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ABSTRACT

Visual foundation models, such as CLIP, exhibit exceptional proficiency in learning
feature representations from extensive datasets via self-supervised techniques,
showcasing noteworthy aptitude for transfer learning and generalization. A growing
number of applications based on visual foundation models are emerging, including
innovative solutions such as BLIP-2. These applications employ pre-trained CLIP
models as upstream feature extractors and train various downstream modules
to accomplish diverse tasks. However, scenarios necessitating system upgrades
that entail updating the foundational model pose challenges, as they entail the
inefficient and inflexible process of retraining all downstream modules to align
with the new foundational model. In this paper, we propose an innovative and
valuable task, Hot-Plugging Upgrades for visual foundation models. The aim is
to seamlessly integrate superior-performing foundation models into downstream
applications without adjusting the downstream modules. To realize this objective,
we introduce a parameter-efficient and Task-agnostic Compatible Adapter, referred
to as TaCA, which promotes compatibility across distinct foundation models while
concurrently enhancing performance for the new models. We conduct extensive
experimental validation of TaCA using different scales of models with up to one
billion parameters on various tasks such as video-text retrieval, video recognition,
and visual question answering. The results consistently affirm the efficacy of TaCA
in facilitating hot-plugging upgrades for visual foundation models. Codes and
models will be made available.

1 INTRODUCTION

The data-centric methods of deep learning have catalyzed a massive increase in dataset scales and
model sizes. Consequently, the exploration of versatile large models pre-trained (Radford et al.,
2021; Jia et al., 2021; Caron et al., 2021; Oquab et al., 2023; Dosovitskiy et al., 2020) for various
downstream tasks (Ju et al., 2022; Ni et al., 2022; Wang et al., 2021) is becoming a standard paradigm
due to its enhanced performance and rapid convergence.

In light of this, a series of applications based on large-scale visual foundation models (e.g., the
dominant CLIP (Radford et al., 2021)) are burgeoning, which freeze the foundation models and train
diverse modules to exploit pre-trained representations for downstream tasks. For example, to tackle
the task of video classification, FrozenCLIP (Lin et al., 2022) equipped the pre-trained CLIP model
with a lightweight Transformer decoder for spatiotemporal reasoning. The CLIP model has also been
widely used as a visual tokenizer for large language models (LLMs) to form a multimodal LLM, e.g.,
BLIP-2 (Li et al., 2023).

It poses a great challenge for upgrading the foundation models (e.g., replacing the CLIP-ViT-B/16
with CLIP-ViT-L/14) accompanied by plenty of applications. A straightforward solution is to re-train
all downstream modules, such as adapters or decoders, to adapt the new foundation models. However,
task-oriented adaptation incurs substantial training costs, especially as the number of downstream
tasks increases, rendering an impractical and inefficient solution.

In this paper, we break new ground by introducing the task of hot-plugging upgrades for visual
foundation models in a modular framework, where the new foundation models can be directly
deployed without any downstream adaptation. The representations encoded by the new foundation
model are regularized to be compatible with the original old ones in the latent space. The compatible
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Figure 1: Different upgrading paradigms for visual foundation models. (a) Our approach enables
hot-plugging upgrades of new foundation models while keeping the downstream modules untouched.
Specifically, we train a task-agnostic compatible adapter (TaCA) on top of the new model, ensuring
compatibility with both the old foundation models and the existing downstream modules. (b)
In contrast, the paradigm of cold-plugging upgrades requires retraining the downstream modules
whenever a new foundation model is introduced. This approach can be inefficient, particularly when
dealing with a growing number of downstream applications.

new foundation model can be, therefore, directly integrated into the framework to work together
with the pre-learned downstream modules, enabling a seamless upgrade of the whole framework and
harvesting the benefits of upgraded foundation models immediately.

There are two main objectives for pursuing a compatible new foundation model. (i) The overall
performance of the framework is anticipated to be enhanced upon the upgrade of the foundation
model. In the most unfavorable scenario, where the new foundation model becomes indistinguishable
from its predecessor, it maintains full compatibility with downstream modules; however, in such
a circumstance, the upgrade would prove inconsequential for the system. (ii) The new foundation
model can reliably enhance known or novel tasks using pre-learned adaptation modules from the old
model. This encourages a task-agnostic learning approach, advocating for compatibility learning in
new foundation models independent of any downstream task.

To this end, we propose a Task-agnostic Compatible Adapter (TaCA) for the pre-trained, frozen
new foundation model to attain compatibility with the original model. TaCA concurrently aligns
new and old representation spaces while retaining the new model’s strong capabilities through
parameter-efficient tuning. Featuring lightweight adapters in each block of the new model and a
dimension-alignment projector, TaCA is optimized toward alignment objectives, derived solely from
the old foundation model, without requiring assistance from any downstream modules. TaCA takes
the first step toward hot-plugging upgrades for foundation models, a practical task in the era of large
models. We hope that our work would inspire future study and ease the upgrades of the foundation
models in real-world applications.

We verify our approach using four different scales of visual foundation models with up to one billion
parameters, i.e., ViT-B/16, ViT-L/14, ViT-H/14, and ViT-G/14, all of which are pre-trained by the
CLIP strategy. To illustrate the extent of TaCA’s generalization, we conduct experiments on different
backbones including CLIP (Radford et al., 2021), MAE (He et al., 2022b), Swin Transformer (Liu
et al., 2022), DINO (Oquab et al., 2023), and BEiT (Bao et al., 2021). As for the downstream
benchmarks, we adopt the modular frameworks, CLIP4Clip (Luo et al., 2022), FrozenClip (Lin
et al., 2022), OpenFlamingo (Alayrac et al., 2022) and BLIP-2 (Li et al., 2023), to evaluate video-
text retrieval, video classification, and visual question answering. For instance, by replacing the
original ViT-B/16 with TaCA-ViT-H/14, performance improvements are observed on all ranges of
benchmarks, i.e., +4.9% on MSR-VTT (Xu et al., 2016) retrieval, +2.1% on Kinetics-400 (Kay
et al., 2017) classification. Our model (TaCA-ViT-H/14) achieves +0.5% improvement compared
with OpenFlamingo benchmark (ViT-L/14) on VQAv2 (Goyal et al., 2017). As shown in Figure

2



Under review as a conference paper at ICLR 2024

1, foundation models trained with TaCA can be hot-plugged into various modular frameworks for
consistent improvements, and TaCA is proven to be effective for different model sizes.

