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ABSTRACT

Transition path sampling (TPS) is an important method for studying rare events,
such as they happen in chemical reactions or protein folding. These events occur
so infrequently that traditional simulations are often impractical, and even recent
machine-learning approaches struggle to address this issue for larger systems. In
this paper, we propose using modern deep learning techniques to improve the scal-
ability of TPS methods significantly. We highlight the need for better evaluations
in the existing literature and start by formulating TPS as a sampling problem over
an unnormalized target density and introduce relevant evaluation metrics to assess
the effectiveness of TPS solutions from this perspective. To develop a scalable
approach, we explore several design choices, including a problem-informed neural
network architecture, simulated annealing, the integration of prior knowledge into
the sampling process, and attention mechanisms. Finally, we conduct a compre-
hensive empirical study and compare these design choices with other recently
developed deep-learning methods for rare event sampling.

1 INTRODUCTION

Understanding the mechanisms of transitions between metastable states in molecular systems, such as
protein folding and chemical reactions (Mulholland, 2005; Piana et al., 2012; Ahn et al., 2019; Spotte-
Smith et al., 2022), is a critical challenge in drug discovery and material design. Transition path
sampling (TPS), developed by Pratt (1986) and expanded by others (Bolhuis et al., 2002), examines
the collection of transition paths that facilitate rare events, which can provide deeper insights into
transition mechanisms and transition rates. However, directly sampling transition paths through
molecular dynamics (MD) simulations is often computationally impractical due to high-energy
barriers that result in an exponentially low probability of transitions (Pechukas, 1981).

To overcome this challenge, various enhanced sampling techniques have been developed(Appendix
B), where an essential component for many of these methods is the use of collective variables
(CVs)—functions of atomic coordinates that describe the slow modes of a system’s transition. While
these methods are effective for certain systems, they heavily rely on detailed domain knowledge
to define CVs, significantly limiting their applicability to systems where such variables are poorly
understood (e.g., intrinsically disordered proteins).

Recently, deep Learning has gained traction as a powerful alternative for transition path sampling
without predefined CVs (Das et al., 2021; Holdijk et al., 2023; Lelièvre et al., 2023; Plainer et al.,
2023; Seong et al., 2024; Du et al., 2024). These approaches leverage neural networks to parameterize
bias forces or neural splines, enabling the generation of realistic transition paths. Despite the growing
body of literature in TPS, a lack of standardized metrics remains a key challenge - hindering both
the direct comparison and advancement of existing methods. This paper addresses these issues with
several contributions:

• Unified perspective on transition path sampling. By formulating the TPS problem as sampling
from an unnormalized density, we offer a framework for understanding machine learning-based
path sampling methods and standardize their evaluation using length-adjusted path log-likelihood
and reverse KL divergence.

• Empirical studies on existing TPS methods. We analyze the effectiveness of existing solutions
and demonstrate how they can be improved by using simulated annealing and a physics-inspired
initial interpolation path.
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• Scalable solution to TPS problem with deep learning. We present Doob’s Seq2Seq, a scalable
framework that integrates fixed-window attention with a simulation-free objective to improve TPS
performance and enable scalability to larger systems.

2 BACKGROUND

Molecular dynamics We consider MD simulations on a fixed time interval [0, T ] that describe
motions of a molecular state Xt = (xt, vt) ∈ R6N at time t, where N is the number of atoms,
xt ∈ R3N is the atom-wise positions and vt ∈ R3N is the atom-wise velocities. In particular, we
assume that our systems evolve under second-order Langevin dynamics (Bussi & Parrinello, 2007)
defined by the stochastic differential equation (SDE)

dxt = vt · dt , (1)

dvt =
(
−M−1∇xU(xt)− γvt

)
· dt+

√
2M−1γkBT · dWt

where U and Wt denotes the potential energy function and the standard Wiener process, respectively.
We denote the Boltzmann constant as kB , temperature of the environment as T , atoms mass matrix
as M , and the friction coefficient as γ.

In the overdamped regime (γ ≫ 1), we obtain the first-order SDE,

dxt =

(
− 1

γ
M−1∇xU(xt)

)
dt+

√
2M−1kBTγ−1dWt. (2)

To sample trajectories of a molecule, we draw an initial configuration from the Boltzmann distribution
X0 = (x0, v0) ∼ πG and run a MD simulation for a fixed time duration. This process generates
trajectories x0:τ of length τ that are samples from the probability distribution over trajectories

π(X0:τ ) = πG(X0) ·
τ∏

t=1

N (Xt|µt−1,Σt−1), where (3)

µt = (vt · dt,−M−1∇xU(xt) · dt− γvt · dt)⊺, Σt = 2M−1γkBT.

Transition path sampling. In this context, we focus on trajectories that begin and end in specific
predefined states. Formally, these states are denoted as x0 ∈ A ⊂ R3n and xτ ∈ B ⊂ R3n. For
instance, A may represent the unfolded state of the protein and B the folded state.

The distribution over such constrained trajectories X0:τ is referred to as the transition path (TP)
distribution (Dellago et al., 1998) and its corresponding probability is

π∗
A,B(X0:τ ) =

1

Z
IA(x0) · π(X0:τ ) · IB(xτ ) =

1

Z
πG(X0)IA(x0) · π(X1:τ |X0) · IB(xτ ), (4)

with Z being a normalizing constant and I an indicator function.

