Under review as a conference paper at ICLR 2026

DYNAMICRANK LORA: REAL-TIME ADAPTIVE FINE-
TUNING

FOR CODE MODELS VIA TOKEN-LEVEL IMPORTANCE
AND LOSS LANDSCAPE AWARENESS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose DynamicRank LoRA, a novel fine-tuning mechanism for code
models that dynamically adjusts the rank of low-rank adaptation (LoRA) ma-
trices in real-time, addressing the limitations of static rank configurations in
conventional LoRA. The proposed approach combines two fundamental ingre-
dients: token level importance scoring: the structural importance of their input
tokens and loss landscape aware rank adaptation: rank modulation, which can

be adjusted with information about gradient dynamics and curvature. High im-
portance tokens, namely syntax keywords or variable names, will result in rank
increases to get finer grain patterns, and flat loss regions, to reduce rank for faster
convergence. The mechanism is tightly coupled with transformer architectures,
and makes use of attention weights and gradient norms to ’plasma” LoRA matri-
ces through truncated SVD through training. We apply DynamicRank LoRA in
the framework of a GPT-3.5-turbo where dense layers in the feed-forward blocks
are replaced with those of adaptive-rank LoRA pairs modulated by a lightweight
MLP. This design allows the model to very well balance the speed and precision
of adaptation between the various combinations of input complexity, e.g. verbose
or terse code, and task requirements, i.e. bug fixing, code generation, etc. Ex-
perimental results show that DynamicRank LoRA is more efficient and accurate
for fine-tuning compared to fixed-rank baselines, especially under the need of
fast adaptation to inhomogeneous code structures. The two-fold rank modulation
technology and the transformer-specific integration of the methodology distin-
guishes it from previous works to provide a scalable solution for real time code
model customization without compromising the latency.

1 INTRODUCTION

The inception of large language models has made code generation and analysis easier and more
efficient, but how to adapt them to make them work real-time in specific programming situations

is hard to accomplish. Traditional fine-tuning methods often take a lot of computational effort and
cannot dynamically adapt to the complexity of different inputs. While parameter-efficient meth-
ods like Low-Rank Adaptation (LoRA) have mitigated these issues by freezing pre-trained weights
and injecting trainable low-rank matrices (Zhang et al.| 2023)), their static rank configuration limits
flexibility when processing diverse code structures. This paper presents DynamicRank LoRA, a
novel fine-tuning mechanism that addresses these limitations by applying the real-time rank adap-
tation of two types of complementary signals, token-level importance and loss landscape dynam-
ics.

Existing code models have different sensitivities to different syntactic elements. Attention mech-
anisms in transformers naturally highlight critical tokens like variable declarations or control flow
keywords (Vaswani et al.,|2017), but conventional LoRA treats all input regions uniformly. More-
over, the loss landscape during fine-tuning fluctuates significantly depending on task difficulty and
code complexity (Liao et al.,[2022). Current approaches are either over-provisioning rank provi-
sioning for simple cases and wasting computation resources or under-provisioning for complex

Under review as a conference paper at ICLR 2026

cases and sacrificing the quality of the adaptation. DynamicRank LoRA fills this gap by adapting
the expressive power of low-rank updates to these things in a continuous manner.

The main novelty here is the doubled factor adaptation strategy. For the case of input complexity,
we calculate token importance scores based on attention weights, identify areas of tokens that need
a higher-rank representation. For optimization dynamics, we take note of gradient norms/loss cur-
vature, increasing rank throughout steep loss landscapes and reducing in the flat. This approach
differs fundamentally from prior work in parameter-efficient fine-tuning (Houlsby et al., [2019) by
making rank a function of both input characteristics and training dynamics rather than a fixed hy-
perparameter.

Our approach makes three important contributions. First, it presents the first rank real-time adapta-
tion mechanism for LoRA that considers the input structure and optimization state jointly. Second,
to build a lightweight control system based on the attention weights and gradient statistics with
little additional overhead in the base model. Third, it has better performances when handling het-
erogeneous code tasks, where input complexity can vary dramatically, but more concretely, in the
case of mixed language codebases or projects with different facts of documentation.