To summarise, our main contributions are three-fold.

• We spearhead the exploration into the scenario of upgrading large-scale foundation models, and
introduce a new task, i.e., hot-plugging upgrades of visual foundation models in modular frame-
works, which aims to harvest the benefit from new foundation models without necessitating the
retraining process of downstream adaptation modules.

• To tackle the challenge, we introduce a parameter-efficient upgrading strategy using a Task-agnostic
Compatible Adapter (TaCA). TaCA enables the new-old compatibility between foundation models
and facilitates downstream applications in seamlessly integrating the new foundation model.

• Our method is comprehensively evaluated across a diverse range of downstream tasks, including
video-text retrieval, video classification, and visual question answering. The results, displaying
marked improvement, endorse the effectiveness and generalization ability of TaCA.

2 RELATED WORKS

Visual foundation models. In recent years, foundation models have witnessed a paradigm shift
towards multi-modal supervision, demonstrating remarkable zero-shot performance across various
downstream tasks. Numerous works (Ju et al., 2022; Ni et al., 2022; Wang et al., 2021; He et al.,
2022c; Chen et al., 2021; d’Ascoli et al., 2021; Dong et al., 2022) harness large-scale image-text pairs
culled from the Internet to learn visual representations and linguistic semantics via self-supervision.
For instance, CLIP (Radford et al., 2021) constructed a text transformer and a visual transformer,
which guides images and corresponding captions into a shared embedding space. Relying on the
powerful generalization ability of foundation models, subsequent works explore the transfer of these
pre-trained models to specific tasks. In this study, we concentrate on adapting CLIP for a range of
downstream video tasks, including video-text retrieval (Luo et al., 2022; Jiang et al., 2022), video
classification (Lin et al., 2022; Rasheed et al., 2022; Pan et al., 2022), and Video-QA (Li et al., 2023;
Alayrac et al., 2022).

Compatible representation learning Backward Compatible Training (Shen et al., 2020; Zhang
et al., 2021; Ramanujan et al., 2022; Zhang et al., 2022a; Su et al., 2022; Zhang et al., 2022b) has
achieved notable success in the field of content-based image retrieval, which aims to make the features
encoded by the new model interchangeable with those captured by the old model. Shen et al (Shen
et al., 2020) devised the influence loss to inherit historical knowledge in the new model’s training
process, facilitating rapid system updates without backfilling gallery features. Zhang et al (Zhang
et al., 2021) introduced the hot-refresh paradigm to incrementally enhance system performance via
online refreshing. However, these methods encounter two main obstacles: (i) they require domain
consistency in training datasets to maintain compatibility, meaning the new training set must be a
superset of the old one, and (ii) they often require full fine-tuning of the backbone, which is unfeasible
for large-scale foundation models.

Parameter-efficient transfer learning The emergence of large-scale pre-trained models has high-
lighted the need for efficient transfer of these foundation models to specific downstream tasks.
Parameter-Efficient Transfer Learning (PETL) methods (Houlsby et al., 2019; Hu et al., 2021; Zhao
et al., 2023; Lian et al., 2022; Chen et al., 2022b; Jie & Deng, 2022; Chen et al., 2022a) fix the
original parameters and designs a few learnable parameters to overcome the domain gaps between
the pretrained datasets and target tasks. The design of adapter (Houlsby et al., 2019) was first
introduced in NLP, comprising a down-sampling layer and an up-sampling layer. A standard adapter
is inserted into the Transformer (Vaswani et al., 2017) blocks (post self-attention operation and
feed-forward operation). Hu et al (Hu et al., 2021) propose a method called LoRA, which maintains
the pre-trained model weights and introduces trainable rank decomposition matrices into each layer
of the Transformer architecture. Zhao et al (Zhao et al., 2023) bridge the domain gaps between the
pre-trained and target datasets by aligning their distributions. Unlike existing adapter-based PETL
methods where the adapters are task-specific, our objective is to achieve compatibility among various
upstream foundation models. Consequently, our proposed compatible adapter is task-agnostic.
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Figure 2: Our overall training framework, where the introduced task-agnostic compatible adapter
(TaCA) is optimized to pursue compatibility between the new visual encoder and the old visual
encoder. The training objectives of TaCA can be found in (a), which consist of both single-modal
compatibility (i.e., image distillation loss in Eq. (5)) and cross-modal compatibility (i.e., new-to-old
contrastive loss in Eq. (6)). The detailed architecture of TaCA can be found in (b), which consists of
an adapter inserted into each Transformer block and a dimension projector.

3 METHODOLOGY

3.1 PRELIMINARIES

Our work aims to seamlessly upgrade the visual foundation models within a modular framework
without the need to retrain the downstream modules. To illustrate this concept, we consider the
widely used pre-trained CLIP models (Radford et al., 2021) as an example. CLIP models are
extensively utilized as image feature extractors in various applications, including video-text retrieval,
video classification, and visual question answering. By upgrading the visual foundation models,
our approach facilitates enhanced performance and capabilities across these applications, without
requiring extensive retraining or modifications to the downstream modules.

Model architecture of CLIP. CLIP adopts a dual-stream architecture, composed of a text Trans-
former (denoted as ψ) and a visual Transformer (ϕ). CLIP, pre-trained by abundant image-text pairs,
is capable of encoding the image and text semantics in a multimodal-aligned latent space. (i) Given
an image xIi ∈ RH×W×C as input, it is first divided into P × P patches xIi → RHW/P 2×(P 2C),
where (H,W ) denotes the resolution of the original image, and C is the number of channels. The
2D patches are then flattened into a 1D sequence and fed into the visual Transformer, yielding the
visual representation, i.e., ϕ(xIi ) ∈ Rd. (ii) The corresponding descriptive text xTi is converted into
embeddings using a tokenizer. Subsequently, these embeddings, supplemented with a [CLS] token
at the beginning and a [SEP] token at the end of the sequence, are then processed through the text
Transformer. We utilize [SEP] at the final layer as the text representation, i.e., ψ(xTi ) ∈ Rd.

