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Abstract

We study Domain Incremental Learn-
ing for the semantic segmentation of
Earth Observation images. We demon-
strate that controlling the oscillation of
performance when a new domain ar-
rives is more critical than controlling
catastrophic forgetting. We propose an
exemplar free architecture that com-
bines a large pre-trained network well
adapted to dense image processing (DI-
NOv2) and a generative decoder head
based on Probabilitic Principal Compo-
nent Analysis (PPCA). We validate our
approach on the FLAIR#1 high reso-
lution dataset, which is structured as a
sequence of domains.

Keywords: domain incremental learn-
ing, semantic segmentation, foundation
models, dinov2, ppca

1. Introduction

Earth Observation (EO) datasets are mas-
sive and heterogeneous, continually captur-
ing vast, evolving regions of the Earth’s sur-
face with different sensors and across multi-
ple time points. However, local and global
changes, driven by seasonal cycles, land use
dynamics and climate change, render their
statistical distribution inherently non sta-
tionary.

Our objective is to scale a semantic seg-
mentation model to high resolution imagery,
a model that delivers the same level of ac-
curacy on data captured anywhere and at
any time. Retraining globally on a growing
dataset is virtually impossible, we therefore
adopt incremental learning schemes that up-
date the model’s parameters whenever new
data arrive, thereby progressively broaden-
ing its generalisation to unseen distributions.
Incremental Learning or Continual learning
(CL), a paradigm in which a model is up-
dated incrementally on a non stationary data
stream while preserving previously acquired
knowledge (Wang et al., 2023), is therefore
indispensable for processing such data.

With EO imagery, we can associate each
change of location, season or other condition
of acquisition to a new domain. The chal-
lenge we are seeking to meet is one of Do-
main Incremental Learning (DIL), a funda-
mental CL scenario, that allows for models
to sequentially train on new distributions,
while preserving earlier knowledge, thereby
ensuring robust, long term performance. In
this work, we focus on a growing set of
highly similar domains produced by a sin-
gle aerial imaging system that yields data
streams with small, smooth shifts driven by
geographic location. (van de Ven et al., 2022;
Mirza et al., 2022; Kalb et al., 2021; Wang
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Figure 1: Although catastrophic forgetting
is the usual concern in continual
learning, our DIL study reveals
a different obstacle: pronounced
performance oscillations when a
new domain is introduced. This
phenomenon is clearly noticeable
after fine-tuning the model when
new domains arrive sequentially,
whether using a vanilla U-Net ar-
chitecture (yellow curve) or a large
pre-trained feature extractor with
a linear predictor (red curve). Our
method (green curve) controls the
oscillations via an exemplar-free
approach and a PPCA-based gen-
erative classifier. The blue curve
shows the oracle performance ob-
tained by full training on all do-
mains seen up to the current step
on the FLAIR#1 dataset.

et al., 2022; Garg et al., 2022; Shi and Wang,
2023). Naive approaches to address contin-
ual learning, such as sequentially finetuning
the model with incoming data distributions,
are prone to catastrophic forgetting, mainly
caused by a shift in the feature space (Cas-
tro et al., 2018) when learning new knowl-
edge (Caccia et al., 2021; Driscoll et al.,
2022), and occasion a steady performance de-
cline. To tackle this issue, most methods use
encoder-decoder architectures and focus on
encoder focused remedies, such as parame-

ter isolation, distillation or replay, in order
to curb feature drift (Liu et al., 2025; Rui
et al., 2023; Alfarra et al., 2024; Huang et al.,
2024b; Saporta et al., 2022). However, in our
specific case of DIL, when sequentially fine-
tuning an encoder-decoder architecture like
U-Net, the main issue is not catastrophic for-
getting (Fig.1, yellow curve): rather, as we
observe partiel recoveries.

Empirical evidence (e.g. (Prabhu et al.,
2020) and related replay baselines) shows
that forgetting is mitigated most effectively
when the initial feature space is already
adapted to the domain, as a consequence,
the feature initialisation phase becomes a de-
cisive factor in overall performance. The
advent of self-supervised vision foundation
models (FMs) promises a new baseline: pre-
trained on billions of natural images, these
models supply high-quality, reusable features
that lead to state-of-the-art segmentation
with minimal fine-tuning (Zhou et al., 2024).
Yet the standard workflow — sequential fine-
tuning of the whole FM — produces an oscil-
latory performance pattern that is more pro-
nounced than with a vanilla U-Net (Fig.1,
red curve). Because existing CL methods
rely on complex, tightly coupled decoder ar-
chitectures that obscures how the encoder’s
representation can help mediate the plastic-
ity–stability trade-off, it is unclear how a
foundation model can be leveraged to miti-
gate performance degradation in a continual
setting. Our study addresses this issue in a
domain incremental setting.