The proposed technique builds upon recent advances in code-specific language models (Roziere
et al.| 2023) while addressing their adaptation limitations. Unlike static approaches that require
separate models for different programming languages or domains (Mishra et al.| [2024), Dynam-
icRank LoRA enables a single model to adjust its fine-tuning behavior on-the-fly. This capabil-
ity proves particularly valuable for real-time applications like interactive programming assistants
(Huang et al.| 2025a), where response latency and adaptation quality are both critical.

The rest of this paper is structured as follows: Related Work Section 2 reviews related work. 2
Code Model Fine-Tuning and Adaptive Params Efficiency 3 Heads-Up. Section 3 formalizes the
preliminaries of LoRA and attention-based importance scoring. Section 4 presents lay-out of the
DynamicRank LoRA and the adaptation algorithms. Section 5 shows results of experiments with
various tasks for code understanding and generating. Section 6 includes broader implications and
future directions, and in Section 7 conclusions are offered.

2 RELATED WORK

The development of fine-tuning techniques that are efficient for large language models has seen
much progress in the recent years, especially in the context of code-related tasks. We group exist-
ing methodologies into three classes: parameter efficient fine-tuning methods, dynamic adaption
approaches, and code-specific model optimization methods.

2.1 PARAMETER-EFFICIENT FINE-TUNING

Traditional large language model fine tuning involves updating every parameter, which is compu-
tationally expensive as model sizes increase. Low-Rank Adaptation (LoRA) (Zhang et al.,[2023)
emerged as a breakthrough by freezing pre-trained weights and injecting trainable low-rank matri-
ces into transformer layers. This approach is memory-efficient and doesn’t compromise model per-
formance, so it’s especially well suited to models of code that need to change frequently. Building
upon this basis, a succession of following work examined different strategies of matrix decomposi-
tion in order to gain further efficiency. AdaLLoRA (Yang et al.||2024) introduced importance-based
rank allocation, dynamically pruning less critical adaptation components during training. However,
these approaches would have fixed upper bounds on rank over the course of changes, which re-
stricts their flexibility in systems with code models that experience highly variable input structures.

2.2 DYNAMIC ADAPTATION STRATEGIES

Several recent works have studied methods of dynamically tuning model parameters during fine-
tuning. DyLoRA (Valipour et al.,|2022)) proposed a search-free approach that trains multiple rank
configurations simultaneously, selecting the most appropriate one during inference. This type of
method reduces the need to do exhaustive hyperparameter searches but still operates using prede-
fined range limits. Another line of research focuses on dynamic sparsification of adaptation ma-
trices (Huang et al.l2025b)), where the model selectively activates different components based on

Under review as a conference paper at ICLR 2026

input characteristics. While these approaches have shown promise for general language tasks, they
do not incorporate any of the specific optimizations for the unique characteristics of code, such as
the hierarchical nature of programming language syntax or the importance of certain types of to-
kens, such as identifiers and keywords.

2.3 CODE-SPECIFIC MODEL OPTIMIZATION

The field of code intelligence has developed specific fine-tuning methods to cover the specific chal-
lenges of programming languages. Recent work on structural pruning combined with LoRA (Zhou
et al.,[2024)) demonstrated improved efficiency by adapting the rank hierarchy to match the pruned
architecture. Other studies have explored the use of compiler intermediate representations (Chen

et al.| 2025) or execution traces (Zhoul [2024) to guide the adaptation process. These methods often
result in better performance for tasks related to code: they often require additional preprocessing
steps, or domain-specific knowledge that may not be available in real time applications.

The proposed DynamicRank LoRA differs somewhat with respect to these existing approaches.
Unlike fixed-rank LoRA variants, our method differs in that it continuously adapts the adaptation
capacity both based on input characteristics and optimization dynamics. As compared to dynamic
adaptation strategies designed for general language tasks, we specialize on code-specific features
by token-level importance scoring.

3 PRELIMINARIES

To set up the framework for our proposed DynamicRank LoRA method, we first introduce a few
key concepts and techniques that are the foundation for DynamicRank LoRA.

