α = αi = 1 without losing generality (same as above).928

Following (46), for all W ∈ Sµ(Wmm) with ∥W∥F = ∥Wmm∥F and h̃ = XW z, and s = S(h̃), we have929

found930 ∣∣∣h̃⊤diag(s)γ − h̃⊤ss⊤γ −
∑
t∈T

(h̃1 − h̃t)st(γ1 − γt)
∣∣∣ ≤ 2ΓA((1 − s1)2 + Q), (54)

where T is the set of support indices. Plugging in h, h̄ in the bound above and assuming π ≤ 1931

(w.l.o.g.), (53) is implied by the following stronger inequality932

6ΓA((1 − s1)2 + Q) +
∑
t∈T

(h1 − ht)st(γ1 − γt) ≤ (1 + π)
∑
t∈T

(h̄1 − h̄t)st(γ1 − γt)

= (1 + π)
∑
t∈T

st(γ1 − γt).

First, we claim that 0.5π
∑

t∈T st(γ1 − γt) ≥ 6ΓA((1 − s1)2 + Q). The proof of this claim directly933

follows the earlier argument, namely, following (48), (50) and (49) which leads to the choice934

R ≥
max(2, δ−1)
Θ

log
C0 · TΓA
πγ

gap
min

 , (55)

for some constant C0 > 0. Using (50), we choose C0 ≥ 64π to guarantee R = Rπ ≥ R̄µ.935

Following this control over the perturbation term 6ΓA((1 − s1)2 + Q), to conclude with the result,936

what remains is proving the comparison937 ∑
t∈T

(h1 − ht)st(γ1 − γt) ≤ (1 + 0.5π)
∑
t∈T

st(γ1 − γt). (56)

To proceed, we split the problem into two scenarios.938

Scenario 1: ∥W̄ −Wmm∥F ≤ ϵ =
π

4AΘ for some ϵ > 0. In this scenario, for any token, we find that939

|ht − h̄t | ≤ AΘϵ = π/4.

Consequently, we obtain940

h1 − ht ≤ h̄1 − h̄t + 2AΘϵ = 1 + 0.5π.
Similarly, h1 − ht ≥ 1 − 0.5π ≥ 0.5. Since all terms h1 − ht, st,γ1 − γt in (56) are nonnegative and941

(h1 − ht)st(γ1 − γt) ≤ (1 + 0.5π)st(γ1 − γt), the above implies the desired result (56).942

Scenario 2: ∥W̄ −Wmm∥F ≥ ϵ =
π

4AΘ . Since W̄ is not (locally) max-margin, in this scenario, for943

some ν = ν(ϵ) > 0 and τ ∈ T , we have that h1 − hτ ≤ 1− 2ν. Here τ = arg maxτ∈T xτW̄ z denotes the944

nearest point to h1 (along the W̄ direction). Note that a non-support index τ ∈ T̄ cannot be closest945

because W ∈ Cµ and (43) holds. Recall that s = S(R̄h) where R̄ = ∥W∥FΘ ≥ RΘ. To proceed, split946

the tokens into two groups: Let N be the group of tokens obeying (x1 − xτ)W z ≤ 1 − ν and T − N947

be the rest of the support indices. Observe that948 ∑
t∈T−N st∑

t∈T st
≤

∑
t∈T−N st∑

t=τ st
≤ T

eνR̄

e2νR̄
= Te−R̄ν.
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Thus, using |h1 − ht | ≤ 2A and recalling the definition of γgap, observe that949 ∑
t∈T−N

(h1 − ht)st(γ1 − γt) ≤
2ΓATe−R̄ν

γgap

∑
t∈T

st(γ1 − γt).

Plugging this into (56), we obtain950 ∑
t∈T

(h1 − ht)st(γ1 − γt) =
∑
t∈N

(h1 − ht)st(γ1 − γt) +
∑

t∈T−N

(h1 − ht)st(γ1 − γt)

≤
∑
t∈N

(1 − ν)st(γ1 − γt) +
∑

t∈T−N

2AΓTe−R̄ν

≤

1 − ν + 2ΓATe−R̄ν

γgap

∑
t∈T

st(γ1 − γt)

≤

1 + 2ΓATe−R̄ν

γgap

∑
t∈T

st(γ1 − γt).

