
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INT V.S. FP: A COMPREHENSIVE STUDY OF FINE-
GRAINED LOW-BIT QUANTIZATION FORMATS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern AI hardware, such as Nvidia’s Blackwell architecture, is increasingly em-
bracing low-precision floating-point (FP) formats to handle the pervasive activa-
tion outliers in Large Language Models (LLMs). Despite this industry trend, a uni-
fied comparison of FP and integer (INT) quantization across varying granularities
has been missing, leaving algorithm and hardware co-design without clear guid-
ance. This paper fills that gap by systematically investigating the trade-offs be-
tween FP and INT formats. We reveal a critical performance crossover: while FP
excels in coarse-grained quantization, INT consistently surpasses it as the quan-
tization block size shrinks. Our comprehensive comparison demonstrates that for
popular fine-grained formats like MX (block size 32), MXINT8 and MXINT4 are
superior to their FP counterparts in both algorithmic accuracy and hardware ef-
ficiency. We also introduce a symmetric clipping method that resolves gradient
bias in fine-grained low-bit INT training, enabling nearly lossless performance
for MXINT8 training. These findings challenge the current hardware trajectory
and advocate for prioritizing fine-grained INT formats in future AI accelerators to
achieve a better balance of accuracy, power, and efficiency.

1 INTRODUCTION

The proliferation of Large Language Models (LLMs) has been accompanied by a surge in their
computational and memory demands (Yuan et al., 2024), making quantization an indispensable tech-
nique for efficient deployment. A central challenge in quantizing LLMs, particularly those based on
the Transformer architecture, is the presence of significant outliers (Sun et al., 2024; Dettmers et al.,
2022) in activation distributions. These outliers, characterized by their large magnitude but infre-
quent occurrence, pose a considerable problem for low-precision representations. To accommodate
this wide dynamic range, the AI hardware industry (NVIDIA Corporation, 2024a) is increasingly
pivoting towards low-precision floating-point (FP) formats, such as FP8 and FP4. Prominent ex-
amples like NVIDIA’s Blackwell architecture (NVIDIA Corporation, 2024a) underscore this trend,
favoring the superior dynamic range of FP to handle outliers more gracefully than traditional integer
(INT) formats.

However, this industry-wide momentum towards FP formats is based on an incomplete picture.
The comparative advantages of FP and INT have not been systematically evaluated across different
quantization granularities in a unified framework. Most studies (Xiao et al., 2023; Chen et al., 2024a;
Liu et al., 2024b) focus on a single format or compare them only at coarse granularities (e.g., per-
channel), failing to answer a critical question: how does the performance trade-off between INT
and FP evolve as granularity becomes finer? Since fine-grained (block-wise) quantization is now
a standard technique (Rouhani et al., 2023; NVIDIA Corporation, 2024b) for mitigating outliers,
understanding its interaction with the underlying number format is essential for effective algorithm-
hardware co-design.

In this paper, we conduct a comprehensive, systematic comparison of INT and FP quantization
across a wide spectrum of block sizes. Our investigation reveals a critical ”crossover point” in
performance. While FP formats hold a distinct advantage in coarse-grained scenarios, we find that
INT formats consistently surpass them as the block size shrinks. This reversal occurs because fine-
grained blocking effectively isolates outliers, reducing the local dynamic range within each block
and allowing the uniform precision of INT formats to become more effective. This trend holds across

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

modern block-wise formats, where a shared scaling factor is applied to a group of values, such
as the 32-element blocks in Microscaling (MX) formats (Rouhani et al., 2023) or the 16-element
blocks in NVIDIA’s (NV) formats (NVIDIA Corporation, 2024b). To enable a direct comparison,
we introduce and evaluate integer variants (e.g., MXINT8, MXINT6, MXINT4, NVINT4) alongside
their standard FP counterparts (e.g., MXFP8, MXFP6, MXFP4, NVFP4). Our key contributions are
as follows:

• We provide the first comprehensive comparison of INT versus FP quantization across a
spectrum of granularities, demonstrating that fine-grained integer formats (MXINT8, MX-
INT4, and NVINT4) consistently outperform their FP counterparts in both direct-cast in-
ference and low-bit training scenarios.

• We identify and resolve a critical gradient bias issue in fine-grained INT quantization-aware
training (QAT) by introducing symmetric clipping method, enabling MXINT8 training to
match the performance of BF16 training.

• We develop a theoretical and statistical framework that models the quantization error for
both INT and FP formats, clearly explaining why INT surpasses FP in fine-grained regimes
by analyzing the impact of the crest factor on quantization signal-to-noise ratio (QSNR).

• We present a comparative hardware cost analysis, showing that fine-grained INT quantiza-
tion is not only more accurate but also more area- and energy-efficient than its FP equiva-
lent.

• Collectively, our findings challenge the prevailing FP-centric trajectory in AI hardware
design and strongly suggest that fine-grained INT formats offer a more optimal balance of
accuracy and efficiency for the next generation of LLMs.

2 PRELIMINARIES

Quantization maps a high-precision tensor X to a lower bit-width. In this section, we present low-bit
integer (INT) quantization, floating-point (FP) quantization, quantization granularity with a focus on
fine-grained block-wise schemes, and an overview of existing low-bit block formats.

2.1 LOW-PRECISION INTEGER FORMATS

For b-bit integer quantization, we define:

Xq = clip
(⌊

X

s

⌉
, Qmin, Qmax

)
· s, (1)

where s is the scale factor that normalizes X to the target integer range, ⌊·⌉ is round-to-nearest, and
Xq is the dequantized tensor. The clipping ensures that the integer values lie in [Qmin, Qmax] (e.g.,
for signed b-bit integers, Qmin = −2b−1 and Qmax = 2b−1 − 1).

2.2 LOW-PRECISION FLOATING-POINT FORMATS

Floating-point representation (Markstein, 2008) uses three fields: the sign bit (S), the exponent (E),
and the mantissa (M). We denote a format as ExMy, where x and y are the numbers of exponent
and mantissa bits. The sign determines the polarity, the exponent sets the dynamic range, and the
mantissa sets the precision. A floating-point number decodes as:

CFP =

{
(−1)S × (1.M)2 × 2E−bias if E ̸= 0 (Normal),
(−1)S × (0.M)2 × 21−bias if E = 0, M ̸= 0 (Subnormal).

(2)

Here, CFP denotes the set of representable low-bit floating-point values. Floating-point quantization
is:

Xq = Nearest
(
X

s
,CFP

)
· s, (3)

where Nearest(·,CFP) maps normalized values to the nearest element of CFP. Eq. (3) is a general
quantization form that also recovers integer quantization by replacing CFP with CINT.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Low-bit formats name and their correspond represented range and scale factors.

Format Block Size Max Value Min Value Dynamic Range Scale-1 Scale-2
MXFP8 (E4M3) 32 ±448 ±2−9 1.75× 217 UE8M0 -
MXINT8 32 127 1 127 UE8M0 -
MXFP6 (E2M3) 32 ±7.5 ±0.125 60 UE8M0 -
MXINT6 32 ±31 ±1 31 UE8M0 -
MXFP4 (E2M1) 32 ±6 ±0.5 12 UE8M0 -
MXINT4 32 ±7 ±1 7 UE8M0 -
NVFP4 16 ±6 ±0.5 12 E4M3 FP32
NVINT4 16 ±7 ±1 7 E4M3 FP32

X Quantize

GEMM

W Quantize

Y

dY Quantize

GEMM

Quantize

dX

Quantize

GEMM

dY Quantize

dW

𝑾𝑻

𝑿𝑻

Forward

Backward

①

②

③

④

⑤

⑥

Figure 1: Compute flow of low-bit forward
and backward propagation of linear layer.

256 128 64 32
Quantization Granularity

3.12

3.13

3.14

Lo
ss

Data Type
BF16 (baseline)
MXINT8 ([-128, 127])
MXINT8 ([-127, 127])

Figure 2: Impact of clipping range on INT8 fi-
nal training loss on 145M model with 20B train-
ing tokens. Scale factor is kept on BF16 to em-
phasize the harm of asymmetric representation
space during low-bit training.

2.3 QUANTIZATION GRANULARITY

Quantization granularity specifies how scale factors apply across a tensor. Finer granularity usually
improves accuracy but increases compute and memory overhead due to more scale factors. Common
choices are: (i) Per-tensor: a single scale for the entire tensor. (ii) Per-channel: a scale per channel,
broadcast along a chosen axis. (iii) Block-k: the tensor is partitioned into 1 × k blocks along one
dimension, and each block has its own scale. Block quantization is a key technique for improving
accuracy at low precision. In this paper, we mainly focus on block quantization.

2.4 BLOCK-QUANTIZATION FORMATS

To improve low-bit accuracy, OCP (Rouhani et al., 2023) proposes the Microscaling (MX) format,
which uses a shared UE8M01 scale for each block of 32 elements. This fine-grained scaling re-
duces quantization error. Recently, NVIDIA Blackwell-series GPUs (NVIDIA Corporation, 2024b)
provide native hardware support for MXFP8/MXFP6/MXFP4. Traditionally, FP8 has E4M3 and
E5M2 variants, and FP6 has E2M3 and E3M2 variants. We consider E4M3 for MXFP8 and E2M3
for MXFP6 because mantissa bits are more critical to the performance of fine-grained quantization,
consistent with prior work (Liu et al., 2024a; Mishra et al., 2025; Rouhani et al., 2023). Further-
more, NVIDIA proposes NVFP4, which enhances MXFP4 by reducing the block size from 32 to
16 and replacing the UE8M0 scale with an E4M3 scale. NVFP4 also introduces a second-level
per-tensor scale to prevent overflow of the first-level E4M3 scale. Therefore, current hardware tends
to support low-bit fine-grained floating-point formats. To enable fair comparison between low-bit
floating-point and integer formats, we also introduce four corresponding integer variants: MXINT8,
MXINT6, MXINT4, and NVINT4. Details of these low-bit formats are listed in Table 1.