3.1 Low-RANK ADAPTATION (LORA)

Low-Rank Adaptation has become a highly effective method for fine-tuning huge language mod-

els, without sacrificing the efficiency of the model’s parameters. The basic concept is to freeze the
weights of the pre-trained model, and insert the trainable low-rank matrices in each layer. Given a
weight matrix W € R%*¥ in a transformer layer, LORA decomposes the weight update ATV into
two smaller matrices:

AW = BA (1)

where B € R?*" and A € R™*, with rank » < min(d, k). This decomposition significantly
reduces the number of trainable parameters from d x k to r x (d + k). During forward propagation
the adapted weights become :

W' =W + BA 2

The effectiveness of LoRA stems from the hypothesis that the adaptation process for large models
intrinsically resides in a low-dimensional subspace (Zhang et al.| |2023). While traditional LoRA
assumes a fixed rank r throughout training, our work overthrows this assumption by showing that
optimal rank is varied both by input characteristics and optimization dynamics.

3.2 TRANSFORMER ARCHITECTURE FOR CODE MODELING

Modern code models predominantly employ transformer architectures (Vaswani et al., [2017)),
which process input sequences through self-attention mechanisms and feed-forward networks. The
self attention operation is computed as:

Attention(Q, K, V') = softmax (QKT) v (3)
s e

Under review as a conference paper at ICLR 2026

where (), K, and V' are queries, keys and values respectively and dj, is the dimension of the keys.
For code modeling tasks, the attention patterns often reveal structural relationships between pro-
gramming language constructs (Mohammadkhani et al.,2023)). These patterns are used as the
foundation for our token-level importance scoring mechanism.

The feed-forward network in the transformers are typically 2 linear transformations with a GeLU
activation in between:

FFN(z) = Wo(GeLU(Whz + b1)) + ba “)

Where W7 and W5 are weight matrices. Our DynamicRank LoRA implementation focuses on
adapting these feed-forward layers, as they contain the majority of parameters in transformer mod-
els and have shown particular sensitivity to rank adaptation (Khojayorov & Saidkhodjaevl, 2023)).

3.3 LoSS LANDSCAPE ANALYSIS

Understanding the geometrical understanding of the loss function is pivotal to good fine-tuning.
Recent work has shown that neural network loss landscapes contain both sharp and flat regions,
with different optimization characteristics (L1 et al.|[2018). The sharpness of the loss landscape can
be quantified using the Hessian matrix, and approximated using gradient statistics:

IVoLll2
116112
where L represents the loss function and 6 the model parameters. This measure is informative to

our strategy of loss landscape-aware rank adaptation, because sharper regions commonly benefit in
terms of higher-rank updating to handle the complex path of optimization.

Sharpness ~ 5)

3.4 TOKEN IMPORTANCE IN CODE

Programming languages are based on certain specific characteristics as compared to natural lan-
guage. Certain tokens, such as keywords, identifiers, and operators, carry disproportionate im-
portance in determining code semantics (Ahmad et al.l 2020). We define token importance [; for
position ¢ as a combination of attention values and gradient values:

H
1 h
L=+ h}f% > oty + A|Va, L] (6)

where o, represents the attention weight from token ¢ to token i in head h, H is the number of
attention heads, IV the sequence length, and A a balancing hyperparameter. This formulation cov-
ers both the structural relationships that are learned by the attention mechanism and the way each
token directly influences the predictions made by the model.

4 DYNAMICRANK LORA: DUAL-FACTOR ADAPTIVE LOW-RANK
FINE-TUNING

The proposed approach of DynamicRank LoRA introduces novel real time rank adaptation ap-
proach in transformer-based code models. This section describes the technical architecture and
operational mechanisms by which dynamic changes of low-rank matrices according to the com-
plexity of input and loss landscape dynamics can be achieved.

4.1 DUAL-FACTOR RANK ADAPTATION PROCESS

The rank adaptation mechanism works based on two parallel lines of adaptation mechanisms that
jointly determine the optimal rank configuration. The first pathway calculates token-level im-
portance scores using the attention weights of the transformer. For each token z; in the input se-
quence, we compute a modification to its importance’s score s; as:

Under review as a conference paper at ICLR 2026

= o>l g

where L represents the number of layers and ag) denotes the attention weight between tokens ¢

and j in layer [. Tokens with scores exceeding a threshold 7 form the set H = {i|s; > 7}, trigger-
ing a rank increase proportional to their cumulative importance:

r=r4 A s (8)
i€H

The second pathway commits monitoring optimization dynamics by gradient statistics. We track
the layer-wise gradient norm ||VgL||2 and approximate the Hessian trace tr(H) using Hutchinson’s
method (Avron & Toledo, [2011)). These metrics weight the preliminary rank 1’ :

VoLl2
1 — / . 1 . || 9
ner (o tr(H) +e ©)
where 7 controls the adaptation rate and e prevents division by zero. This two-pronged approach

leaves the model responsive to both the structure complexity in the input code and the current opti-
mization state.