Contributions In this paper, we make the
following contributions:

• We analyze the oscillations that occur
when implementing DIL, a question that
has not been addressed in the literature,
and hypothesize their origin from exper-
iments on remote sensing dataset,
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• We establish an architecture for leverag-
ing an FM in a DIL setting, specifically
tailored for semantic segmentation,

• We develop a simple algorithm that
limit oscillations in DIL

• And finally, we develop a protocol for
evaluating DIL on a HR remote sensing
dataset built from FLAIR#1

2. Related Works

2.1. Domain Incremental Semantic
Segmentation

Most CL methods for semantic segmentation
methods have focused on class-incremental
benchmarks and very few address domain in-
cremental semantic segmentation. Existing
studies either define domains via drastically
different visual styles—such as those in Do-
mainNet (Peng et al., 2019)—or are limited
to only a handful of domains (Huang et al.,
2024c; Rui et al., 2023).

Domain incremental semantic segmen-
tation methods navigate the plastic-
ity–stability trade-off through a mix of
parameter isolation, distillation, and syn-
thetic replay. For example, (Liu et al.,
2025; Rui et al., 2023) inject domain-specific
adapters into the encoder and instantiate
fresh decoder heads for each domain, using
feature- and output-level distillation to
anchor past knowledge. SimCS (Alfarra
et al., 2024) foregoes module freezing alto-
gether by generating on-the-fly simulated
batches that regularize both encoder and
decoder. (Huang et al., 2024b) strikes a
balance between approaches that leave the
encoder untouched and those that adapt
it, by freezing an initial feature extrac-
tor while fine-tuning later encoder layers
and a single-branch decoder under strict
distillation constraints. Finally, (Saporta
et al., 2022) achieves encoder plasticity

via full fine-tuning with distribution- and
feature-level distillation, paired with dual
decoder heads, a specialist head for rapid
adaptation and a KL-distilled generalist
head to preserve earlier mappings.

However, no existing DIL segmentation
method, especially for high-resolution EO
imagery, has paired a large, self-supervised
foundation model encoder with a light de-
coder that lets us disentangle and quantify
the respective contributions of an encoder’s
representations to the plasticity–stability
trade-off.

2.2. Large Pre-trained Models for
Continual Learning

Most continual-learning methods built on
large, pretrained Vision Foundation Models
(VFMs) address the class-incremental set-
ting, where the backbone remains frozen and
adaptation is confined to lightweight heads
or regularizers. For example, RanPAC, Ran-
dumb and TSVD (McDonnell et al., 2023;
Prabhu et al., 2020; Peng et al., 2025) ap-
pend shallow decoders to fixed feature ex-
tractors; Lee and Wang (Lee et al., 2023) in-
troduce small regularization terms to main-
tain CLIP’s feature stability; and SimpleCIL
(Zhou et al., 2025) employs fixed class proto-
types from the embedding space. Similarly,
(Wang and Barbu, 2022) train one PPCA
head per class on frozen features, classify-
ing via Mahalanobis distances, (Ostapenko
et al., 2022) compare an (MLP), a (NMC)
and a SLDA heads under the same paradigm.
These “head-only” schemes excel at adding
new classes but all assume a static input dis-
tribution and a growing label set.

By contrast, DIL methods aim to han-
dle shifts in input distributions—such as
weather or lighting changes—without dupli-
cating model parameters for each domain.
(Panos et al., 2023) propose a strategy very
much like ours but for CIL and image clas-
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sification: they perform a single encoder-
only update during the first session and then
freeze the entire feature extractor to preserve
consistent representations across all subse-
quent domains. (Mirza et al., 2022)’s DISC
introduces a two-stage pipeline: during a
streaming phase, only the last transformer
block is fine-tuned on incoming weather-
shifted batches using a low learning rate
and gradient masking, and during an of-
fline phase a small memory buffer is used
for replay with an annealed schedule. It
stores only first- and second-order statistics
for each condition, enabling immediate plug-
and-play adaptation to rain, fog, or snow
without retraining. Similarly, our approach
retains only class-specific first- and second-
order feature statistics per domain, using
them to update a lightweight generative de-
coder while keeping the encoder frozen.

