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ABSTRACT

Deep Learning algorithms have recently gained significant attention due to their
impressive performance. However, their high complexity and un-interpretable
mode of operation hinders their confident deployment in real-world safety-critical
tasks. This work targets ante hoc interpretability, and specifically Concept Bot-
tleneck Models (CBMs). Our goal is to design a framework that admits a highly
interpretable decision making process with respect to human understandable con-
cepts, on two levels of granularity. To this end, we propose a novel hierarchi-
cal concept discovery formulation leveraging: (i) recent advances in image-text
models, and (ii) an innovative formulation for coarse-to-fine concept selection via
data-driven and sparsity inducing Bayesian arguments. Within this framework,
concept information does not solely rely on the similarity between the whole im-
age and general unstructured concepts; instead, we introduce the notion of con-
cept hierarchy to uncover and exploit more granular concept information residing
in patch-specific regions of the image scene. As we experimentally show, the pro-
posed construction not only outperforms recent CBM approaches, but also yields
a principled framework towards interpetability.

1 INTRODUCTION

The recent advent of multimodal models has greatly popularized the deployment of Deep Learning
approaches to a variety of tasks and applications. However, in most cases, deep architectures are
treated in an alarming black-box manner: given an input, they produce a particular prediction, with
their mode of operation and complexity preventing any potential investigation of their decision-
making process. This property not only raises serious questions concerning their deployment in
safety-critical applications, but at the same time it could actively preclude their adoption in settings
that could otherwise benefit societal advances, e.g., medical applications.

This conspicuous shortcoming of modern architectures has fortunately gained a lot of attention from
the research community in recent years, expediting the design of novel frameworks towards Deep
Neural Network (DNN) interpretability. Within this frame of reference, there exist two core ap-
proaches: ante- and post- hoc. The latter aims to provide explanations to conventional pretrained
models, e.g., Network Dissection (Bau et al., 2017), while the former aims to devise inherently
interpretable models. In this context, Concept Bottleneck Models (CBMs) constitute one of the
best-known approaches; these comprise: (i) an intermediate Concept Bottleneck Layer (CBL), a
layer whose neurons are tied to human understandable concepts, e.g., textual descriptions, followed
by (ii) a linear decision layer. Thus, the final decision constitutes a linear combination of the CBL’s
concepts, leading to a more interpretable decision mechanism. However, typical CBM approaches
are accompanied by four significant drawbacks: (i) they commonly require hand-annotated con-
cepts, (ii) they usually exhibit lower performance compared to their non-interpretable counterparts,
(iii) their interpretability is substantially impaired due to the sheer amount of concepts that need to
be analysed during inference, and (iv) they are not suited for tasks that require greater granularity.

The first drawback has been recently addressed by incorporating image-text models in the CBM
pipeline; instead of relying on a fixed concept set, any text can be projected in the image-text em-
bedding space and compared with the image. At the same time, mechanisms to restore performance
have also been proposed, e.g., residual fitting (Yuksekgonul et al., 2022). The remaining two limita-
tions however, still pose a significant research challenge.
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Indeed, CBMs usually rely on a large amount of concepts, usually proportional to the number of
classes for the given task; with more complex datasets, thousands of concepts may be considered.
Evidently, this renders the investigation of the decision making tasks an arduous and unintuitive
process. In this context, some works aim to reduce the amount of considered concepts by imposing
sparsity constraints upon concept activation. Commonly, post-hoc class-wise sparsity methods are
considered (Wong et al., 2021; Oikarinen et al., 2023); however, these tend to restrict the number of
concepts on a per-class basis, enforcing ad hoc application-specific sparsity/performance thresholds,
greatly limiting the flexibility of concept activation for each example. Recently, a data-driven per-
example discovery mechanism has been proposed in Panousis et al. (2023); this leverages binary
indicators founded upon Variational Bayesian arguments and explicitly denote the relevance of each
concept on a per-example basis. This allows for a greater flexibility, since each example can activate
a number of concepts that have been deemed essential to achieve the downstream task.

Even though these approaches aim address the problem of concept over-abundance, they do not
consider ways to emphasize finer concept information that may present in a given image; they still
exclusively target similarity between concepts and the whole image. In this setting, localized, low-
level concepts (e.g. object shape or texture), are predicted from a representation of the whole image,
potentially leading to the undesirable use of top-down relations. For instance, the model detects
some high-level concept (e.g., elephant), resulting in associated lower-level concept activations (e.g.,
tusks, wrinkled skin) that may not even be actually be visible. This can further lead to significant
concept omission, i.e., information potentially crucial for tasks that require greater granularity, e.g.,
fine-grained part discovery, or even cases where the input is susceptible to multiple interpretations.

Drawing inspiration from this inadequacy of CBM formulations, we introduce a novel coarse-to-fine
paradigm that allows for discovering and capturing both high and low level concept information. We
achieve this objective by: (i) leveraging recent CBM advances, namely Concept Discovery Models
(CDMs), (ii) devising an end-to-end trainable hierarchical construction; in this setting, we exploit
both the whole image, as well as information residing in individual isolated regions of the image,
i.e., specific patches, to achieve the downstream task. These levels of hierarchy are linked together
by intuitive and principled arguments, allowing for information and context sharing between them,
paving the way towards more interpretable models. We dub our approach Concept Pyramid Models
(CPMs); in principle, our framework allows for arbitrarily deep hierarchies using different repre-
sentations, e.g., super-pixels. Here, we focus on the two-level setting, as a proof of concept for the
potency of the proposed framework. Our contributions can be summarized as follows:

• We introduce a novel interpretable hierarchical model that allows for coarse-to-fine concept
discovery, exploiting finer details residing in patch-specific regions of an image.

