
Stochastic Experience-Replay for Graph Continual Learning

Arnab Kumar Mondal∗
Fujitsu Research India Private Limited
arnabkumarmondal123@gmail.com

Jay Nandy∗

Fujitsu Research India Private Limited
jayjaynandy@gmail.com

Manohar Kaul
Fujitsu Research India Private Limited

Manohar.Kaul@fujitsu.com

Mahesh Chandran†

Fujitsu Research India Private Limited
mahesh.chandran@fujitsu.com

Abstract
Experience Replay (ER) methods in graph continual learning (GCL) mitigate
catastrophic forgetting by storing and replaying historical tasks. However, these
methods often struggle with efficiently storing tasks in a compact memory buffer,
affecting scalability. While recently proposed graph condensation techniques
address this by summarizing historical graphs, they often inadequately capture
variations within the distribution of historical tasks. In this paper, we propose
a novel framework, called Stochastic Experience Replay for GCL (SERGCL),
by incorporating a stochastic memory buffer (SMB) that parameterizes a ker-
nel function to estimate the distribution density of condensed graphs for each
historical task. This allows efficient sampling of condensed graphs, leading to
better coverage of historical tasks in the memory buffer and improved experience
replay. Our experimental results on four benchmark datasets demonstrate that
our proposed SERGCL framework achieves up to an 8.5% improvement of the
average performance compared to the current state-of-the-art GCL models. Our
code is available at: https://github.com/jayjaynandy/sergcl

1 Introduction

H
is

to
ri

ca
l

G
ra

ph
M

em
or

y
B

uf
fe

r

Samples a small subgraph
for experience replay.

•Limitations: Can’t capture
properties of the entire
graph using a small buffer.

Condense the entire graph in
small set of synthetic nodes.

•Limitations: Can’t capture
variations within subgraphs.

Captures the distribution of
the condensed graphs.

•Advantage: Drawing multiple
samples to captures the
variations within subgraphs.

Sampling-based Replay Condensation-based Replay Stochastic-Condensation
Replay (Ours)

Figure 1: Comparison of memory buffer creation strate-
gies of different experience-replay based GCL models.

Graph Continual Learning (GCL) ad-
dresses the challenge of dynamic, time-
evolving graphs where new tasks associ-
ated with novel subgraphs emerge over
time [1, 2]. The goal of GCL is to learn and
adapt to new tasks while preserving knowl-
edge from previously encountered ones,
without accessing the historical graphs.
However, these models face the problem of
catastrophic forgetting, where the empha-
sis on current tasks leads to the loss of pre-
viously acquired knowledge, significantly
degrading performance on older tasks [3].

Addressing catastrophic forgetting in continual learning (CL) has been widely studied in computer
vision [4–6], natural language processing [7], and reinforcement learning [8]. While Graph Continual
Learning (GCL) shares the same goal of adapting over time with traditional CL, its non-Euclidean
structure complicates the use of existing methods. GCL methods are broadly categorized as: (a)
Regularization-based methods –which add penalty to preserve prior knowledge [3, 9]. (b) Architecture-

∗Equal contribution.
†Corresponding author

Mondal et al., Stochastic Experience-Replay for Graph Continual Learning. Proceedings of the Third Learning
on Graphs Conference (LoG 2024), PMLR 269, Virtual Event, November 26–29, 2024.

https://github.com/jayjaynandy/sergcl

Stochastic Experience-Replay for Graph Continual Learning

based methods – which fix parameters for historical tasks while adapting to new ones [10]. (c)
Replay-based methods –which use a memory buffer to store and replay historical graphs [11, 12].

Several studies have demonstrated that experience replay-based models achieve the best performance
among the three categories, exhibiting the lowest mean forgetting [1]. However, their ability to
scale is constrained by the need to fit historical graphs within a small memory buffer (see Figure
1a). To address this, a few recent works [13, 14] have explored graph condensation techniques that
synthetically create a compact "condensed graph" for each historical task, enabling more efficient
experience replay. However, such a small static representative graph often fails to capture the full
distribution of the historical sub-graphs. This raises an important question: How can we better
approximate the underlying distribution of these sub-graphs within a small (stochastic) memory,
from where we can easily sample for effective experience replay?

(a) CaT (b) SERGCL (ours)

Figure 2: Comparing UMAP visualization of the coverage for
nodes of the historical graph corresponding to Task 0 (Arxiv
dataset). (a) A Fixed, static condensed-based CaT [13] pro-
vides significantly lower coverage compared to (b) our stochastic
condensation-based SERGCL.

This work introduces Stochas-
tic Experience Replay for GCL
(SERGCL), a novel framework
incorporating a Stochastic Mem-
ory Buffer (SMB) to store a con-
densed graph distribution for each
historical graph (Figure 1c). We
present the condensed graph as
a collection of synthetic nodes
where the distributions can be cap-
tured using a learnable Gaussian
kernel function for each node and
stored in the SMB. It allows us
to generate multiple condensed
graph samples, effectively recon-
structing the full range of histori-
cal nodes for improved experience
replay. Figure 2 demonstrates
the effectiveness of our proposed
stochastic replay compared to the
existing ‘fixed’ experience replay
technique. While the ‘fixed’ condensation only provides the centers for each class of nodes of the
historical graph, proposed ‘stochastic’ condensation regenerates the entire space of historical nodes
for a better experience replay of historical tasks. The key contributions of our work are as follows:

• A stochastic memory buffer (SMB)-based framework is introduced for GCL that generalizes the
fixed memory-based experience replay methods. For a fixed memory budget, SMB is shown to
be an optimal strategy to maximize information storage.

• A stochastic update process (SUP) is proposed to draw multiple samples from the SMB, leading
to maximal coverage of historical graphs for an effective experience replay.

• Experiments on four benchmark datasets—CoraFull, Arxiv, Reddit, and Products—demonstrate
the superiority of the proposed SERGCL over prior methods. While existing approaches
generally perform well in task-incremental settings, our method also achieves high performance
in class-incremental settings, improving average performance by up to approximately 8.5%
compared to current state-of-the-art techniques.

2 Background & Related Work
2.1 Preliminaries

Graph Continual Learning. Based on the downstream tasks, GCL can be categorized into graph-
level GCL (gGCL) and node-level GCL (nGCL). gGCL considers each graph as an independent
instance and makes graph-level classification, thus resembling the traditional CL setup [1]. In contrast,
nGCL differs significantly from the traditional CL as it focuses on node classification on a single,
time-evolving graph, and the new tasks contain different disjoint node classes. In this paper, we focus
on nGCL problem, as described below.

2

Stochastic Experience-Replay for Graph Continual Learning

Node-level GCL. Consider an expanding graph, G, which arrives as a sequence of sub-graphs,
{G1, G2, · · · , GT }, where Gt := {Vt, At, Yt} represents the sub-graph for the t-th downstream task.
Here, Vt denotes the node features, At is the adjacency matrix of Gt, and Yt is the vector of node
labels from the label-space, Yt. Each node v ∈ Vt is associated with a class y ∈ Yt. The graph Gt is
accessible only during the training process of t-th task. After receiving t-th downstream task, GNN
parameters are updated from θt−1 to θt to adapt to Gt while preserving knowledge from previous
tasks. Our paper focuses on task-incremental (task-IL) and class-incremental (class-IL) settings, as
described below (see Figure 3):

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

T
A

SK
 1

T
A

SK
 2

T
A

SK
 3

Currently Time-stamp
(available)

Historical Graphs
(unavailable)

GNN @ Task
1

GNN @ Task
2

GNN @ Task
3

Task 1
Task 2 Task 3

Task 2 (unavailable)
Task 1 (unavailable)

Task 1 (unavailable)

Figure 3: Illustration of Task-IL and Class-IL settings in node-
level GCL: Task-IL requires classifying a test node based on its
task-ID (e.g., task-ID = 1 implies classification among classes
{1, 2}). Class-IL involves classifying a test node among all
classes (i.e., among six classes) without task-ID information.