Building on FLAIR#1 dataset (Garioud
et al., 2022), adapted for scene classifica-
tion, DIPPCA (Boum et al., 2024) intro-
duces a prototype-based Gaussian head for
domain-incremental classification in remote
sensing, where class parameters are updated
incrementally in feature space. However, this
approach is demonstrated only on simpli-
fied image-level tasks and does not address
dense per-pixel segmentation. Our frame-
work extends this idea by leveraging proba-
bilistic PCA’s closed-form moment-matching
to update both the mean and covariance of
each class distribution at the patch level.
This mechanism enables adaptation to do-
main shifts in the inherently more complex
setting of dense semantic segmentation in re-
mote sensing.

Unlike DIPPCA, which maintains a sin-
gle head for all domains, our framework al-
locates a distinct PPCA model for each do-
main. By explicitly encoding domain iden-
tity in each PPCA head, we can smoothly in-
troduce new domains in high-resolution EO
segmentation, without conflating current-

Figure 2: FLAIR#1 Dataset : Spatial Do-
mains defined by French depart-
ments.

domain adaptation with prior-domain knowl-
edge.

3. Problem Formulation

3.1. DIL benchmark for remote
sensing

We derive a benchmark from the FLAIR#1
Dataset (Garioud et al., 2022) to evaluate
Remote Sensing Domain Incremental Learn-
ing.

The latter consists of 50 spatial domains –
each corresponding to a French department
(see Figure 2) – that capture the diversity of
landscapes and climates across metropolitan
France. It contains 77,412 patches (each
512 × 512 pixels at 0.2 m GSD) covering
about 810 km², annotated with nineteen
semantic classes.

In order to focus on DIL dynamics, we re-
strict our study to the segmentation of the
building class using RGB channels only, a
common task in RS. First and foremost, as
part of this work, we select a sequence of
ten departments in northern France, ordered
as follows: D70, D21, D60, D23, D35, D52,
D14, D41, D49, and D78. Building on (Boum
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et al., 2024), we investigate domain shifts in-
duced by geographical variations across the
departments of the FLAIR#1 dataset. An
extension of this work would be to evaluate
other sequences of domains.

3.2. Domain Incremental Learning
(DIL)

The goal of Domain Incremental Learning is
to design incrementally a predictor that can
be applied on a large distribution of data,
where only part of the whole distribution –
a domain – is available from sample data at
each incremental session. At the end of the
learning sequence, the final predictor is ex-
pected to become a universal expert over the
union of all domains.
A sequence [Dt]

T
t=1 of T domains arrives

sequentially. For semantic segmentation of
images, each domain is a joint probability
distribution over a space of dense images and
labels X×Y, where X = RH×W×3 represents
the set of images, and Y = {1, . . . , C}H×W

represents the set of labels that encode the
correspondence between each pixel and a
class label selected from C possible cate-
gories. In DIL, the set of possible categories
is kept fixed during sessions, only the input
distribution varies.
The goal of DIL is to update at each ses-

sion t a predictor y = f(x; θt) defined by
parameters θt, using the Nt data {xit, yit}

Nt
i=1

sampled from domain Dt and the previous
predictor parameters θt−1. At the end of
each session, it is expected that the predictor
minimizes the average prediction error ϵ̄T on
both current domain DT and historical do-
mains {Dk}T−1

k=1 :

ϵt(θ) = EDt [ℓ(f(X; θ), Y )] (1)

ϵ̄T =
1

T

T∑
t=1

ϵt(θT ) (2)

assuming that each domain is sampled uni-
formly, where EDt is the expectation on do-

main Dt and ℓ(x, y) is the sample-based eval-
uation loss or error (e.g. pixel-wise accuracy
or Intersection over Union for segmentation).
We focus on exemplar-free methods to

solve the DIL problem, which refers to a set-
ting where, during training and inference,
the model does not rely on previously seen
data from earlier sessions, a solution usu-
ally considered the most efficient strategy for
continual learning but requires managing a
memory buffer.

4. Problem Analysis

Implementation Details We use two dis-
tinct encoder–decoder architectures in our
study: a modern Vision Transformer (ViT-
Base) and a conventional U-Net.
The ViT-Base model serves as the primary

backbone for our proposed method. It is
trained on 512 × 512 RGB images with a
patch size of 14 and a batch size of 8, us-
ing stochastic gradient descent (SGD). De-
coder heads are trained for 30 epochs at a
fixed learning rate of 10−3. In the FFT con-
figuration, the encoder is further fine-tuned
for 50 epochs with a learning rate annealed
from 10−5 to 10−6. Early stopping is ap-
plied based on the validation set. The com-
plete setup for sequential learning protocols
is summarized in Table 1.
In contrast, the U-Net architecture is

used exclusively in Section 4.1 to illustrate
domain-incremental behavior under full fine-
tuning (FFT). This classical model, with
its residual and skip connections, allows us
to analyze performance dynamics in a well-
understood setting.