4.2 TRANSFORMER-SPECIFIC INTEGRATION MECHANISM

The rank adaptation system works closely with transformer architectures with three main modifica-
tions. First, we replace each feed-forward layer’s weight matrix W € R?** with a dynamic LoRA

pair (A, B), where A € R”"** and B € R%*"™", The forward pass becomes:

y =Wz + BAz (10)

Second, we implement a lightweight rank controller that samples discrete rank values v’ from a
Gumbel-Softmax distribution (Jang et al., 2016):

7 = MLP([||VoL||2, tr(H), 3]) (11)

r’"" = Gumbel-Softmax () (12)

where 5 denotes the mean token importance score. This design preserves the differentiability while
allowing discrete rank changes. Third, we include only minimal computational overhead by cal-
culating the attention based importance scores and its gradient statistics during the normal forward
and backward passes.

4.3 REAL-TIME RANK RESHAPING VIA TRUNCATED SVD

For updated changes of the rank r” we reshape matrices A and B using shortened singular value
decomposition (SVD) of their product B A. For rank increase, we compute:

U,%, VT = SVD(BA) (13)

return the matrices extracted with the top-r” singular values:

B = U, .pir/Spr (14)
A" = /S V. (15)

Under review as a conference paper at ICLR 2026

For rank decrease we just truncate the existing matrices to the new rank. This SVD-based approach
guarantees numerical stability but does not miss the most significant directions of adaptation. The
entire reshaping process adds less than 5% overhead to the training step latency, as confirmed in
our experiments.

4.4 CODE-SPECIFIC ADAPTATION STRATEGIES

The framework has two code-specific optimizations. First, we prioritize rank increases for tokens
corresponding to programming language keywords and identifiers by adjusting the importance
threshold 7 based on token type. Second, we take task-aware rank modulation into account and
make bug fixing tasks default to higher initial ranks than code completion since the loss landscape
of bug fixing is generally harder.

DynamicRank LoRA

Transformer Layers
Token - Level

— Importance ——

// - Scoring
Input .
Self - Attention

Embedding —
Blocks
Layer Output Loss Landscape - Aware Rank
— — —

< |- q
\\\» Eo Head Rank Adaptation Controller

Blocks e

Figure 1: DynamicRank LoRA Integration in Transformer-Based Code Model

Figure 1 shows the whole picture that includes how the information of the token importance scores
and gradient statistics are taken in the rank controller, which further adjusts the LoRA matrices
using an SVD reshaping mechanism.

5 EXPERIMENTS

To test the effectiveness of DynamicRank LoRA, we perform extensive experiments in several
code understanding and code generation tasks. Our evaluation is divided into three main aspects:
(1) performance comparison with fixed-rank LoRA baselines, (2) analysis of dynamic rank adapta-
tion behavior and (3) evaluation of computational efficiency.

5.1 EXPERIMENTAL SETUP

Datasets: We evaluate on three established code-related benchmarks: CodeXGLUE (?), Hu-
manEval (Chen et al.l 2021)), and APPS (Hendrycks et al., 2021). These datasets span various pro-
gramming languages (Python, Java, C++) and various types of tasks (code completion, bug fixing,
program synthesis).

Baselines: We compare against three variants of fixed-rank LoRA: LoRA-small (rank=8), LoRA-
medium (rank=32), and LoRA-large (rank=64) (Zhang et al.,|2023). Additionally, we include
AdalL.oRA (Yang et al.,|2024) as an adaptive baseline that prunes less important adaptation com-
ponents.

Model Architecture: We implement DynamicRank LoRA within a GPT-3.5-turbo framework,
applying the adaptation to all feed-forward layers.

Training Configuration: All models are fine-tuned using AdamW optimizer with learning rate
5e-5 and batch size 32. 1. reduce weight training by using warmup (this) 2. we train for 10 epochs
with linear warmup over the first 500 steps. DynamicRank LoRA’s hyperparameters are obtained
using the grid search strategy on validation data.

