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Dynamic Multichannel Access With Imperfect
Channel State Detection
Keqin Liu, Qing Zhao, and Bhaskar Krishnamachari

Abstract—A restless multi-armed bandit problem that arises in
multichannel opportunistic communications is considered, where
channels are modeled as independent and identical Gilbert–Elliot
channels and channel state detection is subject to errors. A simple
structure of the myopic policy is established under a certain con-
dition on the false alarm probability of the channel state detector.
It is shown that myopic actions can be obtained by maintaining
a simple channel ordering without knowing the underlying Mar-
kovian model. The optimality of the myopic policy is proved for
the case of two channels and conjectured for general cases. Lower
and upper bounds on the performance of the myopic policy are
obtained in closed-form, which characterize the scaling behavior
of the achievable throughput of the multichannel opportunistic
system. The approximation factor of the myopic policy is also
analyzed to bound its worst-case performance loss with respect to
the optimal performance.

Index Terms—Cognitive radio, dynamic multichannel access,
myopic policy, restless multi-armed bandit.

I. INTRODUCTION

A. Dynamic Multichannel Access

W E consider the following stochastic optimization
problem that arises in multichannel opportunistic

communications. Assume that there are independent and
stochastically identical Gilbert–Elliot channels [1]. As illus-
trated in Fig. 1, the state of a channel—“good” or “bad”—indi-
cates the desirability of accessing this channel and determines
the resulting reward. The transitions between these two states
follow a discrete-time Markov chain with transition probabili-
ties . This channel model has been commonly used
to abstract physical channels with memory (see [2], [3] and
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Fig. 1. The Gilbert–Elliot channel model.

references therein). An emerging application of this channel
model is cognitive radio for opportunistic spectrum access
where secondary users search in the spectrum for idle channels
temporarily unused by primary users [4]. This two-state Mar-
kovian channel model has been shown to fit well with actual
spectrum usage [5]–[7]. For this application, the “good” state
represents an idle channel while the “bad” state an occupied
channel.

Due to limited sensing capability, in each time slot, a user can
only sense a subset of channels and subsequently
access those channels sensed to be in the good state. Sensing
is subject to errors: a good channel may be sensed as bad and
vice versa. Accessing a good channel results in a unit reward,
and no access or accessing a bad channel leads to zero reward.
The design objective is the optimal sensing policy for dynamic
channel selection to maximize the expected long-term reward.

B. Restless Multi-Armed Bandit and the Myopic Policy

The above dynamic multichannel access problem can
be formulated as a partially observable Markov decision
process (POMDP) for generally correlated channels [8], or a
restless multi-armed bandit problem (RMAB) for independent
channels as considered here. The maximum expected total re-
ward of the multichannel opportunistic system is essentially the
value function of an RMAB. Unfortunately, obtaining optimal
solutions to a general restless bandit process is PSPACE-hard
[9], and analytical characterizations of the performance of the
optimal policy are often intractable.

In this paper, we show that for the special class of RMAB
that arises in the dynamic multichannel access problem, simple
structural policies exist that achieve a strong performance
with low complexity. Specifically, we show that the myopic
policy, which maximizes the expected immediate reward while
ignoring the impact of the current action on the future, has
a simple structure when the false alarm probability of the
channel state detector is below a certain value. This structure
is semi-universal: it is independent of the Markovian transition
probabilities except the order of and (i.e., the sign of
the correlation between the channel states in two consecutive
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slots1). The myopic policy can thus be implemented without
knowing the transition probabilities except their
order, and it automatically tracks variations in the channel
model provided that the order of and remains un-
changed. Furthermore, we show that with such a simple and
robust structure, the myopic policy achieves the optimal perfor-
mance for . Numerical examples2 suggest its optimality
for the general case of .

To analytically characterize the performance of the myopic
policy for , we develop closed-form lower and upper
bounds on the steady-state throughput achieved by the myopic
policy. The lower bound monotonically approaches to the upper
bound as the number of channels increases. This result thus
defines the limiting performance of the myopic policy as ap-
proaches to infinity. Furthermore, by analyzing a genie-aided
system which provides an upper bound on the optimal perfor-
mance, we characterize the approximation factor of the myopic
policy to bound the worst-case performance loss of the my-
opic policy with respect to the optimal policy. Specifically, we
show that the myopic policy achieves at least of the op-
timal performance when channels are positively correlated, and
at least of the optimal performance when
channels are negatively correlated.

This paper extends our earlier work in [10] that assumes per-
fect detection of the channel states. As shown in Sections II
and III, communication constraints, namely, synchronization in
channel selections between the transmitter and its receiver, re-
quire a different formulation of the problem when observations
are imperfect, and the uncertainties in the sensed channel state
complicate the analysis of the myopic policy. A detailed discus-
sion on other related work is given in Section V.

II. PROBLEM FORMULATION

In this section, we formulate the problem by considering
the cognitive radio application. The general problem, however,
finds applications in downlink scheduling in a fading envi-
ronment, jamming and anti-jamming and target tracking in
multi-agent systems.

A. System Model

Let denote the channel states,
where bad/busy good/idle is the state of
channel in slot . At the beginning of each slot, the user first
decides which channels to sense for potential access. Once a
channel (say channel ) is chosen, the user detects the channel
state, which can be considered as a binary hypothesis test3:

good/idle versus bad/busy

1It is easy to show that � � � corresponds to the case where the channel
states in two consecutive slots are positively correlated, i.e., for any distribution
of ����, we have ������� ������������ ��� ����� ����� � �, where
���� is the state of the Gilbert–Elliot channel in slot �. Similar, � � �

corresponds to the case where ���� and ������ are negatively correlated, and
� � � the case where ���� and ���� �� are independent.

