
Under review as a conference paper at ICLR 2022

NEURAL FACE IDENTIFICATION IN A 2D WIREFRAME
PROJECTION OF A MANIFOLD OBJECT

Anonymous authors
Paper under double-blind review

ABSTRACT

In computer-aided design (CAD) systems, 2D line drawings are commonly used
to illustrate 3D object designs. To reconstruct the 3D models depicted by a single
2D line drawing, an important key is finding the edge loops in the line drawing
which correspond to the actual faces of the 3D object. In this paper, we approach
the classical problem of face identification from a novel data-driven point of view.
We cast it as a sequence generation problem: starting from an arbitrary edge, we
adopt a variant of the popular Transformer model to predict the edges associated
with the same face in a natural order. This allows us to avoid searching the space of
all possible edges loops with various hand-crafted rules and heuristics as most ex-
isting methods do, deal with challenging cases such as curved surfaces and nested
edge loops, and leverage additional cues such as face types. We further discuss
how possibly imperfect predictions can be used for 3D object reconstruction.

1 INTRODUCTION

In this paper, we revisit a classical problem in computer-aided design (CAD), namely the conversion
of 2D line drawings into 3D objects. In a traditional CAD pipeline, design engineers commonly
draw a 2D wireframe1 of the desired object when creating their ideas and when communicating
their ideas to others. Therefore, there is a strong need to develop algorithms which can convert 2D
line drawings into 3D solid models for analysis, simulation, and manufacturing.

An important step of 3D reconstruction from 2D line drawings is face identification, that is, finding
loops of the edges which correspond to faces of the 3D object (Figure 1). If the correct face con-
figuration of an object can be obtained, the number of degrees of freedom in its reconstruction will
be greatly reduced. Many studies have been performed to achieve this goal, and in certain cases,
a satisfactory solution exists. For example, it is well known that there is a unique planar embed-
ding when the object has genus 0 and the drawing is 3-connected, from which the set of faces can
be determined (Shpitalni & Lipson, 1996a). However, for a general manifold object with complex
geometry (e.g., curved surfaces) and topology (e.g., high genus), the task remains difficult.

A close look at current methods reveals two primary sources of challenges. The first one is the
algorithmic complexity. As no analytical solution is available for a general manifold object, these
methods need to search through the space of all possible face loops, which grows exponentially
with the number of vertices. In order to make the solution efficient, much effort has been made to
design heuristic search algorithms (Liu et al., 2002; Liu & Tang, 2005; Varley & Company, 2010).
The second one is the inherent ambiguity in reconstructing 3D objects from 2D projections. For
example, it is impossible for a topological algorithm to tell if two nested cycles (Figure 1(a)) are
coplanar, thus are two loops of the same face. Besides, a single 2D projection may yield multiple
topologically correct solutions (Figure 1(b)). In such cases, additional heuristics (e.g., number of
cycles, geometric regularities) or human intervention is required to choose the final output.

Nevertheless, humans can effortlessly “see” the real faces in a typical line drawing, including those
in Figure 1. Rather than performing a tedious search for the face loops, our ability to quickly identify
the faces seems to be attributed to our past experience interacting with 3D objects. This makes us
wonder: Is it possible for a computer to learn to recognize faces in a data-driven fashion? This
work represents a first attempt to answer the question. We train a deep neural network to detect

1We use the terms “wireframe” and “line drawing” interchangeably in this paper.
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(a) (b)

Figure 1: Given a 2D line drawing, face identification aims to find edge loops which correspond
to actual faces of the 3D object. (a) A case where several faces (including the one indicated by
a red arrow) are enclosed by two or more loops. (b) A case where multiple topologically correct
interpretations exist.

faces using a large collection of 3D objects and their 2D projections. This way, we are able to avoid
exploring a search space of exponential order. Moreover, by learning from ground truth 3D data, our
method implicitly learns to generate the most plausible solutions, resolving the inherent ambiguity
associated with the problem.

To this end, we cast face identification as a sequence generation problem, leveraging the natural order
of co-edges in a face loop (see Section 3 for a detailed explanation). Given a set of co-edges in a 2D
line drawing, we train a variant of the popular Transformer model (Vaswani et al., 2017) to predict
one co-edge index that forms the face at one timestamp. For each detected face, we further classify
it into different types such as planes and cylindrical surfaces. On the public ABC dataset (Koch
et al., 2019), our model achieves 93.8% and 95.9% in precision and recall, respectively. Finally,
with the detected faces, we develop a simple convex optimization scheme to reconstruct structured
3D models from a single 2D line drawing.

