Under review as a conference paper at ICLR 2021

FEW-ROUND LEARNING FOR FEDERATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning (FL) presents an appealing opportunity for individuals who are
willing to make their private data available for building a communal model without
revealing their data contents to anyone else. Of central issues that may limit a
widespread adoption of FL is the significant communication resources required
in the exchange of updated model parameters between the server and individual
clients over many communication rounds. In this work, we focus on preparing an
initial model that can limit the number of model exchange rounds in FL to some
small fixed number R. We assume that the tasks of the clients participating in FL
are not known in the preparing stage. Following the spirit of meta-learning for
few-shot learning, we take a meta-learning strategy to prepare the initial model so
that once this meta-training phase is over, only R rounds of FL would produce a
model that will satisfy the needs of all participating clients. Compared to the meta-
training approaches to optimize personalized local models at distributed devices,
our method better handles the potential lack of data variability at individual nodes.
Extensive experimental results indicate that meta-training geared to few-round
learning provides large performance improvements compared to various baselines.

1 INTRODUCTION

Major machine learning applications including computer vision and natural language processing
are currently supported by central data centers equipped with massive computing resources and
ample training data. At the same time, growing amounts of valuable data are also being collected
at distributed edge nodes such as mobile phones, wearable client devices and smart vehicles/drones.
Directly sending these local data to the central server for model training raises significant privacy
concerns. To address this issue, an emerging trend known as federated learning (McMahan et al.,
2017; | Konecny et al., [2016; [Bonawitz et al., [2019; [L1 et al., 2019} Zhao et al., 2018} |Sattler et al.,
2019; Reisizadeh et al., 2019), where server uploading of local data is not necessary, has been
actively researched.

Unfortunately, federated learning (FL) generally requires numerous communication rounds between
the server and the distributed nodes (or clients) for model exchange, to achieve a desired level of
prediction performance. This makes the deployment of FL a significant challenge in bandwidth-
limited or time-sensitive applications. Especially in real-time applications (e.g., connected vehicles
or drones), where the model should quickly adapt to dynamically evolving environments, the re-
quirement on many communication rounds becomes a major bottleneck. Moreover, the considerable
amounts of time and computational resources required for training place a high burden on individ-
ual clients wishing to participate in FL. Excessive communication rounds in FL are a major concern
especially in light of the increased communication burden for guaranteeing full privacy via secure
aggregation (Bonawitz et al.| 2017)).

To combat this limitation, we focus on preparing an initial model that can quickly obtain a high-
accuracy global model within only a few communication rounds between the server and the clients.
Following the spirit of meta-learning for few-shot learning, we meta-train the model via episodic
training to mimic and tee up for few-round FL. Meta-training enables reliable prediction even when
the data sample at hand does not share the same characteristics with the dataset the given model was
trained with. In contrast to existing meta-training attempts to initiate a model for further personalized
optimizations at local devices, our approach takes advantage of FL’s ability to exploit varying data
distributions across clients. A high-level description of our idea is depicted in Fig. [T} Given a small
target value R, our goal is to create an initial model that can quickly adapt, within R rounds of
FL, to a set of clients with tasks not seen during meta-training. As long as the tasks are different

Under review as a conference paper at ICLR 2021

s Deployment
(Testing)

Meta-training

o o Meta-trained o~
Episodic training initial model fg/\'
targeting R-round

federated learning

Fast adaptation within
R communication rounds
followed by inference

Figure 1: Overall procedure of the proposed few-round learning algorithm for federated learning. By using
the meta-trained initial model, a set of clients with new tasks can quickly obtain a high-accuracy global model
within only a few rounds of FL. Meta-training is based on episodic training that mimics actual inference pre-
ceded by an R-round FL procedure. A global prototype-assisted learning strategy at both meta-training and
deployment phases further improves model accuracy.

between meta-training and deployment, it is immaterial whether a node that participated in the meta-
training also partakes in few-round federated learning (followed by inference). In the context of
image classification, different tasks mean classification involving different sets of image categories
or classes (e.g., different categories of lung diseases to be diagnosed using chest X-ray images). The
prospect of meta-training also raises an intriguing possibility that meta-training can actually be done
using proxy data at the server simply mimicking the federated optimization process, although we
will not be concerned with this approach in the present work.

Extensive experimental results show that our few-round learning algorithm outperforms various
baselines in both IID (independent, identically distributed) and non-IID data distribution setups. In
an IID setup, for example, our algorithm achieves a 75.32% the accuracy on tieredImageNet within
only R = 3 rounds of FL, which surpasses fine-tuned federated averaging (FedAvg) by 14.63% and
fine-tuned one-shot federated learning (Guha et al.,|2019) by 12.88%.

2 RELATED WORKS

Few-shot learning. Few-shot learning is an instantiation of meta-learning. In the context of image
classification, few-shot learning typically involves episodic training where each episode of training
data is arranged into a few training (support) sample images and validation (query) samples to mimic
inference that uses only a few examples (Vinyals et al., 2016). Through a repetitive exposure to a
series of varying episodes with different sets of image classes, the model learns to handle new tasks
(classification against unseen classes) each time. Two widely-known few-shot learning methods
with different philosophical twists, which are also conceptually relevant to the present work, are
model-agnostic meta-learning (MAML) of (Finn et al., 2017) and Prototypical Networks of (Snell
et al.,2017). MAML attempts to generate an initial model from which different models targeting
different tasks can be obtained quickly via just a few gradient updates. The idea is that the initial
model is learned via meta-training to develop an internal representation that is close in some sense
to a variety of unseen tasks. Prototypical Networks, on the other hand, do not rely on such fine-
tuning using few examples but rather learn embedding space such that model outputs cluster around
class prototypes, the class-specific centroids of the embedder outputs. With episodic training, simple
Prototypical Networks appear to be effective in learning inductive bias for successful generalization
to new tasks. Our work takes from both concepts: we utilize prototype representation and we also
adopt fine-tuning during R-round federated learning in adapting to new tasks.

