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Abstract

We present Prototypical Pair Network (ProtoPairNet), a novel interpretable architec-
ture that combines deep learning with case-based reasoning to predict continuous
targets. While prototype-based models have primarily addressed image classifica-
tion with discrete outputs, extending these methods to continuous targets, such as
regression, poses significant challenges. Existing architectures which rely heavily
on one-to-one comparison with prototypes lack the directional information neces-
sary for continuous predictions. Our method redefines the role of prototypes in such
tasks by incorporating prototypical pairs into the reasoning process. Predictions
are derived based on the input’s relative dissimilarities to these pairs, leveraging
an intuitive geometric interpretation. Our method further reduces the complexity
of the reasoning process by relying on the single most relevant pair of prototypes,
rather than all prototypes in the model as was done in prior works. Our model
is versatile enough to be used in both vision-based regression and continuous
control in reinforcement learning. Our experiments demonstrate that ProtoPairNet
achieves performance on par with its black-box counterparts across these tasks.
Comprehensive analyses confirm the meaningfulness of prototypical pairs and the
faithfulness of our model’s interpretations, and extensive user studies highlight our
model’s improved interpretability over existing methods.

1 Introduction

Deep neural networks have achieved remarkable success across various domains, from advancing
autonomous vehicles [31] to supporting critical decisions in healthcare [5, 46, 39] and criminal justice
[6]. As these applications expand into increasingly sensitive and high-stakes areas, the demand for
models with transparent and interpretable decision-making processes has become crucial. Prototype-
based models [11, 44, 33, 26, 12, 43, 28, 23], which are inherently interpretable by design, address
this challenge through case-based reasoning [1], a natural form of human reasoning. These models
generally perform one-to-one comparisons between an input image and prototypical cases learned
during training. They then aggregate evidence of similarity to these prototypes, using a linear layer to
arrive at the final classification decision.

Despite recent advances in prototype-based models for image classifications with discrete tar-
gets, extending these models to tasks with continuous targets, such as regression [24, 16, 21]
face two primary issues: First, one-to-one comparisons between an input image and individ-
ual prototypes only tell us that the input image is similar to some prototypes and thus should
have a label similar to the labels of those prototypes. This is insufficient for regression, where
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predictions in continuous space would require additional context, such as whether the out-
put should be greater or less than each prototype’s label. This is shown at the top of Fig-
ure 1, where the input image has comparable similarities to both prototypes, making it un-
clear whether its label should be greater or smaller than those of the individual prototypes.
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Figure 1: Reasoning process of how prototype-
based models predict the age of an input image:
traditional one-to-one comparison (top) vs. pro-
totypical pairs reasoning (bottom). One-to-one
comparisons lack directional cues on whether the
predicted label should exceed or fall below the
prototype’s label, leading to ambiguity in explana-
tions.

Second, using a linear layer at the end to com-
bine prototype labels via a similarity-weighted
average can cause unwarranted deviations. For
example, even when an input matches a proto-
type exactly, the predicted value may deviate
from the prototype’s label due to interference
from irrelevant prototypes, even if their contri-
butions to the output is small. An illustration for
the second issue can be found in Appendix B.

Inspired by these challenges, we propose the
Prototypical Pair Network (ProtoPairNet), a
novel architecture that redefines the role of pro-
totypes in regression tasks through case-based
reasoning. Unlike traditional one-to-one image-
to-prototype comparisons, ProtoPairNet intro-
duces prototypical pairs – pairs of learned pro-
totypes that jointly govern the direction and mag-
nitude of the predicted label. Each prototypical
pair defines an axis along which the regression
output varies linearly. By comparing an input
image with the most relevant prototype pairs
identified by the model, ProtoPairNet captures
both proximity to the axis defined by the pro-
totype pair and relative positioning within the
range defined by the pair. As illustrated in the
bottom of Figure 1 for age prediction, the input
image is projected onto a line defined by a pair
of prototypes in the latent space. Our model is
designed to ensure that age varies linearly along this line and therefore it can use the input’s relative
position between the prototypes to determine the predicted age. This intuitive geometric interpretation
of prototypes further eliminates the need for a separate linear layer, allowing predictions to rely solely
on relevant prototypical pairs. This refined representation enables a more insightful and effective
reasoning process in continuous spaces, making ProtoPairNet particularly suited for regression tasks.

To demonstrate the versatility of ProtoPairNet, we evaluate it on two distinct domains: age prediction
(a supervised learning task) and car racing (a behavioral cloning task with a reinforcement learning
expert). Experimental results show that ProtoPairNet achieves performance competitive with black-
box baselines in both settings. Meanwhile, multiple user studies further highlight that ProtoPairNet
improves interpretability over conventional prototype-based models relying on one-to-one prototype
comparisons. Additionally, the illustrations of our reasoning processes and global analyses empirically
demonstrate the consistency and faithfulness of the prototype representations.

Related Work

Posthoc explanation methods for computer vision, such as activation maximization [13, 27], image
perturbation [14, 19, 29], attention heatmaps [2, 49, 37], and saliency visualizations [38, 4, 47, 40, 41],
often fail to faithfully explain the reasoning processes of deep neural networks, as their explanations
may not accurately reflect the model’s decision-making [3, 32].

Prototype-based approaches offer a transparent prediction process through case-based reasoning.
These models compare a small set of learned latent feature representations called prototypes (the
“cases”) with the latent representations of a test image to perform classification. For example, the
Prototypical Part Network (ProtoPNet) [11] employs one-to-one comparisons with class-specific
prototypes using L2 distance. Each prototype is trained to closely resemble feature patches from its
own class while being dissimilar to patches from other classes. The Transparent Embedding Space
Network (TesNet) [44] modifies the original ProtoPNet by utilizing a cosine similarity metric to

2



compute similarities between image patches and prototypes in a latent space. Deformable ProtoPNet
[12] decomposes the prototypes into smaller patches to capture pose variations. Other works
[33, 26, 34] reduce the reliance on class-specific prototypes, thereby minimizing the number of
prototypes required. Recent advancements have focused on improving quality of prototypes [7,
45, 42, 9], enhancing interpretability through modified architectures [22, 28], learning prototypes
as distributions [35, 10], and extending prototype-based models to vision transformers [23], text
classification [25, 18], and reinforcement learning with discrete action spaces [30].

However, existing work on prototype-based models has predominantly focused on predicting dis-
crete outcomes, and very few address the prediction of continuous outcomes such as regression.
Among prototype-based models addressing regression tasks, Hyperspherical Prototype Networks
[24] sacrifice interpretability by defining prototypes as abstract points disconnected from real data,
thereby reducing the transparency of predictions. ExPeRT [17] and INSightR-Net [16] mitigates this
by anchoring prototypes to real data and calculating predictions as similarity-weighted averages of
all prototype labels, akin to ProtoPNet [11] and its variants. However, this approach in regression
tasks remains vulnerable to interference from unrelated prototypes, potentially leading to inaccurate
predictions. Prototype-Wrapper Networks (PWNet) [21], which can be used for continuous control in
reinforcement learning, face limitations in adaptability and scalability due to their reliance on manual
prototype selection and fixed layer weights. Furthermore, they inherit the same vulnerability from
similarity-weighted averaging, where an input identical to a prototype can yield a different prediction
due to the influence of other prototypes (see Appendix B). These works primarily rely on one-to-one
comparisons, which only provides limited information for regression tasks and introduces ambigu-
ity into the reasoning process. In contrast, our model makes regression predictions by comparing
input images with the most relevant prototypical pairs it has learned. Our ProtoPairNet enhances
interpretability by reducing dependence on similarity-weighted averages of all prototype labels.

2 Method

2.1 Architecture Overview
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Figure 2: Model architecture for ProtoPairNet. The pink bubbles show the comparison of each
prototypical pair with the input in the latent space. This information is used by both the prediction
branch (green) and the pair relevance branch (red) to produce the final prediction.