In summary, the main contributions of this work are two-fold: (i) We propose a first data-driven
approach to face identification and study its advantages and disadvantages over existing geometry-
and topology-based methods. (ii) We develop a simple scheme to reconstruct a 3D model from
a single 2D line drawing using the face identification results. With this work, we discuss new
opportunities for incorporating learning-based approaches into established CAD pipelines, such as
identifying conflicting face loops in a geometric constraint system for 3D reconstruction.

2 RELATED WORK

Face identification is a long-standing problem in the area of automatic interpretation of line draw-
ings. Research in this field dates back to the ’70s and ’80s. Early work (Markowsky & Wesley,
1980) proposes a geometric approach to detecting planar faces in a 3D wireframe: it first generates
possible planes at a vertex joined by two non-collinear edges, then searches for other vertices lying
on each such plane and tries to use the vertices to form cycles. Subsequent work (Abbasinejad et al.,
2011; Zhuang et al., 2013) can deal with more general curve networks with highly curved faces and
complex topology (i.e., manifolds with high genus). But these methods rely on 3D coordinates of
the wireframe, therefore cannot be applied to 2D projections.

Another line of work addresses the problem from a graph-topological point of view. To find the
faces of a vertex-edge graph, Hanrahan (1982); Dutton & Brigham (1983) propose to compute the
planar embedding of the graph, where the resulting regions represent the faces. Ganter & Uicker
(1983); Brewer & Courter (1986) generate an initial cycle basis from the spanning tree of the graph,
then perform a cycle reduction procedure to find the faces. But these methods are only suitable for
genus-0 manifolds. For manifold objects of a non-zero genus or non-manifold objects, Shpitalni &
Lipson (1996a) present a method which searches through the set of all possible sets of face loops
and use various geometric criteria to assess them. The method could be slow as the number of pos-
sible face loops is O(ev) and any topological algorithm for finding faces of objects of genus > 0
has exponential complexity (Bagali & Waggenspack, 1995). To reduce the search complexity, Liu
et al. (2002) propose a depth-first search that is primarily guided by topological constraints; Liu &
Tang (2005) develop a genetic algorithm which uses 2D geometric information in its assessment cri-
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teria; and Varley & Company (2010) use a heuristic search based on the shortest-path and Dijkstra’s
algorithm.

Given the face topology, several studies (Shpitalni & Lipson, 1996b; Liu et al., 2008; Wang et al.,
2009) attempt to reconstruct the 3D object from a single 2D line drawing. These works solve for
the 3D shape in an optimization framework, using various constraints based on structural regular-
ities, such as minimum standard deviation of angles (MSDA), face planarity, line parallelism, and
corner orthogonality. In this work, we introduce a different method that makes use of the predicted
face types – information previous methods do not have access to. Further, we study the impact of
imperfect face detection results on 3D reconstruction.

Finally, our technical approach is inspired by the recent advance in sequence-to-sequence mod-
eling (Bahdanau et al., 2015; Vaswani et al., 2017), which has produced state-of-the-art results
in a wide range of NLP and vision tasks lately. Specifically, our network design follows Pointer
Net (Vinyals et al., 2015), which proposes an autoregressive model to generate a distribution on a
given input data set. Recently, PolyGen (Nash et al., 2020) extends this idea to generate 3D polygon
meshes by sequentially predicting the vertices and faces using a Transformer-based architecture.

3 PROBLEM FORMULATION

In this paper, a 2D wireframe projection is assumed to be an orthographic projection where all the
edges (including silhouettes) and vertices of the object are visible. We make a few assumptions about
the input line drawing: First, the hidden lines and vertices are given. Second, the crossing point of
two edges in a line drawing is not vertex and cannot be used to form faces. As such, the input line
drawing can be represented as an edge-vertex graph G = (V,E), where each edge (or vertex) of the
graph corresponds to exactly one edge (or vertex) of the object. Note that the graph may contain one
or more connected components. In practice, these graphs may be a result of previous processing of
a rough sketch or a scanned-in drawing (Shpitalni & Lipson, 1997).