3 METHODOLOGY

In Section 3.1, we frame TPS solely as a sampling problem and introduce approximations of the
optimal transition path distribution, π∗

A,B with a particular focus on point-mass endpoint sets A = A
and B = B. Building on these approximations, we define evaluation metrics in Section 3.2, drawing
from established practices in the ML community for evaluating high-dimensional distributions (Burda
et al., 2016). We continue by showing techniques on how existing solutions can be scaled and
improved in Section 3.3, which are then assessed using the proposed metrics in Section 4.

3.1 APPROXIMATIONS OF THE TARGET MEASURE

We start by approximating the initial sampling distribution using

πA(x0, v0) := N (x0|A, σ2
Ax

)N (v0|µAv , σ
2
Av

) ≈ πG(X0)IA(x0). (5)

Here we assume that the initial velocity is unknown and randomly sampled from a normal distribu-
tion (Castellan, 1983) and consider only paths that start close to A. Similarly, we relax the indicator
function on the endpoint conditioning set to be

πB(xτ ) := N (xτ |B, σ2
Bx

) ≈ IB(xτ ). (6)
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Depending on the concrete SDE being used, the system evolves following different assumptions, and
thus the transition probability needs to be computed differently.

First Order System. For the overdamped regime in Equation 2, we obtained a first-order SDE in the
position variables. For the intermediate dynamics of the reference process π(x0:N ), we consider a
discrete-time approximate yielding the standard normal transition kernel

k(xt+1|xt) = N (xt+1|xt − 1
γ
M−1∇xU(xi)dt, 2kBTγ

−1dt), (7)

allowing us to compute the step probability. Putting everything together, the resulting approximation
to the TP distribution from Equation 4 can then be written as

π̃∗
A,B(x0:N ) ≈ πA(x0)

(
t=N−1∏

t=0

k(xt+1|xt)

)
πB(xN ).

In Appendix D, we provide the approximation for second order system along with the empirical
estimation for parameters σ2

Ax
, σ2

Bx
, µAv , σ

2
Av

.

3.2 EVALUATION METRICS

Length-adjusted path log likelihood. Consider a sampled trajectory {X0, . . . ,XN} with the
known starting point A and the target end point B, where Xt = xt for the first order system, and
Xt = (xt, vt) for the second order system. The length-adjusted log likelihood of the path is defined
as

log πA(X0) +

∑N−1
t=0 log k(Xt+1|Xt)

N
+ log πB(xN ),

where k(Xt+1|Xt) is the transition kernel density. We evaluate the density of each sampled trajectory
using the underlying potential U . Specifically, we keep the log densities at given boundary intact
and we normalize the log transition densities by the trajectory length. This normalization ensures
comparability across trajectories of variable lengths.

Reverse KL-divergence. Let Π0:T denote the reference distribution over trajectories and Qv
0:T

denote the learned distribution. The reverse KL divergence of two path measures is defined as

DKL[Q
v
0:T ∥Π0:T ] = EQv

[
log

Qv
0:T

Π0:T

]
.

Π0:T can be computed as the time-adjusted path log-likelihood under the reference process. To
evaluate Qv

0:T , the calculation depends on the sampling method employed.

For methods that learn biasing potentials, the transition probabilities can be expressed as

k̂(xi+1, vi+1|xi, vi) = N (xi+1|xi + vidt, ϵ
2) · N (vi+1| − γvi −

(∇U(xi) + b(xt, vt))dt

M
, 2MγkBTdt),

where the first term models the positional update, and the second term incorporates the velocity
update influenced by biased forces. For models that directly learn the drifts of the stochastic processes,
the KL divergence can be calculated using the Girsanov theorem

Qv
0:T : dxt = vt(xt) dt+ σt dWt, Π0:T : dxt = ut(xt) dt+ σt dWt, (8)

DKL[Q
v
0:T ∥Π0:T ] = EQv

[∫ T

0

1

2σ2
t

∥vt(xt)− ut(xt)∥2 dt
]
.

3.3 SCALING TPS IN PRACTICE

We present a scalable simulation-free training algorithm that combines the variational objective of
Doob’s Lagrangian(Appendix C.2) with fixed window attention("Doob’s Seq2Seq") mechanism.
Additionally, we setup a baseline which identifies a single transition path by maximizing the log-
likelihood of the path("MaxLL", Appendix F.1). We then introduce two key techniques—temperature
annealing and physics-inspired initial interpolation—that enhance optimization and empirically
evaluate their effects in Section 4. Complete training loop for both Doob’s Seq2Seq and MaxLL can
be found in Appendix F.2.
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Figure 1: Doob’s Seq2Seq with enhanced path initialization. We propose constructing a trivial initial (possibly
wrong) trajectory connecting the states and feeding it to the neural network as input. We apply fixed window
attention on this trajectory and learn to predict the mean and sigma of trajectories with Doob’s Lagrangian
objective. While the training itself is simulation-free, consistent trajectories can be constructed by solving the
vector field defined by the sequence of Gaussians, allowing for fast inference time.