1UE8M0 is an 8-bit unsigned floating-point format with eight exponent bits and zero mantissa bits.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 QUANTIZATION RECIPE

This section illustrates the computation flow for low-bit inference and training in Sec. 3.1, and
details the scale-factor computation used in quantization in Sec. 3.2.

3.1 QUANTIZATION COMPUTE FLOW

Figure 1 shows an example of using low-bit GEMM in a linear layer during forward and backward
propagation. Given high-precision (e.g., BFloat16) activations X and weights W, the forward pass
of the quantized linear layer2 is:

Y = Quantize(X)︸ ︷︷ ︸
1⃝

Quantize(W)︸ ︷︷ ︸
2⃝

. (4)

The backward pass to compute dX and dW is:
dX = Quantize(dY)︸ ︷︷ ︸

3⃝

Quantize(WT)︸ ︷︷ ︸
4⃝

, (5)

dW = Quantize(XT)︸ ︷︷ ︸
5⃝

Quantize(dYT)︸ ︷︷ ︸
6⃝

. (6)

Quantize(·) maps high-precision tensors to low-bit representations. Thus, there are six quantization
operations in one linear layer: 1⃝ X and 2⃝W in Eq. (4); 3⃝ dY and 4⃝WT in Eq. (5); 5⃝ XT

and 6⃝ dYT in Eq. (6). Block-wise quantization requires tensors to be quantized along the GEMM
reduction dimension to gain hardware benefits. Therefore, 1⃝ and 5⃝, 2⃝ and 4⃝, and 3⃝ and 6⃝
are quantized along different axes (Liu et al., 2024a; Darvish Rouhani et al., 2023). We separately
analyze the quantization error of these six operations in Sec. 5.3.

3.2 QUANTIZATION OPERATION

UE8M0 scale factor. The scale factor s in Eq. (1) and Eq. (3) is computed with the AbsMax
quantizer:

s =
AbsMax(X)

Qmax
, (7)

where AbsMax(X) is the maximum absolute value within the group of values that share a single
scale factor, and Qmax is the maximum value of the quantized type (see Table 1). Eq. (7) maps
the largest magnitude in high precision to the maximum representable low-precision value without
clipping. OCP (Rouhani et al., 2023) further converts the high-precision scale factor to the UE8M0
format for MX formats:

s′ = clip(⌊log2(AbsMax(X))⌋ − ⌊log2(Qmax)⌋ ,−127, 127) , (8)
where ⌊·⌋ denotes rounding down. Eq. (8) rounds the high-precision scale down to the nearest
UE8M0 value, which introduces extra clipping error. Following existing works (Tseng et al., 2025;
Chen et al., 2025b; Mishra et al., 2025), we round up the UE8M0 scale based on Eq. (7) to avoid
this error:

s′ = clip(⌈log2(s)⌉ ,−127, 127) , (9)
where ⌈·⌉ denotes rounding up.

Symmetric Clipping. Floating-point formats are naturally symmetric around zero. In contrast,
signed integers in two’s complement have one extra negative value: for a b-bit integer, Qmin =
−2b−1 and Qmax = 2b−1 − 1 (NVIDIA Corporation, 2024b). We find that this asymmetric range
usually does not affect inference. However, as shown in Figure 2, it degrades INT8 training due to
a persistent negative bias in gradients. Finer-grained quantization suffers more because more values
fall into the unique negative endpoint Qmin. For INT8, the minimum value in a group can still map
to −128 even when the scale is set to AbsMax(X)/127 due to BFloat16 arithmetic precision (see
Sec. D.2 for details). Therefore, we use a symmetric integer range for all INT quantizers:

Qmin = −(2b−1 − 1), Qmax = 2b−1 − 1,

as shown in Table 1.
2We omit the bias term.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10 12
Number of Models Won (Out of 12)

NVINT4 v.s. NVFP4

MXINT4 v.s. MXFP4

MXINT6 v.s. MXFP6

MXINT8 v.s. MXFP8

Pr
ec

isi
on

 F
or

m
at

 C
om

pa
ris

on

10

10

12

2

2

12

INT Wins
FP Wins

(a) Direct-cast inference.

0 2 4 6 8 10 12
Number of Models Won (Out of 12)

NVINT4 v.s. NVFP4

MXINT4 v.s. MXFP4

MXINT6 v.s. MXFP6

MXINT8 v.s. MXFP8

Pr
ec

isi
on

 F
or

m
at

 C
om

pa
ris

on

12

12

5

12

7

INT Wins
FP Wins

(b) Direct-cast inference(w/ Hadamard rotation).

Figure 3: INT v.s. FP on 12 models through KL divergence on WikiText2. (a) shows the results with
direct-cast inference, while (b) shows the results with direct-cast inference combined with random
Hadamard rotation. Detailed numbers can be found in Sec. D.3.

4 FP v.s. INT

In this section, we compare low-bit integer and floating-point formats for both inference and training.
For inference, we quantize the forward GEMMs (1⃝ and 2⃝ in Figure 1) of linear layers. For training,
we quantize all GEMMs, including forward and backward (1⃝ to 6⃝ in Figure 1), of linear layers.

4.1 DIRECT-CAST INFERENCE

Precisions. For inference, we compare all data formats in Table 1: MXFP8, MXINT8, MXFP6,
MXINT6, MXFP4, MXINT4, NVFP4, and NVINT4. We perform quantized inference on a trained
BFloat16 model, and we quantize all forward GEMMs.

Models. We evaluate LLMs across a wide range of sizes, including dense and Mixture-of-
Experts (MoE) models, from 0.6B to 235B parameters. The evaluated models include Qwen3-
0.6B/1.7B/4B/8B/14B/32B/30B-A3B/235B-A22B (Yang et al., 2025), and Llama-3.1-8B/70B and
Llama-3.2-1B/3B (Dubey et al., 2024). We provide the official open-source links in Sec. D for
reproduction.

Metrics. Our goal is to compare integer and floating-point low-bit formats under the same setting,
so ranking is more informative than absolute accuracy. Following Dutta et al. (2024), accuracy alone
is not sufficient for compressed models because it can hide large changes in behavior. We therefore
evaluate quantized models with distance metrics. Specifically, we compute the KL divergence on
WikiText2 (Merity et al., 2016) between each quantized model and its BFloat16 counterpart. To
reduce noise, we compute the divergence over the softmax distributions restricted to the top-25
logits of the BFloat16 model.

Results of direct-cast inference. As shown in Figure 3a, MXINT8 surpasses MXFP8 in all 12 mod-
els. MXINT4 and NVINT4 also outperform their floating-point counterparts, MXFP4 and NVFP4,
in 10 of 12 models. In contrast, for 6-bit formats the trend reverses: MXFP6 outperforms MXINT6
in all 12 models.

Results of direct-cast inference with Hadamard rotation. Random Hadamard rotation (Ashkboos
et al., 2024) is a popular technique to smooth distributions before quantization (Tseng et al., 2025;
Chen et al., 2024a). We therefore rotate the inputs and weights, and quantize XR and RTW, where
R is a random Hadamard matrix of size h× h. We set h equal to the block size (32 for MX formats
and 16 for NV formats). As shown in Figure 3b, integer quantization benefits more from this outlier
alleviation. Specifically, MXINT8, MXINT4, and NVINT4 outperform their FP counterparts in all
12 evaluated models, and the winning rate of MXINT6 improves from 0 to 5/12.

4.2 TRAINING

Precisions. For training, we focus on nearly lossless low-bit training, which is more practical.
Therefore, we study only the 8-bit setting and compare MXINT8 and MXFP8, since FP8 training is
demonstrated to be nearly lossless in prior work (Mishra et al., 2025; Liu et al., 2024a).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Low-bit training comparisons. HS, OB, and WG represents Hellaswag, OpenbookQA,
and WinoGrande, respectively.

Model size Training tokens Precision loss Arc E Arc C HS OB PIQA WG Avg.
1B 100B BF16 2.6727 37.80 69.40 60.20 38.40 74.43 61.09 56.89
1B 100B MXFP8 2.6767 37.03 69.82 60.28 38.00 74.37 61.64 56.86
1B 100B MXINT8 2.6758 37.95 69.45 60.02 38.80 74.54 61.38 57.02
3B 200B BF16 2.4794 46.50 75.42 72.28 45.00 78.07 69.45 64.45
3B 200B MXFP8 2.4821 46.70 74.12 72.08 44.60 77.56 69.25 64.05
3B 200B MXINT8 2.4812 46.10 75.58 72.00 44.80 77.78 69.55 64.30

Figure 4: Loss curves comparison among BF16,
MXFP8 and MXINT8 training on Llama-1B with
100B tokens. Results are smoothed by exponen-
tial moving average with a coefficient of 0.9.

Models and datasets. We train 1B and 3B
Llama3-style (Dubey et al., 2024) models on
the OLMo2-Mix-1124 (OLMo et al., 2024) pre-
training dataset, with 100B and 200B train-
ing tokens, respectively. Detailed model ar-
chitectures and training hyperparameters are in
Sec. D.