• Task-IL nGCL involves clas-
sifying a test node v given the
task-id, t into the label space Yt,
i.e., f : (v, t) → Yt. E.g., in Fig-
ure 3, if a test node with task-ID
of 2, the model should classify it
into one of Class 3 or Class 4.

• Class-IL nGCL classifies a test
node v accross all seen classes,
Y = Y1∪Y2∪· · · YT where Yt∩
Yt′ = ϕ, i.e., f : (v) → Y . E.g.,
in Figure 3, a test node in class-
IL should be classified among
the classes {1, 2, 3, 4, 5, 6}.

Clearly, class-IL nGCL is more
challenging as the classifier
must predict among all possible
classes without relying on the task ID. In contrast, task-IL nGCL restricts the classification to a
smaller label space specific to the provided task ID. Existing work has generally focused on task-IL,
often bypassing the complexities associated with class-IL nGCL settings.

2.2 Previous Work

2.2.1 Graph Continual Learning

Existing models for Graph Continual Learning (GCL) can be broadly classified into three categories:

(a) Regularization-based Approaches. These models incorporate regularization terms to balance
between retaining knowledge of previous tasks and learning new ones, often by preserving a copy
of the previous model. Regularizers may involve weight-based methods that selectively preserve
network parameters based on their importance [3, 9, 15]. Examples include Elastic Weight Consol-
idation (EWC), which uses the Fisher information matrix to assess parameter importance [3], and
Topology-Aware Weight Preserving (TWP), which maintains graph topology related to old tasks to
mitigate forgetting [15]. Additionally, distillation-based regularizers [16] penalize deviations in latent
representations from historical tasks [17–20].

Limitations. (i) Strong regularization may impede the model’s ability to adapt to new tasks [1, 21].
(ii) Regularization-based methods often struggle with tasks that exhibit significant distributional
differences. (iii) These methods are generally ineffective in class-incremental (class-IL) settings as
they do not develop mechanisms for distinguishing between classes from different tasks.

(b) Architecture-based Approaches. These methods prevent catastrophic forgetting by isolating
network parameters for each incoming task, either through task-specific parameter preservation or by
expanding the original network [10, 22].

Limitations. (i) Determining when to share or reuse model parameters remains challenging [21], and
expanding the model increases the parameter space significantly, complicating efficient training. (ii)
Similar to regularization-based models, architecture-based methods also face difficulties in class-IL
settings without mechanisms to store and replay prior information.

(c) Replay-based Approaches. These models use a lightweight memory buffer to store prior
information and replay it while learning new tasks, addressing the issue of catastrophic forgetting

3

Stochastic Experience-Replay for Graph Continual Learning

[11, 23–25]. Examples include methods that retrieve episodic memories linked to specific experiences,
such as subsets of raw samples [11, 23, 25].

Limitations. Some methods, such as ER-GNN [11], select subgraphs based on coverage or influence
maximization, while others (e.g., SSM [12]) create a sparse version of the original graph for replay
purposes. Recently, DSLR [25] proposed to select a diverse set of real nodes to provide better coverage.
However, identifying candidate subgraphs that effectively capture the properties of historical graphs
for efficient experience replay within a compact memory remains challenging [1]. [26] introduced
a single generative model to replay synthetic historical samples in the context of streaming GNNs.
However, it often suffers from mode collapse and fails to fully capture data distributions. Additionally,
CaT [13] and PUMA [14] investigated condensing historical input graphs to facilitate experience
replay in graph continual learning.

2.2.2 Dataset condensation

Condensation techniques have been predominantly explored in computer vision [27–31]. These
methods create a condensed synthetic dataset that allows models to train efficiently for downstream
tasks, significantly reducing computation and storage costs. Some continual learning (CL) methods
in computer vision also explored condensation to store lightweight data for replaying historical tasks
[32–34]. However, graph condensation is still relatively underexplored. Recent works [35–38] have
proposed gradient-matching techniques for graph condensation. SFGC [39] and GEOM [40] use
trajectory matching by training a set of GNNs on original graphs to obtain their offline expert trajectory
to be followed to learn their condensed graphs. Recently, CaT[13], PUMA [14] investigated graph
condensation techniques for graph continual learning (GCL), demonstrating significant improvements
over existing replay-based GCL models by efficiently generating condensed graphs for storing and
replaying historical graphs within a limited memory budget. Notably, initial works (e.g., GCond
[35]) learned synthetic edges. However, later works, such as SFGC [39] and CaT [13], indicate that
structural information can be effectively captured in synthetic nodes, allowing the topology to be
represented by an identity matrix. They preserve the latent representations of the original graph while
improving the performance without explicit edges.

Nevertheless, these approaches generally rely on a fixed synthetic dataset for condensation, without
aiming to learn the underlying distributions. Such a fixed synthetic graph often captures only the
aggregated properties of subgraphs from a large historical graph. Our paper addresses this limitation
by proposing a method for learning a condensed graph distribution, as detailed in Section 3.

3 Proposed Method
The proposed Stochastic Experience Replay for Graph Continual Learning (SERGCL) involves
a two-step process, illustrated in Figure 4. The first step, (a) Stochastic Memory Buffer (SMB)
Creation, involves creating a memory buffer that stores the distribution over the condensed versions
of historical tasks. The second step, (b) Stochastic Update Process (SUP), updates the GNN for
downstream tasks using the SMB. These processes are described in detail below.

3.1 Stochastic Memory Buffer (SMB) Creation

Condensed Graph is a small, synthetic graph, G̃t = {Ṽt, Ãt, Ỹt} representing the original graph,
Gt = {Vt, At, Yt} for task-ID t, such that a GNN trained using Gt or G̃t would achieve similar
performance [35]. The node-labels for both Gt and G̃t, denoted as Yt and Ỹt, share the same label
space, Yt. For notational brevity, we drop the task-ID subscript t in the following discussions.

Stochastic Memory Buffer (SMB) is defined as a distribution over the condensed graph i.e., PG̃|y.
Our objective is to learn such PG̃|y for an input G to facilitate the sampling process for better coverage
of historical graphs.

3.1.1 Graph Condensation Optimization

We can learn a condensed graph G̃ for input G by minimizing the divergence between their node
representations [29, 30] using GNN, f , i.e.,

min
G̃

Div
v∼PG|y,ṽ∼PG̃|y

(
f(v), f(ṽ)

)
(1)

4

Stochastic Experience-Replay for Graph Continual Learning

G1

G2
.
.
.
Gt

Graph for 𝑡-th task, 𝐺𝑡 Compute Loss
∑ℒ𝑐𝑜𝑛𝑑(DḠ,𝑓𝑖)

|𝐹𝑟𝑎𝑛𝑑|

Sample graphs, DḠ
(using reparameterization trick)

Random GNNs
𝐹𝑟𝑎𝑛𝑑 ≔ 𝑓𝑖 𝑖

Update Sufficient Statistics

Stochastic Memory Buffer (SMB) Creation

Stochastic Update Process

~

~

~.
.
.