4.1. Oscillatory Performances in DIL

To investigate domain-incremental learning
for semantic segmentation, we sequentially
fully fine-tune (FFT) a conventional en-
coder–decoder U-Net along the domain se-
quence described above.
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Table 1: Sequential-learning protocols and model sizes. “Memory” denotes any auxiliary
buffer or statistical moments stored and maintained during training or inference.
Parameter counts correspond to the models fitted across all ten domains. Here
Sz = 1

|N |
∑

i zi and Szz = 1
|N |

∑
i ziz

T
i are, respectively, the first- and second-

moment estimates of latent vectors over a set N of training samples.

Method Encoder Decoder Decoder type Memory #Params

FFT Tuned Tuned Discriminative – 8.6e8

LP Fixed Tuned Discriminative – 1.5e5

FFT1 + LP Tuned on D70 Tuned Discriminative – 1.5e5

FFT1 + LP (Mem.) Tuned on D70 Tuned Discriminative 20 % replay 1.5e5

DIPPCA Fixed – Generative Sz, Szz 1.6e5

MoPPCA Fixed – Generative Domain+ class

Sz, Szz 2.3e6

The overall performance curve shown in
Fig. 3 is oscillatory rather than monotoni-
cally decreasing as new domains are added.
Starting from an IoU of 0.79 on the first do-
main, performance declines steadily up to
stage 4, rises abruptly at stage 5, falls again
from stages 5 to 7, then rebounds between
stages 7 and 8 before stabilizing from stages 8
to 10. The network’s architecture integrates
a sophisticated encoder–decoder backbone
with multiple residual connections that fa-
cilitate information transmission across spa-
tial scales. This intricate design complicates
the isolation of the individual roles of these
modules in the observed losses and recoveries
during sequential fine-tuning.

In our baseline protocol, a
SegmenterLinear network is sequen-
tially fine-tuned on the predefined domains.
In Fig. 3, we analyze the model’s average
performance across all domains seen up
to each step, thereby describing its global
behavior over time. In contrast, Fig. 4 pro-
vides a domain-level breakdown, revealing
that the oscillations observed globally are in
fact rooted in domain-specific performance
variations.

Figure 3: Oscillatory behaviour in domain-
incremental learning. Each point
on every curve reports the mean
IoU for the building class, aver-
aged over the i domains encoun-
tered up to step i. The curves
therefore trace how performance
fluctuates as new domains are se-
quentially added.

Fig. 3 shows an oscillatory FFT curve,
with sharp performance drops at steps 2, 4,
7, and 10. The diagrams in Fig. 4 help at-
tribute each of these drops to specific forget-
ting events. At step 4, for example, while
adapting to D23, the model forgets the ini-
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Table 2: Evaluation metrics. For each method we report the final mean-IoU after sequential
training on the ten domains (mIoUfin), the Oscillation Index (OI) and the Mean-
Absolute Slope (MAS). Lower OI and MAS indicate smoother learning curves.
Precise definitions of OI and MAS are given in the appendix.

Method mIoUfin OI MAS

FFT 0.73 0.60 0.022

LP 0.61 0.75 0.042

FFT1 + LP 0.68 0.32 0.017

FFT1 + LP (Memory) 0.72 0.60 0.015

DIPPCA (Q=100) 0.73 0.16 0.013

DIPPCA (Q=768) 0.76 0.20 0.013

MoPPCA 0.76 0.16 0.008

tial domain D70 (IoU 0.81 → 0.67, forget-
ting score ∆IoU = 0.15). At step 7, train-
ing on D14 leads to performance drops on
both D23 and D21 (IoU on D23: 0.73 → 0.58,
∆IoU = 0.15; on D21: ∆IoU = 0.07). At
step 10, the largest degradation again occurs.

Because the decoder is merely a single
linear layer, these oscillations are best ex-
plained by a drift in the feature space as
the encoder is repeatedly fine-tuned. To test
this hypothesis, the sequential linear prob-
ing scheme freezes the DINOv2 encoder and
adjusts only the linear head. Under this
setting the mean IoU still slides from 0.74
to 0.66 between steps 1 and 4, driven by
the same D23-induced loss on D70. Perfor-
mance rebounds after training on D35, yet
falls sharply again at step 8 when adapt-
ing to D41, which provokes heavy forget-
ting on D21 (∆IoU = 0.13) and on D23 and
D35 (∆IoU = 0.17 each). The final update
on D78 repeats the pattern, degrading D21
(∆IoU = 0.13), D23 (∆IoU = 0.17) and D41
(∆IoU = 0.18). Freezing the encoder there-
fore lowers overall accuracy and amplifies the
per-domain swings, with D23, D21 and D35
suffering the most.