Federated meta-learning. Recent research activity has focused on improving model personaliza-
tion via federated meta-learning (Lin et al., 2020; [Chen et al.| 2018} [Fallah et al.,|2020; Jiang et al.,
2019). The common goal of these works is to generate an initial model based on which each new
client can find its own optimized model via a few local gradient steps and using only its own data.
In these works, meta-learning employed during federated learning intends to enable each client to
handle previously unseen tasks, in the spirit of MAML of (Finn et al.l [2017). User-specific next-
word prediction at individual smartphones, for example, could be an application of approaches along
this direction. Compared to this line of work, we focus on creating an initial model that leads to a
high-accuracy global model, rather than personalized models, within only a few rounds of federated
learning. In this way, we seek to take advantage of a higher variety of data as well as the larger data
volume that would be made available through collaborative learning of many distributed nodes. A
clear example is the diagnosis of a broader class of diseases that would be possible through collec-

Under review as a conference paper at ICLR 2021

tive training across numerous examples contributed by a larger group of individuals. Personalized
optimization would be especially at disadvantage in non-IID setting, where each client necessarily
lacks a sufficient variety of training data.

One-shot federated learning. Another line of work recently focused on one-shot federated learn-
ing, where the goal is to train a global model with just one communication round between the server
and the clients. The authors of (Guha et al.,|2019) proposed an ensemble method to choose reliable
client-specific models from given clients. To effectively capture global information, they proposed
various criteria by which participating clients are chosen. In the work of (Shin et al., [2020), local
clients send XOR-encoded MNIST image data to the server, and the server decodes it to train the
global model. While the server would need certain data in advance to decode the received results,
XOR operation can serve as data augmentation while preserving privacy. In the fusion learning of
(Kasturi et al., |2020), each local client uploads both the model parameters and the distribution pa-
rameters to the server. The server generates artificial data samples from the distribution parameters
to train a global model. When the data gets complex, however, it is not clear whether conversion
into a simple distribution would be reliable. Compared to the existing works on one-shot federated
learning that employ some randomly initialized model, the key difference of our method is the use
of meta-learning to obtain an initial model which can adapt to the unseen tasks of individual clients
within R rounds of FL. It is shown in Section 4] that the suggested approach yields remarkable
performance gains compared to one-shot federated learning methods.

3 PROPOSED FEW-ROUND LEARNING ALGORITHM
3.1 PROBLEM SETUP

Federated learning. Federated learning allows each distributed node k with a dataset Dy, to partici-
pate in iterative learning of a global model 6 without having to reveal its data to anyone else including
the central server. As a given round r starts, each of K participating nodes downloads a global model
0, from the server and updates it using its own local data Dj. The updated local models 6,., 1 (k) get
all uploaded to the server, which then aggregates them to get a new model 6,1 = Zle Pk0r11(K)
| D
o oy 1Dkl)
model gets downloaded to all participating nodes and the same process is repeated. Federated learn-
ing generally requires a significant number of such global rounds to achieve the desired accuracy,
with each round taking up substantial computing and communication resources.

according to the relative dataset sizes py = As the next rounds starts, this new global

Problem formulation. To enable fast federated learning, we would like to prepare an initial model
¢ in which a group of clients can quickly obtain a high-performance global model within R com-
munication rounds. In applying meta-learning, we wish to satisfy clients who hope to predict data
that were unseen during meta-training. During R rounds of FL at deployment time, each client is
also expected to make available some small number of labeled examples associated with the data
she hopes to predict. To create a training environment matching the actual R-rounds of FL followed
by inference at deployment, in each episode, our meta-training updates the model over R federated
rounds using the support set (R global rounds) and then makes a final adjustment (meta-update)
using the query set. This process is repeated as the model is exposed to a series of episodes.

3.2 META-TRAINING

Our meta-training procedure is given in Algorithm 1. Let ¢ be the initial model and ¢ the model
generated after all T’ episodic stages. To construct each episode ¢, the server selects a new set of K
clients participating for training'| The model ¢, has been updated through the end of episode stage
t — 1. The server lets 8y = ¢; and sends this initial model to the selected K clients. Through R
rounds of local updates and global aggregations guided by the support sets, the model 8, evolves to
0 r. Before moving to the next episode, a loss based on the updated model 6 and the local query set
is minimized with respect to ¢; to get each meta-updated local model ¢;1 (k). In the final server
aggregation of the episode stage, the global meta-updated model ¢, is obtained from the local
models, which then becomes the initial model for the next episode. Here, ¢ is a parameter that is
updated by meta-update process with the query sets, and 6 is a parameter that is updated during R
rounds of federated learning with the support sets.

'If the server has enough data, there is no need to utilize the distributed clients for meta-training; the server
can simply mimic the federated learning setup and procedure.