• We propose a novel way of assessing the interpretation capacity of our model based on the
Jaccard index between ground truth concepts and learned data-driven binary indicators.

• We perform a thorough quantitative and qualitative analysis. We experimentally show that
CPMs outperform other SOTA approaches classification-wise, while substantially improv-
ing interpretation capacity.

2 RELATED WORK

CBMs decompose the final task of prediction into multiple concept detection tasks, allowing for a
richer evaluation of the model’s reasoning. Early works on concept-based models (Mahajan et al.,
2011), were severely limited by requiring an extensive hand-annotated dataset comprising all the
used concepts. In this context, and to enhance the reliability of predictions of diverse visual contexts,
probabilistic approaches, such as ProbCBM(Kim et al., 2023), build upon conventional CBMs, in-
troducing the concept of ambiguity, allowing for capturing the uncertainty both in concept and class
prediction. The appearance of image-text models, chiefly CLIP (Radford et al., 2021), has mitigated
the need for hand-annotated data, allowing to easily make use of thousands of concepts, followed
by a linear operator on the concept presence probabilities to solve the downstream task (Oikarinen
et al., 2023; Yang et al., 2023b). However, this generally means that all concepts may simultaneously
contribute to a given prediction, rendering the analysis of concept contribution an arduous and unin-
tuitive task, severely undermining the sought-after interpetability. This has led to methods that seek
also a sparse concept representation, either by design (Marcos et al., 2020) or data-driven (Panousis
et al., 2023), which is the approach we follow in this work.
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3 CONCEPT PYRAMID MODELS

Let us denote by D = {Xn, ŷn}Nn=1, a dataset comprising N images, where each image Xn ∈
RIH×IW×c comprises c channels, and ŷn ∈ {0, 1}C its class label. Within the context of CBMs, a
concept set A = {a1, . . . , aH}, comprising H concepts, e.g., textual descriptions, is also considered;
the main objective is to re-formulate the prediction process, constructing a bottleneck that relies upon
the considered concepts, in an attempt to design inherently interpretable models. In this work, we
deviate from the classical definition of CBMs and consider the setting of coarse-to-fine concept-
based classification based on similarities between images and concepts.

Concept-based Classification. To discover the relations between images and attributes, image-
language models, and specifically CLIP (Radford et al., 2021), are typically considered. These com-
prise an image and a text encoder, denoted by EI(·) and ET (·) respectively, trained in a contrastive
manner (Sohn, 2016; Chen et al., 2020) to learn a common embedding space. After training, we
can then project any image and text in this common space and compute the similarity between their
(ℓ2-normalized) embeddings. Thus, assuming a concept set A, with |A| = H , the most commonly
considered similarity measure S is the cosine similarity:

S ∝ EI(X)ET (A)T ∈ RN×H (1)
This similarity-based representation has recently been exploited to design models with interpretable
decision processes such as CBM-variants (Yuksekgonul et al., 2022; Oikarinen et al., 2023) and
Network Dissection approaches(Oikarinen & Weng, 2023). Evidently, the similarity S yields a
unique representation for each image and can directly be used towards downstream tasks.

Let us consider a C-class classification setting; by introducing a linear layer Wc ∈ RH×C , we can
perform classification via the similarity representation S. The output of such a network yields:

Y = SW T
c ∈ RN×C (2)

In this setting, the image and text encoders are usually kept frozen, and training only pertains to the
weight matrix Wc. This approach has been shown to yield impressive results despite the simplicity
of the approach and even on low-resolution datasets such as CIFAR-10 (Panousis et al., 2023).

However, this simple formulation comes with a key deficit: it is by-design limited to the granularity
of the concepts that it can potentially discover in any particular image. Indeed, for any given image,
image-text models are commonly trained to match high-level concepts present therein; this leads to a
loss of granularity, that is, important details in the image are either omitted or considered irrelevant.
Yet, in complex tasks such as fine-grained classification or in cases where the decision is ambiguous,
this can potentially hinder both the downstream task, but also interpretability. In these settings, it
is likely that any low-level information present is not captured, obstructing any potential low-level
investigation on how the network reasoned on the high-level concept. Moreover, this approach
considers the entire concept set to describe an input; this not only greatly limits the flexibility of
the considered framework, but also renders the interpretation analyses questionable due to the sheer
amount of concepts that need to be analysed during inference (Ramaswamy et al., 2023).

In this work, we consider a novel hierarchical concept discovery formulation, introducing the notion
of hierarchy of concepts, represented by two distinct yet dependent modeling levels: High (H)
and Low (L). To this end, we introduce: (i) the high level concepts AH ; each concept therein is
characterized by a number of attributes, thus forming the (ii) low-level pool of concepts (attributes)
AL. The former are used to discover an image’s concept representation in the context of the whole
image, while the latter are used to uncover finer information residing in patch-specific regions. Each
considered level aims to achieve the given downstream task, while information sharing takes place
between them as we describe in the following.