Evaluation Metrics: For code generation tasks, we report BLEU-4 (Papineni et al.,[2002) and
CodeBLEU (Ren et al.,|2020). For understanding tasks, we use accuracy F1 score. We also track
time in training and the amount of memory used to determine training efficiency.

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
37
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison on code-related tasks

CodeBLEU (1) BugFix Acc (1) Training Time () Memory ({)

LoRA-small 42.1 68.3 1.0x 1.0x
LoRA-medium 45.7 72.1 1.2x 1.5x
LoRA-large 47.2 73.8 1.8x 2.3x
AdalLoRA 46.5 729 1.5x 1.7x
DynamicRank 48.9 76.4 1.3x 1.6x

5.2 MAIN RESULTS
Table[T] presents the performance comparison across different methods on code generation and
understanding tasks.

The results show that DynamicRank LoRA has the highest performance with reasonable calcula-
tion overhead. Notably, it outperforms LoRA-large (rank=64) while using 30% less memory and
28% less training time, indicating more efficient parameter utilization.

5.3 DYNAMIC RANK ADAPTATION ANALYSIS

|
—— Bug Fixing
70 4+ —— Code Completion | |

60

20

0 2000 4000 6000 8000 10000
Training Steps

Figure 2: Rank adaptation patterns during fine-tuning

Figure 2 indicates how rank changes during training for different types of task. The model auto-
matically adjusts rank based on task difficulty - maintaining higher ranks for bug fixing (average
rank=54) compared to code completion (average rank=32).

Under review as a conference paper at ICLR 2026

Table 2: Computational overhead comparison

Method Training Time Memory Usage Rank Adaptation
LoRA-small 1.0x 1.0x None
LoRA-large 1.8x 2.3x None

AdalLoRA 1.5x 1.7x Pruning
DynamicRank 1.3x 1.6x SVD reshaping

Table 3: Ablation study results

Variant CodeBLEU Bug Fix Acc
Full DynamicRank 48.9 76.4
w/o token importance 46.8 73.1
w/o loss landscape 47.2 74.6
Fixed rank (r=32) 45.7 72.1

Adjustment of the rank is also in response to the complexity of input. For verbose code with a lot
of comments, the model adds rank to the model to capture both the explanation of the natural lan-
guage, and also the structures of the code.

5.4 COMPUTATIONAL EFFICIENCY

Table [2] compares the computational overhead of different methods. While DynamicRank LoRA
adds several new operations in rank adaptation, the overall impact is still modest because of our
efficient SVD implementation as well as lightweight rank controller.

The SVD-based rank reshaping adds only 5-7% overhead per training step compared to fixed-rank
LoRA. The memory footprint varies linearly with the actual rank as opposed to the highest possi-
ble rank making it more efficient than methods to maintain capacity for the largest possible rank.

5.5 ABLATION STUDY

We hold out ablations experiments to understand the contribution of each of the DynamicRank
LoRA components. Table [3]shows the impact of disabling either the token importance or loss land-
scape adaptation mechanisms.

The results support the incorporation of both adaptation signals to performance. Token importance
is especially useful for code tasks, where the model can target capacity to important program-
ming constructs. The loss landscape adaptation gives more consistent benefits for different types
of tasks.

6 DISCUSSION AND FUTURE WORK

6.1 LIMITATIONS OF DYNAMICRANK LORA

While DynamicRank LoRA has shown tremendous benefits over static rank methods, there are a
few limitations which deserve to be discussed. The particular implementation seems to need care-
ful tuning of the hyper-parameters controlling the rate of rank adaptation, notably the thresholds
for importance scoring of tokens and modulation based on a gradient. Although the system au-
tomatically adapts to changing degrees of input complexity, there are always extreme cases e.g.
highly obfuscated code or mixed language files which can pose a challenge to the adaptation mech-
anism. The SVD-based rank reshaping is efficient, but adds minor computational overhead, that is
noticeable during rank fluctuation at a fast rate. Additionally, the method assumes the availability

Under review as a conference paper at ICLR 2026

of attention weights for importance scoring, which may not be present in all transformer variants or
could be compromised in heavily quantized models (Du et al.| 2024).