Given the graph G = (V,E), the goal of face identification is to find all faces F = {f1, . . . , fM} of
the object, where each face can be written as the set of enclosing edges: fi = {ei1 , . . . , ein}.
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Figure 2: B-rep of an object. Hidden
lines are omitted in this example.

Same as prior work (Liu et al., 2002; Varley & Company,
2010), we focus on manifold objects only. A manifold object
is defined as a solid where every point on its surface has a
neighborhood topologically equivalent to an open disk in the
2D Euclidean space. A key property of manifold objects is
that each edge of a manifold is shared exactly by two faces.
This property is best expressed in terms of co-edges, C =
{c1, c2, . . .}, an important type of topological entities in the
B-rep. As illustrated in Figure 2, there is a co-edge pointing
from vertex vi to vj if and only if there is an edge connecting
vi and vj . For example, c3 and c12 are two mutually mating
co-edges associated with edge e8.

A face can be conveniently represented as a loop (i.e., closed
path) of co-edges. For example, in Figure 2, the loops
(c1, c2, c3, c4) and (c5, c6, c7, c8, c9, c10, c11) represent two
faces of the object. We follow the conventional definition
of loop direction: if a loop is viewed along its direction, with the face normal pointing upwards,
then the face that owns the loop is to the left.

4 FACE IDENTIFICATION VIA SEQUENCE GENERATION

The natural order of co-edges corresponding to a face motivates us to treat face identification as
a sequence generation problem. Specifically, a face with n co-edges can be written as: fi =
(ci1 , . . . , cin), where each index it, t = 1, 2, . . . , n, is an integer between 1 and N , and N is
the total number of co-edges. Thus, starting with an arbitrary co-edge ci1 , our goal is to grow it into
a sequence of co-edges (ci1 , . . . , cin) on which ci1 lies, as shown in Figure 3. To detect all the faces
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Figure 3: Our model, Faceformer, takes as input the set of all co-edges, and current sequence of
co-edge indices, and outputs a distribution over the co-edge indices.

F = {f1, . . . , fM}, we may use every co-edge in C as the starting co-edge and repeat the process
for N times.

In the following, we describe how to generate a single face fi given the starting co-edge ci1 .

4.1 FACE IDENTIFICATION MODEL

Since our goal is to select a subset of the input co-edges to form the output face, we first briefly
review Pointer Net (Vinyals et al., 2015), a sequence-to-sequence (seq2seq) model which uses the
attention mechanism to create pointers to input elements. Given the input P , the main idea is to
learn the conditional probability p(I | P ) using a parametric model, such as LSTM (Hochreiter &
Schmidhuber, 1997) or Transformer (Vaswani et al., 2017), to estimate the terms of the probability
chain rule: p(I | P ) =

∏T
t=1 p(it | i1, . . . , it−1, P ). Here, P = {p1,p2, . . .} is a sequence of

vectors and I = (i1, . . . , iT ) is a sequence of T indices, each between 1 and |P |.
Similar to most seq2seq models, Pointer Net adopts an encoder-decoder architecture. First, it obtains
a contextual embedding wk for each input using an encoder. At each decoding time step t, the
decoder outputs a pointer vector ut, which is then compared to the input embeddings via a dot-
product. The resulting scores are normalized using a softmax to form a valid distribution over the
input set:

{wk}Nk=1 = ENCODER(P ; θ) (1)
ut = DECODER(I<t, P ; θ) (2)

p(it = k | I<t, P ; θ) = softmaxk(u
T
t wk) (3)

Finally, the parameters of the model are learned by maximizing the conditional probabilities on a
training set.

Input sequence and embeddings. In our problem, the input sequence consists of all co-edges C.
To further leverage geometric cues, we propose to classify the faces into different types – a benefit of
data-driven approaches. In this work we only consider two special face types, namely planar surface
and cylinder surface, but the method can be easily extended to other types. To this end, we add
three special tokens, [PLANE], [CYLINDER] and [OTHERS], to indicate different face types.
We replace regular stop tokens with the face type tokens, expecting the network to predict one of the
three tokens immediately after generating all co-edges of the face.