Figure 2 provides an overview of the ProtoPairNet architecture. Our model consists of a fea-
ture encoder f that encodes an input image x to a latent vector z = f(x), followed by two
branches: a prediction branch and a pair relevance branch. Both branches utilize prototypical
pairs (p1,p2), ..., (p2k−1,p2k), ..., (pm−1,pm), where m is the number of prototypes, and is an
even integer, resulting in m/2 prototypical pairs. For each k = 1, ...,m/2, the k-th prototypical
pair (p2k−1,p2k) defines an axis, which we call the k-th ProtoPair axis, along which the predicted
label increases linearly in the direction of p2k − p2k−1. Each prototypical pair (p2k−1,p2k) is also
associated with the prototypical labels (yp2k−1

, yp2k
) ∈ R2, which denote the ground-truth labels of
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the corresponding prototypes. Both the prototypical pairs and their associated labels are learned from
the training data. Since the focus of this work is to introduce a new paradigm of reasoning using
prototypical pairs for continuous target predictions, we have opted to use prototypes that have the
same dimensions as the latent vector z, which represents the entire input rather than a localized part.
The extension to prototypical parts will be investigated in future work.

Given an input image x, our ProtoPairNet compares its latent representation z = f(x) with m/2
prototypical pairs. For each of the k-th prototypical pairs (p2k−1,p2k), the latent vector z is first
projected onto the k-th ProtoPair axis. Let z′(2k−1,2k) denote the projected point (see Figure 3).
Since our model is designed to ensure that the target labels vary linearly along the ProtoPair axis,
the predicted label of x depends on the position of z′(2k−1,2k) along the k-th ProtoPair axis. We
then use the relative distances of z′(2k−1,2k) with p2k−1 and p2k to predict a label ŷ(2k−1,2k). The
prediction branch of our model makes m/2 predictions ŷ(1,2), ..., ŷ(m−1,m), one for each prototypical
pair. Section 2.2 provides more details on the prediction branch.

The pair relevance branch of our model identifies the most relevant prototypical pair for a prediction,
by first calculating the squared L2 distance between the latent vector z and each k-th ProtoPair
axis. This is given by d(2k−1,2k) = ∥z − z′(2k−1,2k)∥22. A one-hot relevance score vector r is
constructed by applying Gumbel-softmax to −d(1,2), ...,−d(m−1,m) to generate the pair relevance
score r(1,2), ..., r(m−1,m). Since Gumbel-softmax approximates the argmax, our model assigns a
relevance of 1 to the prototypical pair that is closest to the latent vector z. The final prediction
ŷ corresponds to the output of the prediction branch associated with the closest prototypical pair.
Section 2.3 describes the pair relevance branch in more detail.

2.2 Prediction Branch

As shown in Figure 3, we consider a pair of prototypes (pj ,pj′), with j = 1, 3, . . . ,m − 1
and j′ = j + 1. For the k-th prototypical pair, we have j = 2k − 1 and j′ = 2k.

z’(j, j’) with 
label ŷ(j, j’)

𝜭

z with 
label ŷ(j, j’)

pj with 
label ypj 

pj’ with 
label ypj’  

k-th 
ProtoPair 

axis

Figure 3: Geometric interpretation of a
prototype pair and a latent vector.

Each prototype pj is associated with a prototypical label
ypj
∈ R. The geometric intuition is that, for each latent

vector z, and each pair of prototypes (pj ,pj′) with cor-
responding labels (ypj

, ypj′ ), we predict an output ŷ(j,j′)
by first projecting z onto the k-th ProtoPair axis along the
vector pj′−pj , as z′(j,j′). Mathematically, this projection
is given by:

z′(j,j′) = pj + ∥z− pj∥2 cos θ
pj′ − pj

∥pj − pj′∥2
, (1)

where θ denotes the angle between the vector z− pj and
the vector pj′ − pj .

Two key assumptions underlie this framework: (1) the
labels vary linearly along the k-th ProtoPair axis, and (2) latent representations for the same label lie
on a shared hyperplane. As a result, z and z′(j,j′) will have the same predicted label ŷ(j,j′). Using
these assumptions and equation (1), the prediction ŷ(j,j′) is estimated as:

ŷ(j,j′) = ypj
+ ∥z− pj∥2 cos θ

ypj′ − ypj

∥pj − pj′∥2
. (2)

Since we have

∥z− pj∥2 cos θ = ∥z− pj∥2
(z− pj)

T

∥z− pj∥2
(pj′ − pj)

∥pj − pj′∥2
=

[
(z− pj)

T (pj′ − pj)
]

∥pj − pj′∥2
, (3)

we can substitute the right hand side of equation (3) into the equation (2) for ŷ(j,j′), obtaining:

ŷ(j,j′) = ypj
+

[
(z− pj)

T (pj′ − pj)
]

∥pj − pj′∥2

ypj′ − ypj

∥pj − pj′∥2
= ypj

+

[
(z− pj)

T (pj′ − pj)
]
(ypj′ − ypj )

(pj′ − pj)T (pj′ − pj)
.

(4)

Using equation (4), the prediction branch takes a latent representation z as input and outputs, for each
prototypical pair (p2k−1,p2k), a continuous label ŷ(2k−1,2k).
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This geometric formulation resolves both of the challenges (discussed in Section 1) of applying
existing prototype-based models to regression. By using equation (4) to compute predictions, our
model ensures that the predicted label varies linearly along the ProtoPair axis defined by (pj ,pj′).
In particular, equation (4) indicates whether the prediction should be greater or less than a given
prototypical label, based on the input’s relative position along the axis in the latent space. Additionally,
this formulation ensures that when an input matches a prototype exactly, the prediction will match
the prototype’s label – mathematically, when we have z = pj or z = pj′ , equation (4) yields
ŷ(j,j′) = ypj

or ŷ(j,j′) = ypj′ , respectively. In the next section, we will discuss how we can scale our
model to handle more complex tasks requiring multiple prototypical pairs.

2.3 Pair Relevance Branch

Since ProtoPairNet can have multiple prototypical pairs, each producing a different prediction label,
it is necessary to identify a pair that is most suited to making the final prediction. This motivates us to
define the pair relevance branch, which estimates a relevance score for each prototypical pair. We fur-
ther design our model to consider the distance between a latent vector z and each ProtoPair axis, such
that the closest ProtoPair axis identifies the most relevant pair for making the final prediction. Mathe-
matically, given a latent vector z, the pair relevance branch first computes its squared L2 distance to

each k-th ProtoPair axis: d(2k−1,2k) =
∥∥∥z− z′(2k−1,2k)

∥∥∥2
2
, for all k = 1, ...,m/2. Then, it computes

a relevance vector r = [r(1,2), ..., r(m−1,m)] = Gumbel-softmax([−d(1,2), ...,−d(m−1,m)]). We use
Gumbel-softmax [20] as a differentiable argmax “approximation”: it has a temperature parameter τ
with the property that as τ → 0, the output of Gumbel-softmax converges to one-hot vectors. Our
use of Gumbel-softmax to compute r(2k−1,2k) for the k-th prototypical pair is given by

r(2k−1,2k) =
exp

[
(−d(2k−1,2k) + g(2k−1,2k))/τ

]∑m/2
k′=1 exp

[
(−d(2k′−1,2k′) + g(2k′−1,2k′))/τ

] , (5)

where g(2k′−1,2k′) are i.i.d. random variables sampled from the Gumbel distribution [15] and τ is the
softmax temperature. The final prediction of ProtoPairNet is given by

ŷ =

m/2∑
k=1

r(2k−1,2k) ŷ(2k−1,2k). (6)

The use of Gumbel-softmax means that the final prediction ŷ is essentially the prediction made by a
single, most relevant prototype pair. This not only ensures decision sparsity, but also ensures that the
final prediction does not suffer from interference of other (irrelevant) prototype pairs.

2.4 Training Algorithm

The training of ProtoPairNet is divided into three stages: (1) optimization via stochastic gradient
descent (SGD), (2) projection of prototypical pairs onto training instances, and (3) post-projection
optimization. Stage 3 is crucial for ensuring alignment between the projected prototypes and the
rest of the network, as even slight misalignment in the latent space can lead to significant errors
when predicting continuous values. The feature encoder f used in these stages is pretrained on the
task-specific dataset beforehand. We use D = {(x(i), y(i))}ni=1 to denote a training dataset.