2Actions given by the myopic policy and the optimal policy are compared
numerically for randomly chosen � and � and � � 	� 
� and 5. Extensive
numerical comparisons indicate the equivalence between the myopic policy and
the optimal policy.

3We consider here the nontrivial cases with � and � in the open interval
of (0, 1). When they take the special value of 0 or 1, channel state detection can
be simplified. Extensions to such special cases are straightforward.

The performance of channel state detection is characterized by
the receiver operating characteristic (ROC) which relates the
probability of false alarm to the probability of miss detection
:

decide is true

decide is true

Based on the imperfect detection outcome in slot , the user
chooses an access action

no access access

that determines whether to access channel for transmission.
We note that the design should be subject to a constraint on the
probability of accessing a busy channel, which causes interfer-
ence to primary users. Specifically, the probability of collision

perceived by the primary network in any channel and in
any slot should be capped below a predetermined threshold ,
i.e.,

This constrained stochastic optimization problem requires the
joint design of the channel state detector (i.e., how to choose
the detection thresholds to trade off false alarms with miss de-
tections), the access policy that decides the transmission proba-
bilities based on imperfect detection outcomes, and the sensing
policy for channel selections. This problem is formulated as a
constrained POMDP in [8] for generally correlated channels.
A separation principle has been established in [11] which de-
couples the design of the channel state detector and the access
policy from that of the channel sensing policy. Specifically, the
optimal joint design can be carried out in two steps: first to
choose the channel state detector and the access policy to max-
imize the immediate reward under the collision constraint, and
then to choose the sensing policy to maximize the total reward
over a finite horizon of slots. It has been shown in [11] that
the first step can be solved in closed-form. Specifically, the op-
timal channel state detector is the Neyman–Pearson detector op-
erating at the point that the probability of miss detection is
equal to the maximum allowable probability of collision, and
the optimal access policy is to simply trust the detection out-
comes: transmit over a channel if and only if it is detected as
idle. Using the optimal design of the detector operating point
and the access policy, we can then obtain the optimal sensing
policy in the second step as an unconstraint POMDP problem,
or an RMAB problem for independent channels.

The complexity issue in this problem, however, is only par-
tially solved since the resulting unconstraint POMDP for de-
signing the optimal sensing policy in the second step still suffers
from the curse of dimensionality. The focus of this paper is on
developing low-complexity sensing policies and studying their
optimality and performance. Specifically in Section III, we will
show that for independent and stochastically identical channels,
the myopic sensing policy has a simple semi-universal structure
and achieves the optimality for . For , we bound
the steady-state throughput achieved by the myopic policy and
establish its approximation factor with respect to the optimal
policy.

Since failed transmissions may occur, acknowledge-
ments (ACKs) are necessary to ensure guaranteed delivery.

Authorized licensed use limited to: Nanjing University. Downloaded on November 10,2020 at 16:05:04 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: DYNAMIC MULTICHANNEL ACCESS WITH IMPERFECT CHANNEL STATE DETECTION 2797

Specifically, when the receiver successfully receives a packet
from a channel, it sends an acknowledgement to the transmitter
over the same channel at the end of the slot. Otherwise, the
receiver does nothing, i.e., a NAK is defined as the absence of
an ACK, which occurs when the transmitter did not transmit
over this channel or transmitted but the channel is busy in this
slot. We assume that acknowledgements are received without
error since acknowledgements are always transmitted over idle
channels.

B. Restless Multi-Armed Bandit Formulation

Due to limited and imperfect sensing, the system state
in slot is not fully observable

to the user. The user can, however, infer the state from its
decision and observation history. It has been shown that a
sufficient statistic of the system for optimal decision making
is given by the conditional probability that each channel is
in state 1 given all past decisions and observations [12]. Re-
ferred to as the belief vector, this sufficient statistic is denoted
by , where is the conditional
probability that . In order to ensure that the user and
its intended receiver tune to the same channels in each slot,
channel selections should be based on common observations:
the acknowledgements in
each slot rather than the detection outcomes at the transmitter.
Let denote the sensing action that consists of the indexes
of the channels to be sensed in slot . Given the sensing
action and the observations
in slot , the belief vector for slot can be obtained via the
Bayes rule:

(1)

where the operator is defined as

Note that the belief update under results from the
fact that the receiver cannot distinguish a failed transmission
(i.e., colliding with the primary users, which occurs with prob-
ability ) from no transmission (which occurs with
probability ).

A sensing policy specifies a sequence of functions
where maps a belief vector to a sensing

action for slot . Multichannel opportunistic access can thus
be formulated as the following stochastic optimization problem:

where is the reward obtained when the belief is
and channels are selected, is the initial be-

lief vector, is the horizon length, and is the dis-
count factor. This problem falls into the model of an RMAB by
treating the belief value of each channel as the state of each arm
of a restless bandit. If no information on the initial system state
is available, each entry of can be set to the stationary dis-
tribution of the underlying Markov chain:

(2)

Let be the value function, which represents the max-
imum expected total discounted reward that can be obtained
starting from slot up to given the belief vector . Given
that the user takes action and observes , the
expected discounted reward that can be accumulated starting
from slot consists of two parts: the expected immediate reward

and the maximum expected discounted future
reward , where denotes the up-
dated belief vector for slot after incorporating action and
observations as given in (1). Averaging over all possible ob-
servations and maximizing over all actions , we arrive at the
following optimality equations:

(3)

(4)

In theory, the optimal policy and its performance
can be obtained by solving the above dynamic programming.
Unfortunately, due to the impact of the current action on the fu-
ture reward and the uncountable space of the belief vector, ob-
taining the optimal solution using directly the above recursive
equations is computationally prohibitive. Even when approxi-
mate numerical solutions can be obtained, they do not provide
insight into system design or analytical characterizations of the
optimal performance .