𝜃t
Node

Classification

In
co

m
in

g
Ta

sk
s

Stochastic
Memory Buffer

Sample graphs
for Task-ID:1

Sample graphs
for Task-ID:2

Initialize𝜃t using
𝜃t−1obtained from the

previous task, t-1~
Sample graphs

for Task-ID:𝑡

.
 .
 .

𝒊=𝟏

𝒃𝒕

𝓝ṽ𝒊|𝒚𝒊
𝒕

𝒊=𝟏

𝒃𝟏

𝓝ṽ𝒊|𝒚𝒊
𝟏

𝒊=𝟏

𝒃𝟐

𝓝ṽ𝒊|𝒚𝒊
𝟐

.

.

.

𝒊=𝟏

𝒃𝒕

𝓝ṽ𝒊|𝒚𝒊
𝒕

.

Figure 4: Proposed SERGCL framework consists of (a) Stochastic Memory Buffer (SMB) Creation,
which stores condensed graph distributions for historical tasks, and (b) Stochastic Update Process
(SUP), which updates the GNN using these learned SMBs for all encountered tasks.

where f(v) and f(ṽ) are the representations for node v ∈ V and ṽ ∈ Ṽ of the graph G and
G̃ respectively. The distribution of subgraphs conditioned on the node-label y from G and G̃
are represented by PG|y and PG̃|y respectively. Div is a divergence measure between the node
representations of G and G̃.

Maximum mean discrepancy (MMD) is a well-known divergence function that minimizes the repre-
sentations via the moments of the conditional distributions [30] as follows:

L(G̃; f) = min
G̃

∑
y∈Y

γy

∣∣∣∣∣∣ E
v∼PG|y

[f(v)]− E
ṽ∼PG̃|y

[f(ṽ)]
∣∣∣∣∣∣2 (2)

where γy = |Y==y|
|Y | is the class-ratio, | · | is the cardinality of a set, and |Y == y| is the number of

nodes with label y.

Previous methods optimize Eq. 2 with respect to G̃ to obtain a fixed condensed graph for G [13, 38].
Instead, we proposed to minimize the same objective (i.e., Eq. 2) directly with respect to PG̃|y to
capture the underlying distribution of G, as described below.

3.1.2 Learning the Condensed Graphs Distribution

Challenges. Solving the optimization in Eq. 2 with respect to PG̃|y demands sampling from the
unknown distribution. However, defining and learning an analytical form of a distribution over an
arbitrary graph and drawing samples is a complex and time-consuming process. We instead consider
a condensed graph as a set of synthetic nodes without any edges and with pre-defined class labels
i.e., G̃ = {Ṽ , I, Ỹ }. Previously [13] have shown that such synthetic condensation can effectively
summarize historical tasks, achieving the current state-of-the-art performance for nGCL.

Condensed Graph Distribution, PG̃|y. For a budget, b, a condensed graph is a set of synthetic
nodes: Ṽ = {ṽ1, · · · , ṽb}. Such a representation of G̃ allows defining and sampling from independent
density functions for each node ṽi ∈ Ṽ with a prefixed label ỹi. For our work, we use Gaussian
kernel density functions. Therefore,

PG̃|y =
1

b

b∑
i=1

Nṽi|yi
(µṽi|ỹi

,Σṽi|yi
) & ṽi ∼ Nṽi|ỹi

(3)

where, Nṽi|yi
is a Gaussian with prefixed class-label, ỹi and learnable parameters, µṽi|yi

and Σṽi|yi
.

5

Stochastic Experience-Replay for Graph Continual Learning

Objective Function. Now, we can present the objective to learn PG̃|y by redefining Eq. 2 with
respect to each Gaussian kernel, as follows:

L({Nṽi|y}i; f) = min
{Nṽi|yi}i

∑
y∈Y

γy

∣∣∣∣∣∣E[f(v)]
v∼PG|y

−E[f(ṽ)]
ṽ∼Nṽi|y

∣∣∣∣∣∣2 (4)

≈ min
{Nṽi|yi}i

∑
y∈Yt

γy

∣∣∣∣∣∣
∑

v∈G|y
f(v)

|Y == y|
−

∑
ṽ∈DG̃|y

f(ṽ)

|Ỹ == y| × |DG̃|

∣∣∣∣∣∣2
where DG̃ := {G̃ | ṽ ∼ Nṽi|y} is a finite set of condensed graphs where the nodes are sampled from
{Nṽi|y}i and DG̃|y is the set of all nodes with class-label y.

Algorithm 1 Steps for the SERGCL Method
Input: (a) Gt: tth Input Graph (b) bt: Budget for tth

task (c) Mt−1: Learnt SMB till (t− 1)th tasks.
Output: θt: Updated GNN using {1, · · · , t} tasks.
1: ▷ Stochastic Memory Buffer Creation
2: Initialize {N ṽi|ỹi

}bti=1 as random nodes from Gt

and random diagonal/isotropic matrices respectively,
with prefixed class-labels ỹi.

3: for each iter ≤ MaxIter do
4: Sample DG̃ := {G̃ ∼ {N ṽi|ỹi

}bti=1}.
5: Randomly initialize GNNs: Frand = {fi}i
6: Optimize {N ṽi|ỹi

}bti=1 by minimizing LSMB

using DG̃t
and Frand (Eq. 5).

7: end for
8: ▷ Stochastic Update Process
9: Initialize θt using θt−1.

10: for each iter ≤ MaxIter do
11: Sample Dj

G̃
:= {G̃j ∼ {N j

ṽi|ỹi
}bti=1}∀j ≤ t.

12: Optimize θt (minimizing Lsup via {Dj

G̃
}tj=1).

13: end for

CaT as a special case of SERGCL. By push-
ing |Σṽi|yi

| → 0 on Eq. 4 produces Dirac delta
functions for each kernel, {Nṽi|yi

}i. It leads to
a condensed graph with a fixed set of synthetic
nodes, as employed in CaT [13]. Therefore,
the objective function for CaT is a special case
of our proposed optimization in Eq. 4. How-
ever, such a fixed condensed graph can lead to a
high-variance estimation of the samples because
of the specified parameterization as delta func-
tions. In contrast, by effectively learning Σṽi|yi

,
the SERGCL formulation not only reduces the
sample variance but also facilitates sampling of
multiple condensed graph samples to provide a
better estimation of historical graphs.