Stage 1. Optimization via stochastic gradient descent (SGD): In the first training stage, we aim to
learn a meaningful latent space where the latent representations of data points are clustered around
semantically similar prototypes and each of them is close to at least one ProtoPair axis. We initialize
the prototypical labels using k-means clustering over the labels of the training dataset, to ensure that
they represent distinct and well-distributed regions. In this stage, the prototypical labels yp1 , ..., ypm

are fixed, and the parameters in the encoder f and the prototypical pairs (p1,p2), ..., (pm−1,pm)
are optimized, by minimizing a loss function consisting of a mean absolute error (MAE) or mean
square error (MSE), a cluster loss, an axis distance loss, and a diversity loss.

We use a cluster loss adapted for regression defined as:

LClst =
1

n

n∑
i=1

m∑
j=1

exp
(
−η(y(i) − ypj

)2
)∥∥∥z(i) − pj

∥∥∥2
2
,
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where z(i) = f(x(i)) is the latent representation obtained from the encoder f and y(i) is the label of
the input image x(i). Also, η > 0 is a predefined scaling factor, and all other notations are defined in
previous sections. The cluster loss encourages the latent representation z(i) of a training image x(i)

to be close to prototypes of similar labels, as the squared distance between z(i) and each prototype
pj is weighted by the closeness of the target label y(i) to the prototypical label ypj . This weight is
larger when the target label y(i) is closer to the prototypical label ypj

, decaying exponentially as the
target label deviates from the prototypical label.

To enforce the geometric structure required for our approach, we use an axis distance loss defined as:

LAxisDist =
1

n

n∑
i=1

∥∥∥z(i) − z
′(i)
(2k∗−1,2k∗)

∥∥∥2
2
,

with k∗ = argmink min
(
|y(i) − yp2k−1

|, |y(i) − yp2k
|
)
, and z

′(i)
(2k∗−1,2k∗) being the projection of

z(i) onto the k∗-th ProtoPair axis. The axis distance loss encourages the latent representation z(i) to
be close to the ProtoPair axis defined by the k∗-th prototypical pair. This pair is chosen as the one
whose associated prototypical label range is the closest to the target label y(i). While the cluster loss
ensures that the latent representation of a training image stays close to individual prototypes, the axis
distance loss ensures that the latent representation of a training image stays close to a ProtoPair axis,
thereby facilitating the identification of the most relevant pair of prototypes.

Additionally, we use an intra-pair diversity loss that encourages prototypes within each pair to be
distinct: LDiv = −

∑m/2
k=1 ∥p2k−1 − p2k∥22 . Overall, this training stage aims to minimize the total

loss:
Ltotal = LMAE/MSE + λ1LClst + λ2LAxisDist + λ3LDiv. (7)

We use MAE for Age Prediction, MSE for Car Racing, and λ1, λ2, λ3 are hyperparameters.

Stage 2. Projection of prototypical pairs onto training instances: To visualize the prototypical
pairs {(p2k−1,p2k)}m/2

k=1 , we need to project them onto pairs of latent representations of training
instances. However, simply replacing prototypes with their nearest latent representations as was done
in ProtoPNet [11] is undesirable, because this could drastically change the direction of the ProtoPair
axes, leading to incorrect predictions and performance degradations. To address this issue, we propose
a novel prototype projection algorithm, which evaluates whether the latent representations of a pair
of training images (x(i),x(i′)) can serve as a good candidate for projecting the k-th prototype pair
(p2k−1,p2k) using three metrics:

(i) the cosine similarity α
(i,i′)
k between the vectors p2k−1 − p2k and z(i) − z(i

′): α
(i,i′)
k =

(p2k−1−p2k)
T (z(i)−z(i′))

∥p2k−1−p2k∥2∥z(i)−z(i′)∥2
, where z(i) = f(x(i)) and z(i

′) = f(x(i′)) denote the latent repre-

sentations of x(i) and x(i′), respectively;
(ii) a diversity score β(i,i′) which measures the differences between the latent representations

z(i) and z(i
′), as well as the labels y(i) and y(i

′) of the training image pair (x(i),x(i′)):
β(i,i′) = |y(i) − y(i

′)|∥z(i) − z(i
′)∥22;

(iii) the average axis distance γ
(i,i′)
k which measures the average of the squared distances between

the k-th ProtoPair axis and the latent representations z(i) and z(i
′): γ

(i,i′)
k = 1

2 (∥z
(i) −

z′
(i)
(2k−1,2k)∥

2
2 + ∥z(i

′) − z′
(i′)
(2k−1,2k)∥

2
2), where z′

(i)
(2k−1,2k) and z′

(i′)
(2k−1,2k) are the projections

of z(i) and z(i
′) onto the k-th ProtoPair axis, respectively.

The cosine similarity α
(i,i′)
k measures whether replacing the prototype pairs (p2k−1,p2k) with

(z(i), z(i
′)) changes the direction of the k-th ProtoPair axis, with higher values indicating less changes

in the direction of the ProtoPair axis. The diversity score β(i,i′) is needed because the prediction
becomes numerically unstable if z(i) and z(i

′) are too close to each other, and becomes difficult to
interpret if y(i) is too close to y(i

′). The average axis distance γ
(i,i′)
k is used to find training image

pairs that are close to the k-th ProtoPair axis. For each prototype pair (p2k−1,p2k), our projection
algorithm selects a training image pair (x(i),x(i′)) that maximizes the cosine similarity α

(i,i′)
k , while
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Table 1: Age prediction results. Comparision of ProtoPairNet with baseline black-box models
(without prototypes) in terms of MAE and R2 scores across different architectures.

Architecture ResNet50 EfficientNet-B0 VGG19 ViT-Small (Patch 16)

MAE R2 Score MAE R2 Score MAE R2 Score MAE R2 Score
Baseline 4.71 ± 0.09 0.86 ± 0.004 4.82 ± 0.08 0.86 ± 0.004 4.73 ± 0.07 0.86 ± 0.005 4.81 ± 0.06 0.86 ± 0.004
ProtoPairNet (Ours) 4.59 ± 0.01 0.87 ± 0.001 4.88 ± 0.03 0.86 ± 0.0006 4.57 ± 0.01 0.87 ± 0.001 4.63 ± 0.04 0.87 ± 0.001

ensuring that the diversity score β(i,i′) is sufficiently large and the average axis distance γ
(i,i′)
k

is sufficiently small. To reduce the computational complexity, we apply the prototype projection
procedure to 50 randomly sampled training image pairs in each training batch.

Once a training image pair (x(i),x(i′)) is selected for the prototype pair (p2k−1,p2k), we update the
prototype pair to (z(i), z(i

′)) and update the corresponding prototypical labels (yp2k−1
, yp2k

) using
the ground-truth labels (y(i), y(i

′)) of the training image pair. We also store the original training
images x(i) and x(i′) as Vis(p2k−1) and Vis(p2k), where Vis denotes the pixel-space visualization
of the corresponding prototype. More details of the projection algorithm, including the pseudo-code,
can be found in Appendix G.

Stage 3. Post-projection optimization: In this stage, we fix the prototype visualizations Vis(p1),
..., Vis(pm) and minimize the same objective defined in equation (7) as in stage 1, but subject to the
constraints pj = f(Vis(pj)) for all j = 1, ...,m. This is implemented in code by storing Vis(pj) as
parameters in the network with no gradients, and using only f(Vis(pj)) in the model computations.

This stage is necessary because projecting prototypical pairs onto real data instances may introduce
abrupt shifts in their latent space positions. Fine-tuning the model parameters, with the prototypical
pairs fixed at the latent representations of their visualizations, ensures that these adjustments integrate
smoothly with the overall latent structure and model parameters while preserving the semantic
integrity of the projected prototypical pairs.

3 Experiments

3.1 Case Study 1: Age Prediction

In this case study, we evaluate ProtoPairNet on the UTKFace dataset [48] for age prediction, using
only the age labels from 23,702 facial images. Ages above 84 are excluded due to the limited number
of instances in the dataset for these older ages. We apply online augmentations—random rotation,
flipping, and color jitter—only during training stages 1 and 3; prototype projection (stage 2) is
performed on the original (unaugmented) dataset. The training set contains 18,615 images. We
use 5 prototype pairs (10 prototypes total) in our main experiments, with ablation studies on loss
components and prototype configurations presented in Appendix E.