III. STRUCTURE, OPTIMALITY, AND PERFORMANCE OF THE

MYOPIC POLICY

In this section, we show that the myopic sensing policy has
a simple and robust structure. Based on this structure, we prove
that the myopic policy is optimal for and characterize
the performance of the myopic policy for general and .

The myopic policy ignores the impact of the current ac-
tion on the future reward, focusing solely on maximizing the
expected immediate reward . Myopic policies are
thus stationary. The myopic action under belief state

is simply given by

(5)

In general, obtaining the myopic action in each slot requires
the recursive update of the belief vector as given in (1), which
requires the knowledge of the transition probabilities .
However, for the problem at hand, we show that the myopic
policy has a simple and robust structure that does not need the
precise knowledge of the transition probabilities.

A. Assumptions

The following two assumptions are adopted in this paper.
A1) The initial belief values are bounded between

and .
A2) The false alarm probability of the channel state de-

tector is upper bounded by
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Assumption A1) will only be used in Theorem 1 and part
of Theorem 2. We note that if Assumption A1) does not hold,
the initial belief values will be transient since the belief values
starting from the second slot are always bounded between
and [see (1)]. Consequently, the structure of the myopic
policy given in Theorem 1 can be easily extended by treating
the first slot separately from the future slots. We assume A1) in
Theorem 1 for the ease of presentation. We also note that As-
sumption A1) will hold if the initial believe values are given by
the stationary distribution [see (2)] of the underlying Markov
chain, which is often the case in practical systems.

For Assumption A2), the allowed probability of miss detec-
tion (note that the optimal operating point is given by )
plays a major role since can be reduced to an arbitrarily small
value at the price of increased . However, both and can be
improved by increasing the sensing/detection time (i.e., taking
more measurements). The caveat is the reduced transmission
time for a given slot length. This interesting tradeoff between
the complexity of the detector at the physical layer and the trans-
mission strategy at the medium access control (MAC) layer of
a communication network can be complex and is beyond the
scope of this paper.

B. Structure

In this subsection, we show that the implementation of the
myopic policy can be described with a simple queue structure.
Specifically, all channels are ordered in a queue, and in each
slot, those channels at the head of the queue are sensed. At
the end of each slot, the positions of the channels in the queue
are reordered based on the common observations of ACK/NAK.
This structure of the myopic policy is detailed in Theorem 1
below.

Theorem 1: The Semi-Universal Structure of the Myopic
Policy: The initial channel ordering is determined by the
initial belief vector as given below.

Under Assumptions A1) and A2), channels are reordered at the
end of each slot according to the following simple rules. When

, the channels over which ACKs are observed will stay
at the head of the queue, and the channels over which NAKs are
observed will be moved to the end of the queue while keeping
their order unchanged [see Fig. 2(a)]. When , the
channels over which NAKs are observed will stay at the head of
the queue, and the channels over which ACKs are observed will
be moved to the end of the queue. The order of the unobserved
channels are reversed [see Fig. 2(b)].

Proof: See Appendix A.
The above simple structure suggests that the myopic sensing

policy is particularly attractive in implementation: the myopic
policy does not require any computation except maintaining a
queueing order of channels. Contrast to the exponential com-
plexity of solving the dynamic programming given by (3)–(4),
the myopic policy has only a linear complexity with both and

. Besides its simplicity, the myopic policy obviates the need for
knowing the channel transition probabilities and automatically
tracks variations in the channel model provided that the sign of
the channel state correlation (i.e., the order of and ) re-
mains unchanged.

Fig. 2. The structure of the myopic policy (� � �, the initial belief is assumed
to satisfy � ��� � � ��� � � � � � � ���). (a) � � � , (b) � � � .

We point out that the structure of the myopic sensing policy
in the presence of sensing errors is similar to that under the per-
fect sensing scenario given in [10]. The proof, however, is more
involved since the observations here are acknowledgements and
the state of the sensed channel cannot be inferred with certainty
from a NAK.

Following the belief-independence property of this simple
structure, we present the following corollary which allows us
to work with a Markov reward process with a finite state space
instead of one with an uncountable state space (i.e., the belief
vectors) as we would encounter in a general POMDP.

Corollary 1: Let
be the order of channels in slot , where

the myopic action . Under Assumption A2),

the ordered channel states
form a state Markov chain, and the performance of the
myopic policy is determined by the Markov reward process

with , where is the
probability of false alarm.

Proof: See Appendix B.
Theorem 1 and Corollary 1 provide the foundation for ana-

lyzing the optimality and performance of the myopic policy in
subsequent subsections.

C. Optimality

Theorem 2: The Optimality of the Myopic Policy: For ,
the myopic policy is optimal in the following sense:

i) it maximizes the expected total discounted/undiscounted
reward over a finite horizon under Assumptions A1) and
A2), i.e.,
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where is the discount factor;
ii) it maximizes the expected total discounted reward over an

infinite horizon under Assumptions A1) and A2), i.e.,

where ;
iii) it maximizes the expected average reward over an infinite

horizon under Assumption A2), i.e.,

Proof: See Appendix C.
Based on Theorem 2 and extensive numerical examples, we

conjecture that the myopic policy is optimal for general and
. Unfortunately, proving this conjecture or establishing suffi-

cient conditions for the general optimality of the myopic policy
appears to be challenging. Under the assumption of perfect
channel state detection and single-channel sensing ,
we have established in [10] the semi-universal structure of the
myopic policy for general and its optimality for . A
recent follow-up work [13] has extended the optimality of the
myopic policy to i) and ii) when channels are
positively correlated. The proofs in [13] hinge on the simple
structure of the myopic policy, which is preserved in the pres-
ence of sensing errors as shown in Theorem 1 (when applied
to the case of ). We thus hope that the optimality of
the myopic policy in the general case also carries over to the
imperfect sensing scenario. Extending the results in [13] to
the imperfect sensing case is, however, highly nontrivial since
sensing errors introduce further complications in the system
dynamics (i.e., belief updates). Under the discounted reward
criterion, our ongoing work shows that when the discount factor
is less than , the myopic policy is optimal for all
and .

