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Abstract

Genome-wide association studies (GWAS) are used to identify genetic variants
significantly correlated with a target disease or phenotype as a first step to detect
potentially causal genes. The availability of high-dimensional biomedical data in
population-scale biobanks has enabled novel machine-learning-based phenotyping
approaches in which machine learning (ML) algorithms rapidly and accurately phe-
notype large cohorts with both genomic and clinical data, increasing the statistical
power to detect variants associated with a given phenotype. While recent work
has demonstrated that these methods can be extended to diseases for which only
low quality medical-record-based labels are available, it is not possible to quan-
tify changes in statistical power since the underlying ground-truth liability scores
for the complex, polygenic diseases represented by these medical-record-based
phenotypes is unknown. In this work, we aim to empirically study the robustness
of ML-based phenotyping procedures to label noise by applying varying levels of
random noise to vertical cup-to-disc ratio (VCDR), a quantitative feature of the
optic nerve that is predictable from color fundus imagery and strongly influences
glaucoma referral risk. We show that the ML-based phenotyping procedure recov-
ers the underlying liability score across noise levels, significantly improving genetic
discovery and PRS predictive power relative to noisy equivalents. Furthermore,
initial denoising experiments show promising preliminary results, suggesting that
improving such methods will yield additional gains.

1 Introduction

Genome-wide association studies (GWAS) are used to identify genetic variants correlated with a target
disease or phenotype. Population-scale cohorts, such as the UK Biobank (UKB) [1] and Biobank
Japan [2], present the opportunity to deeply study complex polygenic diseases [3] as their large
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sample sizes increase power to detect associated variants via GWAS. However, to maximize GWAS
power, a cohort must also be accurately phenotyped. Traditional strategies for accurate phenotyping,
such as manual expert labeling, are costly, subjective, and scale poorly to population cohorts. The
availability of high-dimensional biomedical data in biobanks has enabled novel approaches in which
machine learning (ML) algorithms rapidly and accurately phenotype large cohorts with both genomic
and clinical data [4–7], remedying the manual phenotyping challenges mentioned above. While
early ML-based phenotyping methods relied on high-quality labels to train the ML model, recent
work demonstrated that disease liability scores produced by a model trained on noisy medical-
record-based labels improved GWAS power despite poor label quality [8]. This suggests that
ML-based phenotyping can be extended to a wider range of diseases for which only lower quality
electronic health records, such as self-report, hospitalization codes, and general practitioner notes, are
available. However, to this date no rigorous work has quantified the effect of such noise on ML-based
phenotyping results.

ML-based phenotyping is particularly powerful for diseases that follow a liability threshold model [9]
and for which the underlying liability is well predicted by the model. One example is glaucoma, for
which the vertical cup-to-disc ratio (VCDR) is a quantitative endophenotype that strongly influences
glaucoma referral risk [10]. VCDR can be accurately predicted from color fundus images [5, 6, 10]:
VCDR predictions from Alipanahi et al. [5] were shown to be strongly correlated with a test set
graded by 2–3 experts (R = 0.89, 95% CI = 0.88− 0.90).

In this paper, we investigate the ability of ML-based phenotyping methods to denoise corrupted
labels and propose a hybrid approach that helps correct for such labels. Specifically, we use the
VCDR values predicted by the model of Alipanahi et al. in UKB as a ground truth liability score for
glaucoma, apply varying levels of random noise to generate noisy label sets, and train a variety of
models on the noisy label sets. We evaluate downstream performance of the models both for their
ability to predict VCDR directly and for their influence on genomic discovery. To the best of our
knowledge, this is the first empirical study of methods for ML-based phenotyping denoising. We show
that while even a small amount of label noise significantly decreases downstream genetic discovery
and polygenic risk score (PRS) performance, the standard ML-based phenotyping procedure not only
recovers underlying genetic hits but also significantly improves PRS predictive power relative to
both the ground-truth and noisy GWAS. Initial explorations of integrated denoising approaches show
promising preliminary results, further motivating this line of research.