We jointly embed the special tokens with the co-edges, to obtain a total of N + 3 input embed-
dings. We use two embeddings for each input co-edge, including (i) value embedding, representing
the coordinate value of the edge, and (ii) position embedding, indicating the token location in the
sequence. Due to the varying edge length, we uniformly sample a fixed number of edge points to
represent the co-edge as in Das et al. (2020). The points are ordered based on the co-edge direction.
Then, we flatten the edge points and apply two linear layers to obtain a 512-dimensional embedding.
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Output sequence and embeddings. As mentioned above, we represent each face as a sequence
of co-edges fi = (ci1 , . . . , cin). A face type token is added (i) to predict the face type and (ii) to
indicate the end of the sequence. When a face consists of multiple loops, special care needs to be
taken to ensure a unique co-edge sequence. In such cases, except for the loop to which the starting
co-edge belongs, we order the co-edges in each other loop from lowest to highest first by its x-
coordinate, followed by y-coordinate. Take Figure 2 as an example, if we use c11 as the starting
co-edge, the desired face sequence should be (c11, c10, c5, c6, c7, c8, c9).

Similar to input embeddings of the encoder, we use learned position and value embeddings for the
inputs to the decoder. We use the co-edge’s contextual embedding from the encoder output as its
value embedding.

Network architecture. Inspired by recent success of Transformer-based architectures (Vaswani
et al., 2017), we adopt it as the basic block of our face identification model. Given the input co-edge
embeddings, the encoder encodes them into contextual embeddings, then the decoder outputs point-
ers based on the contextual embeddings and the decoder input. The model consists of 6 Transformer
encoder and decoder layers, with a feed-forward dimension of 1024 and 8 attention heads.

4.2 TRAINING AND INFERENCE

We implement our model with PyTorch (Paszke et al., 2017). We use Adam optimizer (Kingma &
Ba, 2015) with a learning rate of 1× 10−3. The batch size is set to 4. The model is trained with
400 000 iterations, taking about 30 hours to converge on a single NVIDIA RTX 3090 GPU device.

At inference time, since our parallel model predicts faces from all co-edges independently, there
are many duplicated faces in the result. We take three post-processing steps to remove invalid and
duplicated predictions. First, because a face is defined as a closed path of co-edges, we filter out
any unclosed face predictions. Second, we remove predictions that contain both co-edges associated
with the same edge, as this never happens in real faces. Finally, we identify duplicated predictions
by comparing the set of edges generated in each face prediction. Note that these duplicated predic-
tions may have different face type classifications. We count the number of times each face type is
predicted, and take the face type of the highest count as its predicted face type.

4.3 EXPERIMENTS

4.3.1 EXPERIMENTAL SETUP

Dataset. We build a benchmark for this novel task using a subset of CAD mechanical models from
ABC dataset (Koch et al., 2019). We use pythonOCC2, a Python 3D development framework built
upon the Open CASCADE Technology, to project CAD models into 2D line drawings. We first
normalize the shape such that the half diagonal length of the bounding box is equal to 1. Then, the
camera is placed at a random distance between 1.25 to 1.5 away from the object center, pointing
towards the object. The viewpoints are randomly sampled on a hemisphere. The dataset consists of
9370/202/504 samples for training/validation/testing.

To eliminate cases that are unnecessarily complicated, we filter out shapes with more than 42 faces
or 37 edges in a face. Since the ABC dataset has many duplicate shapes, we also run additional
filters based on the shape’s topology and three orthogonal views to remove duplicates.

Evaluation metrics. We develop several metrics to evaluate the performance of our model.

First, we compute the prediction accuracy at the co-edge sequence level. For each starting co-edge,
the sequence prediction is regarded as correct if it exactly matches a ground truth sequence. Then,
for an object with N co-edges, the average accuracy can be computed as acc = 1

N

∑
k 1(Ik = I∗k).

Second, we compute the precision and recall at the face level. We treat each face as an unordered set
of edges. For our model, this is the result after the post-processing step as described in Section 4.2.
A prediction f is said to match a ground truth face f∗ if and only if the two sets are equal. Then, let
F ∗ denote the set of ground truth faces, and F denote the set of faces detected by any method, the
precision and recall are defined as: precision = |F

⋂
F ∗|/|F |, recall = |F

⋂
F ∗|/|F ∗|.

2https://github.com/tpaviot/pythonocc
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Table 1: Experiment results on network design.
models precision recall runtime (s)

seq2seq 77.6 76.8 2.72
seq2seq + co-edge 94.9 90.5 2.84
ours (seq2seq + co-edge + parallel) 93.8 95.9 0.44

Table 2: Experiment results on input data.
input data pred. accuracy precision recall cls. rate

ours 92.1 93.8 95.9 97.5
ours - perspective 92.3 93.6 96.2 97.6
ours - fixed viewpoint 95.6 95.9 97.3 97.6

Finally, we report the face classification rate, which is the percentage of correctly classified faces
among all faces correctly detected by our model.