Another stabilization attempt fully fine-
tunes the network on the first domain D70
before restricting subsequent updates to the
linear head. Adapting the features in this
way lessens the cumulative performance loss
and yields a higher mean IoU, yet the oscilla-
tory behaviour endures. Pronounced forget-
ting still appears on D21 and D23 at steps 7
and 10, while a familiar rebound is observed
at step 5. Thus, even after feature realign-
ment, the sequential updates of a single lin-
ear classifier cannot completely suppress the
recurrent drops and recoveries characteristic
of this task.

Across the three incremental learning pro-
tocols—plain sequential fine-tuning, sequen-
tial linear probing with a frozen DINOv2
encoder, and one-off full fine-tuning on the
first domain followed by linear probing—the
same qualitative phenomenon persists: the
global performance curve oscillates, with
abrupt drops that coincide with sharp bursts
of domain-specific forgetting and partial re-
bounds driven by positive transfer from cer-
tain domains.

Freezing the encoder does stabilize the
representation in the strict sense that fea-
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ture drift is eliminated; however, forgetting
remains—and its amplitude even grows for
some domains when freezing DINOv2 fea-
tures. Re-centring the feature space by fine-
tuning the whole network on the first domain
(FFT1 + LP ) improves the average IoU and
dampens forgetting, yet the oscillatory pat-
tern survives. And we can attribute those
oscillations to the decoder.

The oscillations metrics 2 highlight those
observations. LP exhibits the poorest tem-
poral behaviour: its MAS (0.042) indicates
an average four-point swing in mIoU at every
update, and its OI (0.75) confirms frequent,
high-amplitude reversals—hence a highly er-
ratic learning curve. Jointly tuning the en-
coder and decoder in FFT halves the step-
to-step variability (MAS = 0.022) and lowers
the oscillation index to 0.60, yet pronounced
peaks and troughs persist. Pre-training the
encoder once on the first domain further sta-
bilises the trajectory: FFT1+LP reduces
MAS to 0.017 and OI to 0.32, cutting both
the magnitude and the frequency of perfor-
mance reversals by more than 50 % relative
to LP.

4.2. Explaining Oscillations

For all three training regimes, forgetting is
not uniform but is more pronounced for par-
ticular domains and at specific steps, hint-
ing at outlier domains whose feature distri-
butions deviate from the rest of the sequence.

The most obvious cases are D21 and
D23. Both exhibit abrupt mIoU drops—D21
at steps 7, 8, and 10, D23 at the same
points—and, in addition, updating on D23
triggers forgetting on the initial domain D70.

We attribute these oscillations to inter-
domain interference: when an incoming do-
main is far from certain historical domains in
feature space, the parameter shift that ben-
efits the newcomer harms those earlier do-
mains. We quantify this interference with

the 2-Wasserstein distance d2(Di, Dj) (Mal-
lasto et al., 2022) and we make the assump-
tion that the larger d2(Di, Dj), the larger the
ensuing mIoU drop on Dj after training on
Di.

We quantified the discrepancy between do-
mains by measuring pairwise 2-Wasserstein
distances in the DINOv2 feature space
learned after full training on the ref-
erence domain D070. The distance
matrix (5) highlights several dissimilar
pairs whose values exceed d2 > 800:
(D021,D014), (D021,D049), (D021,D078)
as well as (D023,D014), (D023,D049) and
(D023,D078). The forgetting matrix for
the FFT1+LP configuration (4) shows the
largest negative jumps exactly for those
pairs: ∆mIoU = −0.13 on D023 and −0.7
on D021 when adapting to D014; −0.24
(D023) and −0.08 (D021) when adapting
to D078; and so forth for D049. We then
correlate those distances with ∆IoU (Fig-
ure 6): the trend is clear and positive,
larger 2-Wasserstein distances entails larger
forgetting, a few outliers remain, however:
e.g. a large distance W2(D070, D021) >
500 produces almost no forgetting, and
W2(D021, D023) < 500 produces rather high
forgetting implying that another factor is at
play.

5. Problem solution

In the previous section, we identified the crit-
ical phenomenon to control in DIL as the
randomness of the geometric distribution of
domains, which generates performance os-
cillations rather than the monotonic perfor-
mance decrease — i.e., catastrophic forget-
ting — observed in CIL. Given this finding,
we will now examine ways to counteract this
behavior. First, we discuss the nature of neu-
ral architectures used for semantic segmenta-
tion and propose two schemes that rely on a
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Figure 4: Continual-learning performance matrices for the three training protocols: (a)
FFT (left), (b) LP (centre) and (c) FFT1+LP (right). Top row—per-step,
per-domain IoU for the building class (darker = higher). Bottom row—∆IoU
relative to the diagonal (initial score); negative values indicate an improvement
rather than forgetting.

rich fixed encoder and a light decoder-centric
adaptation.