3.1 HIGH LEVEL CONCEPT DISCOVERY

For the high-level, we consider: (i) the whole image, and (ii) the set of H concepts AH . Using the
definitions of concept-based classification, i.e. Eqs.(1), ( 2), we can perform classification using a
single linear layer with weights WHc ∈ RH×C :

SH ∝ EI(X)ET (AH)T ∈ RN×H (3)

YH = SHWHc
T ∈ RN×C (4)
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In this formulation however, all the considered concepts are potentially contributing to the final
decision, not taking into account the relevance of each concept towards the downstream task or any
information redundancy; simultaneously, the interpretation capacity is also limited due to the large
amount of concepts that need to be analysed during inference. To bypass this drawback, we consider
a novel, data-driven mechanism for concept discovery based on auxiliary binary latent variables.

Concept Discovery. To discover the essential subset of high-level concepts to represent each ex-
ample, we introduce appropriate auxiliary binary latent variables ZH ∈ {0, 1}N×H ; these operate
in an “on”-“off” fashion, indicating, for each example, if a given concept needs to be considered to
achieve the downstream task, i.e., [ZH ]n,h = 1 if concept h is active for example n, and 0 otherwise.
The output of the network is now given by the inner product between the classification matrix WHc

and the effective concepts as dictated by the binary indicators ZH :

YH = (ZH · SH)WHc
T ∈ RN×C (5)

A naive definition of these indicators would require computing and storing one indicator per exam-
ple. To avoid the computational complexity and generalization limitations of such a formulation,
we consider an amortized approach similar to (Panousis et al., 2023). To this end, we introduce a
data-driven random sampling procedure for ZH , and postulate that the latent variables are drawn
from appropriate Bernoulli distributions; specifically, their probabilities are proportional to a sep-
arate linear computation between the embedding of the image and an auxiliary linear layer with
weights WHs ∈ RK×M , where K is the dimensionality of the embedding, yielding:

q([ZH ]n) = Bernoulli
(
[ZH ]n

∣∣∣sigmoid
(
EI(Xn)WHs

T
))

∈ {0, 1}H , ∀n (6)

where [·]n denotes the n-th row of the matrix, i.e., the indicators for the n-th image. This formula-
tion exploits an additional source of information emerging solely from the image embedding; this
allows for an explicit mechanism for inferring concept relevance in the context of the considered
task, instead of exclusively relying on the implicit CLIP similarity measure. However, considering
only the high-level concept information can be insufficient, since it potentially ignores the effect of
any fine-grained details present in an image. To this end, we introduce a novel low-level concept
discovery mechanism that is then directly tied to the described high-level formulation.

3.2 LOW LEVEL CONCEPT DISCOVERY

For formulating a finer concept discovery mechanism, we introduce the notion of concept hierarchy.
Specifically, we assume that each of the H high-level concepts is characterized by a number of low-
level attributes; these are pooled together to form the set of L low-level concepts AL. In general,
high-level concepts may or may not share any low-level attributes. Within this framework, re-
using the whole image may hinder concept discovery since fine-grained details may be ignored in
the context of the whole image. Moreover, prominent objects may dominate the discovery task,
especially in complex scenes, while other significant attributes present in different regions of the
image can be completely be ignored.

Thus, to facilitate the discovery of low-level information, avoiding conflicting information in the
context of whole image, we split each image n into a set of P non-overlapping patches: Pn =
{P 1

n ,P
2
n , . . . ,P

P
n }, where P p

n ∈ RPH×PW×c and PH , PW denote the height and width of each
patch respectively, and c is the number of channels. In this context, each patch is now treated as a
standalone image. To this end, we first compute the similarities with respect to the pool of low-level
concepts. For each image n split into P patches, the patches-concepts similarity computation reads:

[SL]n ∝ EI(Pn)ET (AL)
T ∈ RP×L, ∀n (7)

We define a single classification layer with weights WLc ∈ RL×C , while for obtaining a single
representation vector for each image, we introduce an aggregation operation to combine the infor-
mation from all the patches. This can be performed before or after the linear layer. Here, we consider
the latter, using a maximum rationale. Thus, for each image n, the output [YL]n ∈ RC , reads:

[YL]n = max
p

[
[SL]nW

T
Lc

]
p
∈ RC , ∀n (8)

where [·]p denotes the p-th row of the matrix. This formulation still exhibits the same issue as
the simple concept-based approach: all low-level concepts are potentially considered, hindering the
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interpretation process. To this end, we define the corresponding concept discovery mechanism for
the low level to address information redundancy and then introduce an information linkage between
the different levels.

Concept Discovery. For each patch p of image n, we consider latent variables [ZL]n,p ∈ {0, 1}L,
operating in an “on”-“off” fashion as before. Specifically, we introduce an amortization matrix
WLs ∈ RK×L, K being the dimensionality of the embeddings. In this setting, [ZL]n,p are drawn
from Bernoulli distributions driven from the patch embeddings, s.t.:

q([ZL]n,p) = Bernoulli
(
[ZL]n,p

∣∣sigmoid
(
EI([P ]n,p)WLs

T
))

∈ {0, 1}L, ∀n, p (9)

The output is now given by the inner product between the effective low level concepts as dictated by
ZL and the weight matrix WLc, yielding:

[YL]n = max
p

[(
[ZL]n · [SL]n

)
WLc

T
]
p
∈ RC , ∀n (10)

The formulation of the low-level, patch-focused variant is now concluded. This can be used as a
standalone network to uncover information residing in patch-specific regions of an image and inves-
tigate the network’s decision making process. However, we can further augment this functionality
by linking the two described levels, allowing the flow of information between them.

