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ABSTRACT

Modern Al hardware, such as Nvidia’s Blackwell architecture, is increasingly em-
bracing low-precision floating-point (FP) formats to handle the pervasive activa-
tion outliers in Large Language Models (LLMs). Despite this industry trend, a uni-
fied comparison of FP and integer (INT) quantization across varying granularities
has been missing, leaving algorithm and hardware co-design without clear guid-
ance. This paper fills that gap by systematically investigating the trade-offs be-
tween FP and INT formats. We reveal a critical performance crossover: while FP
excels in coarse-grained quantization, INT consistently surpasses it as the quan-
tization block size shrinks. Our comprehensive comparison demonstrates that for
popular fine-grained formats like MX (block size 32), MXINTS8 and MXINT4 are
superior to their FP counterparts in both algorithmic accuracy and hardware ef-
ficiency. We also introduce a symmetric clipping method that resolves gradient
bias in fine-grained low-bit INT training, enabling nearly lossless performance
for MXINTS training. These findings challenge the current hardware trajectory
and advocate for prioritizing fine-grained INT formats in future Al accelerators to
achieve a better balance of accuracy, power, and efficiency.

1 INTRODUCTION

The proliferation of Large Language Models (LLMs) has been accompanied by a surge in their
computational and memory demands (Yuan et al.,|2024), making quantization an indispensable tech-
nique for efficient deployment. A central challenge in quantizing LLMs, particularly those based on
the Transformer architecture, is the presence of significant outliers (Sun et al.}|2024; Dettmers et al.,
2022) in activation distributions. These outliers, characterized by their large magnitude but infre-
quent occurrence, pose a considerable problem for low-precision representations. To accommodate
this wide dynamic range, the Al hardware industry (NVIDIA Corporation, [2024a) is increasingly
pivoting towards low-precision floating-point (FP) formats, such as FP8 and FP4. Prominent ex-
amples like NVIDIA’s Blackwell architecture (NVIDIA Corporation, |2024a)) underscore this trend,
favoring the superior dynamic range of FP to handle outliers more gracefully than traditional integer
(INT) formats.

However, this industry-wide momentum towards FP formats is based on an incomplete picture.
The comparative advantages of FP and INT have not been systematically evaluated across different
quantization granularities in a unified framework. Most studies (Xiao et al.,|2023;|Chen et al.,|2024a;
Liu et al., 2024b)) focus on a single format or compare them only at coarse granularities (e.g., per-
channel), failing to answer a critical question: how does the performance trade-off between INT
and FP evolve as granularity becomes finer? Since fine-grained (block-wise) quantization is now
a standard technique (Rouhani et al., 2023 [NVIDIA Corporation, [2024b) for mitigating outliers,
understanding its interaction with the underlying number format is essential for effective algorithm-
hardware co-design.

In this paper, we conduct a comprehensive, systematic comparison of INT and FP quantization
across a wide spectrum of block sizes. Our investigation reveals a critical “crossover point” in
performance. While FP formats hold a distinct advantage in coarse-grained scenarios, we find that
INT formats consistently surpass them as the block size shrinks. This reversal occurs because fine-
grained blocking effectively isolates outliers, reducing the local dynamic range within each block
and allowing the uniform precision of INT formats to become more effective. This trend holds across
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modern block-wise formats, where a shared scaling factor is applied to a group of values, such
as the 32-element blocks in Microscaling (MX) formats (Rouhani et al., [2023)) or the 16-element
blocks in NVIDIA’s (NV) formats (NVIDIA Corporation, |2024b). To enable a direct comparison,
we introduce and evaluate integer variants (e.g., MXINT8, MXINT6, MXINT4, NVINT4) alongside
their standard FP counterparts (e.g., MXFP8, MXFP6, MXFP4, NVFP4). Our key contributions are
as follows:

* We provide the first comprehensive comparison of INT versus FP quantization across a
spectrum of granularities, demonstrating that fine-grained integer formats (MXINTS, MX-
INT4, and NVINT4) consistently outperform their FP counterparts in both direct-cast in-
ference and low-bit training scenarios.

* We identify and resolve a critical gradient bias issue in fine-grained INT quantization-aware
training (QAT) by introducing symmetric clipping method, enabling MXINTS training to
match the performance of BF16 training.

* We develop a theoretical and statistical framework that models the quantization error for
both INT and FP formats, clearly explaining why INT surpasses FP in fine-grained regimes
by analyzing the impact of the crest factor on quantization signal-to-noise ratio (QSNR).

* We present a comparative hardware cost analysis, showing that fine-grained INT quantiza-
tion is not only more accurate but also more area- and energy-efficient than its FP equiva-
lent.

* Collectively, our findings challenge the prevailing FP-centric trajectory in Al hardware
design and strongly suggest that fine-grained INT formats offer a more optimal balance of
accuracy and efficiency for the next generation of LLMs.

2 PRELIMINARIES

Quantization maps a high-precision tensor X to a lower bit-width. In this section, we present low-bit
integer (INT) quantization, floating-point (FP) quantization, quantization granularity with a focus on
fine-grained block-wise schemes, and an overview of existing low-bit block formats.

2.1 LOW-PRECISION INTEGER FORMATS

For b-bit integer quantization, we define:
) X
Xq = Chp (\‘S—‘ anirU Qmax) © S, (1)

where s is the scale factor that normalizes X to the target integer range, |-] is round-to-nearest, and
X4 is the dequantized tensor. The clipping ensures that the integer values lie in [Qmin, @max] (e.g.,
for signed b-bit integers, Qumin = —2°7! and Qax = 2071 — 1).

2.2 LOW-PRECISION FLOATING-POINT FORMATS

Floating-point representation (Markstein, [2008) uses three fields: the sign bit (S), the exponent (E),
and the mantissa (/). We denote a format as ExMy, where = and y are the numbers of exponent
and mantissa bits. The sign determines the polarity, the exponent sets the dynamic range, and the
mantissa sets the precision. A floating-point number decodes as:

Cop — {(—1)5 X (1.M)g x 2E7bis if B £ 0 (Normal), )

(=1)% x (0.M)y x 217%8 if B =0, M # 0 (Subnormal).

Here, Cpp denotes the set of representable low-bit floating-point values. Floating-point quantization
is:

X
Xq= Nearest(, (Cpp> - S, 3)
s

where Nearest(-, Crp) maps normalized values to the nearest element of Crp. Eq. (3) is a general
quantization form that also recovers integer quantization by replacing Cgp with Cinr.
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Table 1: Low-bit formats name and their correspond represented range and scale factors.

Format Block Size Max Value Min Value Dynamic Range Scale-1  Scale-2
MXFP8 (E4M3) 32 +448 +279 1.75 x 217 UE8MO -
MXINT8 32 127 1 127 UESMO -
MXFP6 (E2M3) 32 +7.5 +0.125 60 UE8MO -
MXINT6 32 +31 +1 31 UESMO -
MXFP4 (E2M1) 32 +6 +0.5 12 UESMO -
MXINT4 32 £7 +1 7 UE8MO -
NVFP4 16 +6 +0.5 12 E4M3 FP32
NVINT4 16 +7 +1 7 E4M3 FP32
Forward Data Type
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Figure 2: Impact of clipping range on INT8 fi-
nal training loss on 145M model with 20B train-
ing tokens. Scale factor is kept on BF16 to em-
Figure 1: Compute flow of low-bit forward phasize the harm of asymmetric representation
and backward propagation of linear layer. space during low-bit training.