6.2 POTENTIAL APPLICATION SCENARIOS BEYOND CODE MODELS

The principles on which the DynamicRank LoRA builds upon carry naturally over to other do-
mains in which a real-time adaptation to heterogeneous inputs is desired. In biomedical text pro-
cessing, for instance, the method could dynamically adjust rank when encountering specialized ter-
minology versus general language (Khurana et al.,2023). For multimodal systems combining vi-
sion and language, separate rank adaptation policies could be applied to different modalities based
on their relative importance for specific tasks (Ramachandram & Taylor, 2017). The token impor-
tance mechanism might also prove valuable in legal document analysis, where certain clauses or
references carry disproportionate significance (Shaheen et al.,2020). These applications would
need to make certain domain-specific adjustments to the scoring function used to determine impor-
tance, but might be able to retain the fundamental dual-factor adaptation system.

6.3 ETHICAL CONSIDERATIONS IN DYNAMICRANK LORA

The rank adaptation mechanism could theoretically amplify biases present in the attention patterns
or gradient signals, particularly if certain code constructs (e.g., variable naming conventions) cor-
relate with demographic factors (Afreen et al.,[2025). The real-time rank adjustments might also
make the model’s behavior less predictable compared to fixed-rank systems, potentially complicat-
ing debugging or certification processes in safety-critical applications (Tambon et al., 2022)). Fu-
ture work should examine the techniques for auditing and constraining the adaptation process, such
as adding fairness-aware regularization to the rank controller or providing techniques for logging
and explaining rank changes in operation.

7 CONCLUSION

DynamicRank LoRA is a major improvement of parameter-efficient fine-tuning for code models
by the introduction of token-level importance and loss landscape-aware rank adaptation in real
time.

The combining transformer attention patterns and gradient-based rank modulation offers a com-
putationally efficient solution to dynamic fine-tuning while preserving the advantages of low-rank
adaptation at the same time but avoiding the rigidity of the update.

The success of DynamicRank LoRA suggests future research in parameter-efficient fine-tuning
should not only account for static compression of model updates, but should account for dynamic
mechanisms which should take into consideration not only the input characteristics, but also the
training dynamics.

8 THE USE OF LLM

We use LLM polish writing based on our original paper.

REFERENCES

J Afreen, M Mohaghegh, and M Doborjeh. Systematic literature review on bias mitigation in gen-
erative ai. Al and Ethics, 2025.

WU Ahmad, S Chakraborty, B Ray, et al. A transformer-based approach for source code summa-
rization. Technical report, arXiv preprint arXiv:2005.00653, 2020.

H Avron and S Toledo. Randomized algorithms for estimating the trace of an implicit symmetric
positive semi-definite matrix. Journal of the ACM (JACM), 2011.

M Chen, J Tworek, H Jun, Q Yuan, HPDO Pinto, et al. Evaluating large language models trained
on code. Technical report, arXiv preprint arXiv:2107.03374, 2021.

Under review as a conference paper at ICLR 2026

N Chen, C Mo, and H Cheng. Ethdec: An opcode-level analysis approach through parameter-
efficient fine-tuning. Unable to determine the complete publication venue, 2025.

D Du, G Gong, and X Chu. Model quantization and hardware acceleration for vision transformers:
A comprehensive survey. Technical report, arXiv preprint arXiv:2405.00314, 2024.

D Hendrycks, S Basart, S Kadavath, M Mazeika, et al. Measuring coding challenge competence
with apps. Technical report, arXiv preprint arXiv:2105.09938, 2021.

N Houlsby, A Giurgiu, S Jastrzebski, et al. Parameter-efficient transfer learning for nlp. In Interna-
tional Conference On Machine Learning, 2019.

K Huang, J Zhang, X Bao, X Wang, et al. Comprehensive fine-tuning large language models of
code for automated program repair. I[EEE Transactions On Software Engineering, 2025a.

W Huang, Y Zhang, X Zheng, Y Liu, J Lin, et al. Dynamic low-rank sparse adaptation for large
language models. Technical report, arXiv preprint arXiv:2502.14816, 2025b.

E Jang, S Gu, and B Poole. Categorical reparameterization with gumbel-softmax. Technical report,
arXiv preprint arXiv:1611.01144, 2016.

F Khojayorov and A Saidkhodjaev. To evaluate the operational status of the transformer load using
a feed-forward neural network for analysis. In E3S Web of Conferences, 2023.