Training objective of CLIP. CLIP is trained towards the alignment of image and text semantics
using symmetric contrastive losses, which are formulated as NCE loss (He et al., 2020), such that

L(ϕ, ψ) = 1

|D|
∑
xi∈D

1

2

[
NCE(ϕ(xIi ), ψ(x

T
i )) + NCE(ψ(xTi ), ϕ(x

I
i ))

]
,

s.t. NCE(q, k) = − log
exp(⟨q, k+⟩/τ)∑B
i=1 exp(⟨q, ki⟩/τ)

, (1)

where ϕ is the visual encoder, ψ is the text encoder, B is the mini-batch, D is the overall dataset,
τ is the temperature hyper-parameter. ⟨·, ·⟩ is the cosine similarity. The loss pulls closer positive
image-text pairs while pushing away the mismatched pairs.
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3.2 HOT-PLUGGING UPGRADES FOR VISUAL FOUNDATION MODELS IN MODULAR
FRAMEWORKS

To tackle various downstream tasks, a commonly adopted approach is to utilize a foundation model
that encodes generic and task-agnostic representations. These representations are then processed by
downstream modules to achieve the final objective. In modular frameworks like this, upgrading the
foundation model to improve upstream representations has involved the traditional cold-plugging
paradigm. This paradigm requires retraining the downstream modules to ensure compatibility, which
can be inflexible and costly, especially as the number of tasks increases.

We, therefore, introduce the task of hot-plugging upgrades for foundation models in visual tasks,
where the new foundation model can be directly integrated into various modular frameworks with the
pre-learned downstream modules untouched. To enable such a paradigm, the new foundation model
should be compatible with the original one in terms of the encoded representations, that is, the new
upstream features are interchangeable with the old ones.

Task objectives. There are two main objectives for pursuing a compatible new foundation model.

(i) Performance gain: As the baseline of model compatibility is to keep identical to the old model,
where the downstream modules are naturally adapted, the most critical objective of hot-plugging
upgrades is to achieve performance gains on the downstream task. Formally, we denote the evaluation
metric for a specific task as M(·) and the task head as ζ. The objective can be formulated as

M(ζold(ϕold)) <M(ζold(ϕ̂new)) <M(ζnew(ϕnew)), (2)

where M(ζold(ϕold)) indicates the original performance of the system, M(ζnew(ϕnew)) is the theoreti-
cal upper bound where the task head is specifically tuned for adapting the new foundation model (i.e.,
the cold-plugging). Our compatible new foundation model ϕ̂new is expected to improve the overall
system immediately without extra tuning of ζold.

(ii) Model versatility: The above objective, i.e., performance gain, can be achieved by using the
old task head to produce learning targets for the new foundation model. However, we find that
such task-oriented learning would hurt the generalization ability of the foundation models and lead
to performance drops on novel tasks. A paradox, therefore, arises since the original intention of
foundation models is to generalize across both known and unknown tasks. This encourages the new
foundation models to learn compatibility in a task-agnostic manner, that is, the compatible new model
ϕ̂new can be readily integrated into any framework and consistently improve the performance without
accessing the downstream modules during training.

3.3 TACA: TASK-AGNOSTIC COMPATIBLE ADAPTER

To tackle the above challenge, we introduce a Task-agnostic Compatible Adapter (TaCA) inserted in
each Transformer block as shown in Figure 2. TaCA is trained on top of a pre-trained new visual
foundation model, with the aim to project the new representations to the old latent spaces at the
same time maintaining the stronger capability of the new model. For instance, we can improve the
foundation model from ViT-B/16 to ViT-H/14 with TaCA.

Architecture. TaCA consists of a partly shared adapter (Houlsby et al., 2019) and a dimension
projector for parameter-efficient tuning. The adapter is a bottleneck module with a down-sampling to
reduce the feature dimension, a non-linear activation function, and an up-sampling to project back to
the original dimension. As proved in prior research (Hu et al., 2021; He et al., 2022a), it has been
established that parameter updates are predominantly situated within a low intrinsic dimension. In
order to mitigate the training cost, we opt to employ symmetric sampling matrices. Given the input
x at the i-th layer, the output is formulated by,

Adapter(x) = x+Wup · σ(Wdown · x), (3)

Wup = (Wdown)
T , (4)

where Wdown ∈ Rk×d′
(d′ ≪ k) is the down-sampling matrix, Wup ∈ Rd′×k is the up-sampling

matrix, σ is the activation function, k is the input dimension, and d′ is the bottleneck dimension. The
residual connection keeps the generalization ability of new models and helps the new models to fuse
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the historical information of the old one. The dimension projector is formed with a two-layer MLP,
which aligns the dimension of the new visual foundation model and the old one.

Training objectives. Intuitively, TaCA can be trained toward aligning the new and old representa-
tion spaces with a distillation loss. Formally,

Ldistill(ϕ̂new;ϕold) =
1

|D|
∑
xI
i ∈D

∥(ϕ̂new(x
I
i ), ϕold(x

I
i )∥. (5)

To further boost the compatibility of CLIP foundation models, we introduce the cross-model CLIP
loss that maximizes the similarities of new visual features and matched old text features while
minimizing the mismatched pairs, i.e.,

Lcontra(ϕ̂new;ψold) =
1

|D|
∑
xi∈D

NCE(ϕ̂new(x
I
i ), ψold(x

T
i )). (6)

The overall training objective can be formulated as

LTaCA = Lcontra + λLdistill, (7)

where λ is the loss weight and only the parameters of TaCA are optimized.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

In this paper, we evaluate ViT-B/16, ViT-L/14, ViT-H/14, and ViT-G/14, all of which are pre-trained
by CLIP and available from HuggingFace1, ensuring ease of access and reproducibility. Specifically,
we choose ViT-B/16 and ViT-L/14 as the old foundation models and test the performance gains when
changing them to larger backbones. For the text encoders, we use the default 12-layer BERT model
with modifications in GPT-2 (Radford et al., 2019).