2 Methods

Experimental setup In using the VCDR values predicted by the model of Alipanahi et al. [5]
as the true underlying liability score for glaucoma, we assume that the corresponding GWAS
and downstream genomic analyses run on these labels, hereafter clean VCDR, capture the true
causal variants associated with glaucoma. We use these results as an upper bound in our denoising
experiments. We choose to directly use this continuous representation to maximize the performance
of our corrupted baselines since a noisy liability score will have improved power relative to some
binarized equivalent [9]. This allows us to ignore the impact of the ML-based phenotyping procedure
converting binary labels to continuous risk scores. We then generate various noisy label sets, hereafter
noisy VCDR, by applying a multiplicative Gaussian noise vector to the clean VCDR labels for
ε ∈ {0.1, 0.3, 0.8} and clamping to non-negative values:

ỹ = y ·max (0,Normal(1, ε)). (2.1)

Results for additive random noise at similar levels had less impact on both ML performance and
genomic discovery and are omitted from this manuscript. We use these noisy VCDR label sets in
downstream analyses by both running GWAS directly on the noisy VCDR phenotypes as well as
using the noisy VCDR values as targets to train ML models. The GWAS run on noisy VCDR serve
as a lower bounds for our genomic analyses.

ML-based phenotyping procedure The ML-based phenotyping procedure consists of two separate
processes: a model training phase (Figure 1a-c) in which we train an InceptionV3 network [11]
to predict a patient’s target VCDR value from fundus imagery, and a model application phase
(Figure 1d) in which model predictions are used for downstream genomic discovery in UKB. We
describe standard networks trained using clean VCDR as clean models and standard networks trained
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Figure 1: An overview of the ML-based phenotype denoising training and application processes for
clean, noisy, and denoised VCDR models. Each model is applied to biobank fundus imagery and the
resulting liability scores are used for genomic discovery.

using noisy VCDR as noisy models. Models that employ a modified training procedure to explicitly
correct for noisy VCDR labels are referred to as denoised models. Each model is applied to UKB
samples using a similar cross-fold strategy to prevent data leakage and the resulting liability scores
are used to run GWAS. See Appendix A.1 for details.

Performance evaluation Though noisy models are optimized using their noisy VCDR targets, we
evaluated all ML models according to their clean VCDR performance in the test set to assess each
model’s ability to denoise the corrupted labels. We combined cross-fold predictions for each task
to mimic the process used to generate GWAS phenotypes and evaluate the generalizability of the
cross-fold methodology.

We evaluated improvements to genomic discovery by comparing noisy and denoised ML-based
GWAS with our baseline clean and noisy label GWAS across three metrics: i) number of independent
genome wide significant (GWS; p ≤ 5× 10−8) hits [5, 12] from the clean VCDR GWAS replicated
by ML-based GWAS, ii) statistical power of the GWAS, quantified using the non-centrality parameter
(NCP) (Equation (2.2)), and iii) the predictive performance for clean VCDR of polygenic risk scores
(PRS) summarizing the estimated effect of hits.

Running a GWAS is computationally expensive compared to the ML training process, often taking
10-20 times longer to complete. Since we have access to the underlying clean VCDR phenotype in
our simulated setting, we were able to preemptively estimate ML-based GWAS power using NCP as
a quantitative proxy. Equation (2.2) defines the NCP formulation for each variant i, where βi is the
estimated effect size of i-th variant in the clean VCDR GWAS, se(βi) is the standard deviation of the
estimated effect size in the clean VCDR GWAS, m is the total number of GWS variants for the clean
VCDR GWAS, and ρ is the Pearson’s correlation coefficient between the target and clean VCDR
phenotypes. The sum of per-variant NCP across all relevant hits, ÑCP, is then used as an indicator of
expected GWAS power [13], which allows us to estimate downstream performance and to explore
additional corruption and denoising methods with higher efficiency.

ÑCP =
∑
i

NCPi =
1

m

∑
i

√
n

ρ2β2
i

1− ρ2β2
i

(2.2)

Denoising attempts After assessing the performance of standard ML-based phenotyping ap-
proaches under noisy conditions, we were interested in the application of denoising approaches
to further improve robustness. There are many existing machine learning methods for reducing label
noise or increasing training reliability [14–17]. For example, the Stratified Noisy Cross-Validation
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Figure 2: The robustness of ML-based phenotyping approaches to corrupted labels. a-c) Clean VCDR
labels compared with their multiplicative noise equivalents. d-f) Noisy model predictions compared
with the corresponding noisy labels and the underlying ground truth liability scores.