® dY — Quantize —

2.3  QUANTIZATION GRANULARITY

Quantization granularity specifies how scale factors apply across a tensor. Finer granularity usually
improves accuracy but increases compute and memory overhead due to more scale factors. Common
choices are: (i) Per-tensor: a single scale for the entire tensor. (ii) Per-channel: a scale per channel,
broadcast along a chosen axis. (iii) Block-k: the tensor is partitioned into 1 x k blocks along one
dimension, and each block has its own scale. Block quantization is a key technique for improving
accuracy at low precision. In this paper, we mainly focus on block quantization.

2.4 BLOCK-QUANTIZATION FORMATS

To improve low-bit accuracy, OCP (Rouhani et al., |2023) proposes the Microscaling (MX) format,
which uses a shared UE8M scale for each block of 32 elements. This fine-grained scaling re-
duces quantization error. Recently, NVIDIA Blackwell-series GPUs (NVIDIA Corporation, 2024b)
provide native hardware support for MXFP8/MXFP6/MXFP4. Traditionally, FP8 has E4AM3 and
ES5M2 variants, and FP6 has E2M3 and E3M2 variants. We consider E4M3 for MXFP8 and E2M3
for MXFP6 because mantissa bits are more critical to the performance of fine-grained quantization,
consistent with prior work (Liu et al., 2024a; [Mishra et al., [2025; Rouhani et al.l [2023). Further-
more, NVIDIA proposes NVFP4, which enhances MXFP4 by reducing the block size from 32 to
16 and replacing the UESMO scale with an E4M3 scale. NVFP4 also introduces a second-level
per-tensor scale to prevent overflow of the first-level E4M3 scale. Therefore, current hardware tends
to support low-bit fine-grained floating-point formats. To enable fair comparison between low-bit
floating-point and integer formats, we also introduce four corresponding integer variants: MXINTS,
MXINT6, MXINT4, and NVINTA4. Details of these low-bit formats are listed in Table

"UESMO is an 8-bit unsigned floating-point format with eight exponent bits and zero mantissa bits.
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3 QUANTIZATION RECIPE

This section illustrates the computation flow for low-bit inference and training in Sec. [3.1] and
details the scale-factor computation used in quantization in Sec.[3.2}

3.1 QUANTIZATION COMPUTE FLOW

Figure [T| shows an example of using low-bit GEMM in a linear layer during forward and backward
propagation. Given high-precision (e.g., BFloat16) activations X and weights W, the forward pass
of the quantized linear layef] is:

Y = Quantize(X) Quantize(W). 4)
@ @
The backward pass to compute dX and dW is:
dX = Quantize(dY) Quantize(W7T), (5)
©) @
dW = Quantize(X”) Quantize(dY™”). (6)
©) ©

Quantize(-) maps high-precision tensors to low-bit representations. Thus, there are six quantization
operations in one linear layer: () X and @ W in Eq. {4); @ dY and @ W7 in Eq. (3); ® X"
and (©) dY7” in Eq. (@) Block-wise quantization requires tensors to be quantized along the GEMM
reduction dimension to gain hardware benefits. Therefore, (D) and ), @ and @), and ) and 6
are quantized along different axes (Liu et al., [2024a; |Darvish Rouhani et al.| [2023). We separately
analyze the quantization error of these six operations in Sec. [5.3]

3.2 QUANTIZATION OPERATION

UESMO scale factor. The scale factor s in Eq. and Eq. is computed with the AbsMax
quantizer:

AbsMax(X)

S=—————

0 ; (M
where AbsMax(X) is the maximum absolute value within the group of values that share a single
scale factor, and @y, is the maximum value of the quantized type (see Table [T). Eq. maps
the largest magnitude in high precision to the maximum representable low-precision value without
clipping. OCP (Rouhani et al.,|2023) further converts the high-precision scale factor to the UESMO
format for MX formats:

s" = clip(|log, (AbsMax (X)) | — |logs(Qmaz) | , —127,127) (8)
where |-| denotes rounding down. Eq. rounds the high-precision scale down to the nearest
UESMO value, which introduces extra clipping error. Following existing works (Tseng et al.| 2025;
Chen et al., [2025b; [Mishra et al., [2025), we round up the UESMO scale based on Eq. to avoid
this error:

s = clip([logy(s)] , —127,127), ©)
where [-] denotes rounding up.

Symmetric Clipping. Floating-point formats are naturally symmetric around zero. In contrast,
signed integers in two’s complement have one extra negative value: for a b-bit integer, Q. ip, =
—2=1 and Qnae = 2071 — 1 (NVIDIA Corporation, [2024b). We find that this asymmetric range
usually does not affect inference. However, as shown in Figure [2] it degrades INTS training due to
a persistent negative bias in gradients. Finer-grained quantization suffers more because more values
fall into the unique negative endpoint @,,;,. For INTS, the minimum value in a group can still map
to —128 even when the scale is set to AbsMax(X)/127 due to BFloatl16 arithmetic precision (see
Sec.[D.7]for details). Therefore, we use a symmetric integer range for all INT quantizers:

Qmin = _(2b71 - 1)7 Qm(m = 2b71 - 17
as shown in Table[Il

2We omit the bias term.
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MXINTS v.s.

§ MXINT4 v.s.

NVINT4 v.s.

s
°
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(a) Direct-cast inference. (b) Direct-cast inference(w/ Hadamard rotation).

Figure 3: INT v.s. FP on 12 models through KL divergence on WikiText2. (a) shows the results with
direct-cast inference, while (b) shows the results with direct-cast inference combined with random
Hadamard rotation. Detailed numbers can be found in Sec. @

4 FPvs. INT

In this section, we compare low-bit integer and floating-point formats for both inference and training.
For inference, we quantize the forward GEMMs ((D) and ) in Figure[T) of linear layers. For training,
we quantize all GEMMs, including forward and backward () to ©® in Figure[T), of linear layers.

4.1 DIRECT-CAST INFERENCE

Precisions. For inference, we compare all data formats in Table m MXFP8, MXINTS8, MXFP6,
MXINT6, MXFP4, MXINT4, NVFP4, and NVINT4. We perform quantized inference on a trained
BFloat16 model, and we quantize all forward GEMMs.

Models. We evaluate LLMs across a wide range of sizes, including dense and Mixture-of-
Experts (MoE) models, from 0.6B to 235B parameters. The evaluated models include Qwen3-
0.6B/1.7B/4B/8B/14B/32B/30B-A3B/235B-A22B [2025), and Llama-3.1-8B/70B and
Llama-3.2-1B/3B (Dubey et al.l 2024). We provide the official open-source links in Sec. [D] for
reproduction.

Metrics. Our goal is to compare integer and floating-point low-bit formats under the same setting,
so ranking is more informative than absolute accuracy. Following Dutta et al.| (2024), accuracy alone
is not sufficient for compressed models because it can hide large changes in behavior. We therefore
evaluate quantized models with distance metrics. Specifically, we compute the KL divergence on
WikiText2 (Merity et all, 2016) between each quantized model and its BFloat16 counterpart. To
reduce noise, we compute the divergence over the softmax distributions restricted to the top-25
logits of the BFloat16 model.

Results of direct-cast inference. As shown in Figure[3al MXINTS surpasses MXFP8 in all 12 mod-
els. MXINT4 and NVINT4 also outperform their floating-point counterparts, MXFP4 and NVFP4,
in 10 of 12 models. In contrast, for 6-bit formats the trend reverses: MXFP6 outperforms MXINT6
in all 12 models.