We choose the well-known LAION-400M (Schuhmann et al., 2021) for TaCA training. In our
experiments, the input image is resized into 224x224. The batch size is 64 for ViT-L/14 and 32 for
both ViT-H/14 and ViT-G/14. The models are trained for 3 epochs using 8 NVIDIA A100 GPUs. We
utilize the AdamW optimizer with a learning rate of 2e−4. The bottleneck dimension of the adapter is
set to 128 for ViT-L/14 and 256 for both ViT-H/14 and ViT-G/14. λ equals 2 in all of our experiments.

4.2 EFFICIENCY ANALYSIS

Each adapter layer of TaCA consists of k × d′ learnable parameters, where k is the input dimension
and d′ is the bottleneck dimension of the adapter. The dimension projector consists of two-layer MLP
with dn × dp + dp × do, where dn, do are the output dimension of the new foundation model and
the one of the old foundation model, dp is the hidden dimension (default as 4096). Thus the total
trainable parameters are Lkd′ + dndp + dpdo, about 6% of the frozen parts, as shown in Table 11.

4.3 EXPERIMENTS ON VIDEO-TEXT RETRIEVAL WITH CLIP4CLIP

To assess the performance of TaCA on the video-text retrieval task, we employed CLIP4Clip (Luo
et al., 2022) as our benchmark and conducted experiments on the MSR-VTT (Xu et al., 2016),
MSVD (Chen & Dolan, 2011), and DiDeMo (Anne Hendricks et al., 2017) datasets. We only replace
the old visual encoder with a new one while keep the other downstream modules and training details
consistent with the original paper. The evaluation metrics used are text-to-video retrieval accuracy
and video-to-text retrieval accuracy in terms of Recall@1.

For our evaluation, we selected ViT-B and ViT-L as the old visual foundation models to simulate two
compatible scenarios. The results are presented in Table 1. As anticipated, our proposed method

1The checkpoints of ViT-B and ViT-L are downloaded from https://huggingface.co/openai,
ViT-H and ViT-G are from https://huggingface.co/models?library=open_clip
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Table 1: The results of video-text retrieval in terms of Recall@1. We use the CLIP4Clip (Luo et al.,
2022) framework, which adopts CLIP-ViT models to extract frame features. We test our TaCA by
upgrading the original visual foundation models (dubbed as VFM) with a larger one. We can observe
that TaCA achieves consistent gains across diverse benchmarks with downstream modules untouched,
indicating that the new VFM equipped with TaCA is powerful yet compatible. The de-emphasized
lines report the theoretical upper bound for reference where the downstream modules/heads are
retrained to adapt to the new incompatible VFM.

Old VFM New VFM
MSR-VTT MSVD DiDeMo

T2V V2T T2V V2T T2V V2T

ViT-B/16 - 42.1 40.2 45.2 58.9 36.2 34.0
ViT-B/16 TaCA-ViT-L/14 44.5 (+2.4) 43.6 (+3.4) 45.6 (+0.4) 59.2 (+0.3) 36.6 (+0.4) 34.4 (+0.4)

- ViT-L/14 44.8 44.5 46.7 60.1 38.1 36.4
ViT-B/16 TaCA-ViT-H/14 47.0 (+4.9) 45.5 (+5.3) 45.7 (+0.5) 59.9 (+1.0) 37.3 (+1.1) 34.7 (+0.4)

- ViT-H/14 47.5 46.4 48.2 61.7 39.0 37.2

ViT-L/14 - 44.8 44.5 46.7 60.1 38.1 36.4
ViT-L/14 TaCA-ViT-H/14 47.2 (+2.4) 46.0 (+1.5) 47.1 (+0.4) 60.5 (+0.4) 38.4 (+0.3) 37.0 (+0.6)

- ViT-H/14 47.5 46.4 48.2 61.7 39.0 37.2
ViT-L/14 TaCA-ViT-G/14 47.8 (+3.0) 46.3 (+1.8) 47.3 (+0.6) 61.0 (+0.9) 39.1 (+1.0) 37.4 (+1.0)

- ViT-G/14 49.2 48.3 50.3 63.1 40.8 38.7

outperforms the baseline on all three datasets, demonstrating significant improvements. For instance,
when replacing ViT-B with ViT-H, our method achieves a +4.9% increase on MSR-VTT, +0.5% on
MSVD, and +1.1% on DiDeMo. However, the improvement difference between ViT-G → ViT-L and
ViT-H → ViT-L is relatively minor, as the capability gap between the larger models narrows. Further
studies on better large foundation models are called for.

4.4 EXPERIMENTS ON VIDEO CLASSIFICATION WITH FROZENCLIP

Table 2: The results of video classification in terms
of top-1 accuracy. We utilize the FrozenClip (Lin
et al., 2022) as the framework. The task heads are
pre-learned with the old VFM, but can be directly used
for the compatible new VFM equipped with TaCA.

Old VFM New VFM K400 UCF-101

ViT-B/16 - 82.9 82.1
ViT-B/16 TaCA-ViT-L/14 83.6 (+0.7) 83.1 (+1.0)

- ViT-L/14 87.0 85.7
ViT-B/16 TaCA-ViT-H/14 85.0 (+2.1) 84.2 (+2.1)

- ViT-H-14 89.2 87.3
ViT-L/14 - 87.0 85.7
ViT-L/14 TaCA-ViT-H/14 87.3 (+0.3) 86.1 (+0.4)

- ViT-H/14 89.2 87.3
ViT-L/14 TaCA-ViT-G/14 87.5 (+0.5) 86.3 (+0.6)

- ViT-G/14 90.5 88.4

We evaluate our proposed TaCA on video
classification tasks with the framework of
FrozenClip (Lin et al., 2022), as illustrated in
Table 2. The visual foundation model here is
used for extracting frame features, which are
then fed into the temporal reasoning module
for classification.

Our observations are as follows: (i) Up-
grading the visual foundation model leads
to improved downstream performance. For
instance, TaCA-ViT-L/14 achieves a 0.7%
increase in accuracy on the Kinetics-400
dataset, and TaCA-ViT-H/14 demonstrates
a significant improvement of 2.1%. (ii)
The evaluated TaCA models are the same
as those employed in the video-text re-
trieval task, meeting the requirements of
hot-plugging upgrades (the compatible foun-
dation model should improve various tasks
consistently). The results indicate that our
task-agnostic learning strategy is effective.

4.5 EXPERIMENTS ON VISUAL QUESTION ANSWERING WITH MULTIMODAL LLM

To evaluate the performance of TaCA on the visual question answering, we use BLIP-2 (Li et al.,
2023) and OpenFlamingo (Alayrac et al., 2022) as our benchmark methods and evaluate on the
VQAv2 dataset. The evaluation metric used is accuracy. The results, as shown in Table 3, indicate that
the new foundation model equipped with TaCA achieves a +0.6% and +0.4% improvement compared
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Table 3: The results on visual question answering
by the recent multimodal LLMs in terms of accuracy.
The new VFM trained by TaCA can directly replace
the original visual tokenizer without additional tuning
for performance gains.

Framework VFM VQAv2 (val)

OpenFlamingo
ViT-L/14 43.5

TaCA-ViT-H/14 44.0 (+0.5)

BLIP-2
ViT-L/14 50.1

TaCA-ViT-H/14 50.5 (+0.4)

Table 4: Ablation studies on different kinds
of parameter-efficient tuning. We report the
R@1 on MSR-VTT text-to-video retrieval
and top-1 accuracy on K400.

VFM Type MSR-VTT K400

ViT-B/16 (old) - 42.1 82.9
TaCA-ViT-L/14 LoRA 44.0 80.3
TaCA-ViT-L/14 Adapter (std) 44.7 83.4
TaCA-ViT-L/14 Adapter (ours) 44.5 83.6

Table 5: Ablation studies on the bottleneck
dimension of TaCA architecture. We report
the R@1 on MSR-VTT text-to-video retrieval.

VFM d′ MSR-VTT

ViT-B/16 (old) - 42.1
TaCA-ViT-L/14 64 43.3
TaCA-ViT-L/14 128 44.5
TaCA-ViT-L/14 256 45.1

TaCA-ViT-H/14 128 45.9
TaCA-ViT-H/14 256 47.2
TaCA-ViT-H/14 512 47.4

Table 6: Ablation studies on the training objectives.
We report the R@1 on MSR-VTT text-to-video re-
trieval and top-1 accuracy on K400.

VFM MSR-VTT K400

ViT-B/16 (old) 42.1 82.9
TaCA-ViT-L/14 (w/o Lcontra) 42.3 82.7
TaCA-ViT-L/14 (λ = 0, w/o Ldistill) 42.9 83.0
TaCA-ViT-L/14 (λ = 1) 44.1 83.3
TaCA-ViT-L/14 (λ = 2) 44.5 83.6

TaCA-ViT-L/14 (λ = 5) 44.4 83.5

to the original BLIP-2 model and the Flamingo model, respectively. These findings highlight the
potential value of TaCA in easing the visual tokenizer upgrades in multimodal large language models.

4.6 ABLATION STUDIES OF TACA

Effect of bottleneck dimensions. To analyze the impact of adapter size, we train different adapters
with varying hidden dimensions. The results are presented in Table 5, revealing a consistent perfor-
mance improvement as the dimension increases. While the performance gain for TaCA-ViT-L/14 is
not substantial when increasing d′ from 128 to 256, we opt to set the default adapter dimension as
128 for the sake of computational efficiency. TaCA-ViT-H/14 exhibits a similar trend, and we choose
256 for a trade-off between efficiency and accuracy.

Different kinds of parameter-efficient tuning. We conducted a comparison between three methods
in parameter-efficient transfer learning, LoRA (Hu et al., 2021), standard Adapter (std) (Houlsby et al.,
2019) and our proposed symmetric Adapter (ours). The results are summarized in Table 4. LoRA
achieves performance gains on the MSR-VTT but experiences a degradation on K400, suggesting a
limited generalization ability. In contrast, the Adapter architecture demonstrates superior performance
across a spectrum of tasks. Our symmetric adapter yields comparable results with the standard
adapter, while concurrently reducing the number of trainable parameters by 40%. This highlights the
effectiveness of TaCA in achieving superior results and maintaining generalization capabilities. For
additional results, please refer to the appendix.

Discuss training objectives. To demonstrate the necessity of the proposed compatible losses, we
conducted ablation studies, as shown in Table 6. We observed that using the single-modal distillation
loss alone fails on video classification with performance degradation. On the other hand, while
using a sole cross-model contrastive loss can enhance performance on both downstream tasks, the
full model achieves optimal performance. The contrastive loss serves as an assurance of both the
discriminativeness and compatibility of the new model, while the distillation loss functions to enhance
its compatibility further. Furthermore, we investigated the effect of different loss weights (λ) by
varying it from 1 to 5. We choose 2 empirically for optimal performance across tasks. These findings
highlight the synergistic effect of the single-modal compatible loss and cross-modal compatible loss.
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Table 7: Results on MSR-VTT dataset when
varying training sets for TaCA. We report R@1
text-to-video retrieval.

VFM Training Set T2V V2T

ViT-B/16 (old) - 42.1 40.2
TaCA-ViT-L/14 CC12M 43.1 42.1
TaCA-ViT-L/14 LAION-400M 44.5 43.6

TaCA-ViT-H/14 CC12M 45.5 44.3
TaCA-ViT-H/14 LAION-400M 47.2 46.0

Table 8: Study the task-oriented fine-tuning of
TaCA, which leads to in-domain gains while sacri-
ficing generalization ability. We report results on
MSR-VTT and K400.

VFM Finetune on MSR-VTT K400

ViT-B/16 (old) - 42.1 82.9
TaCA-ViT-L/14 - 44.5 83.6
TaCA-ViT-L/14 MSR-VTT 45.0 ↑ 80.4 ↓
TaCA-ViT-L/14 K400 41.2 ↓ 86.8 ↑

Table 9: Generalization analysis under different backbones on video-text retrieval and video classifi-
cation tasks. We report the R@1 on MSR-VTT and top-1 accuract on K400.

VFM Pretrain data
MSR-VTT K400

T2V V2T Acc.

TaCA-CLIP-ViT-B/16 (old) WiT 42.1 40.2 82.9
TaCA-MAE-ViT-L/14 ImageNet-1k 38.5 38.2 82.6
TaCA-SwinV2-L/14 ImageNet-22k 37.9 37.5 82.7
TaCA-DinoV2-ViT-L/14 LVD 42.6 (+0.5) 41.3 (+1.1) 83.2 (+0.3)
TaCA-BEiT-ViT-L/14 ImageNet+DALLE 42.3 (+0.3) 40.6 (+0.4) 83.1 (+0.2)
TaCA-CLIP-ViT-L/14 WiT 44.5 (+2.4) 43.6 (+3.4) 83.6 (+0.7)

Different training sets. The image diversity of the training set plays a crucial role in determining the
generalization ability of TaCA models. To investigate the impact of different training sets, we compare
two popular pretraining datasets: LAION-400M (Schuhmann et al., 2021) and CC12M (Changpinyo
et al., 2021). The results in Table 7 demonstrate that the larger LAION-400M can significantly
enhance performance. The observation highlights the importance of a diverse and comprehensive
training set in achieving improved compatibility and better generalization capabilities.

Trade-off between generalization and specialization. To demonstrate the effectiveness of our
introduced task-agnostic training in terms of both performance gains on downstream tasks and
generalization ability across different tasks, we conducted further fine-tuning on the Model (TaCA-
ViT-L) using the MSR-VTT (or Kinetics-400) dataset. The results, as shown in Table 8, indicate that
finetuning indeed improves in-domain performance. However, it harms the generalization ability,
achieving much inferior performance on out-of-the-domain datasets.

Different backbones. We assess the generalization of TaCA across a spectrum of foundational
backbones, as detailed in Table 9. Our observations are as follows: (1) When employing the same
architecture, ’TaCA-CLIP-ViT-L/14’ achieves the most favorable performance outcome. (2) With
varying architectural configurations, DinoV2 and BEiT exhibit marginal enhancements but manage
to meet the compatibility criterion across both tasks. This suggests that augmenting the scale of pre-
training data can alleviate limitations when transitioning to downstream tasks. (3) In contrast, MAE
and SwinV2 demonstrate suboptimal performance. Their underwhelming results may be attributed to
weaker self-discrimination and transferability capabilities compared to the old CLIP model. This
highlights that downstream tasks experience improvements only when the new foundational models
exhibit enhanced representational capabilities.

5 CONCLUSIONS AND DISCUSSIONS

Visual foundation models have demonstrated powerful capabilities and are widely used as upstream
feature extractors for various applications. To improve overall system performance and user experi-
ence, it is crucial to upgrade these foundation models over time. In this paper, we present a novel task
called hot-plugging upgrades for visual foundation models within a modular framework. This frame-
work allows for the direct deployment of new foundation models without any downstream adaptation.
To achieve this, we propose a Task-Agnostic Compatible Adapter (TaCA), which ensures compatibil-
ity between the new and original models and preserves the generalization ability of the new model
through parameter-efficient tuning. Extensive experiments demonstrate that TaCA maintains model
versatility across various downstream tasks. Overall, our work introduces a pioneering approach to
address the important task of upgrading foundation models, which has significant implications for the
development and deployment of large-scale models in real-world applications.
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APPENDIX

A EXPERIMENTAL DETAILS

A.1 ALLOCATION OF TRANSFORMER-BASED VISUAL BACKBONES

To illustrate the extent of TaCA’s generalization, we initially allocate the most widely used ViT-based
foundational models that were pretrained on various datasets. This allocation is detailed in Table 10.

Table 10: Common transformer-based visual backbones.

VFM Pretrain data source Data type Data size Available
CLIP-ViT-B (Radford et al., 2021) WiT Image-Text 400M x
CLIP-ViT-L (Radford et al., 2021) WiT Image-Text 400M x
OpenCLIP-ViT-L2 LAION Image-Text 400M ✓
MAE-ViT-L (He et al., 2022b) ImageNet-1k Image 1M ✓
SwinV2-L (Liu et al., 2022) ImageNet-22k Image 14M ✓
DinoV2-ViT-L (Oquab et al., 2023) LVD Image 142M x
BEiT-ViT-L (Bao et al., 2021) ImageNet+DALLE Image 250M x

A.2 EFFICENCY AND EFFECTIVENESS ANALYSIS

As shown in Table 11, our proposed symmetric adapter requires only 6% trainable parameters of the
frozen parts while the standard one needs about 10%.

Table 11: Tunable parameters for TaCA. “VFM” is short for visual foundation model.

VFM Layers Frozen
params.

Learnable params.
(our adapter)

Learnable params.
(standard adapter)

ViT-B/16 12 86M - -
TaCA-ViT-L/14 24 307M 17M 37M
TaCA-ViT-H/14 32 632M 42M 70M
TaCA-ViT-G/14 40 1011M 64M 111M

Additionally, we conduct a comparative analysis on video-text retrieval and video classification tasks.
The outcomes presented in Table 12 affirm that our proposed adapter consistently attains performance
levels comparable to the standard adapter, with only marginal sacrifice.

Table 12: The results of video-text retrieval in terms of Recall@1.

Adapter VFM
MSR-VTT MSVD DiDeMo

T2V V2T T2V V2T T2V V2T

- ViT-B/16 (old) 42.1 40.2 45.2 58.9 36.2 34.0
Standard TaCA-ViT-L/14 44.7 (+2.6) 43.7 (+3.5) 45.5 (+0.3) 59.1 (+0.2) 36.8 (+0.6) 34.5 (+0.5)

Ours TaCA-ViT-L/14 44.5 (+2.4) 43.6 (+3.4) 45.6 (+0.4) 59.2 (+0.3) 36.6 (+0.4) 34.4 (+0.4)
Standard TaCA-ViT-H/14 47.2 (+5.1) 45.7 (+5.5) 45.9 (+0.7) 59.7 (+0.8) 37.3 (+1.1) 34.8 (+0.5)

Ours TaCA-ViT-H/14 47.0 (+4.9) 45.5 (+5.3) 45.7 (+0.5) 59.9 (+1.0) 37.3 (+1.1) 34.7 (+0.4)

B ADDITIONAL ABLATION STUDY

Inserted place of TaCA. Additionally, we investigate the impact of the insertion points of TaCA
within the model architecture. We compare three different training settings, as presented in Table 13,
where TaCA is inserted into different layers of the model. The results demonstrate that inserting
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adapters into the shadow layers leads to better performance compared to inserting them into the deep
layers (as indicated by line 1 and line 2 in the table). Moreover, when adapters are inserted into all
layers, the model achieves state-of-the-art performance. This suggests that larger-scale foundation
models require more learnable space to effectively transfer knowledge and enhance performance.
Table 13: Ablation studies on inserted place of TaCA architecture. We report the R@1 on MSR-VTT
text-to-video retrieval.

VFM Inserted layers MSR-VTT

ViT-B/16 (old) - 42.1
TaCA-ViT-L/14 1-12 43.5 (+1.4)
TaCA-ViT-L/14 13-24 42.6 (+0.5)
TaCA-ViT-L/14 1-24(full) 44.5 (+2.4)

Effect of pre-train datasets. To prove that our method is not constrained with the same pre-train
dataset, we conducted additional experiments, the results of which are presented in Table 14. Due
to unaligned dimensions, we add a learnable linear layer after the output layer of the new model as
baselines (denoted as ‘+Linear’).

Table 14: Ablation studies on pre-train datasets. We report the R@1 on MSR-VTT dataset.

VFM Pretrain data
MSR-VTT

T2V V2T

CLIP-ViT-B (old) WiT 42.1 40.2
CLIP-ViT-L (+Linear) WiT 35.4 34.7
TaCA-CLIP-ViT-L WiT 44.5 (+2.4) 43.6 (+3.4)
OpenCLIP-ViT-L (+Linear) LAION 31.5 31.6
TaCA-OpenCLIP-ViT-L LAION 44.0 (+1.9) 43.1(+2.9)

Our observations are as follows: (1) A comparison between ”CLIP-ViT-L (+Linear)” and ”OpenCLIP-
ViT-L (+Linear)” highlights that similar pre-training data can offer better initialization, contributing to
the alignment of feature spaces. (2) Despite the ”OpenCLIP-ViT-L (+TaCA)” model being initialized
from a distinct pre-training dataset, it still exhibits notable enhancements in comparison to the
linear model. Notably, the model with the same initialization (”CLIP-ViT-L (+TaCA)”) performs
optimally. (3) Our TaCA method produces improvements, whereas the baseline (Linear) fails to meet
compatibility requirements.

C INFERENCE DETAILS

The objective of hot-plugging model upgrades for visual foundation models is to seamlessly integrate
the new foundation model into different modular frameworks using a Task-Agnostic Compatible
Adapter (TaCA). This integration is achieved without modifying or retraining the pre-existing
downstream modules. The training process of TaCA is designed to be independent of the specific
downstream tasks, ensuring flexibility and efficiency in the upgrading process.

In the subsequent sections, we will provide detailed explanations of the upgrading process through
TaCA in the domains of video-text retrieval, video classification, and visual question answering tasks.
We will outline the specific steps and considerations involved in each task to ensure the successful
integration and compatibility of the new foundation model within the respective frameworks.

14



Under review as a conference paper at ICLR 2024

C.1 VIDEO-TEXT RETRIEVAL
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Figure 3: TaCA implementation in CLIP4Clip framework for video-text retrieval.

Inference Framework of CLIP4Clip. The implementation of hot-plugging model upgrades within
the CLIP4Clip framework is depicted in Figure 3. In our implementation of the CLIP4Clip framework,
we make several changes to adapt it for the upgrade scenario. We use the released codes from
the provided repository 3, and incorporate the following modifications: Instead of finetuning all
parameters in the visual and text backbones, we fix these backbones and focus on training different
task heads. Specifically, we add a 4-layer MLP task head after the visual encoder. We trained
these task heads using different downstream training datasets: WIT and MSR-VTT Training-7k for
MSR-VTT, WIT and MSVD Training for MSVD, and WIT and DiDeMo Training for DiDeMo.
These modifications allow us to adapt the CLIP4Clip framework for the upgrade scenario and conduct
experiments accordingly.

Test Dataset. (i) MSR-VTT (Xu et al., 2016) is a dataset consisting of 10,000 videos and
200,000 captions. The test data subset contains 1,000 video-text pairs for evaluation purposes.
(ii) MSVD (Chen & Dolan, 2011) comprises 1,970 videos, which is divided into train, validation,
and test splits, containing 1,200, 100, and 670 videos, respectively. Each video is associated with
approximately 40 sentences. (iii) DiDeMo (Anne Hendricks et al., 2017) consists of 10,000 videos,
each of which is annotated with four sentences, resulting in a total of 40,000 sentences. In the
evaluation of video-paragraph retrieval, following the approach proposed by Liu et al. (Liu et al.,
2019), all the sentence descriptions for a particular video are concatenated into a single query.

Metric. In evaluating the performance of our model, we utilize the standard retrieval metric known
as recall at rank K (R@K), where a higher value indicates better performance. R@K measures the
percentage of test samples for which the correct result is found within the top-K retrieved items.
More specifically, we calculate R@K for both text-to-video and video-to-text retrieval. For text-to-
video retrieval, we measure the retrieval accuracy when the query is a text input. Conversely, for
video-to-text retrieval, we assess the retrieval accuracy when the query is a video input.

Inference Details. To ensure consistency with other downstream tasks, we utilize CLIP-ViT-B/16 as
the pretrained model, whereas the original paper employ CLIP-ViT-B/32. In aggregating the features
of all frames, we directly use ”mean pooling” to obtain an ”average frame”. During inference, only the
old visual encoder is re-deployed with the new one, while the other downstream modules, including
the text encoder and similarity calculator, remain fixed and unchanged. The implementation allows
for the seamless integration of upgraded visual encoders into the existing CLIP4Clip framework,
enabling improved performance and capabilities in video-text retrieval tasks without the need to
modify or retrain the text encoder and similarity calculator components.

C.2 VIDEO CLASSIFICATION

Inference Framework of FrozenClip. The implementation of hot-plugging model upgrades for
FrozenClip (Lin et al., 2022) framework is shown in Figure 4.

Test Dataset. (i) Kinetics-400 dataset comprises 240,436 training videos and 19,787 validation
videos. It consists of 400 human action classes, with a minimum of 400 video clips available for each

3https://github.com/ArrowLuo/CLIP4Clip
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Figure 4: TaCA implementation in FrozenClip framework for video classification.
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Figure 5: TaCA implementation in Flamingo framework for visual question answering.

action. (ii) UCF-101 dataset consists of 13,320 video clips. These video clips are classified into 101
categories, representing various human actions and activities.

Inference Details. In our implementation, we maintain the same inference settings as described in
the paper (Lin et al., 2022). We download all the pretrained modules from the provided repository,
which can be accessed at the following link 4.

TaCANew visual
encoder

Figure 6: TaCA implementation in BLIP-2 framework for visual question answering.
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C.3 VISUAL QUESTION ANSWERING

Inference Framework of Flamingo and BLIP-2. The implementation of hot-plugging model
upgrades for Flamingo (Alayrac et al., 2022) and BLIP-2 (Li et al., 2023) frameworks is shown in
Figure 5 and Figure 6, respectively.

Test Dataset. VQA-v2 (Goyal et al., 2017) is a dataset specifically designed for visual question
answering tasks. The dataset includes a total of 265,016 images, which encompass a combination
of images from the COCO dataset and abstract scenes. For each image, there are a minimum of
3 questions, with an average of 5.4 questions per image. Additionally, there are 10 ground truth
answers for each question.

Inference Details. In the Flamingo framework, we employ OpenFlamingo-9B (Clip-ViT-L/14)
as the old visual encoder. As for the upgraded model, we utilize TaCA-ViT-H/14 as the new visual
encoder. In the BLIP-2 framework, we choose BLIP-2-ViT-L-OPT2.7B as the old visual encoder.
Similarly, the upgraded model incorporates TaCA-ViT-H/14 as the new visual encoder. These
configurations allow us to compare and evaluate the performance of the new visual encoders (TaCA-
ViT-H/14) against the existing models (OpenFlamingo-9B and BLIP-2-ViT-L-OPT2.7B) within the
Flamingo and BLIP-2 frameworks, respectively.

Visualization. We evaluate and compare the multi-modality capabilities of TaCA and Open-
Flamingo using the open-ended VQAv2 dataset (Goyal et al., 2017). Figure 7 illustrates several
positive examples, demonstrating our model’s proficiency in processing complex semantics and
extracting intricate visual information.

What number is on the plane? What moving object is 
above the signs?

What is the person in the 
background standing in front of?

Question

Image

OpenFlamingo
Answer

Our
Answer

41D5

4105

Sky

Airplane

Truck

A black car

Figure 7: Visualization results under OpenFlamingo framework on VQAv2 dataset. The baseline
method (Flamingo) utilizes ViT-L/14 as its foundation model. By replacing the old visual foundation
model with TaCA-ViT-H/14, while keeping other downstream modules unchanged, our method shows
notable enhancement in generating satisfactory answers.

C.4 STABLE DIFFUSION

Inference Framework of UNCLIP. We have extended our investigation to encompass image
generation as an additional downstream task. To achieve this, we harness the UNCLIP (Ramesh
et al., 2022) framework, replacing the native image encoder (CLIP-ViT-L/14) with our novel encoder
(TaCA-CLIP-ViT-G/14). The visualization is shown in Figure 8.

4https://github.com/OpenGVLab/efficient-video-recognition
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Input UNCLIP UNCLIP+TaCA

Figure 8: Image generation with Stable Diffusion. ‘UNCLIP’ utilizes CLIP-ViT-L as the image
encoder, while ‘UNCLIP+TaCA’ replace the old encoder with ’TaCA-CLIP-ViT-H’.

D ADDITIONAL RELATED WORKS

Knowledge Distillation. The goal of knowledge distillation (KD) is to transfer the knowledge learned
by the teacher model to the student model(Yang et al., 2022b;a). Typically, the teacher model is
comprehensive while the student model is lightweight. Unlike the previous works, the hot-plugging
upgrading desires the performance improvement via replacing the old visual foundation model with
an advanced one.

E LIMITATIONS

It is worth mentioning that while TaCA achieves marginal improvements on certain downstream tasks,
there is potential for further improvement through the use of more advanced adapter architectures
or larger training sets. Additionally, the concept of compatible upgrades for foundation models
should not be limited to the visual domain alone. Foundation models in other modalities, such as text
encoders in Stable Diffusion (Rombach et al., 2022), also face similar challenges in terms of upgrades.
We hope that our work serves as an inspiration for future research in this area and contributes to
facilitating the upgrades of foundation models in real-world applications.
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F PSEUDO CODE IN PYTORCH-STYLE

The pseudo code of hot-plugging model upgrades for visual foundation models is shown in Algo-
rithm 1.

Algorithm 1: Pseudo code of Hot-Plugging Model Upgrades in a PyTorch-like style.
1 # old_model: includes the pretrained visual encoder and the

pretrained text encoder.
2 # new_model: consists of fixed new visual encoder, trainable

adapter and dimension projector.
3 # tau: temperature, lambda: loss weight
4
5 # Freeze pretrained parameters in the backbones
6 for param in [old_model.params(), new_model.params()]:
7 param.requires_grad = False
8
9 # Set adapter and dimension projector be trainable

10 for param in new_model.params():
11 if ‘adapter’ in param or ‘dim_projector’ in param:
12 param.requires_grad = True
13
14 for (image, text) in loader: # load a mini-batch samples
15 with torch.no_grad():
16 old_visual_feat=old_model.visual_encoder.forward(image).

detach()
17 old_text_feat=old_model.text_encoder.forward(text).

detach()
18 new_visual_feat = new_model.visual_encoder.forward(image)
19 new_visual_feat = new_model.dim_projector.forward(

new_visual_feat)
20
21 # Distillation loss, Eq.(4)
22 distill_loss = l2_loss(new_visual_feat, old_visual_feat)
23
24 # Contrastive loss, Eq.(5)
25 logits = bmm(new_visual_feat, old_text_feat.T) / exp(tau)
26 labels = arange(n)
27 loss_i = cross_entropy_loss(logits, labels, axis=0)
28 loss_t = cross_entropy_loss(logits, labels, axis=1)
29 contra_loss = (loss_i + loss_t)/2
30
31 # SGD update: adapter and dimension projector
32 loss = contra_loss + lambda*distill_loss
33 loss.backward()
34 update(new_model.params)

bmm: batch matrix-matrix product; .T: matrix transpose.
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