3.3 LINKING THE TWO LEVELS

For tying the two different levels together, we exploit: (i) the latent variables ZH ,ZL, and (ii)
the relationship between the high and low level concepts. Since for each high-level concept we
have access to which concepts from the low-level pool of attributes characterizes it, we can use this
information for context exchange between the two levels.

Specifically, for each high-level concept h, we consider a fixed L-sized binary vector bh ∈ {0, 1}L
that encodes its relationship with the attributes; these are concatenated to form the matrix B ∈
{0, 1}L×H . Each entry l, h therein, denotes if the low-level attribute l characterizes the high-level
concept h; if so, [B]l,h = 1, otherwise [B]l,h = 0. It is important to highlight that we do not require
any ground truth information for constructing B; its construction is solely based on the concept
sets. However, if ground-truth indicators denoting the relation between high and low level concepts
is available, we can easily exploit it as prior information.

Constructing B is a very intuitive process. For example consider the high-level concept cat and
a pool of attributes [fur, paws, bricks, eggs, tail]. In this setting, bcat = [1, 1, 0, 0, 1], since we
expect a cat to be characterized by fur, paws and tail, and not by bricks and eggs. Hence, we
can mask the low-level concepts, and zero-out the ones that are irrelevant, following a top-down
rationale. During training, we learn which high-level concepts are active, and subsequently discover
the relevance of low-level attributes, while the probabilistic nature of our construction allows for
the consideration of different configurations of high and low level concepts. This leads to a rich
information exchange between the high and the low levels of the network towards achieving the
downstream task. A discussion of the top-down and bottom-up rationale of concept hierarchy is
provided in the Appendix.

To formalize this linkage, we first consider which high-level concepts are active via ZH and B to
uncover which low-level attributes should be considered in the final decision; this is computed via
a mean operation, averaging over the high-level dimension H . Then, we use the indicators ZL to
further mask the remaining low-level attributes. This yields:

Z ∝
(
ZHBT

)
·ZL (11)

Thus, by replacing the indicators ZL in Eq.10 with Z, the two levels are linked together and can be
trained on an end-to-end fashion. A graphical illustration of the proposed Concept Pyramid Models
(CPM) is depicted on Fig. 1. The introduced framework can easily accommodate more than two
levels of hierarchy, while allowing for the usage of different input representations, e.g., super-pixels.

3.4 TRAINING & INFERENCE

Training. Considering a dataset D = {(Xn, ŷn)}Nn=1, we employ the standard cross-entropy loss,
denoted by CE

(
ŷn, f(Xn,A)

)
, where f(Xn,A) = Softmax([Y ]n) are the class probabilities. For
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Figure 1: A schematic of the envisioned Concept Pyramid Models. We consider a set of high
level concepts, each described by a number of attributes; this forms the pool of low-level concepts.
Our objective is to discover concepts that describe the whole image, while exploiting information
residing in patch-specific regions. To this end, we match low-level concepts to each patch and
aggregate the information to obtain a single representation to achieve a downstream task. The levels
are tied together via the concept indicators ZH ,ZL and the relationship between the concepts.

the simple concept-based model, i.e., without any discovery mechanism, the logits [Y ]n correspond
to either [YH ]n (Eq.(4)), or [YL]n (Eq.(8)), depending on the considered level. In this context, the
only trainable parameters are the classification matrices for each level, i.e., WHc or WLc.

For the full model, the presence of the indicator variables, i.e., ZH and/or ZL, necessitates a dif-
ferent treatment of the objective. To this end, we turn to the Variational Bayesian (VB) framework,
and specifically to Stochastic Gradient Variational Bayes (SGVB) (Kingma & Welling, 2014). We
impose appropriate prior distributions on the latent indicators ZH and ZL, such that:

ZH ∼ Bernoulli(αH), ZL ∼ Bernoulli(αL) (12)
where αH and αL are non-negative constants. In the following, we consider the case where the
levels are linked together. Obtaining the objective for a single level is trivial; one only needs to
remove the other level’s terms. Since the network comprises two outputs, the loss function consists
of two distinct CE terms: (i) one for the high-level, and (ii) one for the low-level. The final objective
function takes the form of an Evidence Lower Bound (ELBO) (Hoffman et al., 2013):

LELBO =
N∑
i=1

εCE
(
ŷn, f(Xn,AH , [ZH ]n)

)
+ (1− ε)CE

(
ŷn, f(Xn,AL, [Z]n)

)
− β

(
DKL

(
q
(
[ZH ]n

)∣∣∣∣p([ZH ]n
))

+
∑
p

DKL

(
q
(
[ZL]n,p

)∣∣∣∣p([ZL]n,p
))) (13)

where we augmented the CE notation to reflect the dependence on the binary indicators and ε is a
balancing term. β is a scaling factor (Higgins et al., 2017) to avert the KL term from dominating
the downstream task. The KL term encourages the posterior to be close to the prior; setting αH , αL

to a very small value “pushes” the posterior to sparser solutions. Through training, we aim to learn
which of these components effectively contribute to the downstream task.