Metrics. We measure training performance us-
ing two metrics: training loss and task accuracy.
We smooth the training loss with an exponen-
tial moving average (coefficient 0.9). We com-
pute all accuracies with lm eval (Gao et al.,
2024) through 5-shot evaluation. We report
acc for WinoGrande (Sakaguchi et al., 2021)
and acc norm for HellaSwag (Zellers et al.,
2019), Arc Challenge, Arc Easy (Clark et al.,
2018), PIQA (Bisk et al., 2020), and Openbookqa (Mihaylov et al., 2018).

Results. Figure 4 shows the loss curves for BF16, MXFP8, and MXINT8 training. The curves for
MXFP8 and MXINT8 almost overlap with BF16. In addition, MXINT8 consistently outperforms
MXFP8 with a loss that is lower by approximately 0.001, as shown in the enlarged view in Figure 4.
Table 2 shows that MXINT8 also achieves nearly the same average accuracy across six common-
sense reasoning tasks compared to BF16 training. These results demonstrate that MXINT8 supports
nearly lossless low-bit training, while existing works (Liu et al., 2024a; Mishra et al., 2025) mainly
focus on FP8 training.

5 DEEP ANALYSIS: WHY FINE-GRAINED INT EXCELS?

In this section, we provide an in-depth analysis of low-bit integer and floating-point formats. Specif-
ically, Sec. 5.2 provides a theoretical comparison from the perspective of quantization error, and
Sec. 5.3 validates this theory with empirical quantization data.

5.1 METRICS

In our analysis, we use Quantization Signal-to-Noise Ratio (QSNR, dB) (Darvish Rouhani et al.,
2023) to measure numerical fidelity under different quantization schemes. QSNR is the ratio of the
power of the original signal X to the power of the quantization noise X−Xq , expressed in decibels:

QSNR = −10 log10
(
∥X−Xq∥2

∥X∥2

)
. (10)

A higher QSNR indicates that the quantized vector better preserves the direction and magnitude of
the original vector.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2 4 6 8 10 12
 (crest factor)

10

20

30

40

50

QS
NR

 (d
B)

INT8
INT6
INT4

FP8 E4M3
FP6 E2M3
FP4 E2M1

=7.86
31.86 dB

=2.04
31.54 dB

=3.06
19.14 dB

(a) QSNR comparisons across crest factor κ.

1632641282565121024
Block Size

2

3

4

5

6

7

8

9

Cr
es

t F
ac

to
r

2.425
3.048

3.842

4.863

5.945

7.047

8.054

2.1092.3652.6072.8343.0513.2563.449

gaussian distribution
outlier distribution

(b) Crest factor decrease with smaller block size.

Figure 5: Theoretical analysis of quantization performance. (a) QSNR comparison between
various integer (INT) and floating-point (FP) formats across a range of crest factors (κ), derived
from Eq. (11) and Eq. (12). The boxes represent the crest factor and QSNR of the intersection point
of the INT and FP curves. (b) The effect of quantization block size on the average crest factor for a
gaussian distribution and an outlier-prone distribution from Llama-3.1-8B activations.

5.2 THEORETICAL ANALYSIS

Common assumptions. We consider block vectors X ∈ Rk with i.i.d. entries Xi ∼ N (0, σ2).
The block root-mean-equare (RMS) is σ, and the block crest factor is κ := max(|X|)

σ . We use
blockwise AbsMax scaling with a power-of-two deployed scale s′ = ρ s, where s = max(|X|) and
ρ ∈ [1, 2) is the overhead from the power-of-two constraint. We choose s′ ≥ s following Eq. (9) to
avoid clipping at the upper bound. Throughout we adopt Bennett’s high-resolution model (Bennett,
1948), i.e., within-cell errors are unbiased and approximately independent of the signal. The choice
s′ ≥ s applies to both INT and FP quantization.

Theorem 1 (INT QSNR). Under b-bit INT quantization with AbsMax and power-of-two scaling,
the QSNR (in dB) is

QSNR ≈ 4.78 + 6.02 b − 20 log10(ρ) − 20 log10(κ) (11)

A detailed proof of Theorem 1 is given in Sec. B.2, where b is the bit width, ρ ∈ [1, 2) is the scale
overhead, and κ = max(|X|)/RMS(X) is the crest factor.

Interpretation of theorem 1. (i) In the high-resolution, no-clipping regime, each additional bit
yields ≈ 6.02 dB. (ii) The power-of-two constraint costs up to 20 log10(ρ) ≤ 6.02 dB. (iii) A larger
crest factor κ degrades QSNR; smaller quantization block sizes typically reduce κ and improve
QSNR.

Theorem 2 (FP QSNR). Under FP quantization with AbsMax and power-of-two scaling, the
QSNR (in dB) is

QSNR = −10 log10
(
αM wnorm + β (ρ κ)2 psub + wzero

)
(12)

A detailed proof of Theorem 2 is given in Sec. B.3, with αM = 1
24·22M (mantissa-resolution term)

and β = 22(1−B−M)

12Q2
max

. Here M is the mantissa bit width, B is the exponent bias, and Qmax is the
largest finite normal magnitude of the target FP format (e.g., Qmax = 448 for E4M3). The terms
wnorm, psub, and wzero quantify how much of the numbers falls into the normal, subnormal, and zero
regions (after scaling): wnorm is the fraction of signal energy represented by normal FP numbers
and incurs mantissa quantization error αM ; psub is the probability mass encoded as subnormals and
incurs a fixed absolute step error whose magnitude grows with (ρκ) via β(ρκ)2; and wzero is the
fraction of energy that underflows to zero.

Interpretation of theorem 2. (i) The mantissa bit width sets the upper bound on FP QSNR. With
ample dynamic range (wnorm ≈ 1 and psub ≈ wzero ≈ 0), QSNR ≈ 13.80 + 6.02M dB, indepen-
dent of block granularity and the distribution of X. (ii) A larger crest factor κ increases the share of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

-1 256 128 64 32 16
block size

10

20

30

40

QS
NR

 (d
B)

forward: X

-1 256 128 64 32 16
block size

10

20

30

40

forward: W

-1 256 128 64 32 16
block size

10

20

30

40

backward: dY

-1 256 128 64 32 16
block size

10

20

30

40

QS
NR

 (d
B)

backward: WT

-1 256 128 64 32 16
block size

10

20

30

40

backward: XT

-1 256 128 64 32 16
block size

10

20

30

40

backward: dY

INT8 FP8 INT6 FP6 INT4 FP4

Figure 6: QSNR versus block size for quantization across 6 forward/backward items. -1 denotes
per-channel quantization. 8-bit and 6-bit use E8M0 scales for MX-format, and 4-bit uses E4M3
scales for NV-format. Detailed numbers can be find in Table. 14.

subnormals and zeros, which degrades QSNR. Finer-grained blocks reduce κ, lower psub and wzero,
and improve QSNR.

Theoretical comparisons. With Eq. (11) in Theorem 1 and Eq. (12) in Theorem 2, we estimate the
QSNR of low-bit integer and floating-point formats for a given bit width and target distribution (via
κ). Specifically, we set ρ = 1.44 to imitate MX-formats and ρ = 1.0 to imitate NV-formats. As
shown in Figure 5a, we observe:

• INT8 vs. FP8: FP8 QSNR varies smoothly due to its ample dynamic range. INT8 outper-
forms FP8 when κ < 7.86.

• INT6 vs. FP6: FP6 has the same QSNR as FP8 at small κ, because both FP6 and FP8 have
three mantissa bits. However, FP6 QSNR decreases rapidly as κ increases due to limited
dynamic range. INT6 outperforms FP6 only when κ < 2.04.

• INT4 vs. FP4: INT4 outperforms FP4 when κ < 3.06.

Furthermore, Figure 5b shows that the crest factor κ decreases as block size decreases. For a Gaus-
sian distribution, κ decreases from 3.449 at block size 1024 to 2.365 at block size 32. For an outlier-
heavy distribution, κ decreases from 8.054 at block size 1024 to 3.048 at block size 32. Since
3.048 lies below the 8-bit/4-bit intersection in Figure 5a, this explains why MXINT8, MXINT4, and
NVINT4 outperform their floating-point counterparts in most cases, as shown in Figure 3a. How-
ever, MXINT6 lags behind MXFP6 because it only outperforms when κ < 2.04, whereas even a
Gaussian distribution has κ = 2.365 > 2.04 at block size 32. In addition, the benefit of integer
quantization increases as κ decreases, so outlier-alleviation techniques (Ashkboos et al., 2024; Liu
et al., 2024b; Shao et al., 2023; Chen et al., 2024a) can further improve integer performance relative
to floating-point quantization as demonstrated in Figure 3b.

5.3 STATISTICAL ANALYSIS

Setup. To measure the QSNR in real data, we feed 8 WikiText2 (Merity et al., 2016) sequences of
length 4096 into Llama-3.1-8B, run both forward and backward propagation in BFloat16 precision,
and capture the six intermediate tensors (weights, activations, and gradients) indicated by 1⃝– 6⃝ in
Figure 1. Llama-3.1-8B contains 224 linear layers across all transformer blocks. We collect these
tensors for all 224 linear layers and use them to compute the QSNR under different quantization
formats. Because tensors of the same type have similar distributions, we report the QSNR averaged
within each of the six types separately. Specifically, we evaluate INT and FP quantization at 8, 6,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

and 4 bits. We use E8M0 scales for MX-format at 8 and 6 bits, and E4M3 scales for NV-format at 4
bits, since NV-format significantly outperforms MX-format in the 4-bit setting.

Results. Figure 6 reports measured QSNR (dB) across six tensor types and block sizes for INT/FP
at 8/6/4 bits. The empirical trends closely follow the theoretical comparisons in Sec. 5.2 (Theo-
rems 1–2) and the crest-factor analysis:

• FP is mantissa-limited and block-size invariant. FP8/FP6 curves are nearly flat across block
sizes (e.g., FP8 ≈ 31.2 dB; FP6 ≈ 26–30.6 dB), consistent with Theorem 2(i).