Consequently, the proof boils down to ensuring the perturbation term 2ΓATe−R̄ν

γgap ≤ 0.5π. Recalling951

R̄ ≥ RΘ, this is guaranteed for all inputs i ∈ [n] by recalling γgap
min = mini∈[n] γ

gap
i and choosing952

R ≥
1
νΘ

log
4ΓAT
γ

gap
minπ

 ,
where ν = ν( π4AΘ ) depends only on π and global problem variables.953

Combining this with the prior R lower bound of (55) (by taking maximum), we conclude with the954

statement.955

E.3.1 Proof of Theorem 3956

Theorem 5 (Theorem 3 restated) Suppose Assumption A on the loss ℓ holds, and let α = (αi)n
i=1 be957

locally optimal tokens according to Definition 2. Let Wmm
α denote the SVM solution obtained via958

(Att-SVM) by replacing (opti)n
i=1 with α = (αi)n

i=1. Then,959

• There exist parameters µ = µ(α) ∈ (0, 1) and R > 0 such that Cµ,R(Wmm
α ) does not contain960

any stationary points.961

• Algorithm W-GD with η ≤ 1/LW and any W(0) ∈ Cµ,R(Wmm
α ) satisfies limk→∞ ∥W(k)∥F = ∞962

and limk→∞
W(k)
∥W(k)∥F

=
Wmm
α

∥Wmm
α ∥F

.963

The proof of this theorem follows the proof of [TLZO23, Theorem 3]. Let us denote the initialization964

lower bound as R0
µ := R, where R is given in the Theorem 3’s statement. Consider an arbitrary value965

of ϵ ∈ (0, µ/2) and let 1/(1+π) = 1− ϵ. We additionally denote Rϵ ← Rπ ∨ 1/2 where Rπ was defined966

in Lemma 11. At initialization W(0), we set ϵ = µ/2 to obtain R0
µ = Rµ/2, and provide the proof in967

four steps:968

Step 1: There are no stationary points within Cµ,R0
µ
(Wmm). We begin by proving that there are969

no stationary points within Cµ,R0
µ
(Wmm). Let (Ti)n

i=1 denote the sets of support indices as defined in970

Definition 2. We define T̄i = [T ] − Ti − {αi} as the tokens that are non-support indices. Additionally,971

let µ be defined as in (42). Then, since R0
µ ≥ R̄µ per Lemma 11, we can apply Lemma 10 to find972

that: For all V,W ∈ Sµ(Wmm) with ∥W∥F , 0 and ∥W∥F ≥ R0
µ, we have that − ⟨V,∇L(W)⟩ is strictly973

positive.974

Step 2: It follows from Lemma 11 that, there exists Rϵ ≥ R̄µ ∨ 1/2 such that all W ∈ Cµ,Rϵ (Wmm)975

satisfy976 〈
−∇L(W),

Wmm

∥Wmm∥F

〉
≥ (1 − ϵ)

〈
−∇L(W),

W
∥W∥F

〉
. (57)
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The argument below applies to a general ϵ ∈ (0, µ/2). However, at initialization W(0), we set ϵ = µ/2977

and, recalling above, initialization lower bound was defined as R0
µ := Rµ/2. To proceed, for any978

ϵ ∈ (0, µ/2), we will show that after gradient descent enters the conic set Cµ,Rϵ (Wmm) for the first979

time, it will never leave the set. Let tϵ be the first time gradient descent enters Cµ,Rϵ (Wmm). In Step 4,980

we will prove that such tϵ is guaranteed to exist. Additionally, for ϵ ← µ/2, note that tϵ = 0 i.e. the981

point of initialization.982

Step 3: Updates remain inside the cone Cµ,Rϵ (Wmm). By leveraging the results from Step 1 and983

Step 2, we demonstrate that the gradient iterates, with an appropriate constant step size, starting from984

W(kϵ) ∈ Cµ,Rϵ (Wmm), remain within this cone.985

We proceed by induction. Suppose that the claim holds up to iteration k ≥ kϵ . This implies that986

W(k) ∈ Cµ,Rϵ (Wmm). Hence, recalling cone definition, there exists scalar µ = µ(α) ∈ (0, 1) and R such987

that ∥W(k)∥F ≥ R, and988

〈
W(k)
∥W(k)∥F

,
Wmm

∥Wmm∥F

〉
≥ 1 − µ.