D. Performance

In this subsection, we analyze the performance of the my-
opic policy. Specifically, we establish lower and upper bounds
on the system steady-state throughput achieved by the myopic
policy. This result allows us to study the scaling behavior of
the performance limit (based on the conjectured optimality of
the myopic policy) of a multichannel opportunistic communi-
cations system as the number of channels increases. The lower
bound also provides a closed-form worst-case performance of
the myopic policy, which, combined with a closed-form upper
bound on the system maximum throughput obtained based on a
genie argument (see Section III-E), leads to characterizations of
the approximation factor of the myopic policy to bound its worst
case performance with respect to the optimal performance (see
Section III-E).

1) Uniqueness of Steady-State Performance and Its Numer-
ical Evaluation: We first establish the existence and uniqueness
of the system steady-state performance under the myopic policy.
The steady-state throughput under the myopic policy is defined
as

(6)

Fig. 3. The transmission period structure assuming � � � �� �
��� � � (the realizations of channel order in the queue are as follows:
���� � ��� �� ������� � ��� �� ������� � ��	� � ��� �� ��, and
��
� � ��� �� ��).

where is the expected total reward obtained in
slots under the myopic policy when the initial belief is .
From Corollary 1, is determined by the Markov reward
process . It is easy to see that the -state Markov
chain is irreducible and aperiodic, thus has a limiting
distribution. As a consequence, the limit in (6) exists, and the
steady-state throughput is independent of the initial belief
value .

Corollary 1 also provides a numerical approach to evaluating
by calculating the limiting (stationary) distribution of

whose transition probabilities can be directly obtained from the
transition probabilities of the channel states. This numerical ap-
proach, however, does not provide an analytical characterization
of the throughput in terms of the number of channels and
the transition probabilities . In the next subsection, we ob-
tain analytical bounds on and its scaling behavior with respect
to based on a stochastic dominance argument.

2) Analytical Characterization of Throughput: From the
structure of the myopic policy, the throughput is determined by
how often each channel is moved to the end of the queue. When

, the event of moving a channel to the end of the
queue is equivalent to a slot without reward on this channel. The
opposite holds when : moving a channel to the end
of the queue corresponds to a slot with reward on this channel.

We thus introduce the concept of transmission period (TP)
defined with respect to each channel; it is the time period when a
channel is continuously sensed before being moved to the end of
the queue (see Fig. 3 for an example). We index the transmission
periods over all channels in the order of its starting point.4 Let

denote the length of the th TP. We then have a discrete-time
random process taking values of positive integers.

Lemma 1: Under Assumption A2), we have

(7)

where denotes the average
length of a TP.

Proof: See Appendix D.
Based on Lemma 1, throughput analysis is reduced to ana-

lyzing the average TP length , which is determined by the sta-
tionary distribution of the random process . For
and channels are negatively correlated, is a first-order
Markov chain where the stationary distribution can be solved
in closed-form, leading to the closed-form average TP length

. Unfortunately in general, is a random process with

4When several TPs have the same starting point, their indexes can be set ar-
bitrarily.
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high-order memory and it is difficult to solve its stationary distri-
bution. Under single-channel sensing , the approach is
to construct first-order Markov chains that stochastically domi-
nate or are dominated by . The stationary distributions
of these first-order Markov chains, which can be obtained in
closed-form, lead to lower and upper bounds on according to
(7). Specifically, for , a lower bound on is obtained
by constructing a first-order Markov chain whose stationary dis-
tribution is stochastically dominated by the stationary distribu-
tion of . An upper bound on is given by a first-order
Markov chain whose stationary distribution stochastically dom-
inates the stationary distribution of . Similarly, bounds
on can be obtained for .

Theorem 3: The Lower and Upper Bounds on the Throughput
Achieved by the Myopic Policy: Define functions

and for any function of vector , define the fol-
lowing operator:

(8)

Under Assumption A2), we have the following lower and upper
bounds on the throughput when .

• Case 1:

(9)

where is given by (2) and

• Case 2:

(10)

where

Proof: See Appendix E.
For multi-channel sensing , it is difficult to construct

a first-order Markov process to stochastically dominate or be
dominated by . The main approach is to establish a
uniform statistical bound on the distributions of all TPs based on

the structure of the myopic policy. The bound is thus looser than
those given in Theorem 3 when applied to the case of .

Theorem 4: Recall the definition of the operator given in
(8). Under Assumption A2), we have the following lower and
upper bounds on throughput when .

• Case 1:

(11)

where

• Case 2:

(12)

where

Note that and can be arbitrary since they are argu-
ments of the constant functions and .
Proof: See Appendix F.

Corollary 2: For , the lower bound on throughput
increasingly converges to the upper bound at geometrical rate

as increases; for , the lower bound
on increasingly converges to a constant at geometrical rate

.
Proof: See Appendix G.

The monotonicity of the difference between the upper and
lower bounds with respect to illustrates that the perfor-
mance of the multichannel opportunistic system improves
with the number of channels, as suggested by intuition. For

, the upper bound gives the limiting performance
of the system when (under the conjecture on the
optimality of the myopic policy). However, for a fixed sensing
capacity , the throughput in the multichannel opportunistic
system saturates quickly as the number of channels goes to
infinity (see Corollary 2). Since the saturating rate is decreasing
with , for a system consisting of a large number of channels,
it is crucial to enhance the sensing capacity to the level
under which the saturation can be avoided in order to fully
exploit the opportunities offered by a large number of channels.