• INT benefits from finer blocks via reduced crest factor. INT8/INT6/INT4 QSNR increases
monotonically as blocks shrink (e.g., INT8 rises to ∼ 37–41 at block size as 32), matching the
κ-dependence in Theorem 1 and Fig. 5b.

• Crossovers match predicted κ thresholds.
– INT8 vs. FP8: INT8 exceeds FP8 for most tensors at practical block sizes less than 256.

– INT6 vs. FP6: FP6 generally dominates; INT6 only ties or slightly surpasses FP6 at the
smallest blocks (GS= 16) for weight-centric and columnwise activations—consistent with
the tighter κ threshold for 6-bit.

– INT4 vs. FP4: INT4 overtakes FP4 for most tensors once blocks size are less than 32 in
most scenarios, while 6⃝dY remains slightly FP-favored, reflecting heavier tails.

Overall, real-data measurements corroborate the theory: FP QSNR is set by mantissa precision
and largely insensitive to block granularity, whereas INT QSNR improves with smaller blocks as κ
drops. This explains the strong performance of blockwise MXINT8 over MXFP8, the robustness of
MXFP6 over MXINT6 except with outlier-alleviation techniques, and the superiority of MXINT4
and NVINT4 relative to MXFP4 and NVFP4 for most cases.

Table 3: Normalized energy and area costs of low-bit formats at matched throughput. Single-format
results use MXFP8 as the baseline, and mixed-format results use MXFP8+MXFP4 as the baseline.

Single Format Mixed Format
MXFP8 MXINT8 MXFP4 MXINT4 MXFP8+MXFP4 MXINT8+MXINT4

Energy 1x 0.67x 0.31x 0.23x 1x 0.74x
Area 1x 0.83x 0.29x 0.27x 1x 0.70x

6 HARDWARE COST ANALYSIS

Based on the hardware model in Sec. C, we evaluate the energy and area cost of a Matrix-Multiply
Unit (MMU) that supports the MX format. Table 3 shows that MXINT8 and MXINT4 reduce energy
by 33% and 26%, respectively, compared with MXFP8 and MXFP4. We also evaluate mixed-format
configurations. Following the NVIDIA Blackwell GPUs (NVIDIA Corporation, 2024b), we study a
chip that supports both 8-bit and 4-bit data types and set the throughput ratio of 8-bit to 4-bit to 1:2 to
match the communication bandwidth. As shown in Table 3, the “MXINT8+MXINT4” configuration
further reduces area by about 30% relative to “MXFP8+MXFP4”, mainly because circuit reuse is
simpler in the INT pipeline (Table 5). Overall, this analysis shows that, at matched throughput,
low-bit integer formats are more hardware-efficient than low-bit floating-point formats.

7 CONCLUSION

Our comprehensive study reveals a critical crossover point where fine-grained integer (INT) quan-
tization consistently outperforms floating-point (FP) formats for modern LLMs. This finding chal-
lenges the current hardware trajectory, as we show INT formats provide a dual advantage of superior
accuracy and greater hardware efficiency. We therefore call for a strategic shift in both academia and
industry toward algorithm-hardware co-design centered on fine-grained INT to build more powerful
and efficient AI accelerators.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan Alistarh,
Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms. arXiv
preprint arXiv:2404.00456, 2024.

W. R. Bennett. Spectra of quantized signals. Bell System Technical Journal, 27(3):446–472, July
1948. doi: 10.1002/j.1538-7305.1948.tb01364.x.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
pp. 7432–7439, 2020.

Roberto L Castro, Andrei Panferov, Soroush Tabesh, Oliver Sieberling, Jiale Chen, Mahdi Nikdan,
Saleh Ashkboos, and Dan Alistarh. Quartet: Native fp4 training can be optimal for large language
models. arXiv preprint arXiv:2505.14669, 2025.

Mengzhao Chen, Yi Liu, Jiahao Wang, Yi Bin, Wenqi Shao, and Ping Luo. Prefixquant: Elim-
inating outliers by prefixed tokens for large language models quantization. arXiv preprint
arXiv:2410.05265, 2024a.

Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang, and Ping Luo.
Efficientqat: Efficient quantization-aware training for large language models. arXiv preprint
arXiv:2407.11062, 2024b.

Mengzhao Chen, Chaoyi Zhang, Jing Liu, Yutao Zeng, Zeyue Xue, Zhiheng Liu, Yunshui Li, Jin
Ma, Jie Huang, Xun Zhou, et al. Scaling law for quantization-aware training. arXiv preprint
arXiv:2505.14302, 2025a.

Yuxiang Chen, Haocheng Xi, Jun Zhu, and Jianfei Chen. Oscillation-reduced mxfp4 training for
vision transformers. ArXiv, abs/2502.20853, 2025b.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Bita Darvish Rouhani, Ritchie Zhao, Venmugil Elango, Rasoul Shafipour, Mathew Hall, Maral Mes-
makhosroshahi, Ankit More, Levi Melnick, Maximilian Golub, Girish Varatkar, et al. With shared
microexponents, a little shifting goes a long way. In Proceedings of the 50th Annual International
Symposium on Computer Architecture, pp. 1–13, 2023.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in neural information processing systems, 35:
30318–30332, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Abhinav Dutta, Sanjeev Krishnan, Nipun Kwatra, and Ramachandran Ramjee. Accuracy is not all
you need. Advances in Neural Information Processing Systems, 37:124347–124390, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Elias Frantar, Utku Evci, Wonpyo Park, Neil Houlsby, and Dan Alistarh. Compression scaling laws:
Unifying sparsity and quantization. arXiv preprint arXiv:2502.16440, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Tanishq Kumar, Zachary Ankner, Benjamin F Spector, Blake Bordelon, Niklas Muennighoff, Man-
sheej Paul, Cengiz Pehlevan, Christopher Ré, and Aditi Raghunathan. Scaling laws for precision.
arXiv preprint arXiv:2411.04330, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq:
Activation-aware weight quantization for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantiza-
tion with learned rotations. arXiv preprint arXiv:2405.16406, 2024b.

Zechun Liu, Changsheng Zhao, Hanxian Huang, Sijia Chen, Jing Zhang, Jiawei Zhao, Scott Roy,
Lisa Jin, Yunyang Xiong, Yangyang Shi, et al. Paretoq: Scaling laws in extremely low-bit llm
quantization. arXiv preprint arXiv:2502.02631, 2025.

Peter Markstein. The new ieee-754 standard for floating point arithmetic. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2008.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Asit Mishra, Dusan Stosic, and Simon Layton. Recipes for pre-training llms with mxfp8. arXiv
preprint arXiv:2506.08027, 2025.

Thomas Norrie, Nishant Patil, Doe Hyun Yoon, George Kurian, Sheng Li, James Laudon, Cliff
Young, Norman Jouppi, and David Patterson. The design process for google’s training chips:
Tpuv2 and tpuv3. IEEE Micro, 41(2):56–63, 2021. doi: 10.1109/MM.2021.3058217.

NVIDIA Corporation. Nvidia a100 tensor core gpu architecture. Whitepaper, NVIDIA
Corporation, 2020. URL https://www.nvidia.com/en-us/data-center/
ampere-architecture/.

NVIDIA Corporation. Nvidia h100 tensor core gpu architecture. Whitepaper, NVIDIA
Corporation, 2022. URL https://www.nvidia.com/en-us/data-center/
hopper-architecture/.

NVIDIA Corporation. Nvidia blackwell gpu architecture. Whitepaper, NVIDIA Cor-
poration, 2024a. URL https://www.nvidia.com/en-us/data-center/
blackwell-architecture/.

NVIDIA Corporation. Working with quantized types – nvidia tensorrt documenta-
tion. https://docs.nvidia.com/deeplearning/tensorrt/latest/
inference-library/work-quantized-types.html, 2024b. Accessed: 2025-
09-03.

11

https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://www.nvidia.com/en-us/data-center/hopper-architecture/
https://www.nvidia.com/en-us/data-center/hopper-architecture/
https://www.nvidia.com/en-us/data-center/blackwell-architecture/
https://www.nvidia.com/en-us/data-center/blackwell-architecture/
https://docs.nvidia.com/deeplearning/tensorrt/latest/inference-library/work-quantized-types.html
https://docs.nvidia.com/deeplearning/tensorrt/latest/inference-library/work-quantized-types.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. arXiv preprint
arXiv:2501.00656, 2024.

Bita Darvish Rouhani, Ritchie Zhao, Ankit More, Mathew Hall, Alireza Khodamoradi, Summer
Deng, Dhruv Choudhary, Marius Cornea, Eric Dellinger, Kristof Denolf, et al. Microscaling data
formats for deep learning. arXiv preprint arXiv:2310.10537, 2023.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. arXiv preprint arXiv:2308.13137, 2023.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
models. arXiv preprint arXiv:2402.17762, 2024.

Albert Tseng, Tao Yu, and Youngsuk Park. Training llms with mxfp4. arXiv preprint
arXiv:2502.20586, 2025.