Under review as a conference paper at ICLR 2021

Specifically, given K clients in each episode, we first split Dy, (the local dataset of client k) into
support set S and query set (i such that they are disjoint. Starting from the initial model 6, each
client k utilizes its support set Sy to update the local model during R global rounds. The local update
in Line 16 involves a loss function that depends on class prototypes, as to be clarified shortly. In our
method, the server aggregates not only the local models (Line 18) but also the local prototypes (Line
20). After R rounds of local updates and global aggregations, the server obtains the global model
fr and sends it to the K clients while still in the current episode stage. Based on the downloaded

0 r and prototypes, each client k utilizes its query set () to compute the query loss L@ and meta-

local
updates ¢, to obtain ¢;11(k) in Line 24. Note that the local loss Lgc’“al obviously depends on 0,
Qk

w1 is minimized with respect to ¢; in this step.

which in turn depends on 6y = ¢;; in principle L

At last, the server finds the final output ¢, of the episode by aggregating the meta-updated local
models ¢;11(k) for k € {1,2,..., K}. In the meta-learning point of view, the initial model ¢ first
adapts to the local support sets for R global rounds in the first step, and then is meta-updated based
on the losses computed from the adapted model 0 and the local query sets, in the second step.
This two-step training procedure mimics the deployment phase where the initial model is updated
for R communication rounds before making predictions. In the following, we provide some missing
details on the description of loss functions and prototype processing.

Algorithm 1 Meta-Training procedure for Proposed Few-Round Learning
Input: Initialized model ¢y Output: Model ¢ after T training episodes
1: for each training episode t = 0,1,...,7 — 1 do

2: The server constructs an episode with K clients

3: Each client k € {1,2,...K} splits Dy, into support set Sy, and query set Q,

4: 0o <+ ¢4

5: for each communication round r = 0,1, ..., R — 1 do

6 for each client £ in parallel do

7 if 7 = O then

8: Download 6,. from the server

9: else
10: Download 6,. and P,_ from the server
11: end if
12: for each class ¢ 16 C} do
13: Pe(k) = @ ersk(c) fo.(x) > Local prototype calculation
14: with support set S,
15: end for
16: Or41(k) < 0, — aVy F(0,) > Local update of 6 with S
17: end for
18: Or1q = Zszl MOy (k) > Server aggregation of local models 6;
19: Ak is relative support set size
20: P = { Zszl A PE(K)|le=1,2,..., NC} > Server aggregation of local prototypes
21: end for
22: for each client k in parallel do
23: Download 6 and Pr_1 from the server
24: dra1(k) — o — Bv¢tLg§51(9R7 Pr_q). > Local meta-update of ¢ with query set Q,
25: end for
26: G141 = 25:1 prdi+1(k) > Server aggregation of meta-updated models; py, is relative data size
27: end for

3.2.1 R ROUNDS OF LoCcAL UPDATES AND AGGREGATIONS

In defining the loss function, we utilize the class prototypes and associated distance metric of (Snell
et al., 2017). For each communication round » = 0, 1,..., R — 1, we not only aggregate the global
model 6,11 but also the set of global prototypes P. = {P¢|c = 1,2,..., N.} for all classes ¢ €
{1,2,...N.}, where N, is the number of classes in the current episode over all clients.

Model and global prototype download. In the beginning of round » > 1, the server has the global
model 6, and the set of global prototypes P,._1 = {P¢_;|c = 1,2, ..., N.} which are the outputs of

Under review as a conference paper at ICLR 2021

the previous round — 1. Each client k € {1, 2, ..., K'} first downloads 6, and P,._; from the server.
Since there is no global prototype in the first round, the clients only download the model 6y from
the server when r = 0.

Local prototype calculation. Based on the downloaded model 6,., each client £ computes the local
prototype P¢ (k) for each class ¢ € C, using its support set Sy, as

Pi(k) = > fola)

| k(z€Sk(c)

where C}, is a set that contains all classes in client k& and Sk (c) is a set of all data samples in Sk
labeled with class ¢. For a given input data sample x, fy(x) represents the output of function f
with model parameters 6. This local prototype P¢(k) can be viewed as a representative of class ¢
calculated based on the local data (support set) of client k.

Loss calculation from local prototype. Let P, (k) be the set that contains all types of prototypes in
client k, defined as P,.(k) = {P¢(k)|c € Ci}. Now using Sk, 6, and P, (k), each client k& computes

the local loss L% (QT,PT()) according to

local

Lis (0. P (k) = 5~— o o 2 {dUn(o). PE(R)+log Y expl—dlfo(e). PE (1)}

c€Cl €Sk (c) c'#c
2)

which is based on the squared euclidean distance d(-) between P¢(k) and fy(z) for x € Si(c). We
would like to minimize this local loss during local update at each client.

Auxiliary loss from global prototype. If we only consider the loss function of (2)), each client
would have biased models after local updates, especially when the data distributions across different
clients are non-IID. This generally leads to a performance degradation of the global model. Hence,
we propose a global prototype-assisted learning (GPAL) strategy where a global prototype helps
to train the local models in the right direction; the set of global prototypes P,_; can encourage
local models to maintain stability during optimization because the global prototype contains all
the information in local data from the entire set of clients. We adopt the dense classification loss of
(Lifchitz et al.,|2019) to construct the auxiliary loss. Let gy () be the output of the last convolutional
neural network (CNN) layer of model #, immediately before average pooling. Let gg(z); be its
feature vector at position i. For each local update, client k£ compares global prototype P._; =
{P¢ 1lc=1,2,...,N, } with gg(x); and calculates auxiliary loss L3k (6,., P,_1) similar to

aux

L2 (0, P,) = TP - | i Z Z Z{d go(x +logZexp)i PEY)) L.