For all k ≥ 1, let989

ρ(k) := −
1

1 − ϵ

〈
∇L(W(k)),

Wmm

∥Wmm∥F

〉
. (58)

Note that ρ(k) > 0 due to Step 1. This together with the gradient descent update rule gives990

〈
W(k + 1)
∥W(k)∥F

,
Wmm

∥Wmm∥F

〉
=

〈
W(k)
∥W(k)∥F

−
η

∥W(k)∥F
∇L(W(k)),

Wmm

∥Wmm∥F

〉
≥ 1 − µ −

η

∥W(k)∥F

〈
∇L(W(k)),

Wmm

∥Wmm∥F

〉
≥ 1 − µ +

ηρ(k)(1 − ϵ)
∥W(k)∥F

.

(59a)

Note that from Lemma 10, we have ⟨∇L(W(k)),W(k)⟩ < 0 which implies that ∥W(k + 1)∥F ≥991

∥W(k)∥F . This together with Rϵ definition and ∥W(k)∥F ≥ 1/2 implies that992

∥W(k + 1)∥F ≤
1

2∥W(k)∥F

(
∥W(k + 1)∥2F + ∥W(k)∥2F

)
=

1
2∥W(k)∥F

(
2∥W(k)∥2F − 2η ⟨∇L(W(k)),W(k)⟩ + η2∥∇L(W(k))∥2F

)
≤ ∥W(k)∥F −

η

∥W(k)∥F
⟨∇L(W(k)),W(k)⟩ + η2∥∇L(W(k))∥2F ,

which gives993

∥W(k + 1)∥F
∥W(k)∥F

≤ 1 −
η

∥W(k)∥F

〈
∇L(W(k)),

W(k)
∥W(k)∥F

〉
+ η2 ∥∇L(W(k))∥2

∥W(k)∥F

≤ 1 −
η

(1 − ϵ)∥W(k)∥F

〈
∇L(W(k)),

Wmm

∥Wmm∥F

〉
+ η2 ∥∇L(W(k))∥2

∥W(k)∥F

≤ 1 +
ηρ(k)
∥W(k)∥F

+
η2∥∇L(W(k))∥2

∥W(k)∥F
=: C1(ρ(k), η).

(59b)

Here, the second inequality follows from (57) and (58).994
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Now, it follows from (59a) and (59b) that995 〈
W(k + 1)
∥W(k + 1)∥

,
Wmm

∥Wmm∥

〉
≥

1
C1(ρ(k), η)

(
1 − µ +

ηρ(k)(1 − ϵ)
∥W(k)∥F

)
= 1 − µ +

1
C1(ρ(k), η)

(
(1 − µ)(1 −C1(ρ(k), η)) +

ηρ(k)(1 − ϵ)
∥W(k)∥F

)
= 1 − µ +

η

C1(ρ(k), η)

(
(µ − 1)(

ρ(k)
∥W(k)∥F

+
η∥∇L(W(k))∥2

∥W(k)∥F
) +
ρ(k)(1 − ϵ)
∥W(k)∥F

)
= 1 − µ +

η

C1(ρ(k), η)

(
ρ(k)(µ − ϵ)
∥W(k)∥F

− η(1 − µ)
∥∇L(W(k))∥2

∥W(k)∥F

)
≥ 1 − µ,

(60)

where the last inequality uses our choice of stepsize η ≤ 1/LW in Theorem 3’s statement. Specifically,996

we need η to be small to ensure the last inequality. We will guarantee this by choosing a proper Rϵ in997

Lemma 11. Specifically, Lemma 11 leaves the choice of C0 in Rϵ lower bound of (55) open (it can998

always be chosen larger). Here, by choosing C0 ≳ 1/LW will ensure η ≤ 1/LW works well.999

η ≤
µ

2(1 − µ)(1 − µ2 )
c
C
Θ

Ā
1

ĀCT
eR0
µΘ/2

≤
µ − ϵ

1 − µ
·

1
1 − ϵ

·
c
C
·
Θ

Ā
·

1
ĀCT

eR0
µΘ/2 ≤

(µ − ϵ)
1 − µ

ρ(k)
∥∇L(W(k))∥2F

. (61)