Sami Ul Haq, Aiman H. El-Maleh, and Ali Alsuwaiyan. Multiple-input floating-point adders: A
comprehensive review. IEEE Access, 13:91012–91024, 2025. doi: 10.1109/ACCESS.2025.
3572430.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Zhihang Yuan, Yuzhang Shang, Yang Zhou, Zhen Dong, Zhe Zhou, Chenhao Xue, Bingzhe Wu,
Zhikai Li, Qingyi Gu, Yong Jae Lee, et al. Llm inference unveiled: Survey and roofline model
insights. arXiv preprint arXiv:2402.16363, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Yijia Zhang, Lingran Zhao, Shijie Cao, Sicheng Zhang, Wenqiang Wang, Ting Cao, Fan Yang, Mao
Yang, Shanghang Zhang, and Ningyi Xu. Integer or floating point? new outlooks for low-bit
quantization on large language models. In 2024 IEEE International Conference on Multimedia
and Expo (ICME), pp. 1–6. IEEE, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

OUTLINES

• Sec. A introduces related works.
• Sec. B details the proofs of Theorems 1 and 2 on INT and FP QSNR estimation.
• Sec. C presents the hardware cost estimation model.
• Sec. D provides additional details on the models used and ablation studies, and reports the

numerical results corresponding to the figures in the main paper.

USAGE OF LARGE LANGUAGE MODELS

We use LLMs to polish the paper, correct the grammar, and for some of the figures in the article, the
initial drawing codes are generated by LLMs.

A RELATED WORK

Quantization Algorithms. Quantization methods include post-training quantization (PTQ) (Lin
et al., 2023; Frantar et al., 2022; Shao et al., 2023; Xiao et al., 2023) and quantization-aware training
(QAT) (Chen et al., 2024b; Liu et al., 2025), which speed up inference. Low-bit training (Mishra
et al., 2025; Tseng et al., 2025; Chen et al., 2025b) speeds up both training and inference. Several
works also study scaling laws (Hoffmann et al., 2022) for low-bit quantization (Castro et al., 2025;
Chen et al., 2025a; Frantar et al., 2025; Kumar et al., 2024). However, most prior work focuses on
a single low-bit format—either integer or floating-point—and does not provide direct comparisons
between these formats. Zhang et al. (2024) study mixed-format quantization in the PTQ setting,
assigning integer or floating-point formats to different model parts.

Hardware. Previous accelerators (NVIDIA Corporation, 2020; 2022) do not natively support fine-
grained quantization, so algorithms (Xiao et al., 2023; Chen et al., 2024a) face challenges with
per-channel quantization in the presence of outliers (Sun et al., 2024). Recently, OCP Rouhani
et al. (2023) proposes Microscaling (MX) data formats, which combine a per-block scaling factor
with a block size of 32 to improve low-bit quantization performance. NVIDIA Blackwell (NVIDIA
Corporation, 2024a) supports MXFP8, MXFP4, and NVFP4 at the hardware level.

B PROOFS OF THEOREMS

B.1 COMMON ASSUMPTIONS AND NOTATION

We consider block vectors X ∈ Rk with i.i.d. entries Xi ∼ N (0, σ2). Let the block RMS be
σ := RMS(X) and the block crest factor

κ :=
max(|X|)

σ
.

We adopt Bennett’s high-resolution model (Bennett, 1948): within-cell errors are (approximately)
unbiased, uniform, and independent of the signal.

We use blockwise AbsMax scaling with a power-of-two deployed scale

s′ = 2⌈log2 s⌉ = ρ s, ρ ∈ [1, 2),

and choose s′ ≥ s to avoid upper clipping. The ideal scale s is chosen so that the largest codebook
magnitude in the target format matches the block maximum after scaling:

s =
max(|X|)

Qref
,

with Qref determined by the target format:

• INT(b) (symmetric): Qref = Q := 2b−1 − 1 (largest integer code).
• FP(E,M,B) (with subnormals): Qref = Qmax (largest finite normal magnitude of the FP

format; e.g., Qmax = 448 for E4M3).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

This convention is consistent with the main text: we use the same symbols (σ, κ, ρ, s, s′), and s′ ≥ s
guarantees no overflow in both INT and FP quantization. Unless otherwise stated, expectations are
taken over both the data and the quantization randomness, and large-k averages are used so that
∥X∥2 ≈ kσ2.

B.2 THEOREM 1 (INT QUANTIZATION)

Setup and scaling. Consider a symmetric, mid-tread, uniform quantizer with bit-width b and in-
teger range [−Q,Q] where

Q = 2b−1 − 1 (e.g., Q ∈ {127, 31, 7} for b ∈ {8, 6, 4}).
AbsMax scaling uses the ideal scale

s =
max(|X|)

Q
=

κσ

Q
,

and the deployed scale is constrained to a power of two,

s′ = 2⌈log2 s⌉ = ρ s, ρ ∈ [1, 2).

Quantize–dequantize (round-to-nearest) is

Xq = clamp
(
round(Xs′), −Q, Q

)
· s′.

Because s′ ≥ s, we have |X|/s′ ≤ |X|/s ≤ Q, hence no clipping occurs and the clamp is inactive.
The effective (uniform) step is ∆ := s′.

Error model. Define the elementwise error e := X −Xq . For a non-saturating symmetric mid-
tread quantizer with round-to-nearest, e ∈ [−∆/2, ∆/2]. Under the high-resolution (Bennett) ap-
proximation, the error is approximately uniform and independent of X:

E[e] = 0, E[e2] =
∆2

12
.

QSNR. Define the blockwise QSNR as

QSNR = −10 log10
(
∥X−Xq∥2

∥X∥2

)
.

For large k, E[∥X∥2] ≈ kσ2 and E[∥X−Xq∥2] ≈ kE[e2] = k∆2/12, so

QSNR ≈ −10 log10
(

∆2

12σ2

)
.

Expressing ∆ via crest factor and scale overhead. With κ := max(|X|)/σ and s = κσ/Q, we
have s′ = ρs and hence

∆ = s′ =
ρ κσ

Q
.

Substituting into the QSNR expression gives

∆2

12σ2
=

(ρ κ)2

12Q2
,

and therefore

QSNR ≈ 10 log10(12) + 20 log10(Q) − 20 log10(ρ) − 20 log10(κ) (13)

Using Q = 2b−1 − 1, this is well-approximated by

QSNR ≈ 4.78 + 6.02 b − 20 log10(ρ) − 20 log10(κ) (14)

making explicit: (i) ≈ 6.02 dB per additional bit, (ii) up to 6.02 dB loss from the power-of-two
overhead (ρ ∈ [1, 2)), and (iii) a penalty scaling with the crest factor κ (which typically increases
with larger block size).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.3 THEOREM 2 (FP QUANTIZATION)

Setup and codebook. Let X ∈ Rk be zero-mean with RMS σ and crest factor κ := max(|X|)/σ.
Consider a target floating-point format FP(E,M,B) with sign, E exponent bits (bias B), and M
mantissa bits, with subnormals enabled. In the normalized domain,

normal: x = ±(1.f)2 2e−B , subnormal: x = ±(0.f)2 21−B , f ∈ {1, . . . , 2M − 1}.

Let Qmax denote the largest finite normal magnitude (e.g., Qmax = 448 for E4M3), Nmin = 21−B

(smallest normal), and Smin = 21−B−M (smallest nonzero subnormal).

Scaling and quantization rule. Per-block AbsMax scaling uses

s =
max(|X|)
Qmax

=
κσ

Qmax
, s′ = 2⌈log2 s⌉ = ρ s, ρ ∈ [1, 2).

Quantize–dequantize with round-to-nearest:

Xq = s′ ·Nearest
(

X
s′ , CFP

)
,

where CFP is the FP codebook in the normalized domain. Since s′ ≥ s, no overflow occurs:
|X|/s′ ≤ |X|/s ≤ Qmax. Underflow to subnormals or to zero is possible.

Error decomposition. Let e := X−Xq . We analyze the relative MSE

R :=
E[e2]
E[X2]

=
E[e2]
σ2

, QSNR := −10 log10 R.

Under a high-resolution (Bennett) model, within-cell error is unbiased and uniform on [−∆/2,∆/2],
and the logarithmic phase

r := 2{log2(|X|/s′)} ∈ [1, 2)

(the fractional part {·} of log2(|X|/s′)) is approximately uniform on [1, 2).

Define signal-domain thresholds and the subnormal spacing

TN := s′Nmin, T0 := s′
Smin

2
(round-to-nearest), ∆sub := s′ Smin = s′ 21−B−M .

We split the amplitude axis into three regions:

• Normal region (|X| ≥ TN). Let e(X) := ⌊log2(|X|/s′)⌋ be the exponent bin of X/s′.
The local ULP is

∆(X) = s′ 2 e(X)−M .

Writing 2e(X) = |X|/(s′r) with r ∈ [1, 2) gives

∆(X) =
|X|
r

2−M .

Uniform-error modeling yields E[e2 | X, |X| ≥ TN] = ∆(X)2/12 = |X|2 2−2M/(12 r2).
Averaging over r ∼ Unif[1, 2] gives E[1/r2] =

∫ 2

1
r−2 dr = 1/2, hence

E[e2 · 1{|X| ≥ TN}] ≈ αM E[X2 · 1{|X| ≥ TN}], αM :=
1

24 · 22M
.

• Subnormal but nonzero region (T0 ≤ |X| < TN). Here the absolute spacing is constant,
∆sub, so

E[e2 | T0 ≤ |X| < TN] ≈ ∆2
sub

12
=

s′2 22(1−B−M)

12
.

Let psub := P(T0 ≤ |X| < TN). Then

E[e2 · 1{T0 ≤ |X| < TN}] ≈
s′2 22(1−B−M)

12
psub.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• Zero region (|X| < T0). Quantization rounds to zero; thus e = X and

E[e2 · 1{|X| < T0}] = E[X2 · 1{|X| < T0}].