Results of direct-cast inference with Hadamard rotation. Random Hadamard rotation
et al.} [2024) is a popular technique to smooth distributions before quantization (Tseng et al., 2025}
Chen et al.,[2024a). We therefore rotate the inputs and weights, and quantize XR and R*'W, where
R is a random Hadamard matrix of size h x h. We set h equal to the block size (32 for MX formats
and 16 for NV formats). As shown in Figure3b] integer quantization benefits more from this outlier
alleviation. Specifically, MXINTS8, MXINT4, and NVINT4 outperform their FP counterparts in all
12 evaluated models, and the winning rate of MXINT6 improves from 0 to 5/12.

4.2 TRAINING

Precisions. For training, we focus on nearly lossless low-bit training, which is more practical.
Therefore, we study only the 8-bit setting and compare MXINT8 and MXFPS, since FPS training is

demonstrated to be nearly lossless in prior work (Mishra et al.| 2023}, [Liu et al.,[2024a).
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Table 2: Low-bit training comparisons. HS, OB, and WG represents Hellaswag, OpenbookQA,
and WinoGrande, respectively.

Model size Training tokens Precision loss Arc.E Arc.C HS OB PIQA WG Avg.
1B 100B BF16  2.6727 37.80 69.40 60.20 38.40 74.43 61.09 56.89
1B 100B ~  MXFP8 2.6767 37.03 69.82 60.28 38.00 74.37 61.64 56.86
1B 100B MXINTS 2.6758 37.95 69.45 60.02 38.80 74.54 61.38 57.02
3B 200B BF16  2.4794 46.50 75.42 7228 45.00 78.07 69.45 64.45
3B 200B  MXFP8 24821 46.70 74.12 72.08 44.60 77.56 69.25 64.05
3B 200B MXINTS 2.4812 46.10 75.58 72.00 44.80 77.78 69.55 64.30

Models and datasets. We train 1B and 3B
Llama3-style (Dubey et al., |2024) models on
the OLMo2-Mix-1124 (OLMo et al.,[2024)) pre-
training dataset, with 100B and 200B train-
ing tokens, respectively. Detailed model ar-
chitectures and training hyperparameters are in
Sec.[Dl

Metrics. We measure training performance us-

Loss

ing two metrics: training loss and task accuracy.
We smooth the training loss with an exponen-
tial moving average (coefficient 0.9). We com-
pute all accuracies with 1m_eval (Gao et al.|
2024) through 5-shot evaluation. We report
acc for WinoGrande (Sakaguchi et al., 2021)

15000 30000 45000

60000
Step

75000 90000

Figure 4: Loss curves comparison among BF16,
MXFP8 and MXINTS training on Llama-1B with
100B tokens. Results are smoothed by exponen-
tial moving average with a coefficient of 0.9.

and acc_norm for HellaSwag (Zellers et al.|
2019), Arc_Challenge, Arc_Easy (Clark et al.|
2018)), PIQA (Bisk et al.l2020), and Openbookqga (Mihaylov et al.| 2018)).

Results. Figure [Z_f] shows the loss curves for BF16, MXFPS8, and MXINTS training. The curves for
MXFP8 and MXINTS almost overlap with BF16. In addition, MXINTS consistently outperforms
MXFPS8 with a loss that is lower by approximately 0.001, as shown in the enlarged view in Figure[4]
Table 2] shows that MXINTS also achieves nearly the same average accuracy across six common-
sense reasoning tasks compared to BF16 training. These results demonstrate that MXINTS supports
nearly lossless low-bit training, while existing works (Liu et al.,|2024a} [Mishra et al.| 2025) mainly
focus on FPS training.

5 DEEP ANALYSIS: WHY FINE-GRAINED INT EXCELS?

In this section, we provide an in-depth analysis of low-bit integer and floating-point formats. Specif-
ically, Sec.[5.2] provides a theoretical comparison from the perspective of quantization error, and
Sec. [5.3] validates this theory with empirical quantization data.

5.1 METRICS

In our analysis, we use Quantization Signal-to-Noise Ratio (QSNR, dB) (Darvish Rouhani et al.,
2023)) to measure numerical fidelity under different quantization schemes. QSNR is the ratio of the
power of the original signal X to the power of the quantization noise X — X, expressed in decibels:

X =X,

A higher QSNR indicates that the quantized vector better preserves the direction and magnitude of
the original vector.
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50 —— INT8  -=- FP8 E4M3 —e— gaussian distribution
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(a) QSNR comparisons across crest factor «. (b) Crest factor decrease with smaller block size.

Figure 5: Theoretical analysis of quantization performance. (a) QSNR comparison between
various integer (INT) and floating-point (FP) formats across a range of crest factors (x), derived
from Eq. and Eq. (I2). The boxes represent the crest factor and QSNR of the intersection point
of the INT and FP curves. (b) The effect of quantization block size on the average crest factor for a
gaussian distribution and an outlier-prone distribution from Llama-3.1-8B activations.

5.2 THEORETICAL ANALYSIS

Common assumptions. We consider block vectors X € R¥ with i.i.d. entries X; ~ N (0,0?).
max(|X])

The block root-mean-equare (RMS) is o, and the block crest factor is Kk = . We use
blockwise AbsMax scaling with a power-of-two deployed scale s’ = p s, where s = max(|X\) and
p € [1,2) is the overhead from the power-of-two constraint. We choose s’ > s following Eq. @]) to
avoid clipping at the upper bound. Throughout we adopt Bennett’s high-resolution model (Bennett,
1948), i.e., within-cell errors are unbiased and approximately independent of the signal. The choice
s’ > s applies to both INT and FP quantization.

Theorem 1 (INT QSNR). Under b-bit INT quantization with AbsMax and power-of-two scaling,
the QSNR (in dB) is

\ QSNR ~ 4.78 + 6.02b — 20log,(p) — 20log, (k) \ (11)

A detailed proof of Theorem 1 is given in Sec. where b is the bit width, p € [1,2) is the scale
overhead, and x = max(|X|)/RMS(X) is the crest factor.

Interpretation of theorem 1. (i) In the high-resolution, no-clipping regime, each additional bit
yields =~ 6.02 dB. (ii) The power-of-two constraint costs up to 20log;,(p) < 6.02 dB. (iii) A larger
crest factor x degrades QSNR; smaller quantization block sizes typically reduce x and improve
QSNR.

Theorem 2 (FP QSNR). Under FP quantization with AbsMax and power-of-two scaling, the
QSNR (in dB) is

QSNR = -10 1Og10 (aM Wnorm + ﬁ (P K)stub + wzero) (12)
A detailed proof of Theorem 2 is given in Sec. with apy = ﬁ (mantissa-resolution term)
and 5 = %%M) Here M is the mantissa bit width, B is the exponent bias, and Qy,ax is the

largest finite normal magnitude of the target FP format (e.g., Qmax = 448 for EAM3). The terms
Whorms Psub» and Wyero quantify how much of the numbers falls into the normal, subnormal, and zero
regions (after scaling): wporm 1S the fraction of signal energy represented by normal FP numbers
and incurs mantissa quantization error ayr; psub 1 the probability mass encoded as subnormals and
incurs a fixed absolute step error whose magnitude grows with (px) via 8(pr)?; and wyero is the
fraction of energy that underflows to zero.