For computing Eq. (13), we turn to Monte Carlo (MC) sampling using a single reparameterized
sample for each latent variable. Since, the Bernoulli is not amenable to the reparameterization trick
(Kingma & Welling, 2014), we turn to its continuous relaxation using the Gumbel-Softmax trick
(Maddison et al., 2017; Jang et al., 2017); we present the exact sampling procedure in the appendix.
Inference. After training, we can directly draw samples from the learned posteriors and perform
inference. Specifically, let us assume an input image X; this is first passed through the high-level
discovery mechanism (Eq. (6)), from which we draw samples of the high-level concept indicators
ZH and compute the high-level output based on Eq.(5). We then turn to the low-level: first the
image is split into patches. We then draw samples for the patch-specific indicators ZL according to
Eq.(9). We combine the low and the high level information through Eq.(11) and compute the output
for the low-level. Finally, apart from assessing the classification capacity, we can investigate the
latent indicators on each level to gain insights on the network’s decision making process.
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4 EXPERIMENTAL EVALUATION

Experimental Setup. We consider three different benchmark datasets for evaluating the proposed
hierarchical framework, namely, CUB, SUN, and ImageNet-1k. These constitute highly diverse
datasets varying in both number of examples and applicability: ImageNet is a 1000-class object
recognition benchmark, SUN comprises 717 classes with a limited number of examples for each,
while CUB is used for fine-grained bird species identification spanning 200 classes. For the Vision-
Language models, we turn to CLIP(Radford et al., 2021) and select a common backbone, i.e., ViT-
B/16. To avoid having to calculate the embeddings of both images/patches and text at each iteration,
we pre-compute them with the chosen backbone. Then, during training, we directly load them and
compute the necessary quantities. For the high level concepts, we consider the class names for each
dataset. For the low-level concepts, we consider: (i) for SUN and CUB, the ground-truth attributes
comprising 102 and 312 descriptions respectively, and (ii) for ImageNet, we randomly select 20
concepts for each class from the concept set described in Yang et al. (2023a). These distinct sets
enables us to assess the efficacy of the proposed framework in highly diverse configurations. For
constructing B, we consider: (i) for SUN and CUB, a per-class summary stemming from the ground
truth relationship between classes and attributes, (ii) for ImageNet, a binary representation of the 20
active entries for each concept. We consider both classification accuracy, as well as the capacity
of the proposed framework towards interpretability. For all experiments, we set αH , αL, and β to
1e− 4 and ϵ = 0.5. Further details can be found in the Appendix.

Accuracy. We begin our experimental analysis by assessing both the classification capacity of
the proposed framework, but also its concept sparsification ability. To this end, we consider: (i) a
baseline non-intepretable backbone, (ii) the recently proposed SOTA Label-Free CBMs (Oikarinen
et al., 2023), (iii) classification using only the clip embeddings either of the whole image (CLIP
EmbeddingsH) or the image’s patches (CLIP EmbeddingsL), (iv) classification based on the sim-
ilarity between images and the whole concept set (CDMH ✗discovery), and (v) the approach of
Panousis et al. (2023) that considers a data-driven concept discovery mechanism only on the whole
image (CDMH✓discovery). We also consider the proposed patch-specific variant of CDMs defined
in Sec. 3.2, denoted by CDML. The baseline results and the Label-Free CBMs are taken directly
from (Oikarinen et al., 2023). We denote our novel hierarchical framework as CPM.

In this setting, models based on the images’ patches, i.e. CLIPL and CDML, are trained with the
pool of low-level attributes as concepts. Here, it is worth noting that the CDML setting corresponds
to a variant of the full CPM model, where all the high level concepts are active; thus, all attributes
are considered in the low-level with no masking involved. However, in this case, since the binary
indicators ZH are not used, there is no information exchange taking place between the two levels;
this serves as an ablation setting that allows for assessing the impact of the information linkage.

The obtained comparative results are depicted in Table 1. Therein, we observe that the proposed
framework exhibits highly improved performance compared to Label-Free CBMs, while on par or
even improved classification performance compared to the concept discovery-based CDMs on the
high-level. On the low level, our approach improves performance up to ≈ 20% compared to CDML.

At this point, it is important to highlight the effect of the hierarchical construction and the linkage
of the levels to the overall behavior of the network. In all the considered settings, we observe: (i)
a drastic improvement of the classification accuracy of the low-level module, and (ii) a significant
change in the patterns of concept discovery on both levels. We posit that the information exchange
that takes place between the levels, conveys a context of the relevant attributes that should be consid-
ered. This is reflected both to the capacity to improve the low-level classification rate compared to
solely using the CLIP embeddings or CDML, but also on the drastic change of the concept retention
rate of the low level. At the same time, the patch-specific information discovered on the low-level
alters the discovery patterns of the high-level, since potentially more concepts should be activated
in order to successfully achieve the downstream task. This behavior is extremely highlighted in the
ImageNet case: our approach not only exhibits significant gains compared to the alternative concept-
based CDMH on the high-level, but also the low-level accuracy of our approach outperforms it by
a large margin. These first investigations hint at the capacity of the proposed framework to exploit
patch-specific information for improving on the considered downstream task.