Summing the three contributions and normalizing by σ2 yields

E[e2]
σ2

≈ αM wnorm + β (ρ κ)2 psub + wzero,

where we define the dimensionless weights

wnorm :=
E[X2 · 1{|X| ≥ TN}]

σ2
, wzero :=

E[X2 · 1{|X| < T0}]
σ2

,

and used s′2/σ2 = (ρκ)2/Q2
max with

β :=
22(1−B−M)

12Q2
max

.

Therefore
QSNR ≈ −10 log10

(
αM wnorm + β (ρ κ)2 psub + wzero

)
(15)

Thresholds and interpretation. The thresholds that determine wnorm, wzero, and psub are

TN = s′Nmin = σ (ρ κ)
Nmin

Qmax
, T0 = s′

Smin

2
= σ (ρ κ)

Smin

2Qmax
.

Thus block size affects QSNR through κ (and ρ) only via underflow-related terms. In the ample
dynamic-range regime (T0, TN tiny so that wnorm ≈ 1 and psub ≈ wzero ≈ 0), the law simplifies to

QSNR ≈ 10 log10(24) + 20M log10(2) = 13.80 dB + 6.02M dB, (16)

independent of block granularity and the distribution of X.

Table 4: Gate-complexity model for the MAC Unit with k lanes. Here x and y denote exponent
and mantissa widths; for INT, x=0. The aligner width n is given by equation 17. “Main Cells” list
dominant standard cells used in aggregation.

Sub-block INT Mul FP Mul INT Add FP Add Main Cells

Multiplier k(x+y+1)2 k(y+1)2 – – AND, FA, HA
Adder (mantissa/int) – – 2k(x+y+1) kn FA, HA
Exponent adder – kx – – FA, HA
Exponent subtractor – – – kx XOR, FA, HA
Comparator – – – kx XOR, AND, OR
Aligner (barrel) – – – k n log2 n MUX
Normalizer (shared) – – – n log2 n MUX, OR

C HARDWARE COST MODELING

Scope and assumptions. We develop a compact gate-level model to estimate the chip area and
energy of a GEMM engine under low-precision formats. Specifically, a low-bit GEMM engine uses
four components: a quantizer, a multiply-and-accumulate (MAC) unit, a dequantizer, and an FP32
accumulator. The proposed model accounts only for the MAC unit and a shared FP32 accumulator;
the quantizer and dequantizer are excluded from all cost accounting. In MX formats, the VPU
implements quantization by shift-and-round, and the accumulation pipeline can fuse dequantization
as two 8-bit integer additions. We omit these blocks to isolate the cost driven by multiplication and
accumulation. Unless otherwise stated, we take cell factors from a TSMC FinFET standard-cell
library. We model only combinational logic; we ignore sequential elements, placement and routing,
and interconnect to enable technology-aware, relative comparisons.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Throughput Ratio MXINT8 : MXINT4 = 1 : 2
No reuse 1 * int8 MAC unit + 2 * int4 MAC unit

INT reuse scheme 1 1 * int8 MAC unit + 1 * int4 MAC unit
INT reuse scheme 2 2 * int8 (u)int4 MAC unit
Throughput Ratio MXFP8 : MXFP4 = 1 : 2

No reuse 1 * e4m3 MAC unit + 2 * e2m1 MAC unit
FP reuse scheme 1 * e4m3 MAC unit + 1 * e2m1 MAC unit

Table 5: Comparison of MAC unit configurations for different reuse schemes. Notes: (1) No reuse:
Highest energy efficiency for INT8 and INT4, but greatest area wastage; (2) INT reuse scheme 1:
Use int8 lane as an int4 path directly (set the 8-b input to XXXX 0000), a little more energy cost
for INT4 but lower area cost; (3) INT reuse scheme 2: Use two int8×(u)int4 lanes to reconfigure
int8 lane or int4 lane, a little more energy cost for both INT4 and INT8, but lowest area cost; (4) No
reuse: Highest energy efficiency for FP8 and FP4, but greatest area wastage; (5) FP reuse scheme:
Use fp8 lane as an fp4 path directly (set the 8-b input to S 00XX X00), a little more energy cost for
FP4 but lower area cost. We adopt INT reuse scheme 2 and FP reuse scheme to evaluate the area
cost shown in Table 3.

Design choice: FP32 accumulation and MMU integration. A high-throughput Matrix-Multiply
Unit (MMU), as in TPU-like designs (Norrie et al., 2021), integrates the multiply-and-accumulate
datapath and downstream accumulation to improve performance and energy efficiency. To prevent
error growth and preserve scalability, we accumulate in FP32. Under the same nominal bit width,
FP multipliers are typically more area- and energy-efficient than INT multipliers, whereas FP adders
are more expensive than INT adders due to exponent comparison/subtraction, mantissa alignment,
and normalization (Zhang et al., 2024). With a uniform-alignment design Ul Haq et al. (2025), the
normalizer count reduces to one shared instance across the k MAC lanes, and we divide its cost by
k.

Mantissa aligner width. The mantissa aligner couples accuracy and cost: its bit width n affects
numerical fidelity and hardware complexity. We set

n = min
(
2x + 2y, psum bit width

)
, (17)

where x and y denote exponent and mantissa widths, respectively (for INT formats, x= 0). In all
evaluations we use k=32 and psum bit width=24.

MAC unit structure and sub-blocks. We model the MAC unit as a k-lane array. Each lane com-
prises one multiplier. The adders from all lanes are fused together to form a multi-input adder tree
structure, incorporating FP-specific alignment and normalization logic. Table 4 reports the domi-
nant logic count (up to constant factors) for the main sub-blocks, where “Main Cells” indicate the
standard-cell types used for area/energy aggregation. For FP multiplication, we multiply only man-
tissas and include an exponent adder. For FP addition, we model exponent comparator/subtractor,
a barrel aligner, a wide mantissa adder, and one shared normalizer. For INT, we set x = 0 in the
expressions.

Area and energy aggregation for MAC. Let S={Multiplier, Adder(mantissa/int), Exponent
adder, Exponent subtractor, Comparator, Aligner(barrel), Normalizer(shared)} be the set of sub-
block types, and G = {FA,HA,XOR,AND,OR,MUX} be the set of cell types with technology-
dependent area and energy factors Ag and Eg obtained from the standard-cell library. Let τg be the
toggle rate of cell g, which represents the average switching activity of the cell. In this work, we sim-
plify the toggle rate factor by assuming that all gate cells have the same toggle rate, τg = τ , to reduce
computational complexity and focus on the primary design trade-offs. Denote by cs,g(x, y, k, n) the
count of cell g ∈ G in sub-block s induced by the chosen format and by n from Eq.(17). The MAC
area and energy are

AreaMAC =
∑
s∈S

∑
g∈G

cs,g(x, y, k, n)Ag, EnergyMAC =
∑
s∈S

∑
g∈G

cs,g(x, y, k, n)Egτg. (18)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

FP32 accumulator model. We model the FP32 accumulator by its combinational logic counts
cACC32
g , yielding

AreaACC32 =
∑
g∈G

cACC32
g Ag, EnergyACC32 =

∑
g∈G

cACC32
g Eg. (19)

Total cost and per-lane reporting. The total MMU cost is

AreaMMU = AreaMAC + AreaACC32, EnergyMMU = EnergyMAC + EnergyACC32, (20)

and, when we report per-lane figures, we divide the cost of shared blocks by k.

Summary. The hardware model includes only the MAC unit and the FP32 accumulator; the quan-
tizer and dequantizer are excluded from the overhead calculation. Given a low-precision format
with exponent/mantissa widths (x, y) (with x=0 for INT), a MAC array size k, an aligner cap
psum bit width (setting n via Eq (17), and technology cell factors {Ag, Eg}g∈G (plus the FP32-
accumulator gate counts), the model predicts the area and energy of the MAC and accumulation
stages. It captures the relative cost trends across INT/FP/MX formats at the same nominal bit width,
the sensitivity to the aligner width n (critical for FP addition), and the effect of sharing both the
normalizer and the FP32 accumulator across k lanes.

D MORE DETAILS FOR REPRODUCTION

D.1 USED MODELS

Table 6: Huggingface IDs of evaluation models in direct-cast inference.

Model Name Huggingface ID
Qwen3-0.6B Qwen/Qwen3-0.6B-Base
Qwen3-1.7B Qwen/Qwen3-1.7B-Base
Qwen3-4B Qwen/Qwen3-4B-Base
Qwen3-8B Qwen/Qwen3-8B-Base

Qwen3-14B Qwen/Qwen3-14B-Base
Qwen3-32B Qwen/Qwen3-32B

Qwen3-30B-A3B Qwen/Qwen3-30B-A3B-Instruct-2507
Qwen3-235B-A22B Qwen/Qwen3-235B-22B-Instruct-2507

Llama-3.2-1B meta-llama/Llama-3.2-1B
Llama-3.2-3B meta-llama/Llama-3.2-3B
Llama-3.1-8B meta-llama/Meta-Llama-3.1-8B
Llama-3.1-70B meta-llama/Meta-Llama-3.1-70B

Models for inference evaluation. We list the Huggingface IDs of evaluated open-sourced model
for better reproduction in Tabel 6. Note that we firstly choose the base model without supervise
fine-tuning if it is open-sourced, For a model of a certain size, our selection principle is that if the
base model is open source, we will first choose the base model; otherwise, we will select the model
that has undergone SFT.

Models for training evaluation. We select the Llama-3 (Dubey et al., 2024) style model for our
experiments due to its wide adoption. The Llama-3 style model employs Group Query Attention
(GQA)(Ainslie et al., 2023) for the self-attention module and SwiGLU(Shazeer, 2020) for the feed-
forward module. Table 7 presents the detailed architectural settings abd training hyper-parameters
of the models used.