Ceck x€Sk(c) 1 c'#c
3

We also wish to minimize this auxiliary loss, to make the local clients not overly biased and to learn
general embedding space.

Local model update. Based on the loss functions and , for » > 1, the objective function for
local optimization becomes

Fo(0,) = Lk

tocal (0 Pr () + YLk (0, Prs) @)
where 7 is a balancing factor. For r = 0, we have F+(0,) = Liﬁal(ﬁr, P.(k)) since the global
prototype is not defined in the first global round. Now based on the the objective function F'%*(4,.),
each client k performs local update according to Line 16 of Algorithm[I] where « is the learning rate.
In federated learning, the clients generally performs multiple local updates, say E times. Hence, the
process of local prototype computation (I)), loss computations (), (3) and local model update of
Line 16 of Algorithm|l]is repeated E times to obtain 6,1 (k).

Model and prototype aggregation at the server. After performing local updates at the clients,
each client k sends its updated local model 6,1 (k) and the computed local prototypes P, (k) to the
server. Then the server aggregates the local models and the local prototypes according to Lines 18

and 20 in Algorithm respectively, where the weighting factor \;, = TR I‘ Sl reflects the relative
k=1

support set sizes.

The above local update and global aggregation processes are repeated for R global rounds (r =
0,1,..., R — 1), and the server finally obtains 8 and Pr_.

Under review as a conference paper at ICLR 2021

3.2.2 ONE-ROUND LOCAL META-UPDATE AND AGGREGATION

Towards the end of each episode processing stage, the clients download 6 and Pr_; from the
server. At each client k, the local query loss LAk (ORr, Pr—1) is calculated similar to based

local
on @, O, and Pr_;. Taking a derivative of L3 with respect to ¢; in Line 24 can easily be
done through the chain rule, yielding (dropping super/subscripts and terms not critical for now):

local
Vo L0R) = Von L(0r) X 5505 = Vo, L(0r) x (T[150 /00 Mg (6, — aVa, F54(6,)))

where 6y = ¢; and the loss function FS* is the local loss seen in Line 16. We notice that the prod-
uct term here involves double derivatives, which can be safely ignored according to our empirical
observation (which is consistent with what was observed in a parallel setting in MAML of (Finn
et al., [2017)). Thus, we simply use first-order approximation V4, L(6r) ~ Vg, L(0r) to perform
the local meta-update in Line 24. The server finally aggregates the meta-updated models from all
clients and moves on to the next episode.

3.3 DEPLOYMENT (TESTING)

In the actual deployment or test phase, given a set of clients with unseen classes, the server sets
6o = ¢ and then performs R rounds of federated learning to obtain 6 and Pgr_1. Now, given
a test sample, we make prediction based on i and Pr_1: we first compute the output of model
0 r with the new test sample, and then compare the distances with all global prototypes in Pr_; to
make the decision.

4 EXPERIMENTAL RESULTS

We validate our proposed algorithm on two benchmark datasets for meta-learning, minilmageNet
(Vinyals et al., 2016) and tieredlmageNet (Ren et al., | 2018)), which have significantly larger num-
bers of classes than MNIST or CIFAR-10 commonly used in federated learning studies. Following
the data splits introduced in (Ravi & Larochelle, |2017), 100 classes are divided into 64 training,
20 test and 16 validation classes for minilmageNet. For tieredlmageNet, the dataset is divided
into 351/160/97 classes for train/test/validation, respectively. Experimental results on CIFAR-100
dataset can be found in the Supplementary Materials.

Comparison schemes. We compare our algorithm with the following schemes. First, as a simplest
baseline, we consider FedAvg (McMahan et al.,|2017), where a randomly initialized model is trained
for R communication rounds. Preparing stage is not utilized for this scheme. Second, we consider
a FedAvg-based fine-tuning method, where the overall model is first pre-trained on the training
set in the preparing stage, and then fine-tuned to the unseen test set for R communication rounds
via FedAvg in the deployment phase. For example, in minilmageNet, a 64-way classifier model is
pre-trained first. Next, the last linear layer is replaced and newly initialized, and then the overall
model is fine-tuned during testing. Finally, we consider fine-tuning based on one-shot FL (Guha
et al., [2019), where the local models are sampled and aggregated by the ensemble cross-validation
(CV) method. We allow a larger number of available clients for this scheme to accommodate user
sampling. The model is first pre-trained on the training set in the preparing stage, and then fine-
tuned to the unseen classes with the scheme of (Guha et al., 2019) for R rounds. For our few-round
learning (FRL) algorithm, we utilize both linear classifier and distance-based classifier (Snell et al.,
2017) for comparison. For the linear classifier case, we connect an additional linear layer behind
CNN layers, as in other baselines. The distance-based classifier utilizes the output of CNN layers,
e.g., to build prototypes, instead of using the linear layer. For the distance-based classifier, we
observe the effect of global prototype-assisted learning (GPAL) using the auxiliary loss.