Attribute Matching. Even though classification performance constitutes an important indicator
of the overall capacity of a given architecture, it is not an appropriate metric for quantifying its
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Dataset (Accuracy (%) || Sparsity (%))
Architecture Type Model Concepts Sparsity CUB SUN ImageNet

Non-Interpretable
Baseline (Images) ✗ ✗ 76.70 42.90 76.13

CLIP EmbeddingsH ✗ ✗ 81.90 65.80 79.40
CLIP EmbeddingsL ✗ ✗ 47.80 46.00 62.85

Concept-Based
Whole Image

Label-Free CBMs ✓ ✓ 74.59 − 71.98
CDMH ✓ ✗ 80.30 66.25 75.22
CDMH ✓ ✓ 78.90||19.00 64.55||13.00 76.55||14.00

CPMH (Ours) ✓ ✓ 77.80||42.30 64.00||47.58 77.40||27.20

Concept-Based
Patches

CDML ✓ ✗ 39.05 37.00 49.20
CDML ✓ ✓ 59.62||58.00 42.30||67.00 58.20||25.60

CPML (Ours) ✓ ✓ 72.00||24.00 57.10||28.33 78.45||15.00

Table 1: Classification Accuracy and Average Percentage of Activated Concepts (Sparsity). By bold
black/blue, we denote the best-performing high/low level sparsity-inducing concept-based model.

behavior within the context of interpretability. To this end, and contrary to recent approaches that
solely rely on classification performance and qualitative analyses, we introduce a metric to measure
the effectiveness of a concept-based approach. Thus, we turn to the Jaccard Similarity and compute
the similarity between the binary indicators z that denote the discovered concepts and the binary
ground truth indicators that can be found in both CUB and SUN; we denote the latter as zgt.

Let us denote by: (i) M11 the number of entries equal to 1 in both binary vectors, (ii) M0,1 the
number of entries equal to 0 in z, but equal to 1 in zgt, and (iii) M1,0 the number of entries equal
to 1 in z, but equal to 0 in zgt; we consider the asymmetric case, focusing on the importance of
correctly detecting the presence of a concept. Then, we can compute the Jaccard similarity as:

Jaccard(z, zgt) = M1,1/(M1,1 +M1,0 +M0,1) (14)

The considered metric can be exploited as an objective score for evaluating the quality of the ob-
tained concept-based explanations across multiple frameworks, given they consider the same con-
cept set and the ground truth indicators exist.

For a baseline comparison, we train a CDM with either: (i) the whole image (CDM) or (ii) the im-
age patches (CDML), using the whole set of low-level attributes as the concept set for both SUN and
CUB. We consider the same set for the low-level of CPMs; due to its hierarchical nature however,
CPM can exploit concept hierarchy as described in Sec.3.3 to narrow down the concepts considered
on the low-level. For both SUN and CUB, we have ground truth attributes on a per-example basis
(example-wise), but also the present attributes per class (class-wise). We assess the matching be-
tween these ground-truth indicators and the inferred indicators both in terms of binary accuracy, but
also in terms of the considered Jaccard index.

Dataset (Matching Accuracy (%)|| Jaccard Index (%))
Model Attribute Set Train Atrribute Set Eval SUN CUB
CDM(Panousis et al., 2023) whole set class-wise 51.43||26.00 39.00||17.20
CDM(Panousis et al., 2023) whole set example-wise 48.45||15.70 36.15||09.50
CDML whole set class-wise 30.95||26.70 25.81||19.60
CDML whole set example-wise 20.70||15.00 17.65||10.40
CPM (Ours) hierarchy class-wise 53.10||28.20 79.85||27.20
CPM (Ours) hierarchy example-wise 49.92||16.80 81.00||16.10

Table 2: Attribute matching accuracy. We compare our approach to the recently proposed CDM
model trained the considered low-level concept sets. Then, we predict the matching, in terms of
Jaccard similarity, between the inferred per-example concept indicators and: (i) the per example and
(ii) class-wise ground truth attributes found in both SUN and CUB.

In Table 2, the attribute matching results are depicted. Therein we observe, that our CPMs outper-
form both CDM and CDML in all the different configurations and in both the considered metrics
with up to 10% improvement. These results suggest that by exploiting concept and representation
hierarchy, we can uncover low-level information and more relevant concepts. However, it is also
important to note how the binary accuracy metric can be quite misleading. Indeed, the ground truth
indicators, particularly in CUB, are quite sparse; thus, if a model predicts that most concepts are not
relevant, we yield very high binary accuracy. Fortunately though, the proposed metric can success-
fully address this false sense of confidence as a more appropriate measure for concept matching.

Qualitative Analysis. For our qualitative analysis, we focus on the ImageNet-1k validation set;
this decision was motivated by the fact that it is the only dataset where attribute matching could not
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Figure 2: Original and additional discovered concepts for the Sussex Spaniel ImageNet class. By
green, we denote the concepts retained from the original low-level set pertaining to the class, by
maroon, concepts removed via the binary indicators Z, and by purple the newly discovered concepts.