4.3.2 EXPERIMENTAL RESULTS

Experiment on network design. In this experiment, we compare our model with two variants of it
to illustrate the benefits of (i) using co-edges and (ii) face-wise parallel prediction.

The first variant, seq2seq, directly operates on the edges (instead of co-edges) and generates
all faces in a sequential fashion. In this variant, the input sequence would be the set of all
edges, ordered from lowest to highest first by its x-coordinate, then by y-coordinate. For the
output sequence, we introduce three additional special tokens, [SOS], [EOS], and [SEP], to
indicate the start and end of sequence, and the separation between faces, respectively. Dur-
ing training, we order faces according to the edge indices and then concatenate all faces into
a single sequence. Take Figure 2 as an example, the desired output sequence would be
{SOS, e1, e3, e4, e8, SEP, e2, e3, e5, e6, e7, e9, e11, SEP, e8, e9, e10, e12, EOS}.
The second variant, seq2seq + co-edge, also generates all faces sequentially but uses co-
edges. In this variant, the input sequence would include all the co-edges and three
special tokens [SOS], [EOS], and [SEP]. We order the faces in the same way as
the first variant. Thus, the desired output sequence for the example in Figure 2 is
{SOS, c1, c2, c3, c4, SEP, c5, c6, c7, c8, c9, c10, c11, SEP, c12, c13, c14, c15, EOS}.
Table 1 shows the quantitative results on ABC dataset. The seq2seq model using edges performs
substantially worse because (i) unlike co-edges, edges do not encode directional information, so the
model cannot take advantage of the natural order of face loops; and (ii) an edge is shared by two
faces, so there is ambiguity about which face to predict given an edge. Comparing the two models
using co-edges, the one with parallel prediction has slightly lower precision (−1.1%) but higher
recall (+5.4%). This is because it makes a prediction starting from each co-edge, thus would cover
each face several times. In contrast, the model with sequential prediction only generates each face
once. We also record the average runtime of the models for one shape in the test set. As one can see
in Table 1, the model with parallel prediction is much faster.

Experiment on input data. In the next experiment, we study the performance of our model with
different types of input data. First, we replace orthographic projection with perspective projection
when generating the 2D line drawings. As shown in Table 2, this change has very small impact
on all the metrics. Second, we fix the camera viewpoint to generate an isometric drawing for each
shape. In CAD, an isometric view is commonly used to reveal as much information about the 3D
shape as possible, and to avoid situations where the object’s edges or vertices coincide (or appear as
joined) accidentally. Therefore, such a viewpoint is considered easier than random viewpoints. By
employing a fixed viewpoint, our model achieves even higher accuracies (Table 2).

Qualitative results. Figure 4 visualizes the incorrect predictions made by our model for various
shapes. Some common problems are (i) incomplete prediction when a face consists of multiple
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Figure 4: Incorrect predictions made by our face identification model. For each case, we show the
input line drawing, followed by predictions with wrong face loops (blue), predictions with wrong
face types (black), and missed faces (red).

nested edge loops, and (ii) grouping edges or loops which belong to different faces. But as we will
see in the next section, these errors have varying impact on the reconstruction of the 3D models.

5 3D OBJECT RECONSTRUCTION

We now tackle the problem of 3D reconstruction with the predicted face loops and types. In the
literature, this is often formulated as recovering the missing depths of the vertices of a line drawing.
While knowledge about face topology significantly reduces the number of degrees of freedom, such
information itself is not enough to uniquely determine the 3D geometry. Prior work (Shpitalni &
Lipson, 1996b; Liu et al., 2008; Wang et al., 2009) resort to additional optimization criteria such as
MSDA, face planarity, line parallelism, and corner orthogonality. We observe a few problems with
these approaches: (i) the criteria are designed to emulate the human perception of a 2D line drawing
as a 3D object, but it is uncommon for them to be violated in practice; (ii) the search for optimal
solutions could get stuck at local minimum; (iii) they do not use information about face types.