Here, the first inequality uses our choice of ϵ ∈ (0, µ/2) (see Step 2), and the last inequality is1000

obtained from Lemma 10 since1001

ρ(k)
∥∇L(W(k))∥F

= −
1

1 − ϵ

〈
∇L(W(k))
∥∇L(W(k))∥F

,
Wmm

∥Wmm∥F

〉
≥

1
1 − ϵ

·
c
C
·
Θ

Ā
,

1
∥∇L(W(k))∥F

≥
1

ĀC · 1
n
∑n

i=1
(
1 − siαi

) ≥ 1

ĀCTe−R0
µΘ/2

for some data dependent constrants c and C, Ā = maxi∈[n],t,τ∈[T ] ∥(xit − xiτ)∥ ∥zi∥, and Θ = 1/∥Wmm∥F .1002

Next, we will demonstrate that the choice of η in (61) does indeed meet our step size condition as1003

stated in the theorem, i.e., η ≤ 1/LW . Recall that 1/(1 + π) = 1 − ϵ, which implies that π = ϵ/(1 − ϵ).1004

Combining this with (55), we obtain:1005

Rπ ≥
max(2, δ−1)
Θ

log
C0TΓA
πγ

gap
min

 , where C0 ≥ 64π. (62)

⇒ Rϵ ≥
max(2, δ−1)
Θ

log
 (1 − ϵ)C0TΓA

ϵγ
gap
min

 , where C0 ≥ 64
ϵ

1 − ϵ
. (63)

On the other hand, at the initialization, we have ϵ = µ/2 which implies that1006

R0
µ ≥

max(2, δ−1)
Θ

log
 (2 − µ)C0TΓA

µγ
gap
min

 , where C0 ≥ 64
µ

2(1 − µ2 )
. (64)

In the following, we will determine a lower bound on C0 such that our step size condition in1007

Theorem 3’s statement, i.e., η ≤ 1/LW , is satisfied. Note that for the choice of η in (61) to meet the1008

condition η ≤ 1/LW , the following condition must hold:1009

1
LW
≤

µ

(2 − µ)
1

C2T
eR0
µΘ/2 ⇒ R0

µ ≥
2
Θ

log
(

1
LW

2 − µ
µ

C2T
)
. (65)

where C2 = (1 − µ) Ā2C2

Θc .1010

This together with (64) implies that1011

C0ΓA
γ

gap
min

≥ (1 − µ)
C2

LW
⇒ C0 ≥ max

 (1 − µ)C2

LW

γ
gap
min

ΓA
,

64µ
2 − µ

 . (66)

32



Therefore, with this lower bound on C0, the step size bound in (61) is sufficiently large to ensure that1012

η ≤ 1/LW guarantees (60).1013

Hence, it follows from (60) that W(k + 1) ∈ Cµ,Rϵ (Wmm).1014

Step 4: The correlation of W(k) and Wmm increases over k. The remainder is similar to the proof1015

of Theorem 2. From Step 3, we have that all iterates remain within the initial conic set i.e. W(k) ∈1016

Cµ,R0
µ
(Wmm) for all k ≥ 0. Note that it follows from Lemma 10 that ⟨∇L(W),Wmm/∥Wmm∥F⟩ < 0,1017

for any finite W ∈ Cµ,R0
µ
(Wmm). Hence, there are no finite critical points W ∈ Cµ,R0

µ
(Wmm), for which1018

∇L(W) = 0. Now, based on Lemma 7, which guarantees that ∇L(W(k)) → 0, this implies that1019

∥W (t)∥F → ∞. Consequently, for any choice of ϵ ∈ (0, µ/2) there is an iteration kϵ such that, for all1020

k ≥ kϵ , W(k) ∈ Cµ,Rϵ (Wmm). Once within Cµ,Rϵ (Wmm), following similar steps in (37) and (38), for1021

any k ≥ kϵ ,1022 〈
W(k)
∥W(k)∥F

,
Wmm

∥Wmm∥F

〉
≥ 1 − ϵ +

C(ϵ, η)
∥W(k)∥F

, W(k) ∈ Cµ,Rϵ (W
mm),

for some finite constant C(ϵ, η) (that depends only on η, ϵ, ∥W(kϵ)∥F).1023

Consequently, as k → ∞1024

lim inf
k→∞

〈
W(k)
∥W(k)∥F

,
Wmm

∥Wmm∥F

〉
≥ 1 − ϵ, W(k) ∈ Cµ,Rϵ (W

mm).