(SNVC) method [14] involves a two-step training procedure where one first trains multiple models
on different folds of data and then uses the disagreement in prediction between these models to drop
unreliable or hard-to-predict samples prior to performing a second round of training (Figure 5). Of
candidate approaches, we considered SNVC the most suitable denoising approach. First, SNVC is
agnostic to network architecture choice. Second, SNVC was designed for stratifying labeling noise in
medical data and is expected to work on both binary and continuous labels, making it particularly
compatible with our experimental setup.

We experimented with different types of filters for determining prediction disagreement. Distance-
based filters computed L2 distance between predictions from different models and dropped samples
using either a threshold of {1e−4, 1e−3, 1e−2} (threshold filter) or a percentile of top {10%, 20%}
disagreement (quantile filter). Clinically binarized filters either binarized the prediction using
clinically-defined thresholds of VCDR ≥ 0.7 [18] and considered the prediction reliable if the two
models agree (binary filter) or expanded the 2-class binarization approach to 10-bin categorization
(multi-bin filter). Lastly, to assess the upper bound of denoising performance, we designed an oracle
filter where we took the ground truth levels of noise and dropped the top 20% of corrupted samples.
Table 1 presents results for the two top performing filters: the clinically-defined binary filter and the
oracle filter. Other filter approaches had similar or worse performance and the design of these filters
deserves more study.

3 Results

We first evaluated the effect of artificial noise on GWAS power by comparing the clean labels
and the noisy labels. We observed that the GWAS replication and PRS performance dropped as
expected when the VCDR labels were corrupted, and that the power reduction is monotonic with the
increased levels of noise introduced (ε = {0.0, 0.1, 0.3, 0.8}). We used these results as the baseline
performance in the following results with ML-based phenotyping and denoising.

To estimate model performance under a real-world scenario with noisy medical measurements,
we evaluated the change of the predictive power by comparing among the clean labels, the noisy
labels, and the ML-based VCDR values using standard models trained with noisy labels, i.e., noisy
VCDR models. Our results demonstrate that noisy models, though trained using noisy VCDR
labels, have predictions that remain well correlated with the underlying clean VCDR values (R =
0.98, 0.97, and 0.94, respectively). These results indicated the ML-based phenotyping methodology
is robust against noise with respect to phenotype prediction (Figure 2c-d).
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Table 1: ML and genomic discovery performance across labels and models. “ML Noisy R” and “ML
Clean R” denote Pearson’s correlation between labels or model predictions and the target noisy or
ground-truth labels, respectively. “NCP” denotes the non-centrality parameter as described in (2.2).
“Replication %” captures the percent of ground-truth GWS hits replicated by the target phenotype’s
GWAS. “PRS Euro R” and “PRS Non-Euro R” denote the Pearson’s correlation between PRS scores
in the European holdout set (n = 1, 472) and the non-European validation set (n = 10, 095).

Phenotype ML Noisy R ML Clean R NCP Replication % PRS Euro R PRS Non-Euro R

Clean VCDR - 1.0000± 0.0000 194.7313± 0.0000 100% 0.3047± 0.0230 0.2800± 0.0096

Noisy VCDR (ε = 0.1) - 0.9685± 0.0005 181.7726± 0.0999 92.86% 0.1738± 0.0239 0.1509± 0.0096
Noisy Model 0.9511± 0.0008 0.9819± 0.0004 185.8213± 0.0923 96.75% 0.3974± 0.0223 0.3652± 0.0096
Denoised Model (binary) 0.9506± 0.0008 0.9819± 0.0003 185.7674± 0.0794 96.10% 0.4083± 0.0221 0.3712± 0.0092
Denoised Model (oracle) 0.9484± 0.0008 0.9795± 0.0004 184.8610± 0.1024 96.75% 0.4008± 0.0225 0.3743± 0.0094