Overall Optimization using Random Net-
works. The objective, L in Eq. 4 can be op-
timized using either a pre-trained model f or
by training f alongside the predictive model.
However, both approaches incur additional com-

putational overhead. An alternative is to use a set of randomly initialized GNNs, Frand = {fi}i
[13, 30], leading to final condensation objective:

LSMB = min
{Nṽi|y}i

∑
fi
L({Nṽi|ỹi

}i; fi)
|Frand|

(5)

Reparameterization Trick. Our proposed loss (Eq 4) requires a random operation of sampling
condensed nodes. Therefore, we introduce a ‘reparameterization trick’ to address this problem [41].
At each training iteration, we sample a set of noise vectors of dimension from the standard normal
distribution outside the optimization process for a smooth gradient. Now, the condensed graph node
samples can be produced as a fixed operation as follows:

ṽsi = µṽi|ỹi
+ ϵsi × Σ

1/2
ṽi|ỹi

(6)

where, ϵsi ∈ N (0, I) corresponds to ith node of the sth sampled Graph. We sample |Ỹ | × |DG̃| noise
vectores to obtain |DG̃| condensed graphs at each iteration.

We expand the SMB by including the learned condensed graph distribution, 1
bt

∑
i N t

ṽi|y for Gt. The
SMB is then passed to the SUP step, as discussed below.

3.2 Stochastic Update Process (SUP)

We update the GNN model, θt for the downstream node classification tasks using SMBs of all
{1, · · · , t} tasks, that are received so far. We only use the condensed graphs, sampled from Mt},
to update θt without using any original graphs. Therefore, it allows us to choose equal sampling
proportions for each task, removing the bias due to the mismatch of graph sizes for different tasks.

6

Stochastic Experience-Replay for Graph Continual Learning

Optimizing for j(≤ t)-th task. We initialize the GNN, θt using the previous GNN, θt−1 that
incorporated {1, · · · , t − 1} tasks. Now, we define the expected loss over the condensed graph
distribution for each task, 1 ≤ j ≤ t as:

LnGCL({N j
ṽi|y}i, θ

t) = min
θt

E
G̃j∼

∑
i Nt

ṽi|y
bj

[
LnGCL(G̃j , θ

t)
]
≈ min

θt

∑
G̃s

j∈Dj

G̃j

L(G̃j , θj)

|Dj

G̃t
|

where Dj

G̃j
:= {G̃s

j | ṽsj ∼ {N j
ṽi|y}

bt
i=1} is a finite set of graph samples for the j-th task. LnGCL is

the supervised loss for node classification (e.g., cross-entropy).

Overall Loss. The final loss function to update the GNN parameters, θt incorporating t-th task is:

Lsup = min
θt

t∑
j=1

LnGCL({N j
ṽi|y}i, θ

t) (7)

Algorithm 1 presents our proposed SERGCL method with SMB creation and SUP step.

4 Experimental Results
4.1 Experimental Setup

Datasets. We evaluated our SERGCL method for class- and task-incremental (IL) settings in nGCL
tasks using four benchmark datasets: CoraFull [42], Arxiv [43], Reddit [44], and Products [43]. Table
3 (Appendix) provides a summary of these datasets’ statistics. Our experimental setup follows the
configurations used in previous GCL studies [10, 12, 13, 45]. During training, the model has access
only to the current incoming graphs and the memory buffer. Unless otherwise specified, the buffer
budget for memory replay-based methods is 0.01% of the total number of training nodes. During
testing, the model predicts from all previous tasks. Each task consists of a binary classification
problem. For our models, we report mean±std. for 5 independent runs. Please find additional details
in Appendix A.1. We also provide several ablation studies in Appendix A.2.

Comparative Models. Our SERGCL is evaluated against several existing approaches: Regularization-
based EWC [3], MAS [9], GEM [23], TWP [15], and LWF [17]. Architecture-based HPNs [10] and
Replay-based [11], SSM [12], and Condensation-based CaT [13]. Results using Finetuning and Joint
training strategies are also presented. The Finetuning approach updates the model solely with the
current graph, without accessing any historical data, thus providing a lower bound for performance
in comparison to nGCL models. In contrast, the Joint strategy, which assumes infinite memory,
utilizes all historical graphs along with the current graph. Although Joint training can achieve high
performance, it may suffer from biases due to the imbalance in graph sizes across different tasks.
Furthermore, while Joint training is feasible for the datasets used, it may not be practical in real-world
applications involving extremely large graph sizes.

Evaluation Metric. We use two well-known metrics from the continual learning literature:

(a) Average performance (AP). Average Performance (AP) evaluates how well the model retains
knowledge from all previously learned tasks after incorporating a new task. It is computed as the
average node-classification performance on tasks {1, · · · , t} after learning the t-th task: APt =
1
t

∑t
i=1 at,i; where, at,i is the performance on i-th task after receiving t-th task.

(b) Average Forgetting (AF). Average Forgetting (AF) measures the degradation in performance on
previous tasks due to learning new tasks. It is computed as the average difference in performance on
all previous tasks before and after learning the t-th task: AFt =

1
t−1

∑t−1
i=1(at,i − ai,i); where at,i is

the performance on the i-th task after learning the t-th task, and ai,i is the performance on the i-th
task before learning the t-th task. A positive AF indicates backward transfer, meaning that learning
new tasks improves performance on previously learned tasks. However, a higher AF does not always
signify superior performance, as it is possible to achieve a high AF by focusing on historical tasks at
the expense of learning new ones.

4.2 Performance Analysis

Table 1 and Table 2 present a comparative performance for Class-IL and Task-IL settings, respectively.

7

Stochastic Experience-Replay for Graph Continual Learning

Table 1: Performance comparison for Class-IL without inter-task edges is shown. Replay-based
models are evaluated using a 0.01 budget relative to training nodes. The best models are highlighted
based on their AP scores. An upward arrow (↑) indicates that higher values are better.

Category Method CoraFull Arxiv Reddit Products
AP % (↑) AF % (↑) AP % (↑) AF % (↑) AP % (↑) AF % (↑) AP % (↑) AF % (↑)

Lower Bound Finetuning 2.2±0.0 -96.6±0.1 5.0±0.0 -96.7±0.1 5.0±0.0 -99.6±0.0 4.3±0.0 -97.2±0.1

Regularization-

EWC [3] 2.9±0.2 -96.1±0.3 5.0±0.0 -96.8±0.1 5.3±0.6 -99.2±0.7 7.6±1.1 -91.7±1.4
MAS [9] 2.2±0.0 -94.1±0.6 4.9±0.0 -95.0±0.7 10.7±1.4 -92.7±1.5 10.1±0.6 -89.0±0.5
GEM [23] 2.5±0.1 -96.6±0.1 5.0±0.0 -96.8±0.1 5.3±0.5 -99.3±0.5 4.3±0.1 -96.8±0.1

based TWP [15] 21.2±3.2 -96.6±0.1 5.0±0.0 -96.8±0.1 5.3±0.5 -99.3±0.5 4.3±0.1 -96.8±0.1
LWF [17] 2.2±0.0 -96.6±0.1 5.0±0.0 -96.8±0.1 5.0±0.0 -99.5±0.0 4.3±0.0 -96.8±0.2

Replay-based

ER-GNN [11] 4.0±0.7 -94.3±0.9 30.8±0.6 -68.3±0.7 31.8±4.0 -71.2±4.2 39.5±1.3 -48.2±1.4
SSM [12] 16.2±2.8 -82.1±2.9 35.1±1.8 -63.7±1.9 51.6±6.4 -50.3±6.7 62.7±0.5 -22.1±0.5
CaT [13] 61.3±2.8 -8.8±2.2 66.0±1.1 -13.1±1.0 97.4±0.1 -0.5±0.0 68.5±0.4 -6.1±0.3
SERGCL (Ours) 66.5±2.4 -8.5±2.0 67.4±0.3 -11.6±0.4 97.4±0.0 -0.5±0.0 69.0±0.4 -6.1±0.5

Full Dataset Joint Training 85.3±0.1 -2.7±0.0 63.5±0.3 -15.7±0.4 98.2±0.0 -0.5±0.0 72.2±0.4 -5.3±0.5

Table 2: Performance comparison for Task-IL without inter-task edges is shown. Replay-based
models are evaluated using a 0.01 budget relative to training nodes. The best models are highlighted
based on their AP scores. An upward arrow (↑) indicates that higher values are better.