3.3.1 DOOB’S SEQ2SEQ

The core ideas behind Doob’s Seq2Seq are illustrated in Figure 1. In summary, we frame TPS
problem as a sequence-to-sequence task, where the goal is to refine an initial suboptimal path
measure—with potentially inaccurate time marginals—into a model that samples the correct sequence
of time marginals.

We parameterize the mean µt|0,T and covariance Σt|0,T of the Gaussian path measure qt|0,T using a
neural network. Following prior work (Du et al., 2024), we adopt a diagonal representation of the
covariance matrix and define a neural network

Σt|0,T = diag({σ2
t|0,T ,d}Dd=1).

NNETθ : [0, T ]× RD × RD → RD × RD

that takes as input the time t, the initial interpolation path It where I0 = A, I1 = B, and the time
window (t− dt, t+ dt), producing outputs for the mean perturbation and per-dimension variance.
The parameterized path distribution is then given by

xt|0,T = µ
(θ)
t|0,T +Σ

(θ)
t|0,T ϵ, where ϵ ∼ N (0, ID) (9)

µ
(θ)
t|0,T = It +

t

T

(
1− t

T

)
NNETθ(t, It, twindow)[:D] (10)

Σ
(θ)
t|0,T =

t

T

(
1− t

T

)
diag

(
NNETθ(t, It, twindow)[D:]

)
+ σ2

minID. (11)

This formulation ensures that the learned path measure aligns with the correct boundary conditions.
Since qt|0,T is Gaussian, we can analytically compute the vector fields u(q,θ)

t|0,T (xt) and vq,θt|0,T (xt) (See
Appendix E for more details.)

3.3.2 OPTIMIZATION TECHNIQUES

Temperature Annealing. In molecular or physical systems with rugged potential energy surfaces,
the existence of multiple local minima can make optimization challenging. High-temperature
environments effectively flatten these surfaces, reducing the likelihood of the model getting trapped
in suboptimal regions. For methods based on the biased MD framework, temperature annealing
plays a crucial role. Without annealing, the RMSD between the desired target state and the end state
sampled from the bias force fails to converge (Seong et al., 2024). While we can avoid the said issue
by following the gaussian parameterization in Equation 10, which guarantees boundary conditions by
construction, we empirically demonstrate the benefits of temperature annealing in Section 4.

Improved initial interpolation. In prior works, the initial guess of the transition path is often made
by linearly interpolating Cartesian coordinates between the initial state rα and the target state rβ . An
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Table 1: Transition path sampling for Alanine Dipeptide. All evaluations are conducted on 64 sampled paths.
For each metric, we highlight the best performing model in blue, while the top performing variation under each
training objective is marked in bold.

Method GPU Hours (↓) Log Likelihood (↑) KL Divergence (↓) Max Energy (↓)
MCMC 30 -1072 ± 1577.73 - 303.82 ± 131.24
TPS-DPS 12 1562.79 ± 9.39 -0.25 26.44 ± 16.07
Doob’s Lagrangian 0.65 1446.26 ± 0.51 224.93 730.66 ± 0.04
w/ Temperature Annealing 0.65 1549.28 ± 0.47 121.37 280.22 ± 0.26
w/ Interatomic Interpolation 0.65 1109.38 ± 0.76 561.53 868.04 ± 0.05
Doob’s Seq2Seq 2.5 1505.6 ±0.45 164.93 245.05 ±0.02
w/ Temperature Annealing 2.5 1583.18 ±0.3 128 592.13 ±0.26
w/ Interatomic Interpolation 2.5 1601.57 ±0.53 41.75 3.46 ± 0.03
MaxLL 0.2 1532.45 69 615
w/ Temperature Annealing 0.2 1599.03 37 233
w/ Interatomic Interpolation 0.2 1545.32 40 619

alternative, more sophisticated, way to define the initial path is by interpolating the pairwise atomic
distances, termed image dependent pair potential (IDPP) (Smidstrup et al., 2014). The optimal path
on the IDPP surface is significantly closer to a minimum energy path than a linear interpolation of
the Cartesian coordinates. Furthermore, this interpolation can be computed efficiently, making it a
cost-effective approach for generating initial pathways as the starting point for sampling transition
paths. Details on IDPP method can be found in Appendix I.

4 EXPERIMENT: ALANINE DIPEPTIDE CONFORMATION CHANGE

This section analyzes the effects of different training objectives and optimization techniques(Section
3.3) through an empirical study on Alanine Dipeptide, a well-studied system with 2 amino acids and 22
atoms. Details of the experimental setup, including evaluation metrics and baselines, are provided in
Appendix G. We also present experiments on toy examples illustrating the TPS problem (Appendices
H.1, H.2) and a larger molecular system (Appendix H.3) to compare baseline performance in a more
complex setting. We now discuss key results from Table 1.

Temperature Annealing. We observe that temperature annealing consistently improves all metrics
without introducing additional computational complexity. Notably, the maximum likelihood objective
yields comparable or even better results to the other methods, despite its significantly shorter runtime
and simple training objective.

Improved Initialization. Interestingly, we find that initialization with a physically more accurate
path does not necessarily improve the performance of Doob’s Lagrangian. We hypothesize that this
may result from inconsistent interpolation speeds between snapshots, as evidenced by the energy
profile along transitions (see Appendix I.2 for further discussion).