E. Approximation Factor

As mentioned in Section III, the optimality of the myopic
policy for general and is conjectured based on numerical
results. In this section, we aim to establish analytic results on the
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worst-case performance of the myopic policy with respect to the
optimal policy. Specifically, we will bound from below the ap-
proximation factor of the myopic policy, which is defined as
the ratio of the throughput achieved by the myopic policy to that
achieved by the optimal policy. The main approach is to con-
struct an upper bound on the maximum system throughput by
considering a genie-aided system. Combining this upper bound
with the lower bound on the performance achieved by the my-
opic policy as shown in Section III-D-2), we obtain a uniform
lower bound on the approximation factor , which is indepen-
dent of channel parameters.

In the genie-aided system, the secondary user still senses,
accesses, and accrues rewards among channels in each slot.
However, at the end of each slot, the genie will inform the
secondary user the observations (ACK/NAK) that would have
been obtained from all unobserved channels if they had also
been sensed and subsequently accessed based on the sensing
outcomes. As a consequence, the secondary user will obtain
ACK/NAK from all channels at the end of each slot. Clearly,
the optimal policy in the genie-aided system is given by the
myopic policy since the current sensing action will not affect
the belief transitions as well as the future reward. The optimal
performance of the genie-aided system can thus be upper
bounded as given in Lemma 2 below.

Lemma 2: Define .
Under Assumption A2), the maximum steady-state throughput

in the genie-aided system is upper bounded as given below.
• Case 1:

(13)

where

• Case 2:

(14)

where

Proof: See Appendix H.
The throughput of the genie-aided system provides an upper

bound on the optimal performance and a performance bench-
mark of all sensing policies, including the myopic policy. Com-
bining the lower bound on the throughput achieved by the my-
opic policy as given in Section III-D-2), we bound the approx-
imation factor of the myopic policy as given in Theorem 5
below.

Theorem 5: Under Assumption A2), the approximation
factor of the myopic policy is lower bounded by

(15)

Fig. 4. Robustness of the myopic policy (� � �� � � �� � � ������; for
� � �� � � ��� and � � ���; for � � �� � � ��	 and � � ���).

Fig. 5. Optimality of the myopic policy 
� � ��� � �� 	 � ��� � �
���� � � ����.

Proof: See Appendix I.

IV. NUMERICAL EXAMPLES

Based on the simple semi-universal structure (see The-
orem 1), the myopic policy can be implemented without
knowing the channel transition probabilities except the order
of and . As a result, the myopic policy is robust against
model mismatch and automatically tracks variations in the
channel model provided that the order of and remains
unchanged. As show in Fig. 4, the transition probabilities
change abruptly in the fifth slot, which corresponds to an
improvement in the quality of the channels (for example, a
drop in the traffic load of the primary system in the application
of cognitive radio). From this figure, we can observe, from the
change in the throughput increasing rate, that the myopic policy
effectively tracks the model variations.

In Fig. 5, we plot both the optimal performance and the per-
formance of the myopic policy as functions of the false alarm
probability. We observe that the myopic policy can achieve the
optimal performance even when Assumption A2) is violated,
indicating that A2) is sufficient but not necessary for the opti-
mality of the myopic policy.
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Fig. 6. Performance bounds of the myopic policy �� � �� � � ���� � �
���� � � �������.

To illustrate the tightness of the bounds on and given in
Sections III-D-2) and III-E, we compare the performance of the
myopic policy with the performance of the genie-aided system.
From Fig. 6, we observe that the lower bound on the perfor-
mance of the myopic policy quickly converges to the upper
bound as increases. We also observe from Fig. 6 that the
bounds on the performance of the myopic policy are tight.

V. DISCUSSIONS AND RELATED WORK

As discussed in Section II, in the context of cognitive radio for
opportunistic spectrum access, the joint design of the channel
state detector, the sensing policy for channel selection, and the
access policy has been investigated within the framework of
constrained POMDP in [8]. A separation principle has been es-
tablished in [11] which reveals the optimality of the myopic ap-
proach in the design of the channel state detector and the access
policy. Results obtained in this paper complement the separa-
tion principle by showing the structure and optimality of the
myopic approach in designing the sensing policy. This paper
also extends our earlier work [10] on myopic sensing with per-
fect channel state detection.

In [14], access strategies for a slotted secondary user
searching for opportunities in an un-slotted primary network
is considered under a continuous-time Markovian model of
channel occupancy. In [15], the issue of power control is
addressed under a discrete-time Markovian model of channel
occupancy with perfect but delayed spectrum sensing. In [16],
the authors consider the POMDP framework established in
[8] under multichannel perfect sensing, where an approx-
imation method is proposed with a closed-form bound on
its performance loss with respect to the optimal policy. In
[17], a heuristic sensing policy that selects the channel with
the longest predicted time to be idle is proposed to reduce
channel switching under general stochastic models for channel
occupancy. In [18], the design of the optimal sensing and
transmission strategies on a single channel is addressed under
imperfect spectrum sensing, where the channel occupancy is
modeled as a continuous-time semi-Markov renewal process.
In [19], the authors extend the POMDP framework proposed
in [8] by considering the use of analog channel measurements
(instead of acknowledgement) in the belief update. In this

case, a dedicated control channel is needed to ensure that the
secondary transmitter and its receiver select the same channel
for communication. The issue of unknown parameters in the
distribution of the primary signal is also addressed in [19].