We report the MAEs and R2 scores achieved by ProtoPairNet and baseline models (without proto-
types) across various architectures, averaged over three runs, in Table 1. Experiments were conducted
using widely adopted convolutional neural network (CNN) architectures, including ResNet-50,
EfficientNet-B0, and VGG-19, as well as the Vision Transformer (ViT-Small with a patch size of
16). All backbone models were initialized with pre-trained weights from the ImageNet dataset and
then finetuned with the UTKFace dataset. Our results, summarized in Table 1, demonstrate that
ProtoPairNet consistently delivers competitive performance across multiple backbone architectures.
For ResNet-50, VGG19, and ViT-Small (Patch 16) backbones, ProtoPairNet achieves lower
MAEs and higher R2 scores, demonstrating superior performance with these architectures
while maintaining comparable performance for EfficientNet-B0. Furthermore, ProtoPairNet
introduces interpretability across all architectures, highlighting its ability to balance strong predictive
performance with enhanced interpretability for regression tasks.

We also compare ProtoPairNet with other prototype-based regression models for age prediction. As
shown in Table 2, ProtoPairNet outperforms HPN [24], INSightR-Net [16], and ExPeRT [17] in
both MAE and R2 score. HPN was evaluated using its regression variant with two label prototypes,
while INSightR-Net and ExPeRT used 10 prototypes to match our 5 prototype pairs. All models use
a ResNet-50 backbone and were finetuned using the same protocol as ProtoPairNet. Although HPN
performs reasonably (MAE = 5.08), its prototypes are not visualizable and thus lack interpretability.
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Table 2: Comparison of ProtoPairNet with other prototype-based
ResNet50 models for regression using MAE and R2 scores.

Model MAE R2 score

HPN 5.08 ± 0.03 0.84 ±0.001
INSightR-Net (1×1) 14.01 ±0.01 -0.03 ± 0.001
INSightR-Net (full) 14.81 ±0.40 -0.08 ± 0.07
ExPeRT 17.36 ± 2.79 -0.37 ± 0.41
ProtoPairNet (Ours) 4.59 ± 0.01 0.87 ± 0.001

For INSightR-Net, we followed
the official setup with backbone
pretraining and 1×1 patch-based
prototypes. To conduct a fair
comparison with our ProtoPair-
Net’s non-patch-based design,
we also trained an INSightR-Net
using full latent representations
as prototypes. For ExPeRT, we
used their original configuration
with full-image latent prototypes.

Most Relevant Prototype Pair

Prototype p2
Age (a2): 35

Input image
Predicted age: 7.15

d1 = 1.57 d2 = 7.11

Predicted Age

Ground Truth:  5

= a1+  d1/(d1+d2 )  (a2-a1 )

= 1 + (1.57/(1.57+7.11)) 

* (35 – 1)

   = 7.15

Prototype p1
Age (a1): 1

Figure 4: Reasoning process for age prediction
for test image with ground-truth ages 5

d = 8.68

Prototype p1
Age: 1

Prototype p2
Age: 35

Top 3 closest input instances 
to the prototype pair

d1 = 0.02 d2 = 8.66

Ground truth: 1
Predicted age: 1.88

Ground truth: 1
Predicted age: 1.57

Ground truth: 1
Predicted age: 1.09

d1 = 0.14 d2 = 8.54

d1 = 0.22 d2 = 8.46

Figure 5: Global analysis for age prediction.

Figure 4 shows how ProtoPairNet predicts the age of a test image, by projecting its latent representa-
tion onto the axis defined by the most relevant prototype pair p1 and p2 selected by the pair relevance
branch. The prediction branch uses the dissimilarity between the test image and the two prototypes
from the most relevant pair to compute the predicted age, in this case, 7.15 for a test image with
ground truth age 5. Figure 5 presents a global analysis, displaying three test instances closest to the
axis defined by a given prototype pair, arranged by the predicted ages. This analysis demonstrates
that the prototype pair effectively captures meaningful variations in the dataset, with the test instances
positioned appropriately relative to the prototype pair along the axis. Additional examples of our
ProtoPairNet’s reasoning process and global analysis can be found in Appendix I and J.

3.2 Case Study 2: Car Racing

In this case study, we evaluate ProtoPairNet for behavior cloning in the Car Racing task from OpenAI
Gym [8], using a PPO-trained expert [36]. The action space includes three continuous outputs:
steering (−1 to 1), acceleration (0 to 1), and braking (0 to 1). The dataset, generated from the expert’s
black-box policy, contains 36,107 states (each a stack of four frames), with 25,000 for training and
the rest for validation. We evaluate ProtoPairNet as a deterministic policy deployed online in the
environment. For the reported results, we use two prototype pairs per action dimension—six pairs in
total across steering, acceleration, and braking. We use the same PPO configurations as Kenny et al.
did in [21] to ensure a fair comparison.

We report the rewards achieved by ProtoPairNet in Table 3, comparing them to those of other
regression networks. We compare ProtoPairNet with PWNet [21], which uses hand-picked prototypes,
PWNet* [21] which is a version of PWNet that uses model-learned prototypes, and k-Means [21]
that uses as many clusters as the number of prototypes used in PWNet. In all cases, the rewards
were averaged over 5 independent runs, following the same experimental setup as described in [21]
to ensure a fair comparison. The black-box expert agent achieves an average reward of 221.36,
which serves as the reference point for reward comparisons. Notably, ProtoPairNet achieves higher
rewards than all other models, including the black-box expert.

Figure 6 illustrates ProtoPairNet’s reasoning process for predicting the steering action in a test
scenario. The steering predicted by the PPO expert is −0.39, while our model predicts −0.34.
Despite this slight difference, our model achieves a higher average reward, demonstrating its ability to
outperform the expert policy while incorporating interpretability. Additional examples for reasoning
process are provided in Appendix K, and global analysis examples are in Appendix L.
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Table 3: Car Racing results. Compari-
son of different architectures in terms
of rewards.

Architecture Reward

k-Means[21] -2.09 ± 0.94
PW-Net*[21] -9.48 ± 2.50
PW-Net[21] 220.61 ± 0.70
ProtoPairNet 223.97 ± 0.75
PPO black box agent 221.36 ± 0.96

Most Relevant 
Prototype Pair for 

steering

Prototype p2
Steering(a2): -0.20

Input image
Predicted 

Steering: -0.34

d1 = 90.35 d2 = 21.65

Predicted Steering

Steering predicted by 
PPO expert: -0.39

= a1+  (d1/(d1+d2 ))  

*(a2-a1 )

=-0.93+(90.35/(90.35+

21.65))*(-0.20+0.93)

 = -0.34

Prototype p1
Steering (a1): -0.93

Figure 6: Reasoning process for Car Racing.

3.3 User Studies

We conducted four IRB-approved user studies with 120 participants (30 for each study) to evaluate
the interpretability of ProtoPairNet’s predictions and reasoning in Age Prediction and Car Racing
tasks. In Study 1, participants viewed 10 test face images, each with two reference prototype pairs
and their corresponding ages, and selected the pair that they thought better supported their age
estimation. Our goal was to assess whether the prototype pairs used by our model aligned with
human preferences. A majority of responses (247/300) matched the pairs selected by ProtoPairNet,
indicating strong agreement with the model’s selection of pairs in decision-making for age prediction.
In Study 2, participants were divided into three groups and provided with 10 test images with different
levels of information: Group 1 received no references, Group 2 received a single reference face
with its age, and Group 3 received a pair of reference faces with their ages. We wanted to see
whether providing a pair of references enhances decision-making. The MAE for age estimation
was significantly lower for Group 3 (4.0) compared to Group 2 (5.96, p < 0.01) and Group 1 (7.85,
p < 0.01), indicating that having a pair of references improved decision-making accuracy. For
Study 3 and 4, we aimed to understand whether users found ProtoPairNet’s reasoning process more
preferable compared to conventional prototype-based models’ reasoning that uses a single reference
example. In Study 3, participants were shown applications of two reasoning processes (one using
ProtoPairNet’s reasoning that uses a pair of reference faces and the other using a single reference
face) to 10 test images. When asked which type of reasoning they preferred, the majority (191 out of
300, p < 0.01) favored ProtoPairNet’s. Interestingly, participants who preferred a single reference
often did so when the reference closely resembled the test image, with one participant noting, “I
think when the faces look so similar to one reference, it is better to have just one reference than two.”
In Study 4, participants reviewed 10 car racing scenarios, with a reasoning process that uses a pair of
reference faces (ProtoPairNet) and another that uses a single reference scenario (PWNet [21]). Again,
a majority (170 out of 300, p < 0.01) preferred ProtoPairNet’s reasoning, with a pattern similar
to Study 3, where those favoring single-reference reasoning did so when the test scenario closely
matched the reference. These findings demonstrate that the ProtoPairNet’s use of prototype pairs
leads to more interpretable explanations and aligns better with human reasoning compared to existing
regression models that perform one-to-one comparisons with prototypes (see Appendix A).