D.2 NECESSITY OF SYMMETRIC INTEGER REPRESENTATION

Table 8 offer the ablation studies on representation range of INT8 quantization. We find that the
bias in representation range would consistently degenerate INT8 training loss. For BFloat16 scale

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 7: Llama-3 style Model architecture and training hyper-parameters.

Model Size 145M 1B 3B

Layers 12 16 28
Hidden Size 1024 2048 3072

FFN Hidden Size 3072 8192 8192
Attention Heads 16 32 24

KV Heads 4 8 8

Batch Size (# Sequence) 256 512 512
Max LR 1.0e-3 6e-4 6e-4
Min LR 0.1 ×Max LR

Optimizer AdamW (β1 = 0.9, β2 = 0.95)
Weight Decay 0.1

Clip Grad Norm 1.0
LR Schedule Cosine

Warmup Steps 500
Sequence Length 2048

Table 8: Ablation studies about the clipping range on INT8 quantization across quantization gran-
ularities, as well as BFloat16 and UE8M0 scale factors. We repot the 8-bit training loss (lower is
better) on a 145M model with 20B training tokens. The baseline of BF16 training without quantiza-
tion

BF16 scale UE8M0 scale
[-128, 127] [-127, 127] [-128, 127] [-127, 127]

per-channel 3.2544 3.2560 3.3602 3.4307
256 3.1340 3.1307 3.1628 3.1574
128 3.1309 3.1289 3.1353 3.1326
64 3.1312 3.1269 3.1312 3.1288
32 3.1354 3.1251 3.1299 3.1269

factor, we can find that asymmetric representation range even making block 32 quantization worse
than block 256 quantization. This is because only the minimal values in each quantization block
have possibility to quantized into 128 in INT8 quantization, and smaller block size indicats more
individual quantization blocks. Additionally, asymmetric quantization also cause degeneration for
UE8M0 scale factors, but the degeneration strength is slighter than BFloat16 scales. This is because
UE8M0 scale factor consistently greater than or equal to Bfloat16 scale, leading less high-precision
number to map to Qmin. These experiments demonstrate the necessity of symmetric representation
space for integer quantization.

Algorithm 1 Analyzing Numerical Stability of Different Floating-Point Precisions

1: Input: Dimension N = 4096, precision list P = {bfloat16,float16,float32}
2: Output: Ratio of elements equal to 128 for each precision
3: for each precision in P do
4: D ← GenerateRandomMatrix(N,N, precision) ▷ Generate N ×N matrix from N (0, 1)

on GPU
5: S ← D/127 ▷ Calculate the scaler matrix
6: Dnorm ← Round(D ⊘ S) ▷ ⊘ denotes element-wise division
7: count← CountElementsEqualTo(Dnorm, 128)
8: total← N ×N
9: ratio← count/total

10: print ”Precision:”, precision, ”, Ratio:”, ratio

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 9: Results of Algorithm 1.

BFloat16 Float16 Float32
16.82% 0.02% 0

Numerical stability analysis. We also analyze the numerical stability of different float-point for
quantization mapping through Algorithm 1. Table 9 shows the results of Algorithm 1, demonstrat-
ing that in BFloat16 precision, a significant portion of values (16.82%) are mapped to -128. This
phenomenon occurs even though the scaling factor s is theoretically designed to map the value to
127. In conclusion, this analysis highlights a critical pitfall of using low-precision floating-point
formats for quantization calculations. The inherent lack of precision in bfloat16 and, to a lesser ex-
tent, float16 can lead to overflow during the scaling step, incorrectly mapping values to outside the
intended integer range. This powerfully demonstrates that a forced symmetric clipping step is essen-
tial for guaranteeing the correctness and stability of quantization, particularly when the computation
is performed using low-precision data types.

D.3 DETAILED RESULTS

This section offer detailed numbers of experiments, as follows:

• Table 10 and Table 11 present the KL divergence results, corresponding to Figure 3.
• Table 12 and Table 13 present the perplexity results, for better understanding the relation-

ship between KL divergence and perplexity. They are consistent in most case.
• Table 14 and Table 15 presents the item-wise QSNR results, corresponding to Figure 6.

Table 10: Qwen3 models KL divergence (lower is better) results across different low-bit formats in
direct-cast inference. All reported KL metrics are the average over all tokens, multiplied by 106.

Qwen-3
Format 0.6B 1.7B 4B 8B 14B 32B 30B-A3B 235B-A22B

MXINT8 191 209 112 168 96 118 160 276
MXFP8 624 434 370 380 320 486 400 493

MXINT6 1944 2464 928 1104 804 1012 768 1333
MXFP6 1136 948 612 636 512 688 536 1117

MXINT4 39936 30208 17408 15552 34304 27392 13248 16331
MXFP4 41472 33024 20096 15744 12928 13056 12096 22710
NVINT4 10560 8320 4864 5120 5568 7968 3120 9702
NVFP4 15040 10944 6816 6272 5536 5536 3936 9979

Qwen-3 (w/ random Hadamard rotation)
Format 0.6B 1.7B 4B 8B 14B 32B 30B-A3B 235B-A22B

MXINT8 137 150 80 130 70 88 135 229
MXFP8 937 1366 493 596 424 543 417 818

MXINT6 1137 1274 547 690 481 615 444 809
MXFP6 1099 1549 542 679 500 617 455 810

MXINT4 26488 26578 10498 12241 8459 9510 6080 9660
MXFP4 48788 45624 15801 18731 12781 11274 10506 12086
NVINT4 7771 7236 3431 4026 3070 3647 2222 3931
NVFP4 18002 18761 7753 8329 6372 6822 5605 7790

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 11: Llama-3 models KL divergence (lower is better) results across different low-bit formats
in direct-cast inference. All reported KL metrics are the average over all tokens, multiplied by 106.

Llama
Format 3.2-1B 3.2-3B 3.1-8b 3.1-70B

MXINT8 111 77 82 191
MXFP8 504 358 401 548

MXINT6 1133 743 776 1744
MXFP6 754 520 569 1499

MXINT4 26153 14089 12380 22538
MXFP4 42896 27586 40015 41396
NVINT4 7508 4312 4224 10970
NVFP4 14048 8590 8356 12929

Llama(w/ random Hadamard rotation)
Format 3.2-1B 3.2-3B 3.1-8b 3.1-70B

MXINT8 89 63 65 145
MXFP8 632 429 445 1945

MXINT6 773 531 558 1518
MXFP6 742 511 530 2984

MXINT4 20126 11116 10272 137612
MXFP4 34884 28449 27023 171170
NVINT4 5854 3912 3609 19975
NVFP4 15436 9950 3611 112772

Table 12: Qwen3 models perplexity (lower is better) results of WikiText2 across different low-bit
formats in direct-cast inference.

Qwen-3
Format 0.6B 1.7B 4B 8B 14B 32B 30B-A3B 235B-A22B
Bf16 11.5868 8.7084 7.3368 6.5135 5.9498 7.0168 6.8178 4.0929

MXINT8 11.6377 8.7424 7.3511 6.5174 5.955 7.0185 6.8167 4.0959
MXFP8 11.762 8.7873 7.3823 6.5465 5.971 7.0392 6.8407 4.1116

MXINT6 12.2297 9.2622 7.496 6.6499 6.0483 7.05 6.8745 4.1743
MXFP6 11.9379 8.9082 7.4275 6.5816 5.9913 7.0405 6.8449 4.1639

MXINT4 48.6713 21.8749 11.9487 10.0423 16.7227 15.1619 9.3837 5.918
MXFP4 45.9304 24.0766 12.4515 9.6166 8.04 8.577 9.1905 7.0814
NVINT4 15.9729 10.9128 8.3304 7.415 6.81 8.0161 7.2024 4.8916
NVFP4 17.8613 11.7405 8.6055 7.4821 6.642 7.5168 7.5167 4.907

Qwen-3(w/ random Hadamard rotation)
Format 0.6B 1.7B 4B 8B 14B 32B 30B-A3B 235B-A22B

MXINT8 11.6179 8.7240 7.3407 6.5170 5.9521 7.0187 6.8231 4.0973
MXFP8 11.8935 9.0039 7.4136 6.5896 5.9892 7.0709 6.8849 4.1308

MXINT6 11.9422 9.0122 7.4071 6.6119 5.9905 7.0627 6.8666 4.1263
MXFP6 11.9491 9.0448 7.4159 6.5805 5.9887 7.0746 6.8670 4.1391

MXINT4 28.6510 21.3032 9.8238 9.2029 7.3564 8.2083 7.8292 4.9891
MXFP4 54.6892 35.1683 11.1139 10.5028 8.0017 8.5446 9.1705 5.2541
NVINT4 14.6052 10.7822 7.9824 7.1705 6.3702 7.3625 7.1557 4.3913
NVFP4 20.6018 15.1028 8.9165 7.9712 6.8207 7.8472 8.0406 4.8161

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 13: Llama-3 models perplexity (lower is better) results of WikiText2 across different low-bit
formats in direct-cast inference.