This paper also contributes to the general literature on rest-
less multi-armed bandit problem. While an index policy was
shown by Gittins in 1960s to be optimal for the classical bandit
problems [20], the structure of the optimal policy for a general
restless bandit process remains unknown, and the problem is
shown to be PSPACE-hard [9]. The question whether an index
policy is also optimal for RMAB has been pursued for decades.
In 1988, Whittle proposed a Gittins-like heuristic index policy
[21] for RMAB, which is asymptotically (in terms of the number
of arms) optimal in certain limiting regime as shown by Weber
and Weiss in 1990 [22]. Beyond this asymptotic result, relatively
little is known about the structure of the optimal policies for a
general restless bandit process. In fact, even the indexability of
an RMAB is often difficult to establish [21], [23]. For a class
of RMBP similar to that considered in this paper (the difference
is that channels can be non-identical but channel state detec-
tion is perfect), the indexability of the RMAB is established and
Whittle index obtained in closed-form in [24]–[26] under both
discounted and average reward criteria. The structure and the
optimality of Whittle index policy are also established in [25]
and [26], for stochastically identical arms based on its equiv-
alence to the myopic policy. The same class of RMBP is also
considered in a parallel work in the context of multi-agent sys-
tems [27], where the indexability and the closed-form expres-
sion for Whittle index are obtained under the discounted reward
criterion using a different approach. The structure and the op-
timality of Whittle index policy, however, were not considered
in [27]. This paper differs from [24]–[27] by considering im-
perfect channel state detection. The indexability of the resulting
RMBP and the connection between Whittle index policy and the
myopic policy studied in this paper remain open in the case of
imperfect sensing.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have analyzed the structure, optimality, and
performance of the myopic sensing policy in multichannel op-
portunistic access under an independent and stochastically iden-
tical Gilbert–Elliot channel model with noisy state observations.
We have established a simple and robust structure of the my-
opic sensing policy under certain conditions. The optimality of
the myopic policy has been proved for two-channel systems
and conjectured, based on numerical examples, for the general
case. The performance of the myopic policy has been analyzed,
which allows us to bound the worst case performance of the
myopic policy and to systematically examine the impact of the
number of channels and channel dynamics (transition proba-
bilities) on the system performance. Future work includes re-
solving the optimality conjecture of the myopic policy and gen-
eralizing the results to stochastically non-identical channels by
investigating Whittle index policy. The latter has been studied
in [24]–[27] under the assumption of perfect channel state de-
tection. It is also of interest to investigate the optimality of the
myopic policy under system models beyond the Gilbert–Elliot
channel. For example, dynamic multichannel access under a
self-similar channel occupancy model has been formulated and
studied in [28] where a universal structure of the myopic policy
has been established. The optimality of the myopic policy and
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the issue of imperfect channel state detection, however, remain
open under the self-similar channel model.

APPENDIX A
PROOF OF THEOREM 1

Let be the
queueing order of channels in slot . We need to show that

(16)

We first establish the following properties of the operator
defined in (1).

P1) is an increasing function for and a de-
creasing function for .

P2) for and
for .

P3) For and , we have
;

for and , we have
.

P1) and P2) follow directly from the definition of . To show
P3) for , it suffices to show
due to the monotonically increasing property of and the
bound on . Noticing that is an increasing
function of both and , we arrive at P3) by using the upper
bounds on and . Similarly, we can show P3) for .

We now prove (16) by induction. For , (16) holds by the
definition of . Assume that (16) is true for slot . We show
that it is also true for slot .

Consider first . For an with
which achieves the upper bound of the belief

values (See P2). For an with
is upper bounded by those of unobserved channels due to

P3). Among those channels over which NAKs are observed, the
order of their believes remains unchanged in slot due to
P1). Similarly, the order of the belief values of the unobserved
channels also remains unchanged in slot .

When , for an with
which achieves the lower bound of the belief values

(see P2)). For an with
is lower bounded by those of unobserved channels due to P3).
Furthermore, the order of the belief values of the unobserved
channels is reversed in slot .

We thus proved (16) for all under the structure of the
myopic policy.

APPENDIX B
PROOF OF COROLLARY 1

specifies the states of all channels as well as their order
in slot . Based on the structure of the myopic policy, de-
termines the probability distribution of , i.e., is a
Markov chain. Furthermore, the expected reward obtained on an
idle channel is given by .

APPENDIX C
PROOF OF THEOREM 2

For , we only need to consider the nontrivial case
of . We first consider an arbitrary finite horizon of

slots. Let denote the expected total discounted reward ob-
tained under the myopic policy starting from slot , and
the expected total discounted reward obtained by sensing action

in slot followed by the myopic policy in future slots. The
proof is based on the following lemma which applies to a gen-
eral POMDP and has been established in [10].

Lemma 3: For a -horizon POMDP, the myopic policy is
optimal if for ,

(17)

We now prove Theorem 2. Considering all channel state real-
izations in slot , we have

(18)

where is the conditional
expected total discounted reward obtained starting from slot
given that the system state in slot is . Next, we estab-
lish two lemmas regarding the conditional value function of the
myopic policy.

Lemma 4: Under Assumptions A1) and A2), the expected
total discounted reward starting from slot under the myopic
policy is determined by the action and the system state

in slot , hence independent of the belief vector
at the beginning of slot , i.e.,

Adopting the simplified notation of
, We further have

(19)

Proof: Given and , the myopic actions in
slots to , governed by the structure given in Theorem 1, are
fixed for each sample path of system state and observation, inde-
pendent of . As a consequence, the total discounted reward
obtained in slots to for each sample path is independent of

, so is the expected total discounted reward. (19) follows
from the statistically identical assumption of channels.