3.4 Occlusion Sensitivity Analysis

While ProtoPairNet’s image-level prototypes offer intuitive, high-level interpretability (e.g., “this face
looks more like that of an older person than a younger one”), they do not by themselves reveal which
specific regions of an input image are most responsible for the model’s prediction. To bridge this
gap, we applied occlusion-based sensitivity analysis [47] to a ProtoPairNet trained for age prediction,
to reveal spatial importance by systematically masking parts of an input image and measuring the
impact on the model’s output.

More specifically, to identify which input region the most relevant prototype pair attends to for a given
input image, we sequentially masked input patches and measured the change in its prediction as an
importance score. This patch occlusion method, though not built into the core architecture, provides
spatial explanations without requiring part-level supervision. We analyzed the top-10 most important
patches across 6 randomly chosen test images and found that high-impact regions consistently fall on
key facial landmarks such as the eyes, nose, lips, and jawline (see Figure 7). This suggests that our
ProtoPairNet consistently focuses on semantically meaningful features when making predictions.
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Figure 7: Test images (numbered 1–6) are shown on the
left, with corresponding heatmaps on the right highlighting
facial regions most influential to the model’s predictions.

Table 4: Occlusion sensitivity results
showing the average and maximum
prediction changes for 6 test images.

Test image
Average

prediction
change

Maximum
prediction

change

1 0.773 4.153
2 0.486 2.904
3 0.376 1.820
4 0.885 3.438
5 0.371 1.497
6 0.172 1.192

Quantitatively, as shown in Table 4, for the 6 randomly chosen test images, the average change
in prediction across occluded patches ranged from 0.172 to 0.885, whereas the maximum change
in prediction resulting from occluding the most important patch ranged from 1.192 to 4.153. The
substantial difference between the average and maximum prediction changes resulting from patch
occlusions indicates that only a small subset of patches, typically those corresponding to key facial
landmarks, has a significant impact on our ProtoPairNet’s output. This further confirms the importance
of these regions in our model’s decision-making process.

3.5 Ablation Study: Is a Single, Most Relevant Prototype Pair Sufficient for a Prediction?

Table 5: Age prediction performance with standard softmax,
simple averaging, and Gumbel-softmax pair relevance.

MAE R2 score

Standard softmax 4.49 ± 0.007 0.877 ± 0.0006
Simple average 4.48 ± 0.003 0.878 ± 0.0004
Gumbel-softmax (Ours) 4.59 ± 0.01 0.87 ± 0.001

While our ProtoPairNet may contain
multiple prototype pairs, the use of
Gumbel-softmax in the pair relevance
branch means that each prediction of
our ProtoPairNet is essentially made
by a single, most relevant prototype
pair. To evaluate whether a single pair
is sufficient for each prediction, we
conducted an ablation study replacing
Gumbel-softmax with (1) a standard softmax and (2) a simple average of all prototype pairs’ predic-
tions. We found that using multiple pairs per prediction through standard softmax or simple averaging
did not significantly improve the model’s performance for age prediction, suggesting that a single,
most relevant prototype pair identified by Gumbel-softmax is often sufficient for each prediction (see
Table 5). More ablation studies are found in Appendix E.

4 Limitations, Future Work, and Conclusion

Our approach does not use part-based explanations as ProtoPNet [11] and its variants do. Leveraging
prototypical parts as prototypes could improve interpretability by linking specific regions of the
input to meaningful, localized concepts. However, we consider our pair-based formulation a novel
contribution on its own. Our method introduces a new framework that explains predictions by
positioning the latent representation of an input along a meaningful axis defined by a pair of prototypes,
capturing smooth transitions and continuous variation across examples for regression tasks. Extending
our framework to incorporate part-based reasoning is a promising direction we would like to explore.

To conclude, in this work, we presented the ProtoPairNet, a novel model for prototype-based
regression that incorporates comparisons with pairs of prototypes. Our code is available at https:
//github.com/Rose32/ProtoPairNet.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The theoretical derivations and experimental results along with the user studies
in the appendix supports the claims made in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in the main paper Section 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The theoretical formulation of our approach is discussed in detail in Section 2.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The training hyperparameters and the training procedure are described in
Appendix C and D respectively. The experimental details are described in Section 3 of the
main paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code is available at https://github.com/Rose32/ProtoPairNet.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Data splits are discussed in Section 3 of the main paper and Appendix H. The
hyperparameter settings and ablation studies are listed in Appendix C and Appendix E,
respectively.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All of our results are reported as mean ± standard deviation over multiple
runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: It is discussed in Appendix M.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every aspect, to the NeurIPS
Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The broader impacts are discussed in Section 1 of the main paper and in
Appendix N.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: They are properly cited and credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new approach developed in the paper is well documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: The paper includes user studies and example questions are included in Ap-
pendix A.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: The details of the user studies, including the consent process, are described in
Appendix A. The protocols of the user studies have been approved by our institution’s IRB.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our method does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Details on User Studies

We conducted four user studies, each involving 30 participants recruited through Prolific. All
participants provided informed consent prior to data collection and were fully informed of their
rights. The protocols of these user studies have been approved by the IRB. Each study session lasted
approximately 10 to 20 minutes, and participants were compensated at a rate of $10 per hour.

The goal of the first study was to assess whether the prototype pairs generated by our model aligned
with human preferences. The second study aimed to evaluate whether presenting participants with
a pair of references (i.e., a prototypical pair) would help them perform prediction tasks (e.g., age
prediction) more effectively than when given only a single reference (i.e., a single prototype). Studies
three and four further examined whether our model improved interpretability compared to baseline
methods that used single-prototype explanations.

Overall, the results of our user studies suggest that providing pairs of explanations (prototypes) not
only aligns with human preferences better, but also helps participants perform prediction tasks more
effectively and provides a clearer explanation of the model’s reasoning process. The following section
provides further details on the examples used and the implementation of each study.

A.1 Study 1

In this study, 30 participants were presented with 10 test photos of human faces, alongside two pairs of
reference faces. These reference pairs corresponded to the training examples that our ProtoPairNet’s
learned prototype pairs were projected onto. For each test photo, we asked participants to choose
the reference pair they felt better helped them estimate the age of the person in the photo. Our goal
was to see if the prototype pairs selected by ProtoPairNet for its decision making aligned with those
selected by the participants. Some example questions for Study 1 are shown in Figure 12 (a).

Figure 8: Study 1 result.

Results: The result of Study 1 is illustrated in Figure 8. We observed that the majority of users’
reference pair selections were aligned with the reference prototype pairs chosen by ProtoPairNet, with
247 instances (out of 300 responses) of alignment compared to 53 instances (out of 300 responses) of
non-alignment. This indicates a strong preference for the prototype pairs utilized by the model in its
decision-making process for age prediction.

A.2 Study 2

In this study, we worked with another 30 participants, dividing them into three groups of 10. Each
participant was shown 10 test photos of human faces. For each test photo, participants in Group
1 were not given any reference training examples. Those in Group 2 were provided with a single
reference training example, the age of the reference, and a dissimilarity score between the test photo
and the reference. Participants in Group 3 were given a pair of reference training examples, their
ages, and the relative dissimilarity between the test photo and the pair of references. We asked
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participants to estimate the age of each test photo based on the information provided and to rate how
useful they found the information in making their guesses. This study explored whether providing
a pair of reference examples enhances decision-making and increases the probability of accurate
predictions compared to a single example or none at all. Some example questions for Study 2 is
shown in Figure 12 (b) for group 1, Figure 12 (c) for group 2, and Figure 12 (d) for group 3.

(a) (b)

Figure 9: Study 2 results.