Interpretation of theorem 2. (i) The mantissa bit width sets the upper bound on FP QSNR. With
ample dynamic range (Wyorm ~ 1 and psub & Waero =~ 0), QSNR ~ 13.80 4 6.02 M dB, indepen-
dent of block granularity and the distribution of X. (ii) A larger crest factor  increases the share of
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Figure 6: QSNR versus block size for quantization across 6 forward/backward items. -1 denotes
per-channel quantization. 8-bit and 6-bit use EEMO scales for MX-format, and 4-bit uses E4M3
scales for NV-format. Detailed numbers can be find in Table. @

subnormals and zeros, which degrades QSNR. Finer-grained blocks reduce &, lower pgy1, and wyero,
and improve QSNR.

Theoretical comparisons. With Eq. (IT)) in Theorem 1 and Eq. (I2) in Theorem 2, we estimate the
QSNR of low-bit integer and floating-point formats for a given bit width and target distribution (via
k). Specifically, we set p = 1.44 to imitate MX-formats and p = 1.0 to imitate NV-formats. As
shown in Figure [5a, we observe:

* INT8 vs. FP8: FP8 QSNR varies smoothly due to its ample dynamic range. INT8 outper-
forms FP8 when x < 7.86.

¢ INT6 vs. FP6: FP6 has the same QSNR as FPS8 at small «, because both FP6 and FP8 have
three mantissa bits. However, FP6 QSNR decreases rapidly as « increases due to limited
dynamic range. INT6 outperforms FP6 only when x < 2.04.

* INT4 vs. FP4: INT4 outperforms FP4 when x < 3.06.

Furthermore, Figure [5b] shows that the crest factor x decreases as block size decreases. For a Gaus-
sian distribution, x decreases from 3.449 at block size 1024 to 2.365 at block size 32. For an outlier-
heavy distribution, x decreases from 8.054 at block size 1024 to 3.048 at block size 32. Since
3.048 lies below the 8-bit/4-bit intersection in Figure[5a this explains why MXINTS8, MXINT4, and
NVINT4 outperform their floating-point counterparts in most cases, as shown in Figure [3a] How-
ever, MXINTG6 lags behind MXFP6 because it only outperforms when x < 2.04, whereas even a
Gaussian distribution has K = 2.365 > 2.04 at block size 32. In addition, the benefit of integer
quantization increases as  decreases, so outlier-alleviation techniques (Ashkboos et al., 2024} |[Liu
et al.| [2024b} |Shao et al.| [2023;|Chen et al.,|2024a) can further improve integer performance relative
to floating-point quantization as demonstrated in Figure 35

5.3 STATISTICAL ANALYSIS

Setup. To measure the QSNR in real data, we feed 8 WikiText2 (Merity et al.,[2016) sequences of
length 4096 into Llama-3.1-8B, run both forward and backward propagation in BFloat16 precision,
and capture the six intermediate tensors (weights, activations, and gradients) indicated by (D—®) in
Figure[I] Llama-3.1-8B contains 224 linear layers across all transformer blocks. We collect these
tensors for all 224 linear layers and use them to compute the QSNR under different quantization
formats. Because tensors of the same type have similar distributions, we report the QSNR averaged
within each of the six types separately. Specifically, we evaluate INT and FP quantization at 8, 6,
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and 4 bits. We use EEMO scales for MX-format at 8 and 6 bits, and E4M3 scales for NV-format at 4
bits, since NV-format significantly outperforms MX-format in the 4-bit setting.

Results. Figure[6|reports measured QSNR (dB) across six tensor types and block sizes for INT/FP
at 8/6/4 bits. The empirical trends closely follow the theoretical comparisons in Sec. [5.2] (Theo-
rems 1-2) and the crest-factor analysis:

* FP is mantissa-limited and block-size invariant. FP8/FP6 curves are nearly flat across block
sizes (e.g., FP8 ~ 31.2 dB; FP6 ~ 26-30.6 dB), consistent with Theorem 2(i).

¢ INT benefits from finer blocks via reduced crest factor. INTS8/INT6/INT4 QSNR increases
monotonically as blocks shrink (e.g., INT8 rises to ~ 37—41 at block size as 32), matching the
k-dependence in Theorem 1 and Fig. [5b|

* Crossovers match predicted « thresholds.

— INTS8 vs. FP8: INTS exceeds FP8 for most tensors at practical block sizes less than 256.

— INT6 vs. FP6: FP6 generally dominates; INT6 only ties or slightly surpasses FP6 at the
smallest blocks (GS= 16) for weight-centric and columnwise activations—consistent with
the tighter « threshold for 6-bit.

— INT4 vs. FP4: INT4 overtakes FP4 for most tensors once blocks size are less than 32 in
most scenarios, while ®dY remains slightly FP-favored, reflecting heavier tails.

Overall, real-data measurements corroborate the theory: FP QSNR is set by mantissa precision
and largely insensitive to block granularity, whereas INT QSNR improves with smaller blocks as «
drops. This explains the strong performance of blockwise MXINT8 over MXFP8, the robustness of
MXFP6 over MXINT6 except with outlier-alleviation techniques, and the superiority of MXINT4
and NVINTH4 relative to MXFP4 and NVFP4 for most cases.

Table 3: Normalized energy and area costs of low-bit formats at matched throughput. Single-format
results use MXFPS as the baseline, and mixed-format results use MXFP8+MXFP4 as the baseline.

Single Format Mixed Format
MXFP8 MXINTS MXFP4 MXINT4 | MXFP8+MXFP4 MXINT8+MXINT4
Energy Ix 0.67x 0.31x 0.23x 1x 0.74x
Area 1x 0.83x 0.29x 0.27x 1x 0.70x

6 HARDWARE COST ANALYSIS

Based on the hardware model in Sec.[C| we evaluate the energy and area cost of a Matrix-Multiply
Unit (MMU) that supports the MX format. Table[3|shows that MXINT8 and MXINT4 reduce energy
by 33% and 26%, respectively, compared with MXFP8 and MXFP4. We also evaluate mixed-format
configurations. Following the NVIDIA Blackwell GPUs (NVIDIA Corporation, [2024b), we study a
chip that supports both 8-bit and 4-bit data types and set the throughput ratio of 8-bit to 4-bit to 1:2 to
match the communication bandwidth. As shown in Table[3] the “MXINT8+MXINT4” configuration
further reduces area by about 30% relative to “MXFP8+MXFP4”, mainly because circuit reuse is
simpler in the INT pipeline (Table [5). Overall, this analysis shows that, at matched throughput,
low-bit integer formats are more hardware-efficient than low-bit floating-point formats.

7 CONCLUSION

Our comprehensive study reveals a critical crossover point where fine-grained integer (INT) quan-
tization consistently outperforms floating-point (FP) formats for modern LLMs. This finding chal-
lenges the current hardware trajectory, as we show INT formats provide a dual advantage of superior
accuracy and greater hardware efficiency. We therefore call for a strategic shift in both academia and
industry toward algorithm-hardware co-design centered on fine-grained INT to build more powerful
and efficient Al accelerators.
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OUTLINES

* Sec.[Alintroduces related works.
* Sec.[B|details the proofs of Theorems 1 and 2 on INT and FP QSNR estimation.
* Sec.[C|presents the hardware cost estimation model.

* Sec. D] provides additional details on the models used and ablation studies, and reports the
numerical results corresponding to the figures in the main paper.