Lemma 5: Under Assumptions A1) and A2), we have, ,

(20)

Proof: Based on (19), it suffices to consider
. We prove for by reverse induction. The proof

for is similar. The inequality in (20) holds for
since is the maximum expected reward that can be

obtained in one slot. Assume that the inequality holds for
. We show that it holds for . Consider first

. With probability , the user successfully
identifies that channel 1 is in the good state in slot and
receives an acknowledgement at the end of slot . According
to the structure of the myopic policy, the user switches channel
in slot , i.e., . The expected immediately reward in slot

is thus since the state of channel 2 in slot is
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0. We thus arrive at the first term of (21), where
is given by the summation of and

the discounted future reward starting from slot conditioned
on all four possible system states in slot . With probability ,
a false alarm occurs in slot , resulting in a NAK. The user
thus stays in channel 1 in slot : . We thus arrive at
the second term of (21). Similarly, we obtain

as given in (22), which follows from the
fact that a NAK occurs in slot due to the given bad state of
the chosen channel 1.

(21)

(22)

Applying (19) and the upper bound on , we have

where the last inequality follows from
and .

We now show that (17) in Lemma 3 holds. Consider
with , i.e., the myopic action in slot

is . Applying (19) and Lemma 5 to (18), we have

We thus proved that the myopic policy is optimal for an arbitrary
finite horizon of slots under Assumptions A1) and A2).

By contradiction, it is easy to prove that the myopic policy
maximizes both the expected total discounted reward and the
expected average reward over an infinite horizon under Assump-
tions A1) and A2). Without Assumption A1), the structure of the
myopic policy given in Theorem 1 still holds starting from the
second slot. The myopic policy is thus optimal starting from the
second slot even when Assumption A1) does not hold. Based on
the ergodicity of the Markov reward process under the myopic
policy (see Corollary 1), the expected average reward achieved
by the myopic policy does not depend on the initial belief. The
myopic policy thus achieves the maximum expected average re-
ward starting from the second slot regardless of the belief values

in the second slot. Combined with the fact that the expected im-
mediate reward in the first slot does not contribute to the ex-
pected average reward over an infinite horizon, we conclude that
the myopic policy maximize the expected average reward over
an infinite horizon even when Assumption A1) dose not hold.

APPENDIX D
PROOF OF LEMMA 1

Consider first . Let denote the number of events
that a channel is moved to the end of the queue during a finite
horizon of slots.5 Since such an event represents a loss of a
unit of reward, the throughput during the finite horizon is
given below.

(23)

Let denote the number of TPs during the finite horizon. We
have since the event that a channel is moved to
the end of the queue initializes a new TP. It is easy to see that

. Note that the length
of a TP is finite almost surely. We thus have

(24)

From (23) and (24), we have

(25)

The case for can be similarly obtained by observing
that the event that a channel is moved to the end of the queue
represents a gain of one unit reward.

APPENDIX E
PROOF OF THEOREM 3

• Case 1:
Let denote the belief value of the chosen channel in the

first slot of the th TP. The length of this TP has the
following distribution:

(26)

It is easy to see that if , then stochastically
dominates .

Note that the -step belief update when unobserved is
given by

(27)

It is easy to obtain the following property on the convergence
of : for and monotonically
converges to as , where is the stationary distri-
bution of the Gilbert–Elliot channel given in (2); for
and and converge, from opposite
directions, to as .

5If multiple (say �) channels are simultaneously moved to the end of the
queue, it is counted as � events.
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Based on the structure of the myopic policy, we have
, where denotes

the number of consecutive slots in which the chosen channel
has been unobserved since the last visit, and denotes the be-
lief value of the chosen channel in the slot of the last visit to
this channel. From Assumption A2),

. Based on the convergence property of ,
we have . thus stochastically dominates

, and the expectation of the former,
, leads to the upper bound of

given in (9).
Next, we prove the lower bound of by constructing a hy-

pothetical system where the initial belief value of the chosen
channel in a TP is a lower bound of that in the real system. The
average TP length in this hypothetical system is thus smaller
than that in the real system, leading to a lower bound on based
on (7). Specifically, since
and , we have

based on the convergence property of . We thus
construct a hypothetical system given by a first-order Markov
chain with the transition matrix , shown in
the equation at the bottom of the page.

Lemma 6: The stationary distribution of the first order
Markov chain is stochastically dominated by the
stationary distribution of .

Proof: Let denote the expected probability that the
chosen channel is in state 1 in the first slot of the th trans-
mission period of . Assume in the th transmission
period, the distributions of and both equal to the same

distribution , which may or may not be the stationary dis-
tribution of . Next we show for any

by induction.
When , we have

(28)

Assume , then

(29)

Since , by (26), we have

(30)

Since the smallest number in the series
is the first one, by (30) and the fact that

, we
have

(31)

Combine (29) and (31), we have .
By the above induction, we have for any

. So the stationary distribution of the first order Markov
chain is dominated by the stationary distribution of

.
Let denote the average length of a transmission period of
. Based on (7) and Lemma 6, leads to a lower bound on

. Last, we obtain closed-form by solving the stationary dis-
tribution of the first-order Markov chain .

Recall that is the transition matrix of ,
where is given in the equation shown at the bottom of the
page. Let denote the th column of . We have

(32)
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where is the unit column vector . By the definition
of stationary distribution, we have, for

(33)

which, combined with (32), leads to

(34)

Substituting (34) into (33) for and solving for , we have
, where is given in (9).

From (34), we then have the stationary distribution as follows:

(35)

which leads to
.

• Case 2:
Let denote the belief value of the chosen channel in the

first slot of the th TP. Define the operator as
. We have

Consider first the upper bound. We construct the following
hypothetical system where the stationary distribution of a TP
is stochastically dominated by the one in the real system. The
average TP length in this hypothetical system is thus smaller that
in the real system, leading to a upper bound on based on (7).
Specifically, the distribution of a TP in the hypothetical system
has the following form:

(36)

We first show that is stochastically dominated by
. Note that for all and

. The distribution of given in
(36) is thus well-defined. Since for any

, we have
for all . is thus stochastically dominated by

.
It is easy to see that is stochastically dominated by

if . is thus stochastically dominated by
if . Based on the structure of the myopic policy, it

is clear that when is odd, in the th TP, the user will switch
to the channel visited in the th TP. As a consequence, the
initial belief of the th TP is given by .
When is even, we can show that .
This is because that for even, the user cannot switch to a
channel visited slots ago, and decreases with

for even ’s and for any even and odd
(based on the convergence property of ). We thus con-
struct a hypothetical system given by the first-order Markov
chain with the transition probabilities shown in the
first equation at the bottom of the page. Similarly to Lemma
6, it can be shown that the stationary distribution of
is stochastically dominated by that of . Furthermore
the stationary distribution of can be obtained in closed
form by using an approach similar to that in Case 1, leading to
the upper bound on given in (10).