Since ϵ ∈ (0, µ/2) is arbitrary, we get W(k)/∥W(k)∥F →Wmm/∥Wmm∥F . ■1025

F Supporting Experiments1026

In this section, we introduce implementation details and additional experiments. We create a 1-layer1027

self-attention using PyTorch, training it with the SGD optimizer and a learning rate of η = 0.1. We1028

apply normalized gradient descent to ensure divergence of attention weights. The attention weight W1029

is then updated through1030

W(k + 1) =W(k) − η
∇L(W(k))
∥∇L(W(k))∥F

.

In the setting of (K,Q)-parameterization, we noted that with extended training iterations, the norm1031

of the combined parameter KQ⊤ consistently rises, despite the gradient being treated as zero due to1032

computational limitations. To tackle this issue, we introduce a minor regularization penalty to the1033

loss function, ensuring that the norms of K and Q remain within reasonable bounds. This adjustment1034

involves1035

L̃(K,Q) = L(K,Q) + λ(∥K∥2F + ∥Q∥
2
F).

Here, we set λ to be the the smallest representable number, e.g. computed as 1 + λ = 1 in Python,1036

which is around 2.22 × 10−16. Therefore, K,Q parameters are updated as follows.1037

K(k + 1) = K(k) − η
∇L̃K(K(k),Q(k))

∥∇L̃K(K(k),Q(k))∥F
, Q(k + 1) = Q(k) − η

∇L̃Q(K(k),Q(k))

∥∇L̃Q(K(k),Q(k))∥F
.

• As observed in previous work [TLZO23], and due to the exponential expression of softmax1038

nonlinearity and computation limitation, PyTorch has no guarantee to select optimal tokens when1039

the score gap is too small. Therefore in Figures 2, 9 and 10, we generate random tokens making sure1040

that mini∈[n],t,opti γiopti − γit ≥ γ and we choose γ = 0.1 in our experiments.1041

Rank sensitivity of (K,Q)-parameterization (Figures 6&7). In Lemma 1, we have theoretically1042

established that the rank of the SVM solution, denoted as Wmm in (Att-SVM) or Wmm
⋆ in (Att-SVM⋆),1043

is at most rank max(n, d). To further verify it, Figure 6 illustrates rank range of Wmm and Wmm
⋆ ,1044

solved using optimal tokens (opti)n
i=1 and setting m = d (the rank constraint is eliminated). Each1045

result is averaged over 100 trials, and for each trial, xit, zi, and linear head v are randomly sampled1046

from the unit sphere. In Fig. 6(a), we fix T = 5 and vary n across {5, 10, 15}. Conversely, in Fig. 6(b),1047

we keep n = 5 constant and alter T across {5, 10, 15}. Both figures confirm rank of Wmm and Wmm
⋆1048

are bounded by max(n, d), validating Lemma 1.1049

Now, moving to Figure 7, we delve into GD performance across various dimensions of K,Q ∈ Rd×m1050

while keeping d = 20 fixed and varying m from 1 to 10. In the upper subfigure, we maintain a constant1051
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Figure 6: Rank range of solutions for (Att-SVM) and (Att-SVM⋆), denoted as Wmm and Wmm
⋆ , solved

using optimal tokens (opti)n
i=1 and setting m = d (the rank constraint is eliminated). Both figures

confirm ranks of Wmm and Wmm
⋆ are bounded by max(n, d), validating Lemma 1.
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Figure 7: Convergence behavior of
GD when training (K,Q) ∈ Rd×m

with varying m. The misalignment,
1−corr_coef(Wmm

⋆,α , KQ⊤), is stud-
ied, where Wmm

⋆,α is from (Att-SVM⋆)
with opt replaced by α and m = d.
Subfigures with fixed n = 5 (upper)
and T = 5 (lower) show that as m ap-
proaches or exceeds n, KQ⊤ aligns
more with Wmm