Category Method CoraFull Arxiv Reddit Products
AP % (↑) AF % (↑) AP % (↑) AF % (↑) AP % (↑) AF % (↑) AP % (↑) AF % (↑)

Lower Bound Finetuning 51.0±3.4 -46.2±3.5 67.1±5.2 -31.3±5.6 57.1±7.4 -44.6±7.8 56.4±3.8 -42.4±4.0

Regularization-

EWC [3] 87.4±2.2 -9.1±2.2 85.6±7.7 -11.9±8.1 85.5±3.3 -14.8±3.5 90.3±1.8 -6.8±1.9
MAS [9] 93.0±0.3 -0.7±0.5 83.8±6.9 -12.0±7.8 99.0±0.1 0.0±0.0 95.9±0.1 0.0±0.0
GEM [23] 94.3±0.6 -2.1±0.5 94.7±0.1 -2.3±0.2 99.3±0.1 -0.3±0.1 86.9±0.9 -10.6±0.9

based TWP [15] 87.9±1.9 -4.9±0.6 77.1±7.3 -3.5±5.4 74.1±5.5 -1.5±0.5 75.4±4.4 -4.9±6.4
LWF [17] 64.7±1.1 -32.3±1.2 60.2±5.8 -38.6±6.2 62.4±3.5 -39.1±3.7 50.1±0.7 -49.3±0.8

Architecture-based HPNs [10] - - 85.8±0.7 0.6±0.9 - - 80.1±0.8 2.9±1.0

Replay-based

ER-GNN [11] 54.2±1.0 -43.1±1.1 92.2±0.3 -4.9±0.3 94.3±0.5 -5.6±0.5 83.5±0.4 -14.3±0.5
SSM [12] 78.7±1.1 -17.9±1.2 93.3±0.4 -3.6±0.4 99.2±0.2 -0.5±0.2 94.6±0.5 -2.7±0.4
CaT [13] 93.0±0.4 -0.1±0.4 95.8±0.2 0.2±0.1 99.4±0.0 0.1±0.1 95.6±0.3 -0.4±0.1
SERGCL (Ours) 93.6±0.4 -0.3±0.4 96.1±0.1 1.3±0.1 99.4±0.0 0.1±0.1 95.8±0.1 -0.3±0.3

Full Dataset Joint 97.2±0.0 0.2±0.1 96.7±0.0 -0.1±0.1 99.7±0.0 0.0±0.0 95.7±0.7 -0.2±0.7

4.2.1 Class-IL NGCL

Replay-based vs. Regularization-based models. Table 1 demonstrates that regularization-based
models significantly lag behind replay-based models in AP scores. These models often fail to retain
knowledge from previous tasks while focusing on new ones, thus achieving near‘lower-bound,’ per-
formance. Their large negative AF scores further highlight the issue of catastrophic forgetting across
all datasets. This issue arises because regularization-based models transfer knowledge effectively
only when tasks have similar characteristics. In class-IL settings, these models struggle even more, as
they fail to differentiate between tasks, exacerbating catastrophic forgetting.

Comparison among different Replay-based models. The effectiveness of replay-based models
hinges on their memory buffer creation strategy. We observe that the sampling methods used in
ER-GNN and SSM often fall short in effectively summarizing historical graphs within a lightweight
memory buffer. In contrast, CaT has made strides by introducing condensation-based replay graphs
for historical tasks. However, these fixed condensed graphs still struggle to capture the full range of
variations present in the historical graphs.

Performance of Proposed SERGCL. We consistently outperform existing nGCL models, demon-
strating the effectiveness of using an SMB to store the distribution of condensed graphs for each
historical task and sampling from this distribution to update the downstream nGCL model. This
approach ensures broader coverage of historical graphs, leading to enhanced overall performance. In
Appendix 4 we also study the effect of drawing different number of samples for SERGCL.

In Table 1, our SERGCL method shows an impressive 8.5% improvement in AP score on CoraFull-CL
compared to the second-best CaT method. Although the AP score for the ‘Joint’ baseline remains
substantially higher than for the GCL models, indicating room for improvement, SERGCL performs
marginally better than CaT on the other three datasets and shows comparable performance to the
‘Joint’ baseline. The narrowing performance gap between SERGCL and the ‘Joint’ baseline further
underscores the robustness of our approach.

4.2.2 Task-IL NGCL

Table 2 compares nGCL performance in Task-IL settings, where tasks are distinguished during infer-
ence by their Task-IDs. Hence, as the tasks are not mixed in presence of the task-ID, regularization-

8

Stochastic Experience-Replay for Graph Continual Learning

0 50 100

C
or

aF
ul

l

0 10 20 30
Tasks

0

10

20

30

Ta
sk

s
A

rx
iv

0 10
Tasks

0

10Ta
sk

s

(a) ERGNN

0 10 20 30
Tasks

0

10

20

30

Ta
sk

s

0 10
Tasks

0

10Ta
sk

s

(b) SSM

0 10 20 30
Tasks

0

10

20

30

Ta
sk

s

0 10
Tasks

0

10Ta
sk

s

(c) CaT

0 10 20 30
Tasks

0

10

20

30

Ta
sk

s

0 10
Tasks

0

10Ta
sk

s

(d) SERGCL

Figure 5: Visualization of Class-IL performance matrix of replay methods on CoraFull and Arxiv.

based models perform notably better than the ‘Finetuning’ baselines. Further, they often outperform
traditional replay-based methods like ER-GNN and SSM on the CoraFull and Products datasets and
achieve similar performance on Arxiv and Reddit. Graph condensation improves the performance of
replay-based methods across all datasets. Finally, our SERGCL model further enhances performance
in Task-IL nGCL, demonstrating clear advantages over other replay-based and GCL models.

4.3 Visualizing Performance Matrix for Class-IL setup

Figure 5 visualizes node classification performance across all tasks at each time step for different
replay-based models. Regularization-based models, which show poor performance comparable to the
‘lower-bound,’ are included for reference. The figure reveals that SSM and ER-GNN often achieve
0% accuracy at off-diagonal entries, indicating severe catastrophic forgetting. In contrast, CaT and
SERGCL mitigate this issue, with node classification performance remaining relatively stable across
new tasks. SERGCL model often produces higher performance for different historical tasks, boosting
the overall average performance.