We now prove the lower bound. Consider the hypothetical
system with the distribution of a TP as given below.

(37)

Similarly, is well-defined and stochastically domi-
nates . It is easy to see that stochastically dom-
inates if . thus stochastically dominates

if .
Based on the structure of the myopic policy,

when is odd. When is even, to find a lower bound
on , we need to find the smallest odd such that the last visit
to the channel chosen in the th TP is slots ago. From the
structure of the myopic policy, the smallest feasible odd is

, which corresponds to the scenario where all
channels are visited in turn from the th TP to

the th TP with . We
thus have . We then construct a hypothet-
ical system given by the first-order Markov chain with
the transition probabilities shown in the second equation at the
bottom of the page.
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The stationary distribution of this hypothetical system leads
to the lower bound on given in (10).

APPENDIX F
PROOF OF THEOREM 4

We first prove that . Note that
is the steady-state throughput achieved by the random sensing
policy that chooses out of channels with uniform prob-
ability (i.e., choose any set of channels with probability

). Since the expected immediate reward under the
random sensing policy in each slot is given by the expected sum
of randomly chosen belief values under any given policy
(including the myopic policy) and the expected immediate
reward under the myopic policy in each slot is given by the
expected sum of the first largest belief values, the throughput
under the myopic policy is thus lower bounded by that under
the random sensing policy. To complete the proof, we consider
the following two cases.

• Case 1:
Consider first the upper bound. Similarly to single-channel
sensing, the belief value of the chosen channel in the
first slot of the th TP is upper bounded by . thus
stochastically dominates , and the expectation of the
former leads to the upper bound on given in (11).

We now consider the lower bound. Recall that
, where denotes the number

of consecutive slots in which the chosen channel has been
unobserved since the last visit, and denotes the belief value
of the chosen channel in the slot of the last visit to this channel.
Based on the structure of the myopic policy, the channel has
the last priority when the user leaves it. It will take at least

slots before the user returns to the same
channel, i.e., . Based on the convergence
property of , we have

.
Thus, is stochastically
dominated by , and the expectation of the former leads
to the first argument in the maximization operator as given in
the left-hand side of (11).

• Case 2:
Consider first the upper bound. Let denote the belief value

of the chosen channel in the first slot of the th TP. Based on
the structure of the myopic policy, we have ,
where denotes the number of consecutive slots in which the
chosen channel has been unobserved since the last visit. From
the convergence property of , we have

. Combined with the hypothetical system given in (36),
is stochastically dominated by , and the ex-

pectation of the former leads to the upper bound on given in
(12).

We now consider the lower bound. Recall that
. If is odd, then

since is an odd number (based on the conver-
gence property of ). If is even, i.e., the user has stayed
even slots before it returns this channel, then is at least

. We have .
Combined with the hypothetical system given in (37),

stochastically dominates , and
the expectation of the former leads to the first argument in the
maximization operator as given in the left-hand side of (12).

APPENDIX G
PROOF OF COROLLARY 2

From the closed-form expressions of the lower bounds on
given in Theorem 3 and Theorem 4, it is easy to see that

the lower bound is monotonically increasing with . Let
. For , after some simplifications, the lower

bound (for large ) has the form , where
are constants. The upper bound is . We have

as
. Thus, the lower bound converges to the upper bound

with geometric rate .
For , the lower bound (for large ) has the

form , where are
constants. It converges to as . We have

as . Thus, the lower bound converges with
geometric rate .

APPENDIX H
PROOF OF LEMMA 2

Similar to Corollary 1, the reward process under the myopic
(optimal) policy of the genie-aided system is ergodic under As-
sumption A2). The maximum steady-state throughput is thus
well defined and independent of the initial belief vector. By
noticing that is the throughput achieved when all

channels are sensed and subsequently accessed based on the
sensing outcomes in each slot, we have that .
To complete the proof, we consider the following two cases.

• Case 1:
Based on the ergodicity of the reward process in the genie-aided
system, the initial belief vector does not affect the optimal per-
formance. Without loss of generality, assume the state of each
channel starts from the stationary distribution . As a conse-
quence, the number of channels over which ACKs are ob-
served falls into the binomial distribution
in every slot. Since the channels over which ACKs is observed
will have the largest belief value and other channels’ belief
values will be upper bounded by in the
next slot, the expected reward obtained under the myopic policy
will be upper bounded by the first argument in the minimization
operator as given in the right-hand side of (13).

• Case 2:
Similarly, we assume the state of each channel starts from
the stationary distribution without loss of generality. The
number of channels over which ACKs are observed falls
into the binomial distribution in every slot.
Since the channels over which ACKs are observed will have
the smallest belief value and other channels’ belief values
will be upper bounded by in the next
slot, the expected reward obtained under the myopic policy will
be upper bounded by the first argument in the minimization
operator as given in the right-hand side of (14).

APPENDIX I
PROOF OF THEOREM 5

Consider first . Based on Lemma 2 and Theorem 4,
we have
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For , based on Lemma 2 and Theorem 4, we have

For the trivial case of , we note that the lower bound
on given in Theorem 4 agrees with the upper bound on
given in Lemma 2.
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