⋆,α .
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Figure 8: Behavior of GD with nonlinear nonconvex pre-
diction head and multi-token compositions. (a): Blue,
green, red and teal curves represent the evolution of 1 −
corr_coef(W,WSVMeq) for d = 4, 6, 8 and 10 respectively,
which have been displayed in Figure 4(upper). (b): Over
the 500 random instances as discussed in Figure 4, we filter
different instances by constructing masked set with tokens
whose softmax output < Γ and vary Γ from 10−16 to 10−6.
The corresponding results of 1 − corr_coef(W,WSVMeq) are
displayed in blue, green, red and teal curves.

n = 5 and vary T within {5, 10, 15}, while in the lower subfigure, T is fixed at 5 and n changes1052

within {5, 10, 15}. Results are depicted using blue, green, and red dashed curves, with both y-axes1053

representing 1 − corr_coef(W,Wmm
⋆,α ), where W represents the GD solution and Wmm

⋆,α is obtained1054

from (Att-SVM⋆) by employing token indices α selected via GD and setting the rank limit to m = d.1055

Observing both subfigures, we note that a larger n necessitates a larger m for attention weights KQ⊤1056

to accurately converge to the SVM solution (Figure 7(lower)). Meanwhile, performances remain1057

consistent across varying T values (Figure 7(upper)). This observation further validates Lemma 1.1058

Furthermore, the results demonstrate that W converges directionally towards Wmm
⋆,α as long as m ≳ n.1059

Global Convergence via overparameterization (Figures 9&10). The trend depicted in Figure1060

9, where the percentage of global convergence (red bars) approaches 100% and Assumption B(ii)1061

holds with higher probability (green bars) as d grows, reinforces this insight. Specifically, Fig. 9(a) is1062

same as Figure 2, and Fig. 9(b) displays the same evaluation over (K,Q)-parameterization setting. In1063

both experiments, and for each chosen d value, a total of 500 random instances are conducted under1064

the conditions of n = T = 5. The outcomes are reported in terms of the percentages of Not Local,1065

Local, and Global convergence, represented by the teal, blue, and red bars, respectively. We validate1066

Assumption B(ii) as follows: Given a problem instance, we compute the average margin over all1067

non-optimal tokens of all inputs and declare that problem satisfies Assumption B(ii), if the average1068
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(b) (K,Q)-parameterization

Figure 9: Percentage of different convergence types of GD when training cross-attention weights (a):
W or (b): (K,Q) with varying d. In both figures, red, blue, and teal bars represent the percentages of
Global, Local (including Global), and Not Local convergence, respectively. The green bar corresponds
to Assumption B(ii) where all tokens act as support vectors. Larger overparameterization (d) relates
to a higher percentage of globally-optimal SVM convergence.
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Figure 10: Global convergence behavior of GD when training cross-attention weights W (solid)
or (K,Q) (dashed) with random data. The blue, green, and red curves represent the probabilities
of global convergence for (a): fixing T = 5 and varying n ∈ {5, 10, 20} and (b): fixing n = 5 and
varying T ∈ {5, 10, 20}. Results demonstrate that for both attention models, as d increases (due to
over-parameterization), attention weights tend to select optimal tokens (opti)n

i=1.

margin is below 1.1 (where 1 is the minimum). Here, recall that margin of a non-optimal token is1069

defined as (xiopti − xit)⊤Wmm zi or (xiopti − xit)⊤Wmm
⋆ zi for t , opti.1070

Furthermore, the observations in Figure 10 regarding the percentages of achieving global convergence1071

reaching 100 with larger d reaffirm that overparameterization leads the attention weights to converge1072

directionally towards the optimal max-margin direction outlined by (Att-SVM) and (Att-SVM⋆).1073

Behavior of GD with nonlinear nonconvex prediction head and multi-token compositions1074

(Figure 8). To better investigate how correlation changes with data dimension d, we collect the1075

solid curves in Figure 4(upper) and construct as Figure 8(a). Moreover, Figure 8(b) displays the1076

average correlation of instances (refer to scatters in Figure 4 (lower)), considering masked tokens1077

with softmax probability < Γ. Both findings highlight that higher d enhances alignment. For d ≥ 8 or1078

Γ ≤ 10−9, the GD solution W achieves a correlation of > 0.99 with the SVM-equivalence WSVMeq,1079

defined in Section B.1080

Investigation of Lemma 3 over different τ selections (Figure 11). Consider the setting of Sec-1081

tion B.1 and Lemma 3. Figure 5 explores the influence of λ on the count of tokens selected by1082

GD-derived attention weights. As λ increases, the likelihood of selecting more tokens also increases.1083

Shifting focus to Figure 11, we examine the effect of τ. For each outcome, we generate random1084

λ values, retaining pairs (λ, X) satisfying τ constraints, with averages derived from 100 successful1085

trials. The results indicate a positive correlation among τ, λ, and the number of selected tokens.1086
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Figure 11: Behavior of GD when selecting multiple tokens.