5 Conclusion

We present SERGCL, a stochastic memory buffer (SMB) framework designed to store the distributions
of condensed graphs for graph continual learning (GCL). We view the graphs as samples, drawn from
an underlying complex distribution. By utilizing Gaussian mixture models as universal approximators,
we can condense arbitrary graphs using learnable Gaussian kernels. Towards this, we leverage
Gaussian mixture models (GMMs) as universal approximators to condense arbitrary graphs into
sets of independent nodes represented by learnable Gaussian kernels. Experimentally, our approach
achieves state-of-the-art performance across a range of graph complexities, benchmarked using
carefully curated GCL datasets [45]. However, as graph complexity increases, our method may
require a higher number of Gaussian kernels, resulting in increased memory demand.

We acknowledge two key challenges shared by existing graph condensation methods, including
ours: (i) a heavy reliance on prior node-level supervision and (ii) diminished efficacy when handling
dynamically changing labels. Further, condensation techniques are computationally heavy compared
to sampling-based GCL methods, providing a tradeoff between performance and training efficiency.
Addressing these challenges might serve as a potential direction for future research. Finally, while
several existing works achieved better performance using structure-free condensed graphs, it would
be interesting to study the impact of learning synthetic edges for GCL.

9

Stochastic Experience-Replay for Graph Continual Learning

Acknowledgements
The authors thank Prof. Prathosh AP from IISc Bengaluru for his insightful feedback during various
brainstorming sessions in the ideation phase of this work. His constructive feedback played a pivotal
role in refining the paper’s clarity and narrative.

References
[1] Falih Gozi Febrinanto, Feng Xia, Kristen Moore, Chandra Thapa, and Charu Aggarwal. Graph

lifelong learning: A survey. IEEE Computational Intelligence Magazine, 18(1):32–51, 2023. 1,
2, 3, 4, 13

[2] Jatin Chauhan, Aravindan Raghuveer, Rishi Saket, Jay Nandy, and Balaraman Ravindran. Multi-
variate time series forecasting on variable subsets. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 76–86, 2022. 1

[3] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521–3526, 2017. 1, 3, 7, 8

[4] Tyler L Hayes and Christopher Kanan. Lifelong machine learning with deep streaming linear
discriminant analysis. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition workshops, pages 220–221, 2020. 1

[5] Guile Wu, Shaogang Gong, and Pan Li Queen. Striking a balance between stability and plasticity
for class-incremental learning. In 2021 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 1104–1113, 2021.

[6] Dongwan Kim and Bohyung Han. On the stability-plasticity dilemma of class-incremental
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 20196–20204, 2023. 1

[7] Magdalena Biesialska, Katarzyna Biesialska, and Marta R. Costa-jussà. Continual lifelong
learning in natural language processing: A survey. In Proceedings of the 28th International
Conference on Computational Linguistics, pages 6523–6541, 2020. 1

[8] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experi-
ence replay for continual learning. Advances in Neural Information Processing Systems, 32,
2019. 1

[9] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuyte-
laars. Memory aware synapses: Learning what (not) to forget. In Proceedings of the European
conference on computer vision (ECCV), pages 139–154, 2018. 1, 3, 7, 8

[10] Xikun Zhang, Dongjin Song, and Dacheng Tao. Hierarchical prototype networks for continual
graph representation learning. IEEE Transactions on Pattern Analysis and Machine Intelligence,
45(4):4622–4636, 2023. doi: 10.1109/TPAMI.2022.3186909. 2, 3, 7, 8

[11] Fan Zhou and Chengtai Cao. Overcoming catastrophic forgetting in graph neural networks with
experience replay. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 4714–4722, 2021. 2, 4, 7, 8, 15

[12] Xikun Zhang, Dongjin Song, and Dacheng Tao. Sparsified subgraph memory for continual
graph representation learning. In 2022 IEEE International Conference on Data Mining (ICDM),
pages 1335–1340, 2022. doi: 10.1109/ICDM54844.2022.00177. 2, 4, 7, 8, 15

[13] Yilun Liu, Ruihong Qiu, and Zi Huang. CaT: Balanced Continual Graph Learning with Graph
Condensation. In Proc. of ICDM, 2023. 2, 4, 5, 6, 7, 8, 13, 14, 15

[14] Yilun Liu, Ruihong Qiu, Yanran Tang, Hongzhi Yin, and Zi Huang. Puma: Efficient continual
graph learning with graph condensation. arXiv preprint arXiv:2312.14439, 2023. 2, 4

[15] Huihui Liu, Yiding Yang, and Xinchao Wang. Overcoming catastrophic forgetting in graph
neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pages 8653–8661, 2021. 3, 7, 8

[16] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In
NIPS Deep Learning Workshop, 2014. 3

10

Stochastic Experience-Replay for Graph Continual Learning

[17] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935–2947, 2017. 3, 7, 8

[18] Junting Zhang, Jie Zhang, Shalini Ghosh, Dawei Li, Serafettin Tasci, Larry Heck, Heming
Zhang, and C-C Jay Kuo. Class-incremental learning via deep model consolidation. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages
1131–1140, 2020.

[19] Yishi Xu, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, and Mark Coates. Graphsail:
Graph structure aware incremental learning for recommender systems. In Proceedings of
the 29th ACM International Conference on Information & Knowledge Management, pages
2861–2868, 2020.

[20] Sihao Ding, Fuli Feng, Xiangnan He, Yong Liao, Jun Shi, and Yongdong Zhang. Causal
incremental graph convolution for recommender system retraining. IEEE Transactions on
Neural Networks and Learning Systems, 2022. 3

[21] Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Deep
class-incremental learning: A survey. arXiv preprint arXiv:2302.03648, 2023. 3

[22] Peiyan Zhang, Yuchen Yan, Chaozhuo Li, Senzhang Wang, Xing Xie, Guojie Song, and
Sunghun Kim. Continual learning on dynamic graphs via parameter isolation. arXiv preprint
arXiv:2305.13825, 2023. 3

[23] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017. 4, 7, 8

[24] Junshan Wang, Guojie Song, Yi Wu, and Liang Wang. Streaming graph neural networks via
continual learning. In Proceedings of the 29th ACM international conference on information &
knowledge management, pages 1515–1524, 2020.

[25] Seungyoon Choi, Wonjoong Kim, Sungwon Kim, Yeonjun In, Sein Kim, and Chanyoung Park.
Dslr: Diversity enhancement and structure learning for rehearsal-based graph continual learning.
In Proceedings of the ACM on Web Conference 2024, 2024. 4

[26] Junshan Wang, Wenhao Zhu, Guojie Song, and Liang Wang. Streaming graph neural networks
with generative replay. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 1878–1888, 2022. 4

[27] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=mSAKhLYLSsl. 4

[28] Saehyung Lee, Sanghyuk Chun, Sangwon Jung, Sangdoo Yun, and Sungroh Yoon. Dataset
condensation with contrastive signals. In International Conference on Machine Learning, pages
12352–12364. PMLR, 2022.

[29] Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan
Bilen, Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12196–12205, 2022. 4

[30] Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023. 4, 5, 6

[31] Songhua Liu, Jingwen Ye, Runpeng Yu, and Xinchao Wang. Slimmable dataset condensation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 3759–3768, 2023. 4

[32] Wojciech Masarczyk and Ivona Tautkute. Reducing catastrophic forgetting with learning on
synthetic data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 252–253, 2020. 4

[33] Felix Wiewel and Bin Yang. Condensed composite memory continual learning. In 2021
International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2021.