Noisy VCDR (ε = 0.3) - 0.7941± 0.0035 118.6192± 0.4719 76.30% 0.1347± 0.0240 0.1188± 0.0095
Noisy Model 0.7677± 0.0036 0.9664± 0.0006 178.2096± 0.1386 93.51% 0.3904± 0.0222 0.3539± 0.0093
Denoised Model (binary) 0.7669± 0.0038 0.9661± 0.0007 178.4808± 0.1500 94.16% 0.3904± 0.0231 0.3607± 0.0096
Denoised Model (oracle) 0.7713± 0.0037 0.9729± 0.0005 181.6247± 0.1259 95.13% 0.3933± 0.0219 0.3645± 0.0092

Noisy VCDR (ε = 0.8) - 0.4932± 0.0070 43.0540± 0.5012 41.88% 0.0975± 0.0261 0.1451± 0.0105
Noisy Model 0.4652± 0.0069 0.9443± 0.0009 168.1538± 0.2195 91.56% 0.4009± 0.0217 0.3596± 0.0094
Denoised Model (binary) 0.4610± 0.0071 0.9373± 0.0011 164.3056± 0.2331 89.94% 0.3948± 0.0232 0.3719± 0.0094
Denoised Model (oracle) 0.4642± 0.0071 0.9463± 0.0011 168.9465± 0.2057 94.16% 0.3845± 0.0220 0.3574± 0.0096

GWAS results were consistent with our observations of ML performance, showing that though the
overall power was reduced when using noisy data, the reduction is much less when using ML-based
VCDR values produced by noisy VCDR models trained to predict that same noisy data. We also
observed that adding data corruption does not result in false positive genetic hits, which might
indicate that the GWAS pipeline is robust against unbiased random noise or variance and therefore
should be less affected by random data mislabeling or random errors in clinical measurements.
Interestingly, noisy ML-based PRS models outperform not only their noisy label equivalents but also
the ground-truth VCDR PRS.

In order to further improve model robustness, we added SNVC-based denoising methods on top of
the original ML-based phenotyping model training procedure (Section 2). We aimed to empirically
optimize the training phase, but also wanted to examine the theoretical upper bound of the SNVC
method in denoising performance. Since, by experimental design, we had access to the ground-truth
noise levels that were applied to each sample, we were also able to estimate the best possible denoising
performance by designing an oracle filter that dropped samples according to those ground-truth
levels. We used SNVC with this filter to train denoised VCDR models and ran GWAS on the
resulting ML-based VCDR values. Our results show a marginal improvement in replication and PRS
performance using this denoising approach when compared to the standard ML-based phenotyping
process. However, other disagreement filters resulted in little to no improvement over the standard
process, suggesting that there is more work to be done in designing these denoising approaches in the
context of ML-based phenotyping.

4 Conclusion

In summary, we examined the robustness of the ML-based phenotyping procedure to label corruption
and proposed an SNVC-based denoising method. By adding varying levels of simulated random noise
to ground truth liability scores for glaucoma, we were able to empirically reason about both the effects
of random phenotypic noise on downstream model performance as well as capture its impact on
genomic discovery. Our results show that standard ML-based phenotyping approaches successfully
recover underlying liability scores given corrupted labels and that our integrated denoising approach
allows for modest additional gains under oracle disagreement conditions. These promising initial
findings highlight the potential for extending ML-based phenotyping to diseases for which only low
quality labels are currently available and motivate further denoising research. Exciting avenues for
future work include extending this analysis to the binary label setting to better mirror the nature
of the electronic health records often found in biobanks, evaluating the impact of additional noise
distributions–including structured noise–to better understand how ML-based phenotyping handles
systematic dataset bias, and further improving integrated denoising methods.
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at https://github.com/Google-Health/genomics-research/tree/main/ml-based-vcdr.
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A Appendix

A.1 InceptionV3 model training and application

Models were optimized to minimize MSE validation loss using Adam [19]. For each task, we
performed a sweep over learning and regularization hyperparameters using the Vizier optimization
service [20] (Table 2). Image preprocessing hyperparameters were held constant across runs (Table 3).
In order to prevent overfitting, we employed an early stopping [21] patience of 5,000 steps and selected
the checkpoint that resulted in the minimum validation loss. We implemented our InceptionV3
network using TensorFlow 2.0 [22] and each model instance was trained on a single NVIDIA
Tesla V100 GPU using mixed floating-point precision [23]. Unlike Alipanahi et al. [5], we did
not use a learning rate scheduler or model averaging. Models were initiated with the official
tf.keras.applications weights pre-trained on ImageNet [24].