Fixed Window Attention. Incorporating attention mechanism consistently improves performance
over Doob’s Lagrangian, and we observe noticeable performance gains when combined with the
improved initialization. We attribute this to Doob’s Seq2Seq capturing local structural dependen-
cies, allowing the model to leverage the additional physical consistency provided by interatomic
interpolation.

5 CONCLUSION

In this paper, we propose a standardized framework for evaluating TPS methods by framing them as
high-dimensional sampling problems. Specifically, we introduce path log-likelihood and reverse KL
divergence as quantitative metrics, treating TPS as sampling from an unnormalized density. We then
focusing on developing a scalable TPS method toward a bigger system with slow-folding dynamics.
We present Doob’s Seq2Seq—a scalable framework combining fixed-window attention for local
state dependencies with a simulation-free objective based on Doob’s Lagrangian and a variational
formulation of Doob’s h-transform. Additionally, we demonstrate that temperature annealing and
enhanced initialization can further improve solutions to the TPS problem.
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A LIMITATIONS AND FUTURE WORKS

Our current results are based on small to medium-sized systems, but there is great potential to extend
this work to more complex biomolecular transitions, further bridging the gap between deep learning-
based TPS methods and real-world simulation challenges. Additionally, while our implementation
relies on MLP and the standard transformer architecture, future studies could benefit from exploring
equivariant spatial embeddings and attention mechanisms. These methods have shown promise in
other areas, such as protein structure prediction Jumper et al. (2021) and machine learning-driven
interatomic potentials Wang et al. (2018); Smith et al. (2017), and could enhance TPS performance
in high-dimensional settings. Furthermore, while our proposed evaluation metrics focus on treating
TPS as a sampling problem, future work could explore alternatives based on physical or chemical
consistency, such as free energy differences, committor probabilities, or kinetic rate predictions, to
better align learning objectives with real-world systems.

B RELATED WORKS

The most widely used algorithms for sampling transition paths include shooting methods (Juraszek
& Bolhuis, 2008; Borrero & Dellago, 2016; Jung et al., 2017; Falkner et al., 2023; Jung et al.,
2023), steered molecular dynamics (SMD) (Schlitter et al., 1994; Izrailev et al., 1999), umbrella
sampling (Torrie & Valleau, 1977; Kästner, 2011), metadynamics (Ensing et al., 2006; Branduardi
et al., 2012; Bussi & Branduardi, 2015), and adaptive biasing force (ABF) methods (Comer et al.,
2015).

Recent advances in machine learning have spurred the development of reinforcement learning and
stochastic control approaches, leveraging neural network ansatz for transition path sampling (Rose
et al., 2021; Das et al., 2021; Yan et al., 2022; Holdijk et al., 2023; Singh & Limmer, 2023; Seong et al.,
2024; Wang et al., 2024). Among these, PIPS employs a stochastic control framework that optimizes
the endpoint distribution using a KL divergence objective (Holdijk et al., 2023). This method has
been further improved by incorporating a log-variance divergence objective along with a replay buffer
to enhance training stability (Seong et al., 2024). In contrast, Doob’s Lagrangian (Du et al., 2024)
adopts a collocation-based approach, explicitly satisfying boundary conditions by optimizing over
tractable Gaussian paths conditioned on both endpoints.

A closely related concept is the minimum energy pathway, which corresponds to the most probable
transition path as derived from the Freidlin-Wentzell functional (Kifer, 1988). To solve this prob-
lem, various iterative and optimization-based methods have been proposed. Classical approaches
include the string method and nudged elastic band method, which iteratively refine transition path-
ways (Weinan & Vanden-Eijnden, 2010). Additionally, variational formulations, such as the minimum
action method, solve the problem by directly minimizing the action functional (Vanden-Eijnden &
Heymann, 2008).
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C EXTENDED BACKGROUND

C.1 DOOB’S h-TRANSFORM

The celebrated Doob h-transform addresses the question of conditioning Brownian motion dynamics
to satisfy a terminal condition xτ ∈ B (Doob, 1957; Särkkä & Solin, 2019). In the first-order
case, the optimal solution modifies the SDE dynamics in Equation 2 using a biasing potential
b∗t (xt, t) = ξ2∇xt log hB(xt, t) = ξ2∇xt log π(xτ ∈ B|xt) where ξ2 = 2M−1kBTγ

−1 is the
diffusion coefficient. This biasing potential ensures that the endpoint condition IB[xτ ] is satisfied. In
particular, consider

Π∗
A,B : x0 ∼ 1

ZG,A
πG(x0)IA[x0], (12)

dxt =

(
−

1

γ
M

−1∇xU(xt) + b
∗
t (xt, t)

)
dt +

√
2M−1kBTγ−1dWt

where Π∗
A,B denotes a measure over paths C([0, 1] 7→ R3N ) and ZG,A normalizes the initial sampling

distribution.

It can be shown that this stochastic process simulates the desired (discretized) transition path π∗
A,B in

Equation 4, thus solving the TPS problem (Das & Limmer, 2019; Das et al., 2021; Koehl & Orland,
2022; Du et al., 2024). However, note that naive simulation-based methods for learning the biasing
potential directly can be extremely inefficient (Holdijk et al., 2024).