[34] Mattia Sangermano, Antonio Carta, Andrea Cossu, and Davide Bacciu. Sample condensation in
online continual learning. In 2022 International Joint Conference on Neural Networks (IJCNN),
pages 01–08. IEEE, 2022. 4

11

https://openreview.net/forum?id=mSAKhLYLSsl
https://openreview.net/forum?id=mSAKhLYLSsl

Stochastic Experience-Replay for Graph Continual Learning

[35] Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph con-
densation for graph neural networks. In International Conference on Learning Representations,
2022. 4, 14

[36] Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang, and Bing Yin.
Condensing graphs via one-step gradient matching. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 720–730, 2022.

[37] Xinyi Gao, Tong Chen, Yilong Zang, Wentao Zhang, Quoc Viet Hung Nguyen, Kai Zheng, and
Hongzhi Yin. Graph condensation for inductive node representation learning. arXiv preprint
arXiv:2307.15967, 2023.

[38] Mengyang Liu, Shanchuan Li, Xinshi Chen, and Le Song. Graph condensation via receptive
field distribution matching. arXiv preprint arXiv:2206.13697, 2022. 4, 5

[39] Xin Zheng, Miao Zhang, Chunyang Chen, Quoc Viet Hung Nguyen, Xingquan Zhu, and Shirui
Pan. Structure-free graph condensation: From large-scale graphs to condensed graph-free data.
In NeurIPS, 2023. 4

[40] Yuchen Zhang, Tianle Zhang, Kai Wang, Ziyao Guo, Yuxuan Liang, Xavier Bresson, Wei Jin,
and Yang You. Navigating complexity: Toward lossless graph condensation via expanding
window matching. ICML, 2024. 4

[41] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013. 6

[42] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating
the construction of internet portals with machine learning. Information Retrieval, 3:127–163,
2000. 7

[43] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118–22133, 2020. 7

[44] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017. 7

[45] Xikun Zhang, Dongjin Song, and Dacheng Tao. Cglb: Benchmark tasks for continual graph
learning. Advances in Neural Information Processing Systems, 35:13006–13021, 2022. 7, 9

[46] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019. 15

[47] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019. 15

12

Stochastic Experience-Replay for Graph Continual Learning

A Appendix
A.1 Datasets & Implementation Details

In Table 3, we present the details of all 4 datasets used in our experiments. The datasets are split into
60% for training, 20% for validation, and 20% for testing.

Implementation details. The implementation details for the proposed SER-GCL method are as
follows: First, the stochastic memory buffer (SMB) consisting of the condensed graph distributions
for each historical task is created. A buffer budget as 0.01 of the total number of nodes for each
historical graph is used. The mean µ of the distributions is initialized using randomly selected node
features. A diagonal covariance matrix Σ is considered where the diagonal entries are set to 0.001.
At each iteration, a sample of 200 condensed graphs and 1000 randomly initialized GNN models is
used to obtain and compare the node representations. The Adam optimizer is applied to optimize both
µ and Σ with learning rates of 0.001 and 0.01, respectively. For classifier training, 500 iterations are
employed.

During step 2 i.e., the network updation phase, we sample condensed graphs for each historical task
and update the network for 500 epochs using Adam optimizer with learning rates of 0.005 and weight
decay strength 0.0005.

For other baseline models, we obtain the AP and AF scores for baseline models as reported in [1]. For
the recently proposed CaT method [13], the official code provided by the authors is used to reproduce
the results.

Table 3: Dataset Summary
Datasets CoraFull Arxiv Reddit Products
Nodes 19,793 1,69,343 2,27,853 24,49,028
Node Ftr. dim. 8710 128 602 100
Edges 1,30,622 11,66,243 11,46,15,892 6,18,59,036
Classes 70 40 40 46
Tasks 35 20 20 23

A.2 Ablation Study

A.2.1 Varying the number of Condensed Graph Samples

Our SERGCL draws samples from the learned condensed graph distribution during both training steps
i.e., SMB creation and SUP step for updating the predictive network. In Table 4, the performance of
SERGCL is presented as we vary the number of samples during SMB creation and SUP step.

Table 4: Average performance (AP) for SERGCL as we vary the sample size of condensed graphs
for Arxiv dataset.

During SUP step
1 10 20 50 100

D
ur

in
g

SM
B

C
re

at
io

n 1 65.9±0.4 65.9±0.0 65.8±0.3 65.9±0.6 65.8±0.3
10 66.4±0.1 66.4±0.1 66.2±0.1 66.5±0.0 66.5±0.3
20 67.0±0.2 67.0±0.2 67.0±0.2 67.1±0.1 66.9±0.3
50 67.2±0.3 67.1±0.0 67.3±0.0 67.2±0.1 67.4±0.2
100 66.9±0.3 67.1±0.4 67.0±0.1 67.1±0.2 67.4±0.3

During SMB creation, we update the parameters of the condensed graph distribution itself at each
iteration step. Understanding the coverage of this varying distribution is important to find the correct
gradient direction for updating the parameters. Therefore, increasing the number of samples provides
better coverage of the distribution. Hence, it leads to a better distribution for the condensed graph and
improves the overall performance using the experience replay. The performance starts to converge
beyond the sample size of 50.

In contrast, during the SUP step, we sample the condensed graphs from the ‘fixed’ distribution during
each iteration step. Hence, as we execute multiple iteration SUP steps, we eventually cover the
underlying distribution by drawing new samples for each iteration. Therefore, we observe only a
slight increase in AP as we increase the number of condensed graph samples in this step.

13

Stochastic Experience-Replay for Graph Continual Learning

A.2.2 Varying Memory Buffer Budget.

Table 5 presents a comparative performance using AP metric as we increase the memory budget
for NGCL tasks in class-IL settings. Clearly, a large memory is more efficient for summarizing the
original historical graphs. Therefore, it improves the performance of our SERGCL and the existing
CaT models. However, our SERGCL model still consistently outperformed the CaT models on both
CoraFull and Arxiv datasets irrespective of the size of the memory budget.

Table 5: Impact of buffer budget with respect to the number of nodes in the condensed graph.

Budget
CoraFull Arxiv

CaT [13] SERGCL CaT [13] SERGCL
AP AF AP AF AP AF AP AF

0.01 64.5±1.4 -3.3±2.6 66.5±2.4 -8.5±2.0 66.0±1.1 -13.1±1.0 67.4±0.3 -11.6±0.4
0.05 74.5±0.4 -6.2±0.1 76.7±0.2 -5.9±0.2 65.6±1.2 -12.2±0.4 67.7±0.1 -11.2±0.8
0.10 77.4±0.2 -5.7±0.1 77.8±0.4 -6.4±0.3 65.3±0.4 -12.1±0.6 67.5±0.1 -11.4±0.3

A.2.3 SUP step using currently available graph.

Experience replay (ER) based models typically update the memory network by incorporating the
memory buffer with the current graph. However, due to the small size of the memory buffer, it creates
a significant data imbalance problem. It leads to overemphasizing the current task and, leads to
the catastrophic forgetting problem for historical tasks. One solution is to use the same number of
condensed graph samples for each task [13]. However, unlike the existing ER models, our proposed
SERGCL can mitigate the data imbalance problem by drawing an appropriate number of samples for
historical tasks while using the original graph for the current task.

Table 6: Impact of using the current input graph while varying the number of condensed graph
samples for historical graphs during the SUP step for using the Arxiv dataset.