Figure 3: A random example from the Black Swan class of ImageNet-1k validation set. On the upper
part, the original concept set corresponding to the class is depicted, while on the lower, some of the
concepts discovered via our novel patch-specific formulation.
be assessed due to the absence of ground-truth information. Thus, in Fig. 2, we selected a random
class (Sussex Spaniel) and depict: (i) the 20 originally considered concepts and (ii) the results of the
concept discovery. In this setting, we consider a concept to be relevant to the class if it is present
in more than 40% of the examples of the class; these concepts are obtained by averaging over the
class examples’ indicators. We observe that our CPM is able to retain highly relevant concepts from
the original set, while discovering equally relevant concepts from other classes such as australian
terrier, soft-coated wheaten terrier and collie.

Finally, in Fig.3, for a random image from the ImageNet-1k validation set, we illustrate: (i) the
original set of concepts describing its class (Black Swan), and (ii) some of the low-level attributes
discovered by our CPM. We observe that the original concept set pertaining to the class cannot
adequately represent the considered example. Indeed, most concepts therein would make the in-
tepretation task difficult even for a human annotator. In stark contrast, the proposed framework
allows for a more interpretable set of concepts, capturing finer information residing in the patches;
this can in turn facilitate a more thorough examination of the network’s decision making process.

5 LIMITATIONS & CONCLUSIONS

A potential limitation of the proposed framework is the dependence on the pretrained image/text
encoders. The final performance and interpretation capacity is tied to the suitability of the back-
bone with respect to the task at hand. If the embeddings cannot adequately capture the relation (in
terms of similarity) between images/patches-concepts, there is currently no mechanism to mitigate
this issue. However, if this issue arises, the introduced construction can easily accommodate any
suitable modifications by simply altering the embedding networks. Concerning the complexity of
the proposed CPM framework, by precomputing all the required embeddings for a considered task,
the resulting complexity is orders of magnitude lower than training a conventional backbone.

In this work, we proposed an innovative framework in the context of ante-hoc interpretability based
on a novel hierarchical construction. We introduced the notion of concept hierarchy, in which, high-
level concepts are characterized by a number of lower-level attributes. In this context, we leveraged
recent advances in CBMs and Bayesian arguments to construct an end-to-end coarse-to-fine net-
work that can exploit these distinct concept representations, by considering both the whole image,
as well as its individual patches; this facilitated the discovery and exploitation of finer information
residing in patch-specific regions of the image. We validated our paradigm both in terms of classi-
fication performance, while considering a new metric for evaluating the network’s capacity towards
interpretability. As we experimentally showed, we yielded networks that retain or even improve
classification accuracy, while allowing for a more granular investigation of their decision process.

9



Under review as a conference paper at ICLR 2024

REFERENCES

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations. In Proc. CVPR, 2017.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework
for contrastive learning of visual representations. In Proc. ICML, 2020.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a
constrained variational framework. In Proc. ICLR, 2017.

Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic variational infer-
ence. Journal of Machine Learning Research, 2013.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparametrization with gumbel-softmax. In
Proc. ICLR, 2017.

Eunji Kim, Dahuin Jung, Sangha Park, Siwon Kim, and Sungroh Yoon. Probabilistic concept bot-
tleneck models. In Proc. ICML, 2023.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Proc. ICLR, 2014.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. In Proc. ICLR, 2017.

Dhruv Mahajan, Sundararajan Sellamanickam, and Vinod Nair. A joint learning framework for
attribute models and object descriptions. In 2011 International Conference on Computer Vision,
pp. 1227–1234. IEEE, 2011.
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A APPENDIX

A.1 THE TOP-DOWN AND BOTTOM-UP VIEW OF CONCEPT DESIGN

As noted in the main text, in this work, we consider both high and low level concepts. Within
this frame of reference, one design choice that needed to be addressed is the interpretation of the
connection between these two sets. In our view, there are two ways to approach this setting: (i)
top-down (which we consider), and (ii) bottom-up. We posit that a combined bottom-up-then-top-
down approach is what would most closely follow a human-like behavior when analysing an object.
However, it is the second step that is more of a conscious process: we first become aware of the
whole object, e.g., a bird or a dog, even if we have subconsciously perceived a lot of low-level
cues to reach that conclusion, and then, based on this high-level knowledge, we can draw further
conclusions about the nature of the lower-level image characteristics, e.g. interpreting a furry texture
as either feathers or fur.

In a purely bottom-up approach, we would first analyse the low-level characteristics, such as shapes
and textures, and we would then try to reason about the whole context in order to assign them
semantics, e.g. ears, tail, fur. In our opinion, there isn’t a single right approach for solving this
problem in the context of interpretability. We posit however, that the information exchange that
takes places between the high and the low levels via the learning process of the binary indicators
does indeed allows for context information sharing between both levels (in the forward pass only
from high to low, but also the inverse during training).

One of the motivations of this work was to be able to examine not only the high level concepts but
mainly the low level ones. This could potentially allow for drawing conclusions about the high level
concept in terms of the uncovered low level attributes. In this context, we can focus on the discov-
ered low-level attributes themselves and reason on the high-level concepts as the reviewer suggests.
In our opinion, this is somewhat captured in the proposed framework. Indeed, in the qualitative
analyses, we observed that, many times, the discovered low level concepts revealed attributes that
are semantically connected to various high level concepts.