Results: The results of Study 2 are illustrated in Figure 9. As shown in Figure 9 (a), we observed
that the mean absolute error (MAE) when guessing the ages of the test photos was significantly lower
for participants in Group 3 (4.0), who were provided with a pair of reference examples, compared
to those in Group 2 (5.96) who were provided with a single reference example and Group 1 (7.85)
who were provided with no reference example. The participants in Group 3 demonstrated better
performance in predicting the age, suggesting that providing a pair of reference examples enhances
decision-making accuracy. Additionally, ProtoPairNet outperformed all participant groups, achieving
the lowest MAE for the test photos. To assess statistical significance, we conducted independent
t-tests comparing Group 3 with Group 2 and Group 1. As shown in Table 6, the results indicate
statistically significant differences, with Group 3 outperforming Group 2 (t = −2.72, p = 0.0091)
and Group 1 (t = −4.55, p = 0.0004), confirming that the improvements observed with paired
references are statistically significant.

Furthermore, as shown in Figure 9 (b), participants in Group 3 rated the helpfulness of the provided
information higher on average (3.7) compared to Group 2 (3.14). This indicates that the additional
context from two reference examples was perceived as more effective in aiding participants’ age
predictions, highlighting the importance of multiple references in improving decision-making.

Table 6: t-Test results comparing MAEs of Group 3 with Group 2 and Group 1.

Groups t-Statistic p-Value (one-tail)

Group 3 − Group 2 -2.72 0.0091

Group 3 − Group 1 -4.55 0.0004

A.3 Study 3

In this study, 30 participants were shown 10 test photos of human faces. For each photo, they
were presented with two reasoning processes: one using a pair of reference faces (Justification 1)
and the other using a single reference face (Justification 2). We asked the participants to choose
which reasoning justification they found more effective for predicting the person’s age. We also
added a comment box where the participants could briefly state their reasons for their choices. This
study aimed to see if human users prefer the reasoning based on two reference examples or a single
reference example. An example question for Study 3 is shown in Figure 13 (a).

Results: The result of Study 3 is illustrated in Figure 10. The majority of participants (191 out
of 300 responses) preferred the reasoning process using a pair of reference images (Justification
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Figure 10: Study 3 results.

1) compared to fewer (109 out of 300 responses) participants who chose the process with a single
reference image (Justification 2). Interestingly, based on the comments left by the participants, the
cases where participants favored Justification 2 were usually when the reference face in the image
closely resembled the test photo. The comment from one such participant was “I think when the
faces are closer together on one end of the spectrum it is better to have just 1 reference point.”.
However, given the inherent uniqueness of human faces, relying on highly specific references is not
practical and limits generalization. For the participants who favored Justification 1, they favored it
strongly, leaving comments like “Justification 1 better justifies the prediction because it compares
the face with both younger and older faces, suggesting a more nuanced relationship”, “Justification
1 has more data points to validate its decision. Comparing two faces increases confidence compared
to comparing to one face.”, etc. This considerable preference underscores the importance of the
additional contextual information provided by the pair of references when predicting the ages of
human faces.

The result of a one-tail t-test on the mean counts of the justifications chosen by the users, dubbed as
the “Justification Score,” further illustrate that there is a statistically significant preference for the
reasoning process of using a pair of references compared to using a single reference as shown in
Table 7.

Table 7: User Study 3 results comparing the Justification Score for using a pair of references and the
Justification Score for using a single reference.

Justifications t-Statistic p-Value (one-tail)

Pair of References Justification Score −
Single Reference Justification Score

5.67 2.34× 10−7

A.4 Study 4

In this study, 30 participants were presented with 10 test scenarios from a car racing game. For each
test scenario, participants were provided with the reasoning process our ProtoPairNet used to predict
the level of acceleration (Decision 1 and Justification 1), and the reasoning process the baseline model
PWNet [21] used to predict the level of acceleration (Decision 2 and Justification 2). The “Decision”
here refers to the predicted acceleration and the “Justification” refers to the reasoning process of each
model. Participants were asked to select the decision that made more sense to them out of the two and,
separately, to choose the reasoning process they preferred. Additionally, we also put a comment box
after every question for the participants to briefly justify their choices. This study aimed to understand
whether users find ProtoPairNet’s prediction process more intuitive and preferable compared to the
baseline model’s approach. An example question for Study 4 is shown in Figure 13 (b).
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Figure 11: Study 4 results.

Results: The results of Study 4 are illustrated in Figure 11. We observed that the majority of
participants preferred the reasoning process of ProtoPairNet (Decision and Justification 1) over the
reasoning process of PWNet (Decision and Justification 2). Specifically, for decisions alone, 165
participants favored ProtoPairNet’s decisions compared to 135 participants who favored PWNet’s
decisions. Similarly, for justifications, 170 participants preferred ProtoPairNet’s justifications com-
pared to 130 participants favoring PWNet’s justifications. Based on participant feedback, those who
preferred ProtoPairNet’s reasoning process highlighted its clarity and the strength of the comparisons
drawn, often mentioning that the reasoning process felt more comprehensive and aligned better with
their expectations. As in Study 2, the participants who favored Decision and Justification 1 favored it
strongly, with comments like “It makes me nervous how Justification and Decision 2 will account
for a more curved road to predict acceleration. Decision 1 considers both a curved and straight
road and checks how curved the scenario is before making a decision. The way the first model makes
the decision is actually good, it checks similar roads and places the sample along the spectrum
and matches acceleration. The second model feels like a black box, it just says they are slightly
similar and spits out a number.” This comment highlights the weakness of PWNet’s manually picked
prototype for acceleration which is just a straight road and is used to predict the acceleration for all
scenarios in the environment. On the other hand, the participants who selected PWNet’s reasoning
appreciated its simplicity and as in Study 3, favored it whenever the test scenario looked significantly
close to the single reference scenario provided. One such participant left the comment, “I prefer
having two frameworks of comparison, but Justification 2 having only 2% difference seems more
realistic to choose”. These results emphasize the strength of ProtoPairNet’s reasoning process in both
decision-making and justifications, demonstrating the added value of a robust and well-supported
reasoning framework.

The result of a one-tailed t-test on the mean counts of justifications selected by users, or the “Jus-
tification Score” demonstrates a statistically significant preference for the reasoning process of
ProtoPairNet compared to PWNet, as shown in the first row of Table 8. To further analyze participant
preferences, we combine decisions and justifications into a single metric by multiplying them (i.e.,
Decision 1 × Justification 1 for ProtoPairNet and Decision 2 × Justification 2 for PWNet), dubbed
“Preference Score” in the table. This approach highlights cases where participants consistently align
with both the Decision and Justification from a model, emphasizing the importance of agreement on
both aspects. The interaction between Decision and Justification is critical, as alignment with both
reflects a more robust preference than agreement on either aspect individually. Again, this shows
that participants found our ProtoPairNet’s reasoning process more intuitive and its decisions better
justified, further validating its effectiveness in this study.
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Table 8: t-Test results comparing ProtoPairNet’s scores with PWNet’s scores for Justification and
Preference.

Models t-Statistic p-Value (one-tail)

ProtoPairNet’s Justification Score −
PWNet’s Justification Score

2.9 0.0026

ProtoPairNet’s Preference Score −
PWNet’s Preference Score

2.6548 0.0051

(a)

(b)

(c)

(d)

Figure 12: Example questions for Study 1 (a), and Study 2, Group 1 (b), Group 2 (c), Group 3 (d).
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(a) (b)

Figure 13: Example questions for Study 3 (a), and Study 4 (b).
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B One-to-One Comparisons versus Prototype Pair-based Reasoning

Age varies 
linearly 

along this 
line

Predicted age 9

Prototype 2
Age 80

Input Image 
Original age 9

Projected onto its 
relative position 

within the 
prototypical pair

The input image is exactly 
Prototype 1 (age 9),

so the predicted age is 9

Reasoning with Prototypical pair: 
Prototypical pair with the most 
relevant age range to the input

Reasoning with one-to-one comparison:

Similarity
: 1

Input Image 
Original age 9

Predicted age 9.8

Prototype 1
Age 9 

Prototype 2
Age 80

Similarity: 0.01

Weighted mean 
of prototype 

labels

Prototype 1
Age 9 

Predicted Age
= 9 + 0 * (80 – 9)

   = 9

Predicted Age

= 9 * 1 + 80 * 0.01

   = 9.8

Figure 14: One-to-one comparisons versus prototype pair-based reasoning, when the input image
matches a prototype exactly.