5.1. Architecture for segmentation
DIL

Encoder-decoder architectures for seg-
mentation In deep learning, a standard
strategy is to use a pretrained model to en-
code an image along with a decoder that
solves a specific task. The encoder is typi-
cally fine-tuned to the target data, while the
decoder is fully learned. The differences be-
tween neural architectures depend roughly
on the relationship between the encoder and
decoder, as well as their nature.

A large variety of architectures have been
adapted to solve semantic segmentation, im-
plementing several trade-offs in complexity
between the encoder and the decoder (Huang

et al., 2024a). In classical architectures,
such as U-Net (Ronneberger et al., 2015),
the encoder concentrates useful information
in a tensor with low spatial resolution and
many channels. This requires a complex
upsampling decoder to produce the seman-
tic map. The adaptation effort to a new
domain is shared equally between the en-
coder and decoder during learning. Many
recent transformer-based architectures, such
as Mask2Former (Cheng et al., 2021), also
require a complex decoder that combines a
query-based transformer and a multi-scale,
pixel-based upsampling pyramid.

When rich decoder architectures are used
for continual learning, the plasticity required
to adapt to a new domain or task is dis-
tributed between two complex functional
structures. This makes controlling their sta-
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Figure 5: 2-Wasserstein distance matrix be-
tween the feature distributions of
the ten domains. Entry (i, j) re-
ports the distance between do-
mains Di and Dj , computed in the
fixed feature space obtained after
fully fine-tuning on the first do-
main (D70).

Figure 6: Correlation between the 2-
Wasserstein distance and forget-
ting (∆IoU). Pairwise distances
are binned into three cate-
gories—Low, Mid and High. A
global least-squares regression line
(dashed red) highlights the overall
trend.

Figure 7: Pipeline of the latent–domain
PPCA decoder (MoPPCA). (1)
Feature extraction — input
patches are embedded by a frozen
DINOv2 backbone. (2) Do-
main assignment — in the la-
tent space, a Probabilistic PCA
mixture models each domain as a
Gaussian, every patch is assigned
to the nearest domain component
via the Mahalanobis score (x −
µ)TΣ−1(x − µ). (3) Patch clas-
sification — within the selected
domain, another PPCA mixture
models the class-specific clusters
and assigns the patch to a class
with the same Mahalanobis crite-
rion. (4) Upsampling — the
per-patch logits are upsampled to
the original image resolution and
an argmax yields the final seg-
mentation map. Colours illustrate
domain and class components; red
crosses denote PPCA means and
ellipses the projected covariances.

bility potentially difficult because both struc-
tures contribute to the final output. The role
of each structure in performance degradation
due to the incremental setting is unclear.

A patch-level decoder-centric architec-
ture To avoid dealing with two complex
structures for controlling performance degra-
dation due to DIL, we propose an architec-
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Figure 8: Mean IoU on the building class
across the ten domain-incremental
steps. MoPPCA stays closest to
the joint-training oracle and shows
fewer oscillations than DIPPCA
and replay baselines.

ture that relies on a rich image encoder and
a simple class prediction decoder. This is
the architecture already tested in 4.1. The
goal is to minimize modifications to the en-
coder when a new domain arrives — poten-
tially even freezing it — while enabling a
more significant adaptation of the decoder.
This scheme implies that we have an encoder
that can produce high-quality features with a
good invariance/discrimination trade-off for
a wide variety of images. The advent of self-
supervised techniques has made this possible
(Jing and Tian, 2021).

Of the possible encoder candidates, DI-
NOv2 (Oquab et al., 2023) appears to be
the most suitable choice. DINOv2 relies on
a ViT architecture that provides patch-level
embeddings for each input image and has
been proven effective for dense recognition
tasks.

We propose feeding the DINOv2 features
to a simple decoder that computes patch-
level class logits, followed by bilinear up-
sampling of these logits to match the orig-
inal image size. This is a global architecture
similar to the linear variant of Segmenter
(Strudel et al., 2021). The key difference

lies in how the logits are computed. Our
approach is based on probabilistic principal
component analysis (PPCA) (Tipping and
Bishop, 1999) to compute the class condi-
tional logits. We use such a generative clas-
sifier because it allows for a simple incremen-
tal updating strategy based on running av-
erages of the first and second statistical mo-
ments of class-conditional distributions over
each session. This property has motivated
other strategies proposed for CIL settings,
such as those in (Panos et al., 2023; Wang
and Barbu, 2022), and DIL settings, such as
those in (Boum et al., 2024), but for classifi-
cation.