USAGE OF LARGE LANGUAGE MODELS

We use LLMs to polish the paper, correct the grammar, and for some of the figures in the article, the
initial drawing codes are generated by LLMs.

A RELATED WORK

Quantization Algorithms. Quantization methods include post-training quantization (PTQ) (Lin
et al., 2023} [Frantar et al.,[2022; Shao et al., 2023 Xiao et al.,2023) and quantization-aware training
(QAT) (Chen et al.| [2024b; |Liu et al., [2025), which speed up inference. Low-bit training (Mishra
et al., [2025; [Tseng et al.l |2025}; |Chen et al.l [2025b)) speeds up both training and inference. Several
works also study scaling laws (Hoffmann et al., [2022) for low-bit quantization (Castro et al., 2025}
Chen et al., |2025a} |[Frantar et al., |2025; |Kumar et al., 2024). However, most prior work focuses on
a single low-bit format—either integer or floating-point—and does not provide direct comparisons
between these formats. Zhang et al.[ (2024) study mixed-format quantization in the PTQ setting,
assigning integer or floating-point formats to different model parts.

Hardware. Previous accelerators (NVIDIA Corporation, 2020; [2022) do not natively support fine-
grained quantization, so algorithms (Xiao et al., 2023; |Chen et al., 2024a) face challenges with
per-channel quantization in the presence of outliers (Sun et al., 2024). Recently, OCP Rouhani
et al.| (2023)) proposes Microscaling (MX) data formats, which combine a per-block scaling factor
with a block size of 32 to improve low-bit quantization performance. NVIDIA Blackwell (NVIDIA
Corporation, |2024a)) supports MXFP8, MXFP4, and NVFP4 at the hardware level.

B PROOFS OF THEOREMS

B.1 COMMON ASSUMPTIONS AND NOTATION

We consider block vectors X € RF with i.i.d. entries X; ~ N(0,02). Let the block RMS be
o := RMS(X) and the block crest factor

_ max(X))

g

We adopt Bennett’s high-resolution model (Bennett, [1948)): within-cell errors are (approximately)
unbiased, uniform, and independent of the signal.

We use blockwise AbsMax scaling with a power-of-two deployed scale
s = olleesl — ;¢ p€ll,2),
and choose s’ > s to avoid upper clipping. The ideal scale s is chosen so that the largest codebook
magnitude in the target format matches the block maximum after scaling:
~ max(|X])
o Quet

with Q¢ determined by the target format:

o INT(b) (symmetric): Qret = @ := 2b=1 _ 1 (largest integer code).

» FP(E, M, B) (with subnormals): Qe = Qmax (largest finite normal magnitude of the FP
format; e.g., Qunax = 448 for E4AM3).
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This convention is consistent with the main text: we use the same symbols (o, %, p, s, s), and s’ > s
guarantees no overflow in both INT and FP quantization. Unless otherwise stated, expectations are
taken over both the data and the quantization randomness, and large-k averages are used so that
IX||? ~ ko?.

B.2 THEOREM 1 (INT QUANTIZATION)

Setup and scaling. Consider a symmetric, mid-tread, uniform quantizer with bit-width b and in-
teger range [—Q, )] where

Q =2""1—-1 (eg.Qe{127,31,7} forb € {8,6,4}).
AbsMax scaling uses the ideal scale

~ omax(|X|) Ko

a Q Q7
and the deployed scale is constrained to a power of two,
1= gllogasl — p€el2).
Quantize—dequantize (round-to-nearest) is
X, = clamp(round(¥), -Q, Q) - ¢’
Because s’ > s, we have |X|/s" < |X]/s < @, hence no clipping occurs and the clamp is inactive.

The effective (uniform) step is A := '.

Error model. Define the elementwise error e := X — X,. For a non-saturating symmetric mid-
tread quantizer with round-to-nearest, e € [—A/2, A/2]. Under the high-resolution (Bennett) ap-
proximation, the error is approximately uniform and independent of X:

QSNR. Define the blockwise QSNR as

- X 2
QSNR = 1Olog10< HXH2 al )

For large k, E[||X||?] ~ ko? and E[||X — X, 2] e?] = kA%/12, so

A
QSNR =~ —1010g10<1202> .

Expressing A via crest factor and scale overhead. With x := max(|X])/o and s = ko /Q, we
have s’ = ps and hence

A - PO
Q
Substituting into the QSNR expression gives
A? - (pr)?
1202 12Q?%’
and therefore
| QSNR =~ 101log;y(12) + 20log;4(Q) — 20log;e(p) — 20log;o(x) | (13)
Using Q = 2°~! — 1, this is well-approximated by
| QSNR =~ 4.78 + 6.02b — 20log;o(p) — 20logyy(k) | (14)

making explicit: (i) ~ 6.02 dB per additional bit, (ii) up to 6.02 dB loss from the power-of-two
overhead (p € [1,2)), and (iii) a penalty scaling with the crest factor « (which typically increases
with larger block size).
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B.3 THEOREM 2 (FP QUANTIZATION)

Setup and codebook. Let X € R* be zero-mean with RMS ¢ and crest factor x := max(|X|)/o.
Consider a target floating-point format FP(E, M, B) with sign, E exponent bits (bias B), and M
mantissa bits, with subnormals enabled. In the normalized domain,

normal: z = +(1.£)2 275, subnormal: x = +(0.f)22' "%, fe{1,...,2M —1}.
Let Qmax denote the largest finite normal magnitude (e.g., Qumax = 448 for E4AM3), Ny = 91-B
(smallest normal), and Sy = 2' "B~ (smallest nonzero subnormal).
Scaling and quantization rule. Per-block AbsMax scaling uses

max(|X]) Ko , M
5 = = , s = allesl — ;5 pell,2).
Qmax Qmax [ )

Quantize—dequantize with round-to-nearest:

X, = s Nearest(%7 (Cpp),

where Crp is the FP codebook in the normalized domain. Since s’ > s, no overflow occurs:
IX|/s" < |X]|/$ < Qmax- Underflow to subnormals or to zero is possible.

Error decomposition. Let e := X — X;. We analyze the relative MSE

Ele?] E[e?]
= = N = —1 1 .
R Bhel 5 QsNR 0log, R

Under a high-resolution (Bennett) model, within-cell error is unbiased and uniform on [—A /2, A /2],
and the logarithmic phase
r o= 2{10g2(|X\/s/)} c []_, 2)

(the fractional part {-} of log, (] X|/s’)) is approximately uniform on [1, 2).

Define signal-domain thresholds and the subnormal spacing

S .
Ty = 8 Nmin, Ty :=s' r;m (round-to-nearest), Agup, i= 8 Siin = s’ 217 B—M
We split the amplitude axis into three regions:

* Normal region (| X| > Tx). Let e(X) := [log,(]X|/s")] be the exponent bin of X/s’.
The local ULP is
A(X) _ S/ 25(X)—]\/[.