To generate clean and noisy VCDR model liability scores, a separate model was trained on each fold
and then applied directly to the other fold. Note that a separate hyperparameter search was completed
for each fold. A dataset size ablation study and cross-fold model performance analysis showed strong
pairwise correlations between a model trained on the full dataset (i.e., no cross-folding) and the two
cross-fold models (Figure 4). Figure 5 illustrates the modified Stratified Noisy Cross-Validation
(SNVC) [14] process used to generate denoised VCDR liability scores.

Models are trained on eye-level samples while GWAS is run on individual-level samples. We followed
the eye-to-individual aggregation methods outlined in Alipanahi et al. [5], selecting images from only
the first-available visit and then taking the mean of the target value across images.

A.2 Genome-wide association studies and polygenic risk scores

GWAS analyses of all VCDR labels and ML-based VCDR phenotypes were performed using BOLT-
LMM v2.3.6 [25, 26]. Prior to GWAS, all phenotypes were rank-based inverse normal transformed
(INT) to increase the power for association discovery [27]. We controlled for sex, age at visit, visit
ID (i.e., either 1 or 2 to indicate the first or second visit), number of eyes used to compute the target
phenotype, average fundus image gradeability, refractive error, genotyping array, and the top 15
genetic principle components (PCs). GWS loci were obtained by merging hits within 250kb together.
Polygenic risk scores (PRS) were computed using BOLT-LMM’s Best Linear Unbiased Prediction
[25, 28].

Table 2: Hyperparameters tuned using the Vizier optimization service [20]. The Vizier service
employed a Gaussian process bandit optimization algorithm [29] to run a total of 70 trials with at
most 35 trials running in parallel.

Hyperparameter Candidate Values

Learning rate Sampled from (1e−7, 1e−1) at unit log scale
Weight decay Sampled from (1e−7, 1e−3) at unit log scale
Dropout [0.0, 0.1, 0.2, 0.4, 0.6, 0.8]
Batch size [16, 32]
Adam β1 0.9
Adam β2 0.999
Adam ε 0.1
Adam amsgrad FALSE
Max training steps 250,000
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Figure 3: An overview of the ML train, validation, and test dataset splits and cross-folds. Individuals
with gradable fundus images were randomly split according to their ID so that the split sizes are
close to, but not exactly, the target train, validation, and test split distributions. Any individuals with
estimated genetic relations spanning splits or folds were dropped (UKB fields 22011 and 22012).

Table 3: Image augmentation hyperparameters. These values were held constant across tasks
and hyperparameter sweeps. Pixel values were first normalized to range [0, 1], augmented, and
then clipped back to [0, 1]. Images were then centered to [−1, 1] as required by the InceptionV3
architecture.

Augmentation Value Notes

Image resize 587x587 See tf.image.resize.
Random horizontal flip TRUE See tf.image.random_flip_left_right.
Random vertical flip TRUE See tf.image.random_flip_up_down.
Random brightness max delta of 0.0251488 See tf.image.random_brightness.
Random hue max delta of 0.1147528 See tf.image.random_hue.
Random saturation lower 0.5597273 See tf.image.random_saturation.
Random saturation upper 1.2748845 See tf.image.random_saturation.
Random contrast lower 0.9996807 See tf.image.random_contrast.
Random contrast upper 1.770482 See tf.image.random_contrast.
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Figure 4: Pearson’s correlation (R) of validation set predictions across a model trained using only
Fold 0 training samples, only Fold 1 training samples, and all training samples.

Figure 5: An overview of the modified Stratified Noisy Cross-Validation (SNVC) [14] process applied
during the denoising process. Each model is trained on its respective fold and then applied to both
folds. We calculated cross-fold model disagreement with a disagreement function and removed high
disagreement individuals from the two folds. We retrained the models using their corresponding
modified fold and then used each model to generate predictions for the other fold.
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