To adapt to a segmentation problem, com-
putations are performed at the patch level of
the DINOv2 ViT architecture. Given an in-
put image, the encoder produces a 3D ten-
sor. The first dimensions of this tensor are
the numbers of the patch indices, and the
last dimension is the feature space associ-
ated with each patch. The prediction is ob-
tained by computing the argmax of the class-
conditional likelihood after applying PPCA
models and bilinear upsampling the logits.

Class conditional PPCA models are com-
puted by considering the distribution of
patch features from each image. The dataset
used to estimate the first and second mo-
ments of the model is a collection of patch
features gathered from all images in the cur-
rent domain. Each patch (14 x 14 pixels in
DINOv2) is annotated with the most preva-
lent class from the ground truth; patches
with ambiguous classes are discarded. Work-
ing at the patch level enables the manipula-
tion of populations of moderate size to esti-
mate the model parameters and frames seg-
mentation as a classification problem with
independent, patch-based feature samples.
The computation of the model parameters
follows the scheme proposed in (DIPPCA)
(Boum et al., 2024), which computes the
Mahalanobis distance in a small projection
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space obtained by singular value decomposi-
tion.

Latent domain conditioning In the DIL
approach described above, stability results
from keeping features fixed, and plasticity is
satisfied by updating the parameters of a sin-
gle generative PPCA model per class. How-
ever, the unimodal Gaussian distribution as-
sumption underlying this model may not ad-
equately fit the global distribution of all the
domains observed at this point. Indeed, as
shown in 4.1, one possible explanation for
the oscillatory behavior of performance is the
presence of outlier domains in feature space.

A simple solution for handling erratic do-
main geometry is to condition the classifi-
cation on the predicted domain from which
the data was sampled. This step is analo-
gous to the task identity inference compo-
nent defined in (Wang et al., 2025). First,
the most likely task or domain is assigned,
and then the class is inferred using domain-
dependent parameters. Domain assignment
can be solved using maximum likelihood
with a PPCA model in the patch feature
space. This time, the model is class ag-
nostic, and we have a single PPCA model
per domain. The combination of domain as-
signment and domain-conditional class pre-
diction constitutes our method : Mixture
of PPCA (MoPPCA). We set the latent
dimension to Q=100 as a compromise be-
tween representation power and computa-
tional cost.

5.2. Validation

The FFT1+LP (Memory) curve still dis-
plays a saw-tooth pattern: mIoU falls from
steps 2 to 4, rebounds at step 5, then declines
smoothly to the end. Table 2 shows that the
replay buffer dampens only the small vari-
ations—the mean-absolute slope drops from
0.017 to 0.015—but leaves the large peaks
and troughs intact (OI stays high at 0.60).

Although the extra exemplars lift the final
mIoU from 0.68 to 0.72, the method remains
vulnerable to strong inter-domain interfer-
ence. The generative decoder in DIPPCA
(Q = 768) further reduces oscillations: its OI
falls to 0.20 and MAS to 0.013. The curve
still shows marked dips at steps 2, 4 and
8, yet it stays above the replay baseline ex-
cept at steps 4–5, where the two traces inter-
sect before FFT1+LP (Memory) resumes
its slow slide while DIPPCA stabilises.

The improvement suggests that modelling
feature variance preserves global structure
better, but the gain is limited by parameter
budget and by outlier domains, whose arrival
still triggers noticeable drops. Our method,
MoPPCA(Section 5), eliminates almost all
residual oscillations. As Figure 8 illustrates,
the curve tracks the oracle closer than the
other methods, and its critical dips are visi-
bly attenuated. With a latent dimension of
only Q = 100, MoPPCA already outper-
forms DIPPCA, achieving the joint-highest
final mIoU (0.76) while posting the best sta-
bility scores in Table 2 (OI = 0.16, MAS =
0.008).

Because its parameters are estimated once
and reused, no additional fine-tuning is re-
quired, and the learning trajectory remains
both accurate and smooth throughout the
ten-domain sequence. Quantitatively, the
three generative variants exhibit the follow-
ing profile (see Table 2). DIPPCA(Q=100)
yields a final mIoU of 0.73 with an OI of 0.16
and a MAS of 0.013. Increasing the latent
rank to DIPPCA (Q=768) lifts the mIoU to
0.76 but also raises the oscillation index to
0.20, while the MAS remains at 0.013.