C.2 SAMPLING FROM THE TRANSITION PATH DISTRIBUTION

To sample from the approximate target distribution π∗
A,B(Equation 4), existing ML methods introduce

a variational approximation parameterized by either a biasing potential bt or a path of intermediate
marginals of qt of the transition path.

Off-policy diffusion sampling. (Seong et al., 2024) consider learning an approximate biasing
potential bt using the log-variance divergence (Nüsken & Richter, 2021) which is closely related to
the trajectory balance objective in Generative Flow Networks (Bengio et al., 2021; Sendera et al.,
2024). The off-policy nature of these objectives allows for flexible exploration strategies and avoids
backpropagation through trajectories simulated with the learned bias potential. Concretely, for a
sampling distribution πS , this method may be viewed as minimizing the log-variance divergence
(Seong et al., 2024; Nüsken & Richter, 2021)

min
qv

DπS
LV [qb(X1:τ |X0)∥π∗(X1:τ |X0)]

:= VarπS

[
log

qb(X1:τ |X0)

π∗(X1:τ |X0)

]
.

(13)

Doob’s Lagrangian. Instead of approximating the biasing drift in Equation 12 directly, (Du
et al., 2024) propose to parameterize a path distribution qb(X1:τ |X0) within a tractable variational
family, where b = b(Xt, t) indicates an induced, approximate biasing potential. Notably, for point-
mass conditioning sets, the variational family preserves xτ = B by design. The stochastic control
objective in (Du et al., 2024) can be viewed as minimizing the reverse KL divergence to the target TP
distribution

min
qb

DKL

[
qb(X1:τ |X0)∥π∗(X1:τ |X0)

]
. (14)

(Du et al., 2024) consider (mixture of) Gaussian parameterizations for qb, where the corresponding
b(Xt, t) can be recovered through simple identities and is used to simulate transition path trajectories
at inference time.

D DETAILED APPROXIMATION OF THE TARGET MEASURE

D.1 EMPIRICAL ESTIMATION OF THE PARAMETERS

In practice, the parameters σ2
Ax

, σ2
Bx

, µAv
, σ2

Av
can be estimated empirically through short MD

simulations around metastable states A and B. These simulations are conducted over a short duration,
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chosen to ensure the system remains within the vicinity of each metastable state and does not reach
the other state, to quantify the local fluctuations.

D.2 APPROXIMATION FOR SECOND ORDER SYSTEM

For the second order dynamics in Equation 1, we make similar discrete-time approximations for
the intermediate dynamics of the reference process π(x0:N ), yielding similar results as in Plainer
et al. (2023), where

k(xt+1,vt+1|xt, vt) = N (xt+1|xt + vtdt, ϵ
2) · N

(
vt+1

∣∣∣∣− γvt −
∇U(xt)

M
dt, 2MγkBTdt

)
.

(15)

Expanding X0:N = ((x0, v0), ...(xN , vN )), yields an approximation of transition path distribution
in Equation 4

π̃∗
A,B(X0:N ) ≈ πA(x0, v0)

N−1∏
t=0

k(xt+1, vt+1|xt, vt)πB(xN ).

To sample from our approximate target distribution π∗
A,B , we next introduce a parameterized or

variational approximation q. Noting that we can initialize q0(x0, v0) = πA(x0, v0) using the approxi-
mation in Equation 5, we are left with a sampling problem over the remaining transitions

π∗(X1:τ |X0) =
1

Z(X0)
π(X1:τ |X0)IB(xτ ), (16)

where we need to normalize to account for the restriction to xτ = B.

E COMPUTATION OF VECTOR FIELDS uθ
t|0,T AND vθt|0,T

We follow the result from Du et al. (2024) for analytical computation of vector fields uθ
t|0,T and

vθt|0,T .

u
(q,θ)
t|0,T (x) :=

∂µt|0,T

∂t
+

[
1

2

∂Σt|0,T

∂t
Σ−1

t|0,T −GtΣ
−1
t|0,T

]
(x− µt|0,T ), (17)

vq,θt|0,T (xt) =
1

2
G−1

t

(
u
(q,θ)
t|0,T (x)− bt(x)

)
. (18)

We start from the optimization objective of Doob’s Lagrangian,

S = min
qt|0,T ,vt|0,T

∫ T

0

dt

∫
dx qt|0,T (x)

〈
vt|0,T (x), Gt vt|0,T (x)

〉
, (19a)

s.t. qt|0,T (x)t = −
〈
∇x, qt|0,T (x)

(
bt(x) + 2Gt vt|0,T (x)

)〉
+

∑
ij
(Gt)ij

2xi∂xjqt|0,T (x),

(19b)

q0(x) = δ(x−A), qT (x) = δ(x−B) . (19c)

where they show that the said Lagrangian action functional has a unique solution that matches the
Doob’s h-transform given by the condition of reaching the endpoint B at predefined time T . We
first re-write the Fokker-Planck constraint in Equation 19b with all drift terms absorbed into a single
vector field ut|0,T ,

∂qt|0,T (x)

∂t
= −

〈
∇x, qt|0,T (x) ut|0,T (x)

〉
+

∑
ij

(Gt)ij
∂2

∂xi∂xj
qt|0,T (x). (20)

When we parameterize qt|0,T as the family of endpoint-conditioned gaussian marginals
N (x |µt|0,T ,Σt|0,T ),

u
(q,θ)
t|0,T (x) :=

∂µt|0,T

∂t
+

[
1

2

∂Σt|0,T

∂t
Σ−1

t|0,T −Gt Σ
−1
t|0,T

] (
x− µt|0,T

)
(21)
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satisfies the Fokker-Planck equation Equation 20 for qt|0,T and diffusion coefficients Gt =
1
2ΞtΞ

T
t .