Writing 2¢(X) = | X|/(s'r) with r € [1,2) gives
X
A(X) = Xl g
T
Uniform-error modeling yields E[e? | X, | X| > Ty] = A(X)?/12 = | X|?2272M /(1272).
Averaging over r ~ Unif[1, 2] gives E[1/7?] = ff r=2dr = 1/2, hence

1
* Subnormal but nonzero region (7 < |X| < Tx). Here the absolute spacing is constant,
Asuby SO
A2 §/292(1-B—M)
Ele? | Ty < |X| < Ty] =~ =40 =
[e” | To < |X| <TN] 1 B

Let pgup, = IP)(,TO < |X‘ < TN). Then
/2 92(1—B—M)

Ele? - 1{Ty < |X| < Tn}] ~ o

Psub-
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¢ Zero region (| X| < Tp). Quantization rounds to zero; thus e = X and
E[e* - 1{|X| < To}] = E[X*-1{|X| < To}].
Summing the three contributions and normalizing by o2 yields

Ele?]

o2

~ O\ Wnorm + /B(P "i)zpsub + Wyzeros

where we define the dimensionless weights

E[X? - 1{|X| > Tw}] E[X? - 1{|X] < To}]

Wnorm = o2 ) zero +— o2 ’

and used s"2/0? = (pr)?/Q2,. with

max

92(1-B—M)
12 QIII&X
Therefore
QSNR ~ _1010g10 (aM Wnorm + B(p“)stub + wzero) (15)

Thresholds and interpretation. The thresholds that determine wyorm, Waero, and psyp are

Npi Si Smi
min T — / min — min .
Qmax ’ 0 § 2 7 (p K:) 2Qmax
Thus block size affects QSNR through « (and p) only via underflow-related terms. In the ample
dynamic-range regime (T, Ty tiny so that wyerm = 1 and psyp & Waero = 0), the law simplifies to
QSNR =~ 10log;y(24) + 20 M log,,(2) = 13.80dB + 6.02 M dB, (16)

independent of block granularity and the distribution of X.

TN = S/Nrnin = O'(PH)

Table 4: Gate-complexity model for the MAC Unit with k£ lanes. Here x and y denote exponent
and mantissa widths; for INT, z=0. The aligner width n is given by equation “Main Cells” list
dominant standard cells used in aggregation.

Sub-block INT Mul FP Mul INT Add FP Add Main Cells
Multiplier k(z+y+1)?  k(y+1)? - - AND, FA, HA
Adder (mantissa/int) - - 2k(z+y+1) kn FA, HA
Exponent adder — kx — — FA, HA
Exponent subtractor — - — kx XOR, FA, HA
Comparator - - - kx XOR, AND, OR
Aligner (barrel) - - - knlogyn MUX
Normalizer (shared) - - - nlogyn MUX, OR

C HARDWARE COST MODELING

Scope and assumptions. We develop a compact gate-level model to estimate the chip area and
energy of a GEMM engine under low-precision formats. Specifically, a low-bit GEMM engine uses
four components: a quantizer, a multiply-and-accumulate (MAC) unit, a dequantizer, and an FP32
accumulator. The proposed model accounts only for the MAC unit and a shared FP32 accumulator;
the quantizer and dequantizer are excluded from all cost accounting. In MX formats, the VPU
implements quantization by shift-and-round, and the accumulation pipeline can fuse dequantization
as two 8-bit integer additions. We omit these blocks to isolate the cost driven by multiplication and
accumulation. Unless otherwise stated, we take cell factors from a TSMC FinFET standard-cell
library. We model only combinational logic; we ignore sequential elements, placement and routing,
and interconnect to enable technology-aware, relative comparisons.
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Throughput Ratio MXINTS8 : MXINT4=1:2
No reuse 1 * int8_MAC _unit + 2 * int4_MAC_unit
INT reuse scheme 1 1 * int8_MAC _unit + 1 * int4_MAC _unit
INT reuse scheme 2 2 * int8_(u)int4_MAC _unit
Throughput Ratio MXFP8 : MXFP4=1:2
No reuse 1 * e4dm3_MAC_unit + 2 * e2m1_MAC _unit

FP reuse scheme 1 * edm3_MAC_unit + 1 * e2m1_MAC _unit

Table 5: Comparison of MAC unit configurations for different reuse schemes. Notes: (1) No reuse:
Highest energy efficiency for INT8 and INT4, but greatest area wastage; (2) INT reuse scheme 1:
Use int8 lane as an int4 path directly (set the 8-b input to XXXX_0000), a little more energy cost
for INT4 but lower area cost; (3) INT reuse scheme 2: Use two int8x (u)int4 lanes to reconfigure
int8 lane or int4 lane, a little more energy cost for both INT4 and INT8, but lowest area cost; (4) No
reuse: Highest energy efficiency for FP8 and FP4, but greatest area wastage; (5) FP reuse scheme:
Use fp8 lane as an fp4 path directly (set the 8-b input to S_00XX_X00), a little more energy cost for
FP4 but lower area cost. We adopt INT reuse scheme 2 and FP reuse scheme to evaluate the area
cost shown in Table 3]

Design choice: FP32 accumulation and MMU integration. A high-throughput Matrix-Multiply
Unit (MMU), as in TPU-like designs (Norrie et al., 2021), integrates the multiply-and-accumulate
datapath and downstream accumulation to improve performance and energy efficiency. To prevent
error growth and preserve scalability, we accumulate in FP32. Under the same nominal bit width,
FP multipliers are typically more area- and energy-efficient than INT multipliers, whereas FP adders
are more expensive than INT adders due to exponent comparison/subtraction, mantissa alignment,
and normalization (Zhang et al., |2024). With a uniform-alignment design |Ul Hagq et al.| (2025)), the
normalizer count reduces to one shared instance across the kK MAC lanes, and we divide its cost by
k.

Mantissa aligner width. The mantissa aligner couples accuracy and cost: its bit width n affects
numerical fidelity and hardware complexity. We set

n = min(2” + 2y, psum_bit_width), (17)

where 2 and y denote exponent and mantissa widths, respectively (for INT formats, x = 0). In all
evaluations we use k=32 and psum_bit_width=24.

MAC unit structure and sub-blocks. We model the MAC unit as a k-lane array. Each lane com-
prises one multiplier. The adders from all lanes are fused together to form a multi-input adder tree
structure, incorporating FP-specific alignment and normalization logic. Table 4] reports the domi-
nant logic count (up to constant factors) for the main sub-blocks, where “Main Cells” indicate the
standard-cell types used for area/energy aggregation. For FP multiplication, we multiply only man-
tissas and include an exponent adder. For FP addition, we model exponent comparator/subtractor,
a barrel aligner, a wide mantissa adder, and one shared normalizer. For INT, we set x = 0 in the
expressions.

Area and energy aggregation for MAC. Let S={Multiplier, Adder(mantissa/int), Exponent
adder, Exponent subtractor, Comparator, Aligner(barrel), Normalizer(shared)} be the set of sub-
block types, and G = {FA,HA, XOR, AND, OR, MUX} be the set of cell types with technology-
dependent area and energy factors A, and E, obtained from the standard-cell library. Let 7, be the
toggle rate of cell g, which represents the average switching activity of the cell. In this work, we sim-
plify the toggle rate factor by assuming that all gate cells have the same toggle rate, 7, = 7, to reduce
computational complexity and focus on the primary design trade-offs. Denote by c; ((z, y, k, n) the
count of cell g € G in sub-block s induced by the chosen format and by n from Eq.(T7). The MAC
area and energy are

Areaypac = Z Z Csg(x,y, k,n) Ag, Energyyac = Z Z Cs,g(@, Yy, k,n) Eqryg. (18)
seS geg seS geg
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FP32 accumulator model. We model the FP32 accumulator by its combinational logic counts
CQCC32, yielding

ACC32 ACC32
Areapcezn = ch Ag, Energycci = ch E,. (19)
9€g geyg

Total cost and per-lane reporting. The total MMU cost is

Areaypvy = Areapmac + Areaaccsz, Energyyvy = Energyyiac + Energyacess, (20)

and, when we report per-lane figures, we divide the cost of shared blocks by k.