Moreover, Figure 11(c) provides a precise distribution of selected token counts across various τ1087

values (specifically τ ∈ {3, 5, 7, 9}). The findings confirm that the number of selected tokens remains1088

within the limit of τ, thus validating the assertion made in Lemma 3.1089

G Discussion, Future Directions, and Open Problems1090

Our optimization-theoretic characterization of the self-attention model provides a comprehensive1091

understanding of its underlying principles. The developed framework, along with the research1092

presented in [TLZO23], introduces new avenues for studying transformers and language models. The1093

key findings include:1094

✓ The optimization geometry of self-attention exhibits a fascinating connection to hard-margin SVM1095

problems. By leveraging linear constraints formed through outer products of token pairs, optimal1096

input tokens can be effectively separated from non-optimal ones.1097

✓ When gradient descent is employed without early-stopping, implicit regularization and conver-1098

gence of self-attention naturally occur. This convergence leads to the maximum margin solution1099

when minimizing specific requirements using logistic loss, exp-loss, or other smooth decreasing loss1100

functions. Moreover, this implicit bias is unaffected by the step size, as long as it is sufficiently small1101

for convergence, and remains independent of the initialization process.1102

The fact that gradient descent leads to a maximum margin solution may not be surprising to those1103

who are familiar with the relationship between regularization path and gradient descent in linear and1104

nonlinear neural networks [SHN+18, GLSS18, NLG+19, JT21, MWG+20, JT20]. However, there is1105

a lack of prior research or discussion regarding this connection to the attention mechanism. Moreover,1106

there has been no rigorous analysis or investigation into the exactness and independence of this bias1107

with respect to the initialization and step size. Thus, we believe our findings and insights deepen1108

our understanding of transformers and language models, paving the way for further research in this1109

domain. Below, we discuss some notable directions and highlight open problems that are not resolved1110

by the existing theory.1111

• Convergence Rates: The current paper establishes asymptotic convergence of gradient1112

descent; nonetheless, there is room for further exploration to characterize non-asymptotic1113

convergence rates. Indeed, such an exploration can also provide valuable insights into the1114

choice of learning rate, initialization, and the optimization method.1115

• Gradient descent on (K,Q) parameterization: We find it remarkable that regularization1116

path analysis was able to predict the implicit bias of gradient descent. Complete analysis1117

of gradient descent is inherently connected to the fundamental question of low-rank factor-1118

ization [GWB+17, LMZ18]. We believe formalizing the implicit bias of gradient descent1119

under margin constraints presents an exciting open research direction for further research.1120

• Generalization analysis: An important direction is the generalization guarantees for1121

gradient-based algorithms. The established connection to hard-margin SVM can facilitate1122

this because the SVM problem is amenable to statistical analysis. This would be akin to1123

how kernel/NTK analysis for deep nets enabled a rich literature on generalization analysis1124

for traditional deep learning.1125
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• Realistic architectures: Naturally, we wish to explore whether max-margin equivalence1126

can be extended to more realistic settings: Can the theory be expanded to handle multi-head1127

attention, multi-layer architectures, and MLP nonlinearities? We believe the results in1128

Section B take an important step towards this direction by including analytical formulae for1129

the implicit bias of the attention layer under nonlinear prediction heads.1130

• Jointly optimizing attention and prediction head: It would be interesting to study the1131

joint optimization dynamics of attention weights and prediction head h(·). This problem can1132

be viewed as a novel low-rank factorization type problem where h(·) and W are factors of1133

the optimization problem, only, here, W passes through the softmax nonlinearity. To this1134

aim, [TLZO23] provides a preliminary geometric characterization of the implicit bias for a1135

simpler attention model using regularization path analysis. Such findings can potentially be1136

generalized to the analysis of gradient methods and full transformer block.1137
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