Given u
(q,θ)
t|0,T corresponding to qt|0,T , we can simply solve for the vt|0,T satisfying the Fokker-Planck

equation in Equation 19b in our variational Doob objective Equation 19. Since Gt was assumed to be
invertible and the base drift bt is known, we have

vθt|0,T (x) =
1

2
(Gt)

−1
(
u
(q,θ)
t|0,T (x)− bt(x)

)
. (22)

For detailed proofs and derivations of the result, please refer to the original work.

F TRAINING OBJECTIVES

F.1 MAXLL OBJECTIVE

Instead of finding distribution of the paths, we focus on identifying the most probable single transition
path by directly maximizing the path likelihood. Specifically, we utilize only the parameterized
µt|0,T from Equation 10 and maximize log transition probabilities between µt|0,T and µt+dt|0,T . The
training loop for the MaxLL objective in the first-order case is detailed in Algorithm 2, following
Equation 7. Similarly, the second-order objective can be straightforwardly constructed by maximizing
the transition probabilities defined in Equation 15.

F.2 PSEUDOCODE

Algorithm 1 Doob’s Seq2Seq Training. The modifications from Doob’s Lagrangian are highlighted
in BLUE

Input: Reference drift bt, diffusion matrix Gt, fixed window dt, initial interpolation It
while not converged do

Sample t ∼ U(0, T )
Compute twindow = [t− dt, t, t+ dt]

Sample xt ∼ q
(θ)
t|0,T ( It, twindow ) (Eq. 9-11)

Compute u
(q,θ)
t|0,T (xt) (Eq. 17)

Compute vq,θt|0,T (xt) (Eq. 18)

Compute loss: L = ⟨vq,θt|0,T (xt), Gtv
q,θ
t|0,T (xt)⟩

Update θ ← optimizer(θ,∇θL)
end while
return θ

Algorithm 2 Maximum Likelihood Baseline Training (First Order).

Input: Reference drift bt, diffusion coefficient matrix Ξt, offset dt, initial interpolation It
while not converged do

Sample t ∼ U(0, T )
Calculate µθ

t|0,T = It +
t
T

(
1− t

T

)
NNETθ(t, It)[:D]

Calculate µθ
t+dt|0,T = It+dt +

t+dt
T

(
1− t+dt

T

)
NNETθ(t+ dt, It+dt)[:D]

Calculate F = −∇xU(µθ
t|0,T )

Calculate µrand = µθ
t+dt|0,T − (µθ

t|0,T + F · dt)
Compute loss: L = NLL(µrand; 0,Ξt · dt)
Update θ ← optimizer(θ,∇θL)

end while
return θ

12
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G EXPERIMENT SETUP

G.1 BASELINES

For non-ML baselines, we consider the MCMC-based two-way shooting method with uniform point
selection, which generates variable-length trajectories. For ML baselines, we evaluate two recent
CV-free transition path sampling approaches: (Seong et al., 2024, TPS-DPS) and (Du et al., 2024,
Doob’s Lagrangian). A brief overview of these methods is provided in Appendix C.2. We then
compare the performance of Doob’s Seq2Seq and MaxLL against these baselines, focusing on settings
where models are trained in Cartesian coordinate space without solvent. We provide an extended
comparison with models trained in internal coordinate space in Appendix H.4.

G.2 EVALUATION

We report the length-adjusted path log-likelihood and the reverse KL divergence as discussed in
Section 3.2, along with the total GPU hours required for training estimated based on the experiments
on a single NVIDIA H100 GPU. We additionally report the minimum and average maximum energy
per sampled path ensemble, which represent the highest energy barrier encountered during the
transition. This serves as an approximate indicator of the probability of the transition occurring, as
higher barriers correspond to rarer crossing events.

G.3 MOLECULAR SYSTEM CONFIGURATIONS

For molecular dynamics simulations, we use the AMBER14 force field
(amber14/protein.ff14SB Maier et al. (2015)) without a solvent as implemented in
OpenMM (Eastman et al., 2017). However, since OpenMM does not support auto-differentiation, we
do not use it for simulations directly. Instead, we leverage DMFF (Wang et al., 2023), a differentiable
molecular simulation framework built with JAX (Bradbury et al., 2018). This is necessary because,
during training, we compute

∇θU
(
xt|0,T ∼ N (µ

(θ)
t|0,T ,Σ

(θ)
t|0,T )

)
,

where xt|0,T is sampled based on the neural network parameters.

For the simulations, we use a timestep of dt = 1 fs, γ = 1 ps, and a temperature of 300 K. The total
simulation time is τ = 1 ps for Alanine Dipeptide and τ = 5 ps for Chignolin. To compute the
MCMC two-way shooting baselines, we use the same settings and consider trajectories as failed if
they exceed 2,000 steps without reaching the target.