By contrast, MoPPCA (Q=100) attains
the same top-line accuracy as DIPPCA
(Q=768) (0.76) yet restores the lower OI of
0.16 and cuts the step-to-step variability to
MAS = 0.008 roughly a 40% reduction rela-
tive to both DIPPCA settings. Thus, MoP-
PCA matches the best accuracy obtained
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Figure 9: Qualitative evaluation over ten incremental steps (left-to-right) on the FLAIR#1
sequence.Top: baseline FFT. Bottom: proposed method MoPPCA. The base-
line exhibits pronounced oscillations, evidenced by a whole building that goes
completely undetected at one step then re-appears in the following step. MoP-
PCA maintains every building across all steps, only minor boundary variations
remain, confirming its superior stability over the sequential steps.

with a high-rank DIPPCA while delivering
the smoothest learning trajectory of all three
methods.

9 corroborates the quantitative results.
In the baseline FFT (top row) oscillations
translates to buildings vanish entirely at suc-
cessive incremental steps before re-appearing
at later steps. By contrast, the proposed
MoPPCA decoder (bottom row) preserves all
buildings throughout the sequence: although
contour delineation fluctuates slightly from
step to step, no building is completely lost,
indicating markedly greater stability.

6. Discussion

In this work, we have established a protocol
for leveraging foundation model’s features for
domain incremental semantic segmentation
of VHR remote sensing imagery (FLAIR#1).
Using this protocol we show that the over-
all performance does not decay smoothly but
oscillates and we traced those oscillations to
outlier domains whose feature distributions
diverge notably from the rest of the data
stream. To remedy those oscillations we de-
veloped a latent domain–conditioned archi-
tecture that first infers the active domain

with a class-agnostic PPCA in the feature
space and then carries out domain-specific
classification with a second PPCA.

By coupling automatic task identifica-
tion with a lightweight, domain-aware de-
coder, the approach removes negative back-
ward transfer and consistently exceeds the
DIPPCA baseline, even when the latter is
trained to capture the full variance of the
data. The present study leaves two ques-
tions open. First, we have not yet char-
acterised how the latent dimension Q and
the number of class-agnostic PPCAs influ-
ence overall accuracy. Second, the assign-
ment statistics of the latent domains them-
selves—particularly the case of patches be-
longing to outlier domains—remain unex-
plored. Investigating these aspects will refine
our understanding of domain structure in in-
cremental remote-sensing scenarios and may
suggest further improvements to the model.

In addition, although the current exper-
iments are restricted to binary building-
background segmentation, the same method-
ology could be applied in a multiclass set-
ting on the original FLAIR#1 annotation
scheme and subsequently extended to other
high-resolution Earth Observation data sets.
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Appendix A. First Appendix

A.1. Stability metrics.

Let mi denote the mean IoU observed after
step i (i = 1, . . . , T ). We report two comple-
mentary, metrics for temporal stability.
(i) Oscillation Index (OI). We first remove

the global trend by subtraction and quan-
tify the average amplitude of each reversal
of slope:

OI =
1

T − 2

T∑
i=3

∣∣(mi −mi−1)− (mi−1 −mi−2)
∣∣

mmax −mmin
.

OI equals 0 for a perfectly monotone curve
and increases with both the frequency and
the height of peaks/troughs; a lower value
thus indicates smoother behaviour.
(ii) Mean Absolute Slope (MAS). While

OI focuses on the high-frequency component,
MAS captures the average step-to-step vari-
ability:

MAS =
1

T − 1

T∑
i=2

|mi −mi−1|.

MAS is insensitive to the direction of the
drift and isolates the magnitude of local
changes. In both metrics, smaller numbers
translate into greater stability.

A.2. MoPPCA : Domain Scale
Analysis

The per-domain IoU matrix reveals a sta-
ble performance across training steps, with
values remaining high and consistent across
previously seen domains. No severe forget-
ting is observed: once a domain is learned,
its IoU remains largely unchanged in subse-
quent steps.
Some domains (e.g., D035, D052) even ex-

hibit slight performance gains over time, sug-
gesting mild positive forward transfer. For
example, D035 maintains an IoU of 0.82

Figure 10: Continual-learning performance
matrices for the MoPPCA train-
ing protocol. Top row—per-
step, per-domain IoU for the
building class (darker = higher).
Bottom row—∆IoU relative to
the diagonal (initial score); neg-
ative values indicate an improve-
ment rather than forgetting.

across steps, and D052 improves slightly
(0.78 → 0.79). Similarly, early domains
such as D070 and D021 retain their scores
(0.81 and 0.75, respectively), indicating good
knowledge retention.
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