Figure 14 demonstrates why a similarity-weighted average can cause unwarranted deviations, even
when an input image matches a prototype exactly. As shown at the top of Figure 14, while the input
image is the same as the prototype whose label is 9, the 2-prototype model using similarity-weighted
averaging predicts 9 × 1 + 80 × 0.01 = 9.8 ̸= 9. In contrast, the prototype pair-based reasoning
(used by our ProtoPairNet) addresses this issue effectively. By design, when an input image is the
same as a prototype, our ProtoPairNet predicts the label of the prototype. This is illustrated in the
bottom of Figure 14.

C Training Hyperparameters

Table 9: Hyperparameter settings for ProtoPairNet
Parameter Weight
MAE 1
Cluster loss LClst 0.008
Axis distance loss LAxisDist 0.008
Diversity loss LDiv 0.001
Gumbel softmax temperature τ 0.1

This section documents the hyperparameters used to train our ProtoPairNet, as shown in Table 9. The
hyperparameters shown in the table are consistent across all the architectures. The hyperparameters
are chosen using grid search on a validation set for both the age prediction task and the car racing
application.

To evaluate whether the Gumbel-softmax temperature τ is sufficiently small, we computed the mean
L1 distance between the Gumbel-softmax outputs r and their binarized one-hot versions rone-hot over
the test set of the age prediction task. At the temperature τ = 0.1 used in our experiments, the

28



mean distance was 0.02, indicating that the Gumbel softmax outputs are sufficiently close to one-hot
encodings.

D Training Procedure

Stage 1:  Optimizing via SGD

Loaded pretrained 
backbone

Trained ProtoPairNet 

Objective function:  

ℒ = ℒMAE/MSE + 𝜆1ℒClst + 𝜆2ℒAxisDist +𝜆3ℒDiv 

Stage 2:  Prototype Projection 
Project prototypical pairs to distinct pairs of training instances that 
are closest  to the pair axis while maintaining the strongest cosine 

alignment with the pair and diversity within the pair. 

Stage 3:  Post-Projection Optimization  

Same objective function as Stage 1:  

Trained add-on layers, fbb, and prototypical pairs with pretrained backbone frozen.

ℒ = ℒMAE/MSE + 𝜆1ℒClst + 𝜆2ℒAxisDist +𝜆3ℒDiv 

Finetune backbone, fbb , and add-on layers, fadd-on with fixed prototypical pairs.

Figure 15: The procedure for training ProtoPairNet.

The three stages of training as discussed in the main paper are shown in Figure 15. For all architectures,
we use backbone weights pretrained on the corresponding dataset. The encoder f is composed of
the backbone fbb and add-on layers fadd-on. In summary, this defines the basic workflow of our
approach: Stage 1 trains the model along with the prototypical pairs, Stage 2 projects them onto
selected training instances, and Stage 3 fine-tunes the model with a reduced learning rate while
keeping the prototypical pairs fixed at the latent representations of the selected training images.

E Ablation Studies

The ablation study on loss terms shown in Table 10 reveals that removing the axis distance loss
disrupts the projection mechanism, preventing prototypes from aligning with the most cosine-similar
pair of training instances. This is evident from the fact that cosine values between prototype pairs
before and after projection are no longer close to one. In contrast, removing other losses does not
affect this alignment, indicating that the axis distance loss plays a crucial role in ensuring meaningful
prototype placement. While the overall performance impact of removing any single loss term is not
significant, these losses collectively help structure the latent space, encouraging the model to learn
more useful and interpretable representations.

Table 11 and Table 12 show that increasing the prototype dimension or the number of prototype
pairs does not significantly affect performance. This suggests that these hyperparameters can be
adjusted flexibly based on the task without compromising model effectiveness. We find that a smaller
prototype dimension is sufficient for structuring the latent space effectively, while larger dimensions
do not provide additional benefits.
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Table 10: Ablation study for age prediction on cluster loss, axis distance loss, and diversity loss.

Removed parameter MAE R2 score

Cosine alignment
between prototype pairs

before and after projection
(5 pairs)

None 4.59 ± 0.01 0.87 ± 0.001 [0.99, 0.99, 0.99, 0.99, 0.93]
Cluster loss LClst 4.78 ± 0.15 0.86 ± 0.005 [0.99, 0.99, 0.99, 0.96, 0.93]
Axis distance loss LAxisDist 4.75 ± 0.07 0.86 ± 0.001 [0.64, 0.10, 0.01, 0.73, 0.10]
Diversity loss LDiv 4.83 ± 0.31 0.86 ± 0.010 [0.99, 0.99, 0.96, 0.99, 0.93]

Table 11: Effect of prototype dimension on age prediction performance.

Prototype dimension MAE R2 score
50 (Used in paper) 4.59 ± 0.01 0.87 ± 0.001
100 4.71 ± 0.13 0.87 ± 0.002
200 4.81 ± 0.40 0.86 ± 0.003

Table 12: Effect of the number of prototype pairs on age prediction performance. Increasing the
number of prototype pairs decreases test performance. 5 pairs are sufficient and optimal in our case.

Number of prototype pairs MAE R2 score
5 (Used in paper) 4.59 ± 0.03 0.87 ± 0.001
10 4.85 ± 0.18 0.86 ± 0.004
20 4.89 ± 0.15 0.86 ± 0.007
40 5.24 ± 0.04 0.84 ± 0.001
50 5.58 ± 0.50 0.83 ± 0.019
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Figure 16: ProtoPairNet architecture for Car Racing. There are three separate sets of add-on layers
for three output dimensions: steering, acceleration, and braking.

When the output has more than one dimension as in Car Racing (steering, acceleration, and braking),
we can use a separate set of add-on layers for every dimension in our ProtoPairNet (similar to PWNet
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Algorithm 1 Projection of prototypical pairs

Input: Trained model f , training data D = {(x(i), y(i))}ni=1, prototypical pairs {(p2k−1,p2k)}m/2
k=1 ,

prototypical labels {(yp2k−1
, yp2k

)}m/2
k=1 , and empty prototypical visualizations

{(Vis(p2k−1),Vis(p2k))}m/2
k=1

Output: Updated prototypical pairs {(p2k−1,p2k)}m/2
k=1 , labels {(yp2k−1

, yp2k)}
m/2
k=1 , populated

visualizations {(Vis(p2k−1),Vis(p2k))}m/2
k=1

1: Initialize maximum cosine similarity α∗
k = 0, maximum diversity β∗ = 0, minimum distance

from pairs γ∗
k =∞ for all k = 1, . . . ,m/2 pairs

2: for each (x(i), y(i)) ∈ D do
3: Compute latent representations z(i) = f(x(i)) and d

(i)
(2k−1,2k) = ∥z

(i) − z′
(i)
(2k−1,2k)∥

2
2 for

all k = 1, . . . ,m/2 pairs
4: for k = 1, . . . ,m/2 do
5: for (z(i), z(i

′)) ∈ Unique pairs do

6: α
(i,i′)
k = (p2k−1−p2k)

T (z(i)−z(i′))

∥p2k−1−p2k∥2∥z(i)−z(i′)∥2

7: β(i,i′) = ∥z(i) − z(i
′)∥22 · |y(i) − y(i

′)|
8: γ

(i,i′)
k = 1

2 (d
(i)
(2k−1,2k) + d

(i′)
(2k−1,2k))

9: if α(i,i′)
k ≥ α∗

k and β(i,i′) > β∗ and γ
(i,i′)
k < γ∗

k then
10: p2k−1 ← z(i), p2k ← z(i

′)

11: yp2k−1
← y(i), yp2k

← y(i
′)

12: Vis(p2k−1)← x(i), Vis(p2k)← x(i′)

13: α∗
k ← α

(i,i′)
k

14: β∗
k ← β(i,i′)

15: γ∗
k ← davg

16: end if
17: end for
18: end for
19: end for
20: Return {(p2k−1,p2k)}m/2

k=1 , {(yp2k−1
, yp2k

)}m/2
k=1 , and {(Vis(p2k−1),Vis(p2k))}m/2

k=1

[21]). This separates prototypical pairs of different output dimensions in different latent spaces. The
model architecture in this scenario is illustrated in Figure 16.