G.4 MODEL CONFIGURATIONS

For TPS-DPS, we follow the model configurations reported by Seong et al. (2024) for Alanine
Dipeptide.

For Doob’s Lagrangian, we parameterize the model using a 5-layer MLP with ReLU activations,
employing 256 hidden units for Alanine Dipeptide and 512 hidden units for Chignolin. Optimization
is performed using the Adam optimizer with a learning rate of 10−4, as reported in (Du et al., 2024).
When training Doob’s Lagrangian with internal coordinates, we represent the molecule using bond
lengths, bond angles, and dihedral angles, following the parameterization in (Noé et al., 2019).

For Doob’s Seq2Seq, the model for Alanine Dipeptide consists of a 5-layer MLP with 256 hidden
units, combined with 3-layer single-head attention blocks with 128 hidden units. For Chignolin, we
use a 3-layer MLP with 512 hidden units alongside 3-layer single-head attention blocks with 256
hidden units. Training is performed using the Adam optimizer with a constant learning rate of 10−4

for Alanine Dipeptide, and learning rate with linear decay schedule from 10−4 to 10−6 for Chignolin.

G.5 TRAINING EFFICIENCY

For enhanced shooting methods such as TPS-DPS, runtime is primarily determined by the number of
rollouts (simulations) and the computational cost per rollout. While the simulation enables flexible
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Table 2: Transition path sampling for Müller-Brown potential

Method Log-Likelihood (↑) KL Divergence (↓) Max Energy (↓)
MCMC 3.13 ± 0.05 - -13.77 ± 16.43
TPS-DPS 8.6 ± 3.9 741.47 2.35 ± 28.5
Doob’s Lagrangian 8.21 ± 0.39 290.47 -14.81 ± 13.73
Doob’s Seq2Seq 8.29 ± 0.24 300.05 -6.48 ± 15.4
MaxLL 9.63 10.16 -40.27

and accurate exploration of transition dynamics, it also leads to increased computational costs as
system size and complexity grow. As noted by (Seong et al., 2024), training on larger proteins such
as Glutamine Synthetase (Yamashita et al., 1989) would require over 1,700 GPU hours due to the
significantly longer MD simulation times, illustrating the scaling challenges of simulation-based
sampling.

In contrast, Doob’s Lagrangian, Doob’s Seq2Seq, and the maximum likelihood objective are trained
without sequential simulations. While the computational overhead increases with system size, this
overhead does not scale exponentially with simulation time, possibly making these methods more
computationally efficient.

H ADDITIONAL EXPERIMENT

We begin by visually illustrating the TPS problem with lower-dimensional toy example: a synthetic
maze (Section H.1), which motivates the use of improved optimization techniques in solving TPS,
and the Müller-Brown potential (Appendix H.2). Next, we evaluate the performance and robustness
of different training objectives—Doob’s Lagrangian, Doob’s Seq2Seq, and MaxLL—on the larger
Chignolin system to assess how well each method adapts to increasing system complexity. Finally,
we provide additional comparison and discuss the effect of using internal coordinates system, instead
of Cartesian coordinates, in solving TPS problem.

H.1 SYNTHETIC MAZE POTENTIAL

(a) Maze
(easy)

(b) MCMC (c) Doob’s (d) Ours

(e) Maze (f) MCMC (g) Doob’s (h) Ours

Figure 2: Comparing TPS methods on two dif-
ferent mazes. We evaluate how different transition
path sampling methods solve easy and hard maze-
like potentials.

Sampling transition paths is akin to navigating a maze
in the dark, where the route to the end state is un-
known. In this analogy, high potential values repre-
sent the maze walls. Unlike real mazes, however, par-
ticles can tunnel through walls, although such paths
become less likely with sufficiently steep gradients.

We use trajectories generated by MCMC as ground-
truth data for approximation. While MCMC can
solve both mazes, it requires significantly more com-
putation due to their sequential approach. While all
methods succesfully solve the easy maze, Doob’s
Lagrangian fails to solve a slightly more challeng-
ing maze, opting to pass directly through the walls
(Figure (g)). In contrast, initializing the interpola-
tion with a more physically plausible path allows the
model to learn to navigate the maze, producing trajec-
tories with lower overall energy and, therefore, more
probable solutions (Figure (h)).

H.2 MÜLLER-BROWN SYNTHETIC POTENTIAL ENERGY SURFACE

The Müller-Brown potential is a popular benchmark to study transition path sampling between
metastable states. It consists of three local minima, and we aim to sample transition paths connecting
state at the top left and bottom right. In Figure 3, we visualize the potential and the sampled paths
under each method. We see that for the low dimensional system, simple maximum likelihood
objective performs the best across all metrics.
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(a) MCMC (b) TPS-DPS (c) Doob’s (d) Doob’s Seq2Seq (e) Max Likelihood

Figure 3: Comparing TPS methods under the Müller-Brown potential

Table 3: Extended transition path sampling result for Alanine Dipeptide. For models trained in Cartesian
coordinate, we report the best performing variation from Table 1. All evaluations are conducted on 64 sampled
paths. For each metric, we highlight the best performing model in blue, while the top performing method under
Cartesian coordinate system is marked in bold.