Experimental setup. We meta-train as well as test our model in federated learning setups. We typ-
ically set the target number of communication rounds to R = 3. Hence, in the meta-training phase,
each episode of our scheme requires 4 global rounds: 3 rounds of local updates and aggregation,
and 1 round of local meta-update and aggregation. For a fair comparison, we let all baselines to
consume the same amount of communication resources in the meta-training or pre-training phase:
3.2 x 10* communication rounds between the server and clients. Hence, our scheme is meta-trained
over 8.0 x 103 episodes, taking 4 rounds in each episode. To construct each episode, the server
selects K = 10 clients in the system for participation. We first consider a 5-way setup where 5
classes are randomly sampled from the train/test sets to construct the datasets of clients in each
episode. This type of modeling reflects the practical federated learning setup where a large number
of clients having different local data coexist in the system. 120 images are sampled from each class

Under review as a conference paper at ICLR 2021

Table 1: Test accuracies after R = 3 communication rounds in a 5-way setup.

|| miniImageNet tieredlmageNet
Methods | IOD NonlID || 1D Non-IID
FedAvg 35.44% 29.79% 4098% 34.26%
Fine-tuning via FedAvg 57.93% 38.21% 60.69% 50.52%
Fine-tuning via one-shot FL (Guha et al.[|2019) 60.59% 36.75% 62.44% 50.26%
FRL: Linear classifier (Ours) 68.33% 58.18% 69.71% 61.56%
FRL: Distance-based classifier (Ours) 72.37% 66.42% 74.51% 68.12%

FRL: Distance-based classifier + GPAL (Ours) 73.71% 67.33% 75.32% 68.81%

T T T T T 70 T T T T T T
5 65 B
L 1 geor 1
355,
5} —FRL: Distance, GPAL — Fine-tuning via one-shot FL

]
3

>
3 65
>3
Q
& 55+ 4 ®©50F N N P
@ /i —FRL: Distance, GPAL —Fine-tuning via one-shot FL D 4l _FRL: letance ~ Fine-tuning via FedAvg
) . N . . o 45 FRL: Linear
[—FRL: Distance ——Fine-tuning via FedAvg [
45 FRL: Linear 1 40 /\
. ; ; ; ; ; 35 . . . | ! !
0.5 1 1.5 2 25 3 0.5 1 1.5 2 25 3
Communication rounds (meta/pre-training phase) x10* Communication rounds (meta/pre-training phase) x10*
(a) IID scenario, minilmageNet (b) Non-IID scenario, minilmageNet

Figure 2: Test accuracy after R = 3 global rounds in the testing phase, with varying numbers of communication
rounds in the meta-training phase (or pre-training phase).

and distributed to ' = 10 clients depending on two data distribution setups: IID and non-IID. In
the IID setup, the data samples from each class are equally distributed to /' = 10 clients; each client
has 12 samples for 5 classes, a total of 60 samples. In the non-1ID setup, following the procedure
of (McMahan et al., 2017), we first sort the 600 training samples of each episode by its category.
We then divide the sorted data into 20 shards of size 30 and randomly allocate 2 shards to each
client. Hence, no client would be given data corresponding to more than 2 distinct classes. For both
IID and non-IID setups, each client uses one half of its data from each class as support samples,
and the remaining half as query samples. In other words, in an IID setup, each client has 6 support
samples and 6 query samples for each class. In the non-IID setup, the clients with 2 classes have 15
support samples and 15 query samples for each class, while the clients with 1 class have 30 support
samples and 30 query samples for that class. For the one-shot FL. method described above, we allow
20 clients and the server samples K = 10 of them to aggregate. In the actual deployment (testing)
phase, the support set is utilized for R = 3 rounds of local updates and the server calculates the test
accuracy with the global model/prototype and the gathered query sets of all clients. We averaged the
test accuracies over 5.0 x 10% randomly sampled episodes in the testing phase.

Implementation details. For a fair comparison, our method and other baselines share the same
neural network architecture. The model follows the settings of (Vinyals et al.,|2016)), which contains
4 consecutive 3 x 3 convolutional layers with 32 filters. Successively, each CNN output goes through
ReLU activation, batch normalization and 2 X 2 max pooling. We adopt the Adam optimizer as
the meta-learner with a learning rate of 5 = 0.01 and an SGD optimizer as the learner with a
learning rate of &« = 0.1. The meta-learning rate reduces by one-tenth after 2.0 x 10* rounds.
We set the number of local epochs to £ = 1. As mentioned, we do not see advantages in using
the second derivatives in computing the gradient in Line 24 of Algorithm [I]in the meta-updating
process. Given the memory and computational overhead issues as well, we naturally disregard the
second derivatives and apply first-order approximation.

Experimental results in a 5-way setup. Table [T|shows the test accuracies in a 5-way setup. The
model is meta-trained targeting R = 3 and tested after R = 3 rounds in the test phase. First,
for both IID and non-IID scenarios, it can be seen that FedAvg yields significantly lower accuracy
compared to others, since it uses a randomly initialized model for training. By pre-training the model
for 3.2 x 10* communication rounds, we observe that FedAvg-based fine-tuning gives significant
performance gains compared to naive application of FedAvg. The fine-tuning scheme based on
one-shot federated learning shows further performance improvements in the IID setup. However,
since K = 10 clients are sampled from 20 clients for this ensemble method, there possibly exist
some unseen classes when building the global model/prototype in the non-IID setup, which lowers
the performance compared to fine-tuned FedAvg. Our few-round learning algorithm performs the
best, with the distance-based classifier showing better accuracy compared to the linear classifier.
It can be also seen that the performance of the global model can be further improved by global

Under review as a conference paper at ICLR 2021

Table 2: Test accuracies after R = 3 communication rounds in a random-way (3~7) setup.