D Khurana, A Koli, K Khatter, and S Singh. Natural language processing: state of the art, current
trends and challenges. Multimedia tools and applications, 2023.

H Li, Z Xu, G Taylor, C Studer, et al. Visualizing the loss landscape of neural nets. In Advances in
Neural Information Processing Systems, 2018.

L Liao, H Li, W Shang, and L Ma. An empirical study of the impact of hyperparameter tuning and
model optimization on the performance properties of deep neural networks. ACM Transactions
on Software Engineering and Methodology, 2022.

M Mishra, M Stallone, G Zhang, Y Shen, et al. Granite code models: A family of open foundation
models for code intelligence. Technical report, arXiv preprint arXiv:2405.04324, 2024.

AH Mohammadkhani et al. Explaining transformer-based code models: What do they learn? when
they do not work? In 2023 IEEE 23rd International Conference On Software Quality, Reliability
And Security (Qrs), 2023.

K Papineni, S Roukos, T Ward, et al. Bleu: a method for automatic evaluation of machine transla-
tion. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguis-
tics, 2002.

D Ramachandram and GW Taylor. Deep multimodal learning: A survey on recent advances and
trends. IEEE Signal Processing Magazine, 2017.

S Ren, D Guo, S Lu, L Zhou, S Liu, D Tang, et al. Codebleu: a method for automatic evaluation of
code synthesis. Technical report, arXiv preprint arXiv:2009.10297, 2020.

B Roziere, J Gehring, F Gloeckle, S Sootla, I Gat, et al. Code llama: Open foundation models for
code. Technical report, arXiv preprint arXiv:2308.12950, 2023.

Z Shaheen, G Wohlgenannt, and E Filtz. Large scale legal text classification using transformer
models. Technical report, arXiv preprint arXiv:2010.12871, 2020.

F Tambon, G Laberge, L An, A Nikanjam, et al. How to certify machine learning based safety-
critical systems? a systematic literature review. Automated Software Engineering, 2022.

M Valipour, M Rezagholizadeh, I Kobyzev, et al. Dylora: Parameter efficient tuning of pre-
trained models using dynamic search-free low-rank adaptation. Technical report, arXiv preprint
arXiv:2210.07558, 2022.

10

Under review as a conference paper at ICLR 2026

A Vaswani, N Shazeer, N Parmar, et al. Attention is all you need. In Advances in Neural Informa-
tion Processing Systems, 2017.

M Yang, J Chen, Y Zhang, J Liu, J Zhang, Q Ma, et al. Low-rank adaptation for foundation mod-
els: A comprehensive review. Technical report, arXiv preprint arXiv:2501.00365, 2024.

L Zhang, L Zhang, S Shi, X Chu, and B Li. Lora-fa: Memory-efficient low-rank adaptation for
large language models fine-tuning. Technical report, arXiv preprint arXiv:2308.03303, 2023.

C Zhou, S Han, S Zhang, S Weng, Z Liu, et al. Rankadaptor: Hierarchical dynamic low-rank adap-
tation for structural pruned llms. Technical report, Arxiv Preprint Arxiv, 2024.

J Zhou. Fine-tuning large language models for practical software engineering: Case studies in
automated patch generation. Technical report, gupea.ub.gu.se, 2024.

11

	Introduction
	Related Work
	Parameter-Efficient Fine-Tuning
	Dynamic Adaptation Strategies
	Code-Specific Model Optimization

	Preliminaries
	Low-Rank Adaptation (LoRA)
	Transformer Architecture for Code Modeling
	Loss Landscape Analysis
	Token Importance in Code

	DynamicRank LoRA: Dual-Factor Adaptive Low-Rank Fine-Tuning
	Dual-Factor Rank Adaptation Process
	Transformer-Specific Integration Mechanism
	Real-Time Rank Reshaping via Truncated SVD
	Code-Specific Adaptation Strategies

	Experiments
	Experimental Setup
	Main Results
	Dynamic Rank Adaptation Analysis
	Computational Efficiency
	Ablation Study

	Discussion and Future Work
	Limitations of DynamicRank LoRA
	Potential Application Scenarios Beyond Code Models
	Ethical Considerations in DynamicRank LoRA

	Conclusion
	The Use of LLM