Samples Avg. Performance Avg. Forgetting
1 35.9 ± 2.8 -63.2±3.0
5 46.9±0.3 -50.1±0.4

10 46.4±2.8 -49.8±3.2
50 54.4±1.1 -38.0±1.6

100 60.7±0.6 -28.8±0.6
500 66.2±0.4 -7.8±0.5
750 65.8±0.5 -1.6±0.4

1000 65.8±0.5 3.6±0.4

In Table 6, we present the performance as we update the network using the entire current input graph
and vary the number of samples for historical tasks for the Arxiv dataset. Since the size of the original
current graph is significantly large, multiple samples of the historical tasks need to be drawn from
SMB to address the imbalance problem. Drawing fewer samples leads to over-emphasis on the current
tasks as before which can be corrected by increasing the number of samples for historical tasks to
ensure balance between the historical and current tasks. This improves the overall performance of the
models. Oversampling the historical tasks leads to underestimating the current tasks and the model
produces better performances on historical tasks, improving the AF metric. This comes at the cost of
reduced performance on the current task.

A.2.4 Generating condensed graphs using Optimized f

In the following, we explore the performance difference as we use optimized f instead of randomly
initialized GNNs, Frand at each iteration in Eq. 5. In Table 7, we report the results when the SMB
creation process is applied using a single network, iteratively optimized while learning the condensed
graph distributions. Here, we apply a similar optimization strategy as in [35]. However, we observe
that AP scores consistently degrade compared to our original SERGCL framework using random
networks.

We hypothesize that this performance drop occurs as an optimized network primarily focuses on
learning the current tasks without adequately preserving the broader graph properties that can
be essential for distinguishing historical or future tasks. In contrast, random projection, as an

14

Stochastic Experience-Replay for Graph Continual Learning

Table 7: Performance comparison for Class-IL as we use random networks vs. a single optimized
model to produce condensed graphs for our SERGCL models.

Method CoraFull Arxiv
AP (%) AF (%) AP (%) AF (%)

SERGCL (random networks) 66.5 -8.5 67.4 -11.6
SERGCL (single Optimized f) 34.4 -24.2 61.6 -12.8

unsupervised approach, can capture the general characteristics of the graph and provide a better
balance for continual learning.

A.2.5 Additional Memory Overhead for SERGCL

While our SERGCL method provides better coverage of the historical graphs, it requires additional
memory for storing the Σ matrices of the Gaussian kernels (Eq. 3). The diagonal entries of Σ store
the importance of each feature dimension of µ while the off-diagonal entries capture their correlations.
However, storing a full rank Σ would require O(d2) additional memory. Instead, we can use a
diagonal Σ with an additional memory cost of O(d). As we do not store edge-related information for
the condensed graphs, our additional memory compensates with most of the previous sampling-based
experience replay methods that require storing edges [11, 12]. However, we still require an extra
memory overhead compared to CaT [13]. Alternatively, we can learn an isotropic matrix i.e., Σ = σI
for the Gaussian kernels. It only requires an additional memory of O(1) for storing the scaler σ.

Table 8: Comparative performance of SERGCL with diagonal and isotropic Σ for Gaussian kernels.

CaT [13] SERGCL
(w/ diag Σ)

SERGCL
(w/ isotropic Σ)

Arxiv-CL 61.3 ± 2.8 66.5 ± 2.4 66.6 ± 0.2
Corafull-CL 66.0 ± 1.1 67.4 ± 0.3 66.9 ± 2.0
Reddit-CL 97.4 ± 0.1 97.4 ± 0.0 97.4 ± 0.0
Products-CL 68.5 ± 0.4 69.0 ± 0.4 69.1 ± 0.3

Table 8 reports the results as we select SERGCL with diagonal and isotropic Σ matrix. We observe
that both sets of SERGCL models achieve comparable performance and still outperform ‘fixed’
condensation graph-based CaT models.

Table 9: Computation Time & Memory Footprint for Larger Graphs
Reddit Product

ERGNN [11] SSM [12] CaT [13] SERGCL ERGNN [11] SSM [12] CaT [13] SERGCL
Peak Mem. (Buffer Creation) 1350 MiB 643.5 KiB 1026 MiB 1029 MiB 5534 MiB 147.5 KiB 5005 MiB 5019 MiB
Memory Buffer Creation Time 1 s 1 s 14 m 59 s 15 m 12 s 2s 1s 13 m 5 s 13 m 26 s
Training Time 7 m 43 s 7 m 36 s 2 m 4 s 2 m 19 s 16 m 8 s 16 m 4 s 2 m 12 s 2 m 59 s
Performance 31.8 51.6 97.4 97.4 39.5 62.7 68.5 69

A.2.6 Computational Details & Complexity Analysis

The model is implemented using PyTorch [46] and PyTorch Geometric libraries [47], and all experi-
ments were performed on a single NVIDIA A100 GPU. In Table 9, the training time and memory
footprint for different models during the sampling/condensation phase and the training phase are
presented.

Memory Footprint: SSM requires the least peak memory since it creates the memory buffer with
sparsification using a probability distribution. In contrast, other methods require additional memory
for their heuristic calculations for ER-GNN or solving optimizations as in SERGCL and CaT.

Computation time: (a) The buffer creation time for SERGCL and CaT is significantly higher. These
methods require solving the optimization to condense the historical graphs. In comparison, previous
sampling-based traditional experience replay models (i.e., ER-GNN, SSM) require less time to sample
and select the sub-graphs for producing their memory buffer. (b) However, the training time for
ER-GNN and SSM are significantly large as they take the entire incoming graph for the current task.

15

Stochastic Experience-Replay for Graph Continual Learning

Complexity Analysis: Given a L layer GNN, original graph mini-batch with O(N) nodes and O(n)
synthetic nodes with self-loops, and total optimization iterations, I , the time complexity for both
CaT and SERGCL remains the same as O(IL), while space complexity becomes O(N2 + n) and
O(N2 + nk) for CaT and SERGCL; where k is the number of samples drawn at each iteration for
SERGCL; O(N2) denotes the edges for original graph mini-batch. Since N >> n, both O(N2 + n)
and O(N2 + nk) become O(N2), i.e., the same time and space complexity for both CaT and
SERGCL.

16

	1 Introduction
	2 Background & Related Work
	2.1 Preliminaries
	2.2 Previous Work
	2.2.1 Graph Continual Learning
	2.2.2 Dataset condensation

	3 Proposed Method
	3.1 Stochastic Memory Buffer (SMB) Creation
	3.1.1 Graph Condensation Optimization
	3.1.2 Learning the Condensed Graphs Distribution

	3.2 Stochastic Update Process (SUP)

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Performance Analysis
	4.2.1 Class-IL NGCL
	4.2.2 Task-IL NGCL

	4.3 Visualizing Performance Matrix for Class-IL setup

	5 Conclusion
	A Appendix
	A.1 Datasets & Implementation Details
	A.2 Ablation Study
	A.2.1 Varying the number of Condensed Graph Samples
	A.2.2 Varying Memory Buffer Budget.
	A.2.3 SUP step using currently available graph.
	A.2.4 Generating condensed graphs using Optimized f
	A.2.5 Additional Memory Overhead for SERGCL
	A.2.6 Computational Details & Complexity Analysis