73.41% 69.86%

|| minilmageNet tieredlmageNet
Methods || 1D Non-IID || 1D Non-IID
FedAvg 36.98% 31.32% 41.35% 35.34%
Fine-tuning via FedAvg 62.27% 53.04% 63.62% 51.11%
Fine-tuning via one-shot FL (Guha et al., [2019) || 63.52% 51.92% 64.36% 49.49%
FRL: Linear classifier (Ours) 65.06% 53.51% 63.48% 54.87%
FRL: Distance-based classifier (Ours) 73.06% 66.97% 72.36% 69.07%

FRL: Distance-based classifier + GPAL (Ours) 74.32% 67.94%

Table 3: Test accuracies after R = 1 communication round in a 5-way setup.

|| minilmageNet tieredlmageNet
Methods || 1D Non-IID || 1D Non-1ID
FedAvg 31.64% 28.86% 36.14% 32.56%
Fine-tuning via FedAvg 50.58% 36.76% 51.42% 41.16%
Fine-tuning via one-shot FL (Guha et al.}2019) 52.07% 32.05% 52.40% 40.74%
FRL: Linear classifier (Ours) 62.61% 51.09% 64.52% 55.78%
FRL: Distance-based classifier (Ours) 72.10% 66.13% 74.37% 67.95%

FRL: Distance-based classifier + GPAL (Ours) 72.58% 66.63% 74.69% 68.15%

prototype-assisted learning with the auxiliary loss. Fig. 2] shows how the final test accuracy (after
3 fixed rounds) in the deployment phase increases as the number of communication rounds in the
meta-training (or pre-training) phase grows. The overall results in Table |1{ and Fig. [2| confirm the
advantage of exploiting meta-learning and global prototype-assisted learning ideas to facilitate few-
round federated learning.

Experimental results in a random-way setup. In Table [2| we provide test accuracies in a more
general random-way setup. To construct each episode in the meta-training phase, 7 classes are
randomly and independently sampled from the train sets, where 7 follows a discrete uniform distri-
bution in the range [3, 7]. The same procedure of random 7 sampling is also applied during the test
phase. As in the 5-way setup, we sample 120 images from each class to construct an episode, having
a total of 1207 samples. In the IID setup, each client has 12 samples for 7 classes. In the non-IID
setup, we again divide the sorted data into 20 shards of size 67 and randomly allocate 2 shards to
each client. To meta-train the linear classifiers in this random-way setup, we fix the output size of
last linear layer to 7 and exploit perceptron from the beginning, according to the selected 7 value.
The results are consistent with the one in the 5-way setup, confirming significant advantages of our
few-round learning algorithm even in a more general setup.

Experimental results with mismatch on R. In Table [3| we show the results for mismatched R.
The model is meta-trained targeting R = 3 as in Tables [[]and 2] but the actual test accuracies are
evaluated after R = 1 communication round in the test phase. Since the global model is obtained
after only one global round, the accuracies are lower than in Tablem Overall, it can be seen that our
few-round learning algorithm is still powerful in this mismatch scenario. Testing on mismatch with
R = 2, as provided in Supplementary Materials, also shows consistent results.

Comparison with personalization scheme. We note that our formulation targets creating a global
model while the previous works on federated meta-learning (Lin et al., [2020; (Chen et al., [2018)
aim at personalized local models. Given these different goals, in a non-IID setup, our method can
generally handle broader classes of data than existing personalization approaches. However, there is
a simple way to obtain a global model based on these personalization models, in case a need arises
for a globalized model after-the-fact: just run rounds of local updates and aggregations starting from
the local models but using data now collected across interested clients. We were curious about
how this globalized model would fare. In Supplementary Materials, we added experimental results
for this scheme. A quick conclusion is that the performance is comparable to the best fine-tuning
methods but lags well behind our methods targeting a global model from the get-go.

5 CONCLUSION

We proposed a meta-learning strategy that enables few-round learning. Given a set of clients with
new tasks, our meta-trained model generalizes well, within only a few communication rounds be-

Under review as a conference paper at ICLR 2021

tween the server and the clients. Extensive experimental results confirm the significant advantages
of our method over different baselines in both IID and non-IID data distribution setups.

REFERENCES

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar
Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-
preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1175-1191, 2017.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloe Kiddon, Jakub Konecny, Stefano Mazzocchi, H Brendan McMahan, et al. Towards
federated learning at scale: System design. arXiv preprint arXiv:1902.01046, 2019.

Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. Federated meta-learning with
fast convergence and efficient communication. arXiv preprint arXiv:1802.07876, 2018.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A meta-
learning approach. arXiv preprint arXiv:2002.07948, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In ICML, 2017.

Neel Guha, Ameet Talwalkar, and Virginia Smith. One-shot federated learning. arXiv preprint
arXiv:1902.11175, 2019.

Yihan Jiang, Jakub Kone¢ny, Keith Rush, and Sreeram Kannan. Improving federated learning per-
sonalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

Anirudh Kasturi, Anish Reddy Ellore, and Chittaranjan Hota. Fusion learning: A one shot federated
learning. In International Conference on Computational Science, pp. 424-436. Springer, 2020.

Jakub Konecny, H. Brendan McMahan, Felix X. Yu, Ananda Theertha Suresh, and Dave Bacon.
Federated learning: strategies for improving communication efficiency. In NIPS Workshop on
Private Multi-Party Machine Learning, 2016.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. arXiv preprint arXiv:1908.07873, 2019.

Yann Lifchitz, Yannis Avrithis, Sylvaine Picard, and Andrei Bursuc. Dense classification and im-
planting for few-shot learning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 9258-9267, 2019.

Sen Lin, Guang Yang, and Junshan Zhang. A collaborative learning framework via federated meta-
learning. arXiv preprint arXiv:2001.03229, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273-1282, 2017.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. 2017.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani.
Fedpaq: A communication-efficient federated learning method with periodic averaging and quan-
tization. arXiv preprint arXiv:1909.13014, 2019.

Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B Tenenbaum,
Hugo Larochelle, and Richard S Zemel. Meta-learning for semi-supervised few-shot classifica-
tion. In International Conference on Learning Representations, 2018.

Felix Sattler, Simon Wiedemann, Klaus-Robert Miiller, and Wojciech Samek. Robust and
communication-efficient federated learning from non-iid data. IEEE transactions on neural net-
works and learning systems, 2019.

Under review as a conference paper at ICLR 2021

MyungJae Shin, Chihoon Hwang, Joongheon Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun
Kim. Xor mixup: Privacy-preserving data augmentation for one-shot federated learning. arXiv
preprint arXiv:2006.05148, 2020.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in neural information processing systems, pp. 4077-4087, 2017.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In Advances in neural information processing systems, pp. 3630-3638, 2016.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

10

Under review as a conference paper at ICLR 2021

A ADDITIONAL EXPERIMENTS UNDER MISMATCH ON R

In Table [A.T] we show additional experimental results on a mismatch scenario in the 5-way setup,
where the model is meta-trained targeting R = 3 but tested after only R = 2 communication rounds
in the deployment phase. Our few-round learning algorithm consistently achieves higher accuracies
compared to other baselines in this mismatch scenario.

Table A.1: Meta-trained targeting R = 3. Accuracy evaluated after R = 2 rounds in a 5-way setup.

|| minilmageNet tieredlmageNet
Methods || 1D Non-IID || 1D Non-1ID
Fine-tuning via FedAvg 55.37% 34.43% 57.80% 48.05%
Fine-tuning via one-shot FL 5771% 34.35% 59.76% 46.97%
FRL: Linear classifier (Ours) 67.08% 54.70% 68.59% 60.38%
FRL: Distance-based classifier (Ours) 72.33% 66.28% 74.34% 68.04%

74.97% 68.63%

FedAvg 33.93% 30.35% 39.14% 34.49%
FRL: Distance-based classifier + GPAL (Ours) || 73.51% 66.86%

B ADDITIONAL EXPERIMENTS WITH TARGET R = 2

While the results shown in the main manuscript utilized the model targeting R = 3, here we show
results with target R = 2, in the same 5-way setup. The model is meta-trained with R = 2. The
accuracies are evaluated after R = 2 communication rounds in Table[B.1] and evaluated after R = 1
communication round in Table Overall results show that our few-round learning algorithm
outperforms other baselines in this R = 2 case as well.

Note that Table below and Table E] above evaluate accuracies after R = 2 global rounds,
while the models are meta-trained targeting R = 2 and R = 3, respectively. Comparing these
results, we can say that meta-training using a higher R does not provide performance advantage in
the deployment (testing) phase. Hence, given a constraint on R in the deployment time, there is no
need to perform “higher-round training”, which saves the communication resources utilized in the
meta-training phase.

Table B.1: Meta-trained targeting R = 2. Accuracy evaluated after R = 2 rounds in a 5-way setup.

|| minilmageNet tieredlmageNet
Methods 11D Non-IID H 11D Non-IID

Fine-tuning via FedAvg 57.83% 37.15% 58.61% 42.61%
Fine-tuning via one-shot FL 58.44% 37.05% 5897% 40.81%
FRL: Linear classifier (Ours) 63.45% 57.11% 66.39% 61.29%
FRL: Distance-based classifier (Ours) 7231% 66.39% 74.44% 68.02%

|
FedAvg 33.93% 30.35% 39.14% 34.49%
FRL: Distance-based classifier + GPAL (Ours) 73.22% 67.11% 74.82% 68.53%

Table B.2: Meta-trained targeting R = 2. Accuracy evaluated after R = 1 round in a 5-way setup.

74.56% 68.93%

|| miniImageNet tieredImageNet
Methods || 1D Non-IID || 1D Non-1ID
FedAvg 31.64% 28.86% 36.14% 32.56%
Fine-tuning via FedAvg 48.60% 36.44% 47.58% 35.89%
Fine-tuning via one-shot FL 48.69% 36.52% 48.16% 35.71%
FRL: Linear classifier (Ours) 60.71% 55.75% 63.99% 59.61%
FRL: Distance-based classifier (Ours) 72.25% 66.38% 74.33% 68.31%

FRL: Distance-based classifier + GPAL (Ours) || 72.63% 67.09%

11

Under review as a conference paper at ICLR 2021

Table C.1: Comparison with personalization scheme in a 5-way setup. Meta-trained targeting R = 3, and
tested after R = 3 rounds.

|| miniImageNet tieredImageNet
Methods \ \ 1D Non-IID \ \ IID Non-IID
Personalization: Linear Classifier 54.05% 54.05% 60.87% 50.21%
Personalization: Distance-based Classifier 61.69% 53.66% 64.78% 55.98%
FRL: Linear classifier (Ours) 68.33% 58.18% 69.71% 61.56%
FRL: Distance-based classifier (Ours) 72.37% 66.42% 74.51% 68.12%

FRL: Distance-based classifier + GPAL (Ours) || 73.71% 67.33% 7532% 68.81%

Table C.2: Comparison with personalization scheme in a random-way (3~7) setup. Meta-trained targeting
R = 3, and tested after R = 3 rounds.