Llama
Format 3.2-1B 3.2-3B 3.1-8b 3.1-70B
BF16 9.0625 7.2857 5.8402 2.637

MXINT8 9.0815 7.2944 5.8487 2.6449
MXFP8 9.1787 7.3427 5.9014 2.6688

MXINT6 9.3557 7.4184 5.9643 2.7493
MXFP6 9.2434 7.3685 5.9264 2.7329

MXINT4 21.9893 11.2715 8.7408 5.1894
MXFP4 33.1409 16.4374 20.792 10.0413
NVINT4 11.3987 8.225 6.5957 3.5502
NVFP4 13.6606 9.1858 7.4047 3.7188

Llama(w/ random Hadamard rotation)
Format 3.2-1B 3.2-3B 3.1-8b 3.1-70B

MXINT8 9.0715 7.2912 5.845 2.6428
MXFP8 9.2127 7.3526 5.9109 2.7673

MXINT6 9.2622 7.3828 5.9276 2.7333
MXFP6 9.2502 7.372 5.9234 2.8547

MXINT4 17.9797 10.3057 8.0745 1146.7256
MXFP4 26.6788 17.1619 13.2289 5600.7686
NVINT4 10.8399 8.1119 6.4701 4.9786
NVFP4 14.5804 9.6662 6.4932 216.3876

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 14: QSNR versus block size for quantization across 6 types of forward/backward items. -1
denotes per-channel quantization. E4M3 scales contains another FP32 per-tensor scale factor just
like NV-format.

Format Scales Type Item G = -1 256 128 64 32 16

INT8 E8M0

1⃝X 27.55 33.73 35.41 37.20 38.96 40.74
2⃝W 36.81 38.97 39.72 40.59 41.51 42.47
3⃝ dY 29.00 35.02 36.60 37.87 39.30 40.50
4⃝WT 36.00 38.69 39.56 40.42 41.45 42.44
5⃝XT 36.46 38.71 39.59 40.54 41.56 42.65
6⃝ dY 25.12 31.09 33.11 35.08 37.04 38.85

FP8 E8M0

1⃝X 31.21 31.23 31.23 31.23 31.23 31.23
2⃝W 31.27 31.27 31.27 31.27 31.27 31.27
3⃝ dY 31.22 31.23 31.23 31.23 31.23 31.22
4⃝WT 31.27 31.27 31.27 31.27 31.27 31.27
5⃝XT 31.23 31.23 31.23 31.23 31.23 31.23
6⃝ dY 31.22 31.22 31.22 31.22 31.22 31.22

INT6 E8M0

1⃝X 15.69 21.66 23.33 25.15 26.96 28.82
2⃝W 24.68 26.91 27.68 28.58 29.60 30.70
3⃝ dY 17.84 23.30 24.82 26.19 27.83 29.41
4⃝WT 23.87 26.62 27.51 28.41 29.53 30.66
5⃝XT 24.52 26.74 27.62 28.61 29.69 30.87
6⃝ dY 15.68 20.95 22.82 24.70 26.70 28.74

FP6 E8M0

1⃝X 20.78 26.02 27.22 28.33 29.21 29.89
2⃝W 28.42 29.58 29.84 30.10 30.34 30.55
3⃝ dY 22.20 27.02 28.05 28.81 29.55 30.08
4⃝WT 27.89 29.43 29.77 30.04 30.32 30.54
5⃝XT 27.91 29.20 29.59 29.95 30.26 30.52
6⃝ dY 19.60 24.63 26.15 27.49 28.65 29.54

INT4 E4M3

1⃝X 7.33 12.52 14.13 15.91 17.70 19.59
2⃝W 14.71 17.41 18.19 19.03 19.98 21.12
3⃝ dY 9.72 14.11 15.40 16.74 18.33 19.98
4⃝WT 14.01 17.08 17.99 18.84 19.91 21.08
5⃝XT 15.26 17.42 18.27 19.21 20.28 21.51
6⃝ dY 9.56 13.73 15.33 16.96 18.76 20.69

FP4 E4M3

1⃝X 9.88 14.17 15.32 16.53 17.70 18.96
2⃝W 15.33 16.60 16.94 17.33 17.85 18.58
3⃝ dY 11.43 15.00 15.85 16.76 17.79 18.94
4⃝WT 14.89 16.47 16.87 17.29 17.84 18.58
5⃝XT 15.42 16.53 16.93 17.38 17.93 18.64
6⃝ dY 11.43 15.42 16.80 18.17 19.62 21.19

INT4 E8M0

1⃝X 5.25 9.71 11.18 12.85 14.53 16.29
2⃝W 11.86 14.18 14.82 15.60 16.57 17.70
3⃝ dY 7.57 11.46 12.64 13.90 15.41 16.96
4⃝WT 11.28 13.85 14.65 15.44 16.50 17.66
5⃝XT 12.29 14.24 15.02 15.92 16.93 18.07
6⃝ dY 8.11 11.72 13.12 14.55 16.11 17.77

FP4 E8M0

1⃝X 7.62 11.86 12.99 14.13 15.11 15.94
2⃝W 13.11 15.13 15.48 15.82 16.17 16.55
3⃝ dY 9.65 13.11 13.94 14.73 15.55 16.21
4⃝WT 12.74 14.90 15.36 15.73 16.14 16.54
5⃝XT 13.55 14.96 15.41 15.86 16.29 16.69
6⃝ dY 9.55 12.72 13.74 14.66 15.51 16.22

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 15: QSNR versus block size with random Hadamard rotation for quantization across 6
types of forward/backward items. -1 denotes per-channel quantization. E4M3 scales contains an-
other FP32 per-tensor scale factor just like NV-format.

Format Scale Type Item G = -1 256 128 64 32 16

INT8 E8M0

1⃝X 35.07 39.32 40.30 41.24 42.27 43.06
2⃝W 37.95 39.46 40.12 40.89 41.75 42.63
3⃝ dY 34.55 39.02 40.27 41.07 42.01 42.47
4⃝WT 37.56 39.23 39.99 40.76 41.74 42.63
5⃝XT 36.76 39.05 39.92 40.83 41.82 42.66
6⃝ dY 32.94 38.63 40.39 42.03 43.51 43.67

FP8 E8M0

1⃝X 31.26 31.26 31.26 31.26 31.26 31.26
2⃝W 31.25 31.25 31.25 31.25 31.25 31.25
3⃝ dY 31.24 31.24 31.24 31.24 31.24 31.23
4⃝WT 31.25 31.25 31.25 31.25 31.25 31.25
5⃝XT 31.26 31.26 31.26 31.26 31.26 31.26
6⃝ dY 31.24 31.24 31.24 31.24 31.24 31.24

INT6 E8M0

1⃝X 22.93 27.24 28.28 29.28 30.40 31.31
2⃝W 25.86 27.43 28.09 28.91 29.86 30.87
3⃝ dY 22.69 27.10 28.36 29.32 30.55 31.41
4⃝WT 25.45 27.20 27.96 28.77 29.85 30.87
5⃝XT 24.60 26.94 27.90 28.85 29.90 30.86
6⃝ dY 21.32 26.95 28.80 30.64 32.47 33.03

FP6 E8M0

1⃝X 27.15 29.65 30.03 30.31 30.54 30.67
2⃝W 29.13 29.80 29.99 30.20 30.40 30.58
3⃝ dY 26.72 29.51 30.02 30.29 30.55 30.67
4⃝WT 28.87 29.70 29.95 30.16 30.40 30.58
5⃝XT 28.29 29.55 29.87 30.18 30.43 30.60
6⃝ dY 25.66 29.21 29.92 30.43 30.78 30.84

INT4 E4M3

1⃝X 12.64 17.12 18.28 19.44 20.65 22.02
2⃝W 15.72 17.91 18.59 19.33 20.22 21.30
3⃝ dY 12.80 16.99 18.22 19.24 20.54 21.92
4⃝WT 15.33 17.60 18.41 19.18 20.18 21.30
5⃝XT 14.73 17.11 18.06 19.08 20.19 21.38
6⃝ dY 11.99 16.86 18.55 20.28 22.07 23.92

FP4 E4M3

1⃝X 13.95 16.51 17.00 17.45 17.95 18.56
2⃝W 15.86 16.77 17.05 17.39 17.87 18.56
3⃝ dY 13.95 16.45 16.96 17.39 17.92 18.56
4⃝WT 15.65 16.66 17.00 17.36 17.87 18.56
5⃝XT 15.31 16.53 16.93 17.39 17.93 18.62
6⃝ dY 13.77 17.00 17.81 18.49 19.07 19.57

INT4 E8M0

1⃝X 9.64 13.85 14.97 16.06 17.21 18.50
2⃝W 12.89 14.65 15.20 15.89 16.80 17.88
3⃝ dY 10.17 14.04 15.18 16.18 17.44 18.75
4⃝WT 12.45 14.39 15.06 15.75 16.76 17.88
5⃝XT 11.47 13.84 14.71 15.71 16.73 17.89
6⃝ dY 9.92 14.22 15.77 17.33 18.96 20.64

FP4 E8M0

1⃝X 11.78 14.75 15.41 15.96 16.42 16.84
2⃝W 13.74 15.40 15.69 15.97 16.28 16.63
3⃝ dY 12.10 14.90 15.52 15.99 16.49 16.90
4⃝WT 13.58 15.22 15.61 15.90 16.27 16.63
5⃝XT 13.16 14.74 15.25 15.75 16.20 16.63
6⃝ dY 11.67 14.74 15.57 16.27 16.85 17.29

24

	Introduction
	Preliminaries
	Low-Precision Integer Formats
	Low-Precision Floating-Point Formats
	Quantization Granularity
	Block-Quantization Formats

	Quantization Recipe
	Quantization Compute Flow
	Quantization Operation

	FP v.s. INT
	Direct-Cast Inference
	Training

	Deep Analysis: Why Fine-Grained INT Excels?
	Metrics
	Theoretical Analysis
	Statistical Analysis

	Hardware Cost Analysis
	Conclusion
	Related Work
	Proofs of Theorems
	Common assumptions and notation
	Theorem 1 (INT quantization)
	Theorem 2 (FP quantization)

	Hardware Cost Modeling
	More Details for Reproduction
	Used Models
	Necessity of Symmetric Integer Representation
	Detailed Results