G Projection of Prototypical Pairs

The pseudocode for our projection procedure is shown in Algorithm 1, with all relevant notations
defined therein. We begin by initializing the cosine similarity α∗

k to 0, the maximum diversity
β∗ to 0, and the minimum distance to the ProtoPair axis γ∗

k to infinity. These values are tracked
and updated across all batches of the training dataset. For each batch, we first compute the latent
representations and their distances to all ProtoPair axes. Then, for every k-th prototypical pair,
we search for candidate pairs of training instances that achieve the highest cosine similarity to the
corresponding prototypical pair learned by the model. By doing so, we ensure that the axis formed by
these candidate pairs remains well-aligned with the k-th ProtoPair axis. Maintaining a high cosine
similarity during projection is essential to preserving the orientation of the ProtoPair axis and avoid
performance degradation due to disruptive changes in direction. Mathematically, the cosine similarity
α
(i,i′)
k between the k-th ProtoPair axis and the latent direction defined by a candidate pair x(i),x(i′)

(whose latent representations are z(i), z(i
′), respectively) is given by:

α
(i,i′)
k =

(p2k−1 − p2k)
T (z(i) − z(i

′))

∥p2k−1 − p2k∥2∥z(i) − z(i′)∥2
.

We compute this for the top 50 random samples within each training batch, restricting the search to
individual batches to reduce computational cost. Next, for these candidate pairs, we compute the
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diversity between the prototypes in these pairs. This is to ensure that the prototypes in the pairs
exhibit sufficient stability and avoid cases where the prototypes within a pair may collapse into the
same values. Mathematically, the diversity score β(i,i′) between the latent representations z(i) and
z(i

′), as well as the labels y(i) and y(i
′) of a candidate pair x(i) and x(i′), is given by:

β(i,i′) = |y(i) − y(i
′)|∥z(i) − z(i

′)∥22.

Finally, we compute the average axis distance γ
(i,i′)
k between the k-th ProtoPair axis and a latent

candidate pair (z(i), z(i
′)) as:

γ
(i,i′)
k =

1

2
(∥z(i) − z′

(i)
(2k−1,2k)∥

2
2 + ∥z(i

′) − z′
(i′)
(2k−1,2k)∥

2
2),

which measures the proximity between the candidate pair and the corresponding prototypical pair
in the latent space. These three metrics are used together to select the pairs that maximize cosine
similarity to the corresponding prototypical pair, exhibit sufficient diversity in latent and label spaces,
and have the smallest average distance to the k-th ProtoPair axis. We then update our model-
learned prototypical pairs and their corresponding prototypical labels with these chosen pairs of
latent representations and their corresponding labels. We also store the image representations or
visualizations of these newly projected prototypical pairs in this stage as Vis(p2k−1) and Vis(p2k),
where Vis denotes the prototype visualization function. This enables visualizations in the pixel space
while also facilitating the next stage of training. Finally, if a candidate pair exceeds the current
tracked metrics α∗

k, β∗, and γ∗
k , we update these values to reflect the optimal candidate, as detailed in

Steps 13, 14, and 15 of Algorithm 1.

H Age Distribution in the UTKFace Dataset

Figure 17: Age distribution across the training, validation, and test sets.

Figure 17 shows the distribution of age labels across the training, validation, and test sets. All three
sets are skewed toward younger and middle-aged individuals, with relatively fewer examples at
older ages. This observation provides context for the interpretability results shown in the figures in
Appendix I and J. Many instances in the dataset correspond to younger individuals, which naturally
align more closely with the lower end of their most relevant prototype pairs. Since our model predicts
by projecting an input onto the axis of a prototypical pair in the latent space, examples from younger
age groups often appear nearer to the left (younger) prototype. This behavior reflects both the data
distribution and the model’s reasoning.

I More Examples of Reasoning Process for Age Prediction

This section provides additional examples illustrating the reasoning process for age prediction.
Figure 18 and Figure 19 show the reasoning process of ProtoPairNet for predicting the age of a total
of 24 random input images. We find that the predicted labels of 77.22% of test images fall within
the label range of their corresponding most relevant prototype pair, while the predicted labels of the
remaining 22.78% lie outside that range. Since our ProtoPairNet makes predictions along the axis
defined by a prototype pair, test samples may naturally lie either within or outside the label range of
the prototype pair; both scenarios are consistent with our formulation.
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Figure 18: Example reasoning processes of how age is predicted by ProtoPairNet for 12 random
input images.

J More Examples of Global Analysis for Age Prediction

This section provides additional examples illustrating the global analysis for age prediction. Figure 20
shows the global analysis for 8 pairs of prototypes used in various ProtoPairNet models we trained.
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Figure 19: Example reasoning processes of how age is predicted by ProtoPairNet for 12 random
input images.

K More Examples of Reasoning Process for Car Racing

This section provides additional examples illustrating the reasoning process for car racing. Figure 21
and Figure 22 show the reasoning process of ProtoPairNet for predicting the steering of random input
states. Additionally, Figure 23 shows the reasoning process for predicting acceleration (left column)
and braking (right column).
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Figure 20: Global analyses of 8 pairs of prototypes used in ProtoPairNet.

L More Examples of Global Analysis for Car Racing

This section provides additional examples illustrating the global analysis for car racing. Figure 24
shows the global analysis for prototype pairs for steering. Additionally, Figure 25 shows the global
analysis for a pair of acceleration prototypes (left column) and a pair of braking prototypes (right
column) used by ProtoPairNet.

M Reproducibility and Empirical Computational Cost

We implemented our models using PyTorch and conducted all experiments on a high-performance
computing cluster using SLURM. Each experiment was run on a single NVIDIA A100 80GB
PCIe GPU with CUDA version 12.3, using 2 CPU cores and 64 GB of memory. The full
pipeline—including prototype projection and fine-tuning—took approximately 6 hours for age
prediction (3 runs, batch size 256) and 3 hours for car racing (5 runs, batch size 128). Prototype
projection added minimal computational overhead in both tasks. For comparison, HPN [24] took
approximately 1.5 days (36 hours) to complete 3 runs of 250 epochs using their default configuration,
as reported in their paper. INSightR-Net [16] required approximately 5 hours, while the ExPeRT
[17] required just under 2.5 hours to train under similar conditions.

N Broader Impacts

Model interpretability is essential for the deployment of artificial intelligence (AI) systems in high-
stakes environments. This work advances interpretability for tasks requiring continuous target
predictions by leveraging prototypical pairs that ground predictions in semantically meaningful
examples. By structuring predictions around these visual anchors, our method enables users to
understand not only what the model predicts, but also why. Our approach supports applications where
trust, transparency, and accountability are crucial, such as medical decision support, autonomous
driving, and human-centered AI, and offers a path toward more interpretable and human-aligned AI
systems.
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Figure 21: Example reasoning processes of how steering is predicted by ProtoPairNet for 12 random
input states.
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Figure 22: Example reasoning processes of how steering is predicted by ProtoPairNet for 6 random
input states.
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Figure 23: Example reasoning processes of how acceleration is predicted for 2 random input states, left
column (a), and how brake is predicted for 2 random input states, right column (b) by ProtoPairNet.
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Figure 24: Global analyses of 4 pairs of prototypes used by ProtoPairNet for steering in car racing.
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Figure 25: Global analyses of a pair of prototypes for acceleration, left column (a), and a pair for
braking used by ProtoPairNet for car racing.

38


	Introduction
	Method
	Architecture Overview
	Prediction Branch
	Pair Relevance Branch
	Training Algorithm

	Experiments
	Case Study 1: Age Prediction
	Case Study 2: Car Racing
	User Studies
	Occlusion Sensitivity Analysis
	Ablation Study: Is a Single, Most Relevant Prototype Pair Sufficient for a Prediction?

	Limitations, Future Work, and Conclusion
	Details on User Studies
	Study 1
	Study 2
	Study 3
	Study 4

	One-to-One Comparisons versus Prototype Pair-based Reasoning
	Training Hyperparameters
	Training Procedure
	Ablation Studies
	Car Racing Model Architecture
	Projection of Prototypical Pairs
	Age Distribution in the UTKFace Dataset
	More Examples of Reasoning Process for Age Prediction
	More Examples of Global Analysis for Age Prediction
	More Examples of Reasoning Process for Car Racing
	More Examples of Global Analysis for Car Racing
	Reproducibility and Empirical Computational Cost
	Broader Impacts