Future work. In our setting, we assume that there exists a known hierarchy/relationship between
the concepts. However, it may very well be the case that there exists some hidden/latent hierarchy in
the ground truth attributes that is not explicitly captured via the construction of the concepts sets. In
this case, an interesting extension to our proposed framework would be a compositional bottom-up
approach with no a priori known hierarchies. Within this context, we could potentially devise a
method that explicitly integrates the aforementioned bottom-up view, aiming to uncover the hidden
hierarchies.

A.2 DISTINCTION BETWEEN THE CPM FRAMEWORK AND VISION TRANSFORMERS

Both our framework and Vision Transformers (ViTs), consider a setting where an image is split
into patches, which are then used for learning representations either in the context of conventional
non-intepretable settings (ViTs) or via inherently interpretable models (CPMs). However, in ViTs,
the patch representations are allows to interact freely with each other along the model, allowing for
rich, context-aware representations, but limiting their interpretability, since it becomes impossible
to grasp these interactions. At the same time, it is not straightforward to exploit the low-level hidden
spatial information in the context of concept-based interpretability in a principled way. In our case,
we strongly limit patch interactions by only allowing a single channel of communication that allows
the high level concepts to control which low level concepts are detected by providing the appropriate
semantic context and aggregate the individual information arising from each patch region.
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A.3 BERNOULLI RELAXATION

To compute the ELBO in Eq.equation 13, we turn to Monte-Carlo sampling, using a single repa-
rameterized sample. Since, the Bernoulli distribution is not amenable to the reparameterization trick
(Kingma & Welling, 2014), we turn to its continuous relaxation(Maddison et al., 2017; Jang et al.,
2017).

Let us denote by z̃i, the probabilities of q(zi), i = 1, . . . N . We can directly draw reparameterized
samples ẑi ∈ (0, 1)M from the continuous relaxation as:

ẑi =
1

1 + exp (−(log z̃i + L)/τ)
(15)

where L ∈ R denotes samples from the Logistic function, such that:

L = logU − log(1− U), U ∼ Uniform(0, 1) (16)

where τ is called the temperature parameter; this controls the degree of the approximation: the
higher the value the more uniform the produced samples and vice versa. We set τ to 0.1 in all the
experimental evaluations. During inference, we can use the Bernoulli distribution to draw samples
and directly compute the binary indicators.

A.4 EXPERIMENTAL DETAILS

For our experiments, we set αH = αL = β = 10−4; we select the best performing learning rate
among {10−4, 10−3, 5 · 10−3, 10−2} for the linear classification layer. We set a higher learning
rate for WHs and WLs (10×) to facilitate learning of the discovery mechanism. We set ϵ = 0.5
to equally balance the contribution of the classification losses. Table 3 provides an ablation study
on the effect of this parameter in the final performance. As the value of ϵ increases, we observe a
gradual improvement in the classification performance of both levels. We posit that the classification
signal on the high level allows for the discovery of more discriminant features towards classification
while restricting the impact of the sparsity inducing mechanism (to achieve the downstream task).
Simultaneously, this provides more flexibility to the low level since more high level concepts are
considered, leading to both accuracy improvements and a larger number of low level attributes. This
leads to a more expressive flow on information between the two levels, exhibiting the final behavior
described in the main text.

ϵ 0.0 0.1 0.2 0.5 0.7 0.8 1.0
High Level 0.430||10.50 73.00||23.25 76.20||42.50 79.20||57.00 79.50||58.00 79.50||57.00 80.50||51.60
Low Level 62.55||21.10 69.50||23.50 71.20||30.00 72.45||31.00 73.00||33.00 72.30||31.50 0.500||00.00

Table 3: Effect of the epsilon parameter on the performance of the two levels. When taking “ex-
treme” values, the respective classification performance of each level collapses since there is no
classification signal.
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Figure 4: Effect of the ϵ parameter on the classification performance of the the two levels. Left: We
observe that when taking “extreme” values, i.e., ϵ = 0 or ϵ = 1 the classification performance of
the respective level collapses. Right: Visualization without the collapsed accuracies to highlight the
effect of ϵ on the two levels.
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For all our experiments, we use the Adam optimizer without any complicated learning rate annealing
schemes. We trained our models using a single NVIDIA A5000 GPU with no data parallelization.
For all our experiments, we split the images into 3× 3 patches.

For SUN and CUB, we train the model for a maximum of 2000 epochs, while for ImageNet, we
only train for 100 epochs.

Complexity. For SUN and CUB, training each configuration for 2000 epochs, takes approximately
5 minutes (wall time measurement). On the other hand, for ImageNet, 100 epochs require approxi-
mately 4 hours. Computing and saving the embeddings for all datasets requires couple of minutes.

A.5 FURTHER QUALITATIVE ANALYSES

Figure 5: Original and additional discovered concepts for the Arctic Fox ImageNet class. By green,
we denote the concepts retained from the original low-level set pertaining to the class, by maroon,
concepts removed via the binary indicators Z, and by purple the newly discovered concepts.

Figure 6: A random example from the Rock Crab class of ImageNet-1k validation set. On the upper
part, the original concept set corresponding to the class is depicted, while on the lower, some of the
concepts discovered via our novel patch-specific formulation.

Figure 7: Original and additional discovered concepts for the Coral Reef ImageNet class. By green,
we denote the concepts retained from the original low-level set pertaining to the class, by maroon,
concepts removed via the binary indicators Z, and by purple the newly discovered concepts.
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