|| minilmageNet tieredlmageNet
Methods \ \ IID Non-IID \ \ IID Non-IID
Personalization: Linear Classifier 53.51% 46.16% 59.89% 49.83%
Personalization: Distance-based Classifier 62.44% 53.93% 62.28% 53.45%
FRL: Linear classifier (Ours) 65.06% 53.51% 63.48% 54.87%
FRL: Distance-based classifier (Ours) 73.06% 66.97% 72.36% 69.07%

FRL: Distance-based classifier + GPAL (Ours) || 74.32% 67.94% 73.41% 69.86%

C COMPARISON WITH THE PERSONALIZATION SCHEME

In this section, we provide additional experimental results to compare our few-round learning algo-
rithm with the personalization schemes (Lin et al.,|2020; |Chen et al., 2018]). For the personalization
scheme, the clients perform local meta-updates with their query sets right after the local updates
with the support sets, in the meta-training phase. For testing, local updates and aggregations are
repeated for R global rounds to construct a global model after-the-fact. Tables|C.I]and [C.2]compare
our scheme with the personalization scheme combined with global aggregation, in a 5-way setup
and a random-way (3~7) setup, respectively. The detailed settings are exactly the same as in the
main manuscript. The personalization scheme combined with global aggregation achieves compa-
rable performance with best fine-tuning methods in the main manuscript, but falls well below our
schemes geared to few-round FL.

D ADDITIONAL EXPERIMENTS WITH LESS DATA SAMPLES AT EACH CLIENT

So far, we sampled 120 images from each class to construct an episode. In this section, we observe
the effect of reducing the number of data samples in each client. Instead of sampling 120 images,
we now sample 60 images from each class to construct an episode. In a 5-way setup, 60-5/10 = 30
samples are allocated to each client. In the IID setup, the data samples from each class are equally
distributed to /X = 10 clients; each client has 6 samples for each of 5 classes, having a total of 30
samples. For each class, 3 samples are utilized as support samples and other 3 samples are utilized
as query samples. In the non-IID setup, we again divide the sorted data into 20 shards of size 15 and
randomly allocate 2 shards to each client.

Table [D.T] shows the test accuracies in this setup. Again we consider a 5-way setup, and the model
is meta-trained targeting R = 3. The accuracies are evaluated after R = 3 rounds of federated
learning. Since we utilize less data samples for training, the performances are degraded compared
to the results in the main manuscript. But, overall, the trend is consistent with the results we observed
so far, confirming the advantage of our few-round learning algorithm utilizing meta-learning.

E ADDITIONAL EXPERIMENTS ON CIFAR-100

To confirm the applicability of our proposed scheme further, we provide additional experiments
on CIFAR-100 in Table[E.T] Similar to minilmageNet, we split 100 classes in CIFAR-100 into 64

12

Under review as a conference paper at ICLR 2021

Table D.1: Performance with less data samples at each client (3 shots per class per client for IID as compared
to our usual setup of 6 shots in this work) in a 5-way setup. Meta-trained targeting R = 3, and tested after

R = 3 rounds.

72.54% 65.67%

|| minilmageNet tieredlmageNet
Methods || 1D Non-IID || 1D Non-1ID
FedAvg 34.39% 29.08% 39.61% 33.48%
Fine-tuning via FedAvg 57.70% 38.09% 60.08% 48.61%
Fine-tuning via one-shot FL 60.36% 38.18% 61.63% 47.79%
FRL: Linear classifier (Ours) 65.46% 55.78% 67.32% 59.61%
FRL: Distance-based classifier (Ours) 70.04% 63.08% 71.96% 65.25%

FRL: Distance-based classifier + GPAL (Ours) || 70.81% 63.48%

Table E.1: Test accuracies after R = 3 communication rounds in 5-way setup on CIFAR-100.

[CIFAR-100
Methods \ \ 1ID Non-1ID
FedAvg 4513% 37.50%
Fine-tuning via FedAvg 65.92% 41.02%
Fine-tuning via one-shot FL. 66.22% 36.53%
FRL: Linear classifier (Ours) 70.96% 58.09%
FRL: Distance-based classifier (Ours) 80.14% 72.54%

FRL: Distance-based classifier + GPAL (Ours) || 80.35% 72.66%

training, 16 validation and 20 test classes. The results are consistent with the tables on other datasets,
confirming the advantage of our approach.

F ADDITIONAL EXPERIMENTS WITH A LARGER NUMBER OF CLIENTS

To demonstrate the scalability of our proposed method, we performed additional experiments with
K = 50 clients. Table shows the details, which indicates that our scheme outperforms other
baselines in a larger scale federated learning system.

Table F.1: Performance with K = 50 clients. Accuracies are obtained after R = 3 communication rounds in

5-way setup.

|| minilmageNet
Methods || 1D Non-1ID
FedAvg 36.85% 30.75%
Fine-tuning via FedAvg 63.20% 36.09%
FRL: Linear classifier (Ours) 70.01% 63.88%
FRL: Distance-based classifier (Ours) 73.89% 73.02%

FRL: Distance-based classifier + GPAL (Ours) || 74.03% 73.22%

13

	Introduction
	Related Works
	Proposed Few-Round Learning Algorithm
	Problem Setup
	Meta-Training
	R Rounds of Local Updates and Aggregations
	One-Round Local Meta-Update and Aggregation

	Deployment (Testing)

	Experimental Results
	Conclusion
	Additional Experiments Under Mismatch on R
	Additional Experiments with Target R=2
	Comparison with the Personalization scheme
	Additional Experiments with less data samples at each Client
	Additional Experiments on CIFAR-100
	Additional Experiments with a larger number of clients