Summary. The hardware model includes only the MAC unit and the FP32 accumulator; the quan-
tizer and dequantizer are excluded from the overhead calculation. Given a low-precision format
with exponent/mantissa widths (x,y) (with =0 for INT), a MAC array size k, an aligner cap
psum bit_width (setting n via Eq , and technology cell factors { Ay, Ey } g (plus the FP32-
accumulator gate counts), the model predicts the area and energy of the MAC and accumulation
stages. It captures the relative cost trends across INT/FP/MX formats at the same nominal bit width,
the sensitivity to the aligner width n (critical for FP addition), and the effect of sharing both the
normalizer and the FP32 accumulator across k lanes.

D MORE DETAILS FOR REPRODUCTION

D.1 USED MODELS

Table 6: Huggingface IDs of evaluation models in direct-cast inference.

Model Name Huggingface ID
Qwen3-0.6B Qwen/Qwen3-0.6B-Base
Qwen3-1.7B Qwen/Qwen3-1.7B-Base
Qwen3-4B Qwen/Qwen3-4B-Base
Qwen3-8B Qwen/Qwen3-8B-Base
Qwen3-14B Qwen/Qwen3-14B-Base
Qwen3-32B Qwen/Qwen3-32B

Qwen3-30B-A3B Qwen/Qwen3-30B-A3B-Instruct-2507
Qwen3-235B-A22B  Qwen/Qwen3-235B-22B-Instruct-2507

Llama-3.2-1B meta-llama/Llama-3.2-1B

Llama-3.2-3B meta-llama/Llama-3.2-3B

Llama-3.1-8B meta-llama/Meta-Llama-3.1-8B
Llama-3.1-70B meta-llama/Meta-Llama-3.1-70B

Models for inference evaluation. We list the Huggingface IDs of evaluated open-sourced model
for better reproduction in Tabel [6] Note that we firstly choose the base model without supervise
fine-tuning if it is open-sourced, For a model of a certain size, our selection principle is that if the
base model is open source, we will first choose the base model; otherwise, we will select the model
that has undergone SFT.

Models for training evaluation. We select the Llama-3 (Dubey et al., |2024) style model for our
experiments due to its wide adoption. The Llama-3 style model employs Group Query Attention
(GQA)(Ainslie et al.|, 2023)) for the self-attention module and SwiGLU(Shazeer, 2020) for the feed-
forward module. Table [/| presents the detailed architectural settings abd training hyper-parameters
of the models used.

D.2 NECESSITY OF SYMMETRIC INTEGER REPRESENTATION

Table [§] offer the ablation studies on representation range of INT8 quantization. We find that the
bias in representation range would consistently degenerate INTS training loss. For BFloat16 scale
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Table 7: Llama-3 style Model architecture and training hyper-parameters.

Model Size 145M 1B 3B
Layers 12 16 28
Hidden Size 1024 2048 3072
FFN Hidden Size 3072 8192 8192
Attention Heads 16 32 24
KV Heads 4 8 8
Batch Size (# Sequence) 256 512 512
Max LR 1.0e-3  6e-4 6e-4
Min LR 0.1 x Max LR
Optimizer AdamW (57 = 0.9, B2 = 0.95)
Weight Decay 0.1
Clip Grad Norm 1.0
LR Schedule Cosine
Warmup Steps 500
Sequence Length 2048

Table 8: Ablation studies about the clipping range on INT8 quantization across quantization gran-
ularities, as well as BFloat16 and UESMO scale factors. We repot the 8-bit training loss (lower is
better) on a 145M model with 20B training tokens. The baseline of BF16 training without quantiza-
tion

BF16 scale UE8MO scale
[-128, 1271 [-127,127] | [-128, 127] [-127,127]
per-channel 3.2544 3.2560 3.3602 3.4307
256 3.1340 3.1307 3.1628 3.1574
128 3.1309 3.1289 3.1353 3.1326
64 3.1312 3.1269 3.1312 3.1288
32 3.1354 3.1251 3.1299 3.1269

factor, we can find that asymmetric representation range even making block 32 quantization worse
than block 256 quantization. This is because only the minimal values in each quantization block
have possibility to quantized into 128 in INT8 quantization, and smaller block size indicats more
individual quantization blocks. Additionally, asymmetric quantization also cause degeneration for
UES8MO scale factors, but the degeneration strength is slighter than BFloat16 scales. This is because
UE8MO scale factor consistently greater than or equal to Bfloat16 scale, leading less high-precision
number to map to ;. These experiments demonstrate the necessity of symmetric representation
space for integer quantization.

Algorithm 1 Analyzing Numerical Stability of Different Floating-Point Precisions

1: Input: Dimension N = 4096, precision list P = {bfloat16, float16, float32}
2: Output: Ratio of elements equal to 128 for each precision
3: for each precision in P do
4: D <+ GenerateRandomMatrix (N, N, precision)
on GPU
S+ D/127
Dyorm < Round(D @ S)
count < CountElementsEqualTo(Dyorm, 128)
total < N x N
ratio <— count/total
print “Precision:”, precision, ”, Ratio:”, ratio

> Generate N x N matrix from A(0, 1)

> Calculate the scaler matrix
> @ denotes element-wise division

SYRIN
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Table 9: Results of Algorithm

BFloatl6 Floatl6 Float32
16.82% 0.02% 0

Numerical stability analysis. We also analyze the numerical stability of different float-point for
quantization mapping through Algorithm[I] Table [0]shows the results of Algorithm [I| demonstrat-
ing that in BFloat16 precision, a significant portion of values (16.82%) are mapped to -128. This
phenomenon occurs even though the scaling factor s is theoretically designed to map the value to
127. In conclusion, this analysis highlights a critical pitfall of using low-precision floating-point
formats for quantization calculations. The inherent lack of precision in bfloat16 and, to a lesser ex-
tent, float16 can lead to overflow during the scaling step, incorrectly mapping values to outside the
intended integer range. This powerfully demonstrates that a forced symmetric clipping step is essen-
tial for guaranteeing the correctness and stability of quantization, particularly when the computation
is performed using low-precision data types.

D.3 DETAILED RESULTS
This section offer detailed numbers of experiments, as follows:

* Table[I0]and Table[IT] present the KL divergence results, corresponding to Figure [3]

* Table|12|and Table [13|present the perplexity results, for better understanding the relation-
ship between KL divergence and perplexity. They are consistent in most case.

* Table[I4]and Table[I5] presents the item-wise QSNR results, corresponding to Figure [6]

Table 10: Qwen3 models KL divergence (lower is better) results across different low-bit formats in
direct-cast inference. All reported KL metrics are the average over all tokens, multiplied by 10°.