Method Coordinate GPU Hours (↓) Log Likelihood (↑) KL Divergence (↓) Max Energy (↓)
TPS-DPS Cartesian 12 1562.79 ± 9.39 -0.25 26.44 ± 16.07
Doob’s Seq2Seq Cartesian 2.5 1601.57 ±0.53 41.75 3.46 ± 0.03
MaxLL Cartesian 0.2 1599.03 37 233
Doob’s Lagrangian Cartesian 0.65 1549.28 ± 0.47 121.37 280.22 ± 0.26
Doob’s Lagrangian Internal 0.65 1647.88 ± 0.28 23.87 -16.9 ± 0.02

H.3 CHIGNOLIN FOLDING

Chignolin is an artificial protein composed of 10 amino acids with 138 atoms (414 total degrees of
freedom) that folds into a characteristic β-hairpin structure stabilized by hydrogen bonds. In Table
4, we focus on comparing different training objectives to evaluate their effectiveness in addressing
higher-dimensional TPS problems. While TPS-DPS also tackles the TPS problem for Chignolin,
we restrict the comparison of our methods to Doob’s Lagrangian due to differences in the training
environments. Specifically, TPS-DPS utilizes a force field with implicit solvent, whereas both Doob’s
Lagrangian and Doob’s Seq2Seq are trained in a vacuum, as DMFF currently does not support
implicit solvent models.

Consistent with the findings in Section 4, Doob’s Seq2Seq demonstrates superior performance
compared to Doob’s Lagrangian in Cartesian space across all evaluation metrics. However, MaxLL
objective does not perform as well for Chignolin, in contrast to its favorable results on smaller systems
such as Alanine Dipeptide and Müller-Brown potential (H.2).

H.4 EXTENDED RESULTS ON MOLECULAR SYSTEMS

We train Doob’s Lagrangian in internal coordinate space and compare its performance against models
trained in Cartesian coordinate space. We find that the internal coordinate representation outperforms
all models operating on Cartesian coordinates.

Internal coordinates efficiently capture molecular geometry by focusing on bond lengths, angles, and
dihedral angles—the primary degrees of freedom governing conformational changes. This reduces the
redundancy inherent in Cartesian coordinates and highlights the most relevant collective motions along
transition pathways. However, models trained in internal coordinate space face limitations in certain
scenarios. The choice of internal coordinates is system-specific, posing challenges when transferring a
model trained on one system to a different one (Klein & Noé, 2025). Additionally, internal coordinates
are less suitable for systems with dynamic topologies, such as those undergoing bond-breaking or
bond-forming events, where the definition of internal coordinates becomes ambiguous.

In contrast, while lacking the inductive biases provided by internal coordinates, Cartesian coordinates
offer a consistent representation across diverse molecular systems, regardless of size, topology, or
dynamic bonding changes. This generalizability makes them well-suited for benchmarking and
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Table 4: Extended transition path sampling result for Chignolin. All models are trained without enhanced
optimization techniques, and the evaluations are conducted on 64 sampled paths. For each metric, we highlight
the best performing model in blue, while the top performing method under Cartesian coordinate system is
marked in bold.

Method Coordinate GPU Hours (↓) Log Likelihood (↑) KL Divergence (↓) Max Energy (↓)
Doob’s Seq2Seq Cartesian 12 9898.07 ± 0.28 626.9 1858.75 ± 0.07
MaxLL Cartesian 1 5153.18 ± 0.36 881.11 9742.43 ± 0.29
Doob’s Lagrangian Cartesian 2.5 9289.54 ± 1.19 1235.23 3828.38 ± 0.1
Doob’s Lagrangian Internal 2.5 10169.42 ± 0.37 355.99 1754.81 ± 0.09

comparative studies. For these reasons, we conducted our main experiments in Cartesian coordinate
space to establish a baseline for performance comparisons.

Nonetheless, internal coordinate representations can offer advantages when working within a single
system where dynamic topologies are not a concern, such as protein-folding events. By focusing on
the most relevant degrees of freedom, models can converge faster and achieve improved accuracy in
capturing transition dynamics, as demonstrated in Table 3 and Table 4.

I PAIRWISE INTERATOMIC DISTANCE INTERPOLATION

I.1 IDPP OBJECTIVE

We define the initial path by interpolating the pairwise atomic distances, where the pairwise atomic
distance dij is calculated as

dij =

√ ∑
σ∈{x,y,z}

(ri,σ − rj,σ)2.

σ represents the Cartesian components x, y, and z. Then, we optimize the interpolated distances with
the objective function given as

SIDPP,κ(r) =
∑
i

∑
j>i

w(dij)

dκ,ij −
√ ∑

σ∈{x,y,z}

(ri,σ − rj,σ)2

2

,

where w(dij) is the weighting function that places more emphasis on short distances to avoid atoms
being too close, and dκ,ij being the target pairwise distance for image κ.

I.2 VISUALIZATION

Here we present the energy profile along transitions of the 100 interpolated snapshots using the method
described in Section 3.3.2, revealing irregular dynamics throughout the transition. A visualization of
ten of these 100 snapshots is depicted in Figure 5.

Figure 4: Visualization of transition energy along an initial interpolated path.
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Figure 5: Visualization of ten frames of the trajectory for Alanine Dipeptide for an interpolated path. We can see
that some atoms jump back and forth (compare the red oxygen) which highlights the noise in the transition.
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