Our primary goal is to build 3D models from the output of a deep face identification model – some-
thing never considered in prior work. Thus, we prefer a solution which decouples the impact of
mistakes made by the network from that of other constraints or algorithms employed.

To this end, we develop a simple method that relies on only one type of
constraints: line parallelism. As shown in the figure to the right, we assume
that there are three mutually orthogonal directions {l1, l2, l3} in the 3D
scene, i.e., lTj lk = 0,∀j 6= k. While these directions are provided a priori
in this work, techniques for automatic estimation exist: for orthographic
projections, these directions can be found by grouping parallel lines in a
line drawing; for perspective projections, these directions correspond to the
three dominant vanishing points. Afterward, the 3D directions {l1, l2, l3}
can be obtained via camera calibration (Hartley & Zisserman, 2000).

With this assumption, we are able to align the faces to the dominant di-
rections according to their enclosing edges and solve for the 3D geometry via convex optimization.
Below we first describe our method for objects with planar faces, then extend it to curved surfaces.

5.1 3D RECONSTRUCTION OF PLANAR OBJECTS

Suppose we are given an object with M faces F = {f1, . . . , fM} and L vertices V = {v1, . . . , vL}.
For each vertex, we write vl = [xl, yl, zl]

T , where zl is the unknown depth of vl in the camera
coordinate system.
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If the object is planar, then each face fi can be represented by the plane equation aix + biy +
z + ci = 0. If a vertex vl lies on two or more faces, for each pair of faces, say (f1, f2), we have
a1xl + b1yl + c1 − a2xl − b2yl − c2 = 0. For all vertices in V , we can write similar constraints
for pairs of faces. Rewriting all these linear equations in matrix form, we have: P1f = 0, where
f = [a1, b1, c1, . . . , aM , bM , cM ]T is a vector consisting of all the parameters of the faces.

For each dominant direction lj , j = {1, 2, 3}, we can identify all edges in the line drawing which
are parallel to it, thus also find the faces which align with it. For such a face, say f1, we have
a1l

j
x + b1l

j
y + ljz = 0. Rewriting all these linear equations in matrix form, we have: P2f = 0.

Combining the above constraints, we can find f by solving a convex optimization problem:
min
f

‖Pf‖1, s.t. zl = −(aixl + biyl + ci) > 0,∀vl on fi. (4)

Here, the constraints enforce that the 3D vertices lie in front of the camera.

5.2 HANDLING CURVED SURFACES

To deal with curved surfaces, we follow the approach proposed in (Wang et al., 2009). The main
idea is to replace a curve with straight line segments so that the object becomes a polyhedron. Then,
methods for planar objects, such as the one described in Section 5.1, can be applied. Finally, the
curved surface is recovered by fitting general Bézier curves to the corresponding 3D vertices.

In our case, because the face types are known, the original approach can be substantially simplified,
as we (i) do not need to employ an algorithm to distinguish between curved and planar faces; (ii)
can develop face approximation and fitting methods for each specific face type.

The figure to the right shows an example of converting a
curved surface on a cylinder into planar faces. For face
(e2, e3, e5, e6), we find the singular points on curves e2 and
e5 and then replace each curve with two straight lines. Once
the 3D geometry of the polyhedron is reconstructed, the orig-
inal curves can be recovered by fitting a 3D circle to the three
vertices (e.g., v1, v2, and v3 in the figure).

5.3 EXPERIMENTS

Input Reconstructed shape

Before presenting the 3D reconstruction results based on
the predicted faces, we point out that in rare cases (< 5%)
the reconstruction may not be perfect even with ground
truth faces, due to the simple assumption (i.e., line paral-
lelism) we employ in the pipeline. The figure to the right
shows two examples where major parts of the model do
not align with any dominant direction, making the recon-
struction under-constrained. As a result, the 3D model
may appear to be distorted (first row) or partly incorrect
(second row). In practice, these may be addressed by in-
troducing additional constraints. But we choose to keep
the reconstruction method simple so that the impact of
errors in face identification can be better analyzed.

Figure 5 shows 3D reconstruction results for various shapes using the predicted faces. In the first
row, we show two cases in which all faces are correctly identified and the 3D model is fully recon-
structed. As a comparison, we also train AtlasNet (Groueix et al., 2018), a popular deep learning
methods for single-view 3D reconstruction, on our dataset and include the test results in Figure 5.
Unlike our method, most existing deep learning methods take an image as input and generate un-
structured point cloud or meshes in an end-to-end fashion. As one can see, such a method struggles
to learn with the wireframe inputs because the features are very sparse when treated as an image.
In contrast, we propose to detect structures (i.e., face topology) in the wireframe and use geometric
reasoning for 3D inference. Therefore, our method is able to output clean, structured 3D models.