Qwen-3

Format 0.6B 1.7B 4B 8B 14B 32B  30B-A3B 235B-A22B
MXINTS 191 209 112 168 96 118 160 276
MXFP8 624 434 370 380 320 486 400 493

" MXINT6 1944 2464 928 1104 804 1012 768 1 1333
MXFP6 1136 948 612 636 512 688 536 1117

" MXINT4 39936 30208 17408 15552 34304 27392 ~ 13248 16331
MXFP4 41472 33024 20096 15744 12928 13056 12096 22710

" NVINT4 10560 8320 4864 5120 5568 7968 3120 ¢ 9702
NVFP4 15040 10944 6816 6272 5536 5536 3936 9979

Qwen-3 (w/ random Hadamard rotation)
Format 0.6B 1.7B 4B 8B 14B 32B  30B-A3B 235B-A22B

MXINTS 137 150 80 130 70 88 135 229
MXFP8 937 1366 493 596 424 543 417 818

CMXINT6 1137 1274 547 690 481 615 444 809
MXFP6 1099 1549 542 679 500 617 455 810

- MXINT4 26488 26578 10498 12241 8459 9510 6080 9660
MXFP4 48788 45624 15801 18731 12781 11274 10506 12086

" NVINT4 7771 7236 3431 4026 3070 3647 2222 3931
NVFP4 18002 18761 7753 8329 6372 6822 5605 7790

20



Under review as a conference paper at ICLR 2026

Table 11: Llama-3 models KL divergence (lower is better) results across different low-bit formats
in direct-cast inference. All reported KL metrics are the average over all tokens, multiplied by 10°.

Llama
Format 3.2-1B 3.2-3B 3.1-8b 3.1-70B
MXINTS 111 77 82 191
MXFP8 504 358 401 548
"MXINT6 1133~ 743 776 1744
MXFP6 754 520 569 1499

MXINT4 26153 14089 12380 22538
MXFP4 42896 27586 40015 41396
" NVINT4 =~ 7508 4312 4224 10970
NVFP4 14048 8590 8356 12929
Llama(w/ random Hadamard rotation)

Format 3.2-1B 3.2-3B  3.1-8b 3.1-70B

MXINTS 89 63 65 145

MXFPS§ 632 429 445 1945
CMXINT6 773 531 558 1518

MXFP6 742 511 530 2984

MXINT4 ~ 20126 ~ 11116 ~ 10272 ~ 137612
_ MXFP4 34884 28449 27023 171170

NVINT4 5854 3912 3609 19975
NVFP4 15436 9950 3611 112772

Table 12: Qwen3 models perplexity (lower is better) results of WikiText2 across different low-bit
formats in direct-cast inference.

Qwen-3
Format 0.6B 1.7B 4B 8B 14B 32B  30B-A3B 235B-A22B
Bf16 11.5868 8.7084  7.3368 6.5135 5.9498 7.0168 6.8178 4.0929
MXINT8 11.6377 8.7424 7.3511 6.5174 5955 7.0185 6.8167 4.0959

MXINT6 12.2297 9.2622 7.496 6.6499 6.0483 7.05 6.8745 4.1743

MXFP6 11.9379 8.9082 7.4275 6.5816 5.9913 7.0405  6.8449 4.1639
"MXINT4 48.6713 21.8749 11.9487 10.0423 16.7227 15.1619 9.3837 5918

MXFP4 45.9304 24.0766 12.4515 9.6166 8.04 8.577 9.1905 7.0814
"NVINT4 15.9729 10.9128 8.3304 7.415 681 8.0161 7.2024  4.8916

NVFP4 17.8613 11.7405 8.6055 7.4821 6.642 7.5168 7.5167 4.907

Qwen-3(w/ random Hadamard rotation)

Format 0.6B 1.7B 4B 8B 14B 32B  30B-A3B 235B-A22B

MXINT8 11.6179 8.7240 7.3407 6.5170 5.9521 7.0187 6.8231 4.0973

MXFP8 11.8935 9.0039 7.4136 6.5896 5.9892 7.0709  6.8849 4.1308

MXINT6 11.9422 9.0122 7.4071 6.6119 59905 7.0627 6.8666 4.1263
MXFP6 11.9491 9.0448 7.4159 6.5805 5.9887 7.0746  6.8670 4.1391

NVINT4 14.6052 10.7822 7.9824 7.1705 6.3702 7.3625 7.1557 4.3913
NVFP4 20.6018 15.1028 8.9165 7.9712 6.8207 7.8472  8.0406 4.8161
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Table 13: Llama-3 models perplexity (lower is better) results of WikiText2 across different low-bit
formats in direct-cast inference.

Llama
Format 3.2-1B 3.2-3B 3.1-8b 3.1-70B
BF16 9.0625 7.2857 5.8402 2.637

NVINT4 11.3987  8.225 6.5957 3.5502
NVFP4  13.6606 9.1858  7.4047 3.7188
Llama(w/ random Hadamard rotation)
Format 3.2-1B 3.2-3B 3.1-8b 3.1-70B
MXINT8  9.0715  7.2912 5.845 2.6428
MXFP8  9.2127  7.3526  5.9109 2.7673

" MXINT6 92622  7.3828 59276 27333
MXFP6  9.2502 7.372 5.9234 2.8547

" MXINT4 ~ 17.9797 10.3057 8.0745 1146.7256

MXFP4  26.6788 17.1619 13.2289 5600.7686

NVINT4 10.8399 8.1119 6.4701 4.9786
NVFP4 145804 9.6662  6.4932  216.3876
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Table 14: QSNR versus block size for quantization across 6 types of forward/backward items. -1
denotes per-channel quantization. E4M3 scales contains another FP32 per-tensor scale factor just
like NV-format.

Format Scales Type Item G=-1 256 128 64 32 16

OX 27.55 33773 3541 3720 38.96 40.74
QW 36.81 3897 39.72 40.59 41.51 4247
@dYy 29.00 3502 36.60 37.87 39.30 40.50

INTS E8MO @ WT 3600 38.69 39.56 4042 4145 4244

G XT 3646 3871 39.59 40.54 4156 42.65

®dYy 2512 31.09 33.11 3508 37.04 38.85
77777777777777 OX  31.21 3123 3123 31.23 3123 3123

QW 31.27 31.27 31.27 3127 3127 31.27

FPS8 ESMO ®dYy 3122 3123 3123 3123 3123 3122

INT6 E8MO

INT4 E4M3

Fp4 EaM3 @WT 1489 1647 1687 1729 17.84 18.58
op.< 1542 1653 1693 1738 1793 18.64
®dY 1143 1542 1680 18.17 19.62 21.19
OX 5.25 971 11.18 12.85 1453 16.29
QW 11.86 14.18 14.82 15.60 16.57 17.70
3@ dYy 7.57 1146 1264 1390 1541 1696
INT4 ESMO @WT 1128 1385 1465 1544 1650 17.66
G XT 1229 1424 15.02 1592 1693 18.07
©® dY 8.11 11.72  13.12 1455 16.11 17.77
77777777777777 OX 762 11.86 1299 14.13 1511 1594
QW 13.11  15.13 1548 15.82 16.17 16.55
FP4 ESMO 3@ dYy 9.65 13.11 1394 1473 1555 16.21

®dY 955 1272 1374 1466 1551 1622
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Table 15: QSNR versus block size with random Hadamard rotation for quantization across 6
types of forward/backward items. -1 denotes per-channel quantization. E4M3 scales contains an-
other FP32 per-tensor scale factor just like NV-format.

Format Scale Type Item G=-1 256 128 64 32 16

OX 35.07 3932 4030 41.24 4227 43.06
QW 3795 3946 40.12 40.89 41.75 42.63
@dY 3455 39.02 4027 41.07 42.01 4247
@ WT 3756 3923 3999 40.76 41.74 42.63
G XT 3676 39.05 39.92 40.83 41.82 42.66

INTS E8SMO

FP8 E&ZMO

INT6 E8MO

INT4 E4M3

FP4 E4M3

INT4 E8SMO

FP4 E8SMO
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