The second row and third row of Figure 5 show examples in which our face identification model
makes some incorrect predictions (see Figure 4) but the 3D reconstruction results are unaffected.
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Input Ours AtlasNet Input Ours AtlasNet

Figure 5: 3D reconstruction results.

For the two cases in the second row, our model generates edge loops which are not part of the true
face topology, but all included edges fall onto the same surface (e.g., a plane). For the two cases in
the third row, the incorrect faces are filtered because they align to more than two dominant directions.
Since the number of constraints created by the faces is typically larger than the number of unknowns
in Equation 4, the 3D model can be recovered even if some faces are missed.

The fourth row shows two examples in which incorrectly predicted faces affect local part of the 3D
model. And the fifth row shows two examples in which 3D reconstruction completely fails and the
recovered shapes appear flat. The latter typically occurs when our model makes multiple mistakes
(e.g., grouping edges on the opposite sides of the 3D shape into one face). Again, we refer readers
to Figure 4 for visualization of the mistakes made by our model.

In the last row of Figure 5, we show two interesting cases in which even humans have trouble
inferring the 3D geometry due to the chosen viewpoints. In contrast, our method does a decent job
using the extracted face loops. This suggests that our method is not sensitive to the viewpoints.

6 DISCUSSION

In this work, we present a data-driven approach to face identification. We conclude by pointing out
that the proposed method should not be treated as a replacement or competitor to the geometry- and
topology-based methods. Instead, we have found that our method complements existing techniques
in several aspects, such as capturing the intent of designers, handling curved surfaces and disjoint
components in the edge-vertex graph. Meanwhile, our model could make wrong predictions, while
geometry- and topology-based methods are guaranteed to succeed when all conditions are met.

Our work opens up several directions for future work. One direction we are particularly excited
about is identifying conflicting constraints (due to incorrect predictions made by a deep network) in a
geometric constraint system for 3D reconstruction. In this work, we treat all predicted faces equally.
A better solution will not only improve the 3D reconstruction results, but may also generalize to
other types of structural constraints in CAD.
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A ABC DATASET

Figure 6: Examples of over-
complicated shapes and thin shapes.

Since ABC dataset (Koch et al., 2019) is created from On-
shape public repository, it contains many duplicate shapes,
such as simple boxes and cylinders that were created when
novice users tested the Onshape software. There also exist
many over-complicated shapes that do not help our model
generalize. To make our model learn more effectively, we
use the following set of heuristics to filter the ABC dataset
when constructing our own dataset.

Topology. Same shapes must share the same topology. To
find duplicate shapes, we first group shapes of matching
topology features together, and then find duplicates within
each group. When grouping, we consider the following
topology features: the number of parts, surfaces, edges of a shape, and its face and edge type distri-
bution.

Visual similarity. We then further cluster within each group based on the visual similarity of the
shapes. We use three orthogonal views of a shape as its visual feature, and run agglomerative
clustering3 based on the Jaccard distance of three views between two shapes.

Thickness. Because the ABC dataset contains a lot of primitives which only consist of a plane, we
filter out shapes that are too thin. The thickness of a shape is defined as the minimum distance of
all pair-wise distances between two edges within a shape. We remove shapes that have thickness
smaller than 0.05.

Complexity. We also filter out shapes with more than 42 faces or 37 edges in a face to eliminate
over-complicated shapes that result in multiple small, overlapping faces in the same area of the line
drawing.

3We use cluster.AgglomerativeClustering from SciPy.
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B ATLASNET

In order to train AtlasNet, we convert the vectorized line drawings to bitmap images. Following
SPARE3D (Han et al., 2020), the hidden lines are drawn in red. We adopt the original implementa-
tion4 of AtlasNet, and use the same optimization settings.

C ADDITIONAL RESULTS

In the folder attached to the supplementary material, we provide visualization of (i) all incorrect
predictions made by our face identification model and (ii) 3D reconstruction results on the entire
test set.

4https://github.com/ThibaultGROUEIX/